Properties

Label 9386.2.a.bw.1.9
Level $9386$
Weight $2$
Character 9386.1
Self dual yes
Analytic conductor $74.948$
Analytic rank $1$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9386,2,Mod(1,9386)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9386.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9386, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9386 = 2 \cdot 13 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9386.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,-15,-3,15,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.9475873372\)
Analytic rank: \(1\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 3 x^{14} - 27 x^{13} + 70 x^{12} + 306 x^{11} - 609 x^{10} - 1854 x^{9} + 2346 x^{8} + \cdots - 24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 494)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(-0.276311\) of defining polynomial
Character \(\chi\) \(=\) 9386.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +0.276311 q^{3} +1.00000 q^{4} -3.22926 q^{5} -0.276311 q^{6} -1.92690 q^{7} -1.00000 q^{8} -2.92365 q^{9} +3.22926 q^{10} -1.72726 q^{11} +0.276311 q^{12} +1.00000 q^{13} +1.92690 q^{14} -0.892279 q^{15} +1.00000 q^{16} -2.47761 q^{17} +2.92365 q^{18} -3.22926 q^{20} -0.532424 q^{21} +1.72726 q^{22} -5.45322 q^{23} -0.276311 q^{24} +5.42811 q^{25} -1.00000 q^{26} -1.63677 q^{27} -1.92690 q^{28} +6.22398 q^{29} +0.892279 q^{30} -5.87659 q^{31} -1.00000 q^{32} -0.477260 q^{33} +2.47761 q^{34} +6.22247 q^{35} -2.92365 q^{36} +9.94375 q^{37} +0.276311 q^{39} +3.22926 q^{40} +8.58938 q^{41} +0.532424 q^{42} +6.66422 q^{43} -1.72726 q^{44} +9.44123 q^{45} +5.45322 q^{46} +6.47020 q^{47} +0.276311 q^{48} -3.28704 q^{49} -5.42811 q^{50} -0.684589 q^{51} +1.00000 q^{52} +13.4108 q^{53} +1.63677 q^{54} +5.57776 q^{55} +1.92690 q^{56} -6.22398 q^{58} +11.5500 q^{59} -0.892279 q^{60} -1.76476 q^{61} +5.87659 q^{62} +5.63360 q^{63} +1.00000 q^{64} -3.22926 q^{65} +0.477260 q^{66} -3.85273 q^{67} -2.47761 q^{68} -1.50678 q^{69} -6.22247 q^{70} +6.95717 q^{71} +2.92365 q^{72} +3.75939 q^{73} -9.94375 q^{74} +1.49985 q^{75} +3.32826 q^{77} -0.276311 q^{78} -14.9841 q^{79} -3.22926 q^{80} +8.31870 q^{81} -8.58938 q^{82} -9.76103 q^{83} -0.532424 q^{84} +8.00083 q^{85} -6.66422 q^{86} +1.71975 q^{87} +1.72726 q^{88} +8.18396 q^{89} -9.44123 q^{90} -1.92690 q^{91} -5.45322 q^{92} -1.62377 q^{93} -6.47020 q^{94} -0.276311 q^{96} -10.1177 q^{97} +3.28704 q^{98} +5.04990 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 15 q^{2} - 3 q^{3} + 15 q^{4} + 3 q^{5} + 3 q^{6} - 15 q^{8} + 18 q^{9} - 3 q^{10} - 3 q^{11} - 3 q^{12} + 15 q^{13} + 15 q^{16} + 3 q^{17} - 18 q^{18} + 3 q^{20} - 33 q^{21} + 3 q^{22} + 9 q^{23}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0.276311 0.159528 0.0797640 0.996814i \(-0.474583\pi\)
0.0797640 + 0.996814i \(0.474583\pi\)
\(4\) 1.00000 0.500000
