Properties

Label 2-97e2-1.1-c1-0-428
Degree $2$
Conductor $9409$
Sign $-1$
Analytic cond. $75.1312$
Root an. cond. $8.66782$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.73·2-s − 0.732·3-s + 0.999·4-s − 3.34·5-s − 1.26·6-s − 1.41·7-s − 1.73·8-s − 2.46·9-s − 5.79·10-s + 3.46·11-s − 0.732·12-s − 1.93·13-s − 2.44·14-s + 2.44·15-s − 5·16-s + 1.55·17-s − 4.26·18-s + 5.27·19-s − 3.34·20-s + 1.03·21-s + 5.99·22-s + 8.48·23-s + 1.26·24-s + 6.19·25-s − 3.34·26-s + 4·27-s − 1.41·28-s + ⋯
L(s)  = 1  + 1.22·2-s − 0.422·3-s + 0.499·4-s − 1.49·5-s − 0.517·6-s − 0.534·7-s − 0.612·8-s − 0.821·9-s − 1.83·10-s + 1.04·11-s − 0.211·12-s − 0.535·13-s − 0.654·14-s + 0.632·15-s − 1.25·16-s + 0.376·17-s − 1.00·18-s + 1.21·19-s − 0.748·20-s + 0.225·21-s + 1.27·22-s + 1.76·23-s + 0.258·24-s + 1.23·25-s − 0.656·26-s + 0.769·27-s − 0.267·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9409 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9409 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9409\)    =    \(97^{2}\)
Sign: $-1$
Analytic conductor: \(75.1312\)
Root analytic conductor: \(8.66782\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9409,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad97 \( 1 \)
good2 \( 1 - 1.73T + 2T^{2} \)
3 \( 1 + 0.732T + 3T^{2} \)
5 \( 1 + 3.34T + 5T^{2} \)
7 \( 1 + 1.41T + 7T^{2} \)
11 \( 1 - 3.46T + 11T^{2} \)
13 \( 1 + 1.93T + 13T^{2} \)
17 \( 1 - 1.55T + 17T^{2} \)
19 \( 1 - 5.27T + 19T^{2} \)
23 \( 1 - 8.48T + 23T^{2} \)
29 \( 1 + 0.656T + 29T^{2} \)
31 \( 1 + 4.19T + 31T^{2} \)
37 \( 1 - 11.4T + 37T^{2} \)
41 \( 1 - 7.34T + 41T^{2} \)
43 \( 1 + 8.19T + 43T^{2} \)
47 \( 1 - 0.928T + 47T^{2} \)
53 \( 1 + 3T + 53T^{2} \)
59 \( 1 + 4.89T + 59T^{2} \)
61 \( 1 + 1.73T + 61T^{2} \)
67 \( 1 - 3.86T + 67T^{2} \)
71 \( 1 + 5.55T + 71T^{2} \)
73 \( 1 + 14.3T + 73T^{2} \)
79 \( 1 - 6T + 79T^{2} \)
83 \( 1 + 14.0T + 83T^{2} \)
89 \( 1 - 0.464T + 89T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.26146974408821273464568664722, −6.50020336775635781931459557836, −5.91098088464374697458612363902, −5.11440451914017922548150126563, −4.61054076994546474899396897472, −3.85001936747242609410430394164, −3.19779230779302513750559855975, −2.83666517085031556575351543779, −1.01851268234506735235878889580, 0, 1.01851268234506735235878889580, 2.83666517085031556575351543779, 3.19779230779302513750559855975, 3.85001936747242609410430394164, 4.61054076994546474899396897472, 5.11440451914017922548150126563, 5.91098088464374697458612363902, 6.50020336775635781931459557836, 7.26146974408821273464568664722

Graph of the $Z$-function along the critical line