\(5\) −3.22926 −1.44417 −0.722084 0.691805i \(-0.756816\pi\)
−0.722084 + 0.691805i \(0.756816\pi\)
\(6\) −0.276311 −0.112803
\(7\) −1.92690 −0.728301 −0.364151 0.931340i \(-0.618641\pi\)
−0.364151 + 0.931340i \(0.618641\pi\)
\(8\) −1.00000 −0.353553
\(9\) −2.92365 −0.974551
\(10\) 3.22926 1.02118
\(11\) −1.72726 −0.520788 −0.260394 0.965502i \(-0.583852\pi\)
−0.260394 + 0.965502i \(0.583852\pi\)
\(12\) 0.276311 0.0797640
\(13\) 1.00000 0.277350
\(14\) 1.92690 0.514987
\(15\) −0.892279 −0.230385
\(16\) 1.00000 0.250000
\(17\) −2.47761 −0.600908 −0.300454 0.953796i \(-0.597138\pi\)
−0.300454 + 0.953796i \(0.597138\pi\)
\(18\) 2.92365 0.689111
\(19\) 0 0
\(20\) −3.22926 −0.722084
\(21\) −0.532424 −0.116185
\(22\) 1.72726 0.368253
\(23\) −5.45322 −1.13707 −0.568537 0.822658i \(-0.692490\pi\)
−0.568537 + 0.822658i \(0.692490\pi\)
\(24\) −0.276311 −0.0564017
\(25\) 5.42811 1.08562
\(26\) −1.00000 −0.196116
\(27\) −1.63677 −0.314996
\(28\) −1.92690 −0.364151
\(29\) 6.22398 1.15576 0.577882 0.816120i \(-0.303879\pi\)
0.577882 + 0.816120i \(0.303879\pi\)
\(30\) 0.892279 0.162907
\(31\) −5.87659 −1.05547 −0.527733 0.849410i \(-0.676958\pi\)
−0.527733 + 0.849410i \(0.676958\pi\)
\(32\) −1.00000 −0.176777
\(33\) −0.477260 −0.0830803
\(34\) 2.47761 0.424906
\(35\) 6.22247 1.05179
\(36\) −2.92365 −0.487275
\(37\) 9.94375 1.63474 0.817371 0.576112i \(-0.195431\pi\)
0.817371 + 0.576112i \(0.195431\pi\)
\(38\) 0 0
\(39\) 0.276311 0.0442451
\(40\) 3.22926 0.510591
\(41\) 8.58938 1.34144 0.670718 0.741712i \(-0.265986\pi\)
0.670718 + 0.741712i \(0.265986\pi\)
\(42\) 0.532424 0.0821549
\(43\) 6.66422 1.01628 0.508142 0.861273i \(-0.330333\pi\)
0.508142 + 0.861273i \(0.330333\pi\)
\(44\) −1.72726 −0.260394
\(45\) 9.44123 1.40742
\(46\) 5.45322 0.804033
\(47\) 6.47020 0.943775 0.471888 0.881659i \(-0.343573\pi\)
0.471888 + 0.881659i \(0.343573\pi\)
\(48\) 0.276311 0.0398820
\(49\) −3.28704 −0.469577
\(50\) −5.42811 −0.767651
\(51\) −0.684589 −0.0958617
\(52\) 1.00000 0.138675
\(53\) 13.4108 1.84212 0.921060 0.389421i \(-0.127325\pi\)
0.921060 + 0.389421i \(0.127325\pi\)
\(54\) 1.63677 0.222736
\(55\) 5.57776 0.752105
\(56\) 1.92690 0.257493
\(57\) 0 0
\(58\) −6.22398 −0.817249
\(59\) 11.5500 1.50369 0.751843 0.659342i \(-0.229165\pi\)
0.751843 + 0.659342i \(0.229165\pi\)
\(60\) −0.892279 −0.115193
\(61\) −1.76476 −0.225954 −0.112977 0.993598i \(-0.536039\pi\)
−0.112977 + 0.993598i \(0.536039\pi\)
\(62\) 5.87659 0.746328
\(63\) 5.63360 0.709767
\(64\) 1.00000 0.125000
\(65\) −3.22926 −0.400540
\(66\) 0.477260 0.0587466
\(67\) −3.85273 −0.470686 −0.235343 0.971912i \(-0.575621\pi\)
−0.235343 + 0.971912i \(0.575621\pi\)
\(68\) −2.47761 −0.300454
\(69\) −1.50678 −0.181395
\(70\) −6.22247 −0.743728
\(71\) 6.95717 0.825664 0.412832 0.910807i \(-0.364540\pi\)
0.412832 + 0.910807i \(0.364540\pi\)
\(72\) 2.92365 0.344556
\(73\) 3.75939 0.440003 0.220001 0.975500i \(-0.429394\pi\)
0.220001 + 0.975500i \(0.429394\pi\)
\(74\) −9.94375 −1.15594
\(75\) 1.49985 0.173187
\(76\) 0 0
\(77\) 3.32826 0.379290
\(78\) −0.276311 −0.0312860
\(79\) −14.9841 −1.68585 −0.842924 0.538033i \(-0.819168\pi\)
−0.842924 + 0.538033i \(0.819168\pi\)
\(80\) −3.22926 −0.361042
\(81\) 8.31870 0.924300
\(82\) −8.58938 −0.948539
\(83\) −9.76103 −1.07141 −0.535706 0.844405i \(-0.679954\pi\)
−0.535706 + 0.844405i \(0.679954\pi\)
\(84\) −0.532424 −0.0580923
\(85\) 8.00083 0.867812
\(86\) −6.66422 −0.718621
\(87\) 1.71975 0.184377
\(88\) 1.72726 0.184126
\(89\) 8.18396 0.867498 0.433749 0.901034i \(-0.357190\pi\)
0.433749 + 0.901034i \(0.357190\pi\)
\(90\) −9.44123 −0.995193
\(91\) −1.92690 −0.201994
\(92\) −5.45322 −0.568537
\(93\) −1.62377 −0.168377
\(94\) −6.47020 −0.667350
\(95\) 0 0
\(96\) −0.276311 −0.0282008
\(97\) −10.1177 −1.02730 −0.513651 0.857999i \(-0.671707\pi\)
−0.513651 + 0.857999i \(0.671707\pi\)
\(98\) 3.28704 0.332041
\(99\) 5.04990 0.507534
\(100\) 5.42811 0.542811
\(101\) −15.3074 −1.52314 −0.761572 0.648081i \(-0.775572\pi\)
−0.761572 + 0.648081i \(0.775572\pi\)
\(102\) 0.684589 0.0677844
\(103\) −15.4225 −1.51962 −0.759811 0.650144i \(-0.774709\pi\)
−0.759811 + 0.650144i \(0.774709\pi\)
\(104\) −1.00000 −0.0980581
\(105\) 1.71934 0.167790
\(106\) −13.4108 −1.30258
\(107\) −7.98507 −0.771946 −0.385973 0.922510i \(-0.626134\pi\)
−0.385973 + 0.922510i \(0.626134\pi\)
\(108\) −1.63677 −0.157498
\(109\) −1.45984 −0.139827 −0.0699134 0.997553i \(-0.522272\pi\)
−0.0699134 + 0.997553i \(0.522272\pi\)
\(110\) −5.57776 −0.531819
\(111\) 2.74756 0.260787
\(112\) −1.92690 −0.182075
\(113\) 17.0707 1.60587 0.802937 0.596064i \(-0.203270\pi\)
0.802937 + 0.596064i \(0.203270\pi\)
\(114\) 0 0
\(115\) 17.6098 1.64213
\(116\) 6.22398 0.577882
\(117\) −2.92365 −0.270292
\(118\) −11.5500 −1.06327
\(119\) 4.77411 0.437642
\(120\) 0.892279 0.0814535
\(121\) −8.01658 −0.728780
\(122\) 1.76476 0.159773
\(123\) 2.37334 0.213997
\(124\) −5.87659 −0.527733
\(125\) −1.38248 −0.123653
\(126\) −5.63360 −0.501881
\(127\) −9.74384 −0.864626 −0.432313 0.901724i \(-0.642303\pi\)
−0.432313 + 0.901724i \(0.642303\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 1.84139 0.162126
\(130\) 3.22926 0.283225
\(131\) 8.05727 0.703967 0.351984 0.936006i \(-0.385507\pi\)
0.351984 + 0.936006i \(0.385507\pi\)
\(132\) −0.477260 −0.0415401
\(133\) 0 0
\(134\) 3.85273 0.332826
\(135\) 5.28555 0.454908
\(136\) 2.47761 0.212453
\(137\) −5.87887 −0.502266 −0.251133 0.967953i \(-0.580803\pi\)
−0.251133 + 0.967953i \(0.580803\pi\)
\(138\) 1.50678 0.128266
\(139\) 2.76234 0.234299 0.117149 0.993114i \(-0.462624\pi\)
0.117149 + 0.993114i \(0.462624\pi\)
\(140\) 6.22247 0.525895
\(141\) 1.78779 0.150559
\(142\) −6.95717 −0.583833
\(143\) −1.72726 −0.144441
\(144\) −2.92365 −0.243638
\(145\) −20.0989 −1.66912
\(146\) −3.75939 −0.311129
\(147\) −0.908244 −0.0749107
\(148\) 9.94375 0.817371
\(149\) 21.8995 1.79408 0.897040 0.441950i \(-0.145713\pi\)
0.897040 + 0.441950i \(0.145713\pi\)
\(150\) −1.49985 −0.122462
\(151\) −6.09089 −0.495670 −0.247835 0.968802i \(-0.579719\pi\)
−0.247835 + 0.968802i \(0.579719\pi\)
\(152\) 0 0
\(153\) 7.24366 0.585615
\(154\) −3.32826 −0.268199
\(155\) 18.9770 1.52427
\(156\) 0.276311 0.0221226
\(157\) 13.7890 1.10048 0.550240 0.835007i \(-0.314536\pi\)
0.550240 + 0.835007i \(0.314536\pi\)
\(158\) 14.9841 1.19207
\(159\) 3.70556 0.293870
\(160\) 3.22926 0.255295
\(161\) 10.5078 0.828133
\(162\) −8.31870 −0.653579
\(163\) −6.16062 −0.482537 −0.241268 0.970458i \(-0.577563\pi\)
−0.241268 + 0.970458i \(0.577563\pi\)
\(164\) 8.58938 0.670718
\(165\) 1.54120 0.119982
\(166\) 9.76103 0.757603
\(167\) −4.05262 −0.313601 −0.156801 0.987630i \(-0.550118\pi\)
−0.156801 + 0.987630i \(0.550118\pi\)
\(168\) 0.532424 0.0410774
\(169\) 1.00000 0.0769231
\(170\) −8.00083 −0.613636
\(171\) 0 0
\(172\) 6.66422 0.508142
\(173\) −2.19689 −0.167027 −0.0835133 0.996507i \(-0.526614\pi\)
−0.0835133 + 0.996507i \(0.526614\pi\)
\(174\) −1.71975 −0.130374
\(175\) −10.4595 −0.790660
\(176\) −1.72726 −0.130197
\(177\) 3.19140 0.239880
\(178\) −8.18396 −0.613414
\(179\) −25.8048 −1.92874 −0.964371 0.264555i \(-0.914775\pi\)
−0.964371 + 0.264555i \(0.914775\pi\)
\(180\) 9.44123 0.703708
\(181\) 10.5212 0.782033 0.391016 0.920384i \(-0.372124\pi\)
0.391016 + 0.920384i \(0.372124\pi\)
\(182\) 1.92690 0.142832
\(183\) −0.487621 −0.0360460
\(184\) 5.45322 0.402016
\(185\) −32.1109 −2.36084
\(186\) 1.62377 0.119060
\(187\) 4.27947 0.312945
\(188\) 6.47020 0.471888
\(189\) 3.15390 0.229412
\(190\) 0 0
\(191\) −13.1671 −0.952739 −0.476369 0.879245i \(-0.658047\pi\)
−0.476369 + 0.879245i \(0.658047\pi\)
\(192\) 0.276311 0.0199410
\(193\) −3.26304 −0.234879 −0.117439 0.993080i \(-0.537469\pi\)
−0.117439 + 0.993080i \(0.537469\pi\)
\(194\) 10.1177 0.726412
\(195\) −0.892279 −0.0638974
\(196\) −3.28704 −0.234789
\(197\) 16.5424 1.17860 0.589300 0.807914i \(-0.299404\pi\)
0.589300 + 0.807914i \(0.299404\pi\)
\(198\) −5.04990 −0.358881
\(199\) −14.0766 −0.997864 −0.498932 0.866641i \(-0.666274\pi\)
−0.498932 + 0.866641i \(0.666274\pi\)
\(200\) −5.42811 −0.383825
\(201\) −1.06455 −0.0750877
\(202\) 15.3074 1.07702
\(203\) −11.9930 −0.841745
\(204\) −0.684589 −0.0479308
\(205\) −27.7373 −1.93726
\(206\) 15.4225 1.07453
\(207\) 15.9433 1.10814
\(208\) 1.00000 0.0693375
\(209\) 0 0
\(210\) −1.71934 −0.118645
\(211\) 8.92749 0.614594 0.307297 0.951614i \(-0.400576\pi\)
0.307297 + 0.951614i \(0.400576\pi\)
\(212\) 13.4108 0.921060
\(213\) 1.92234 0.131717
\(214\) 7.98507 0.545848
\(215\) −21.5205 −1.46768
\(216\) 1.63677 0.111368
\(217\) 11.3236 0.768698
\(218\) 1.45984 0.0988725
\(219\) 1.03876 0.0701928
\(220\) 5.57776 0.376053
\(221\) −2.47761 −0.166662
\(222\) −2.74756 −0.184404
\(223\) −1.66977 −0.111816 −0.0559080 0.998436i \(-0.517805\pi\)
−0.0559080 + 0.998436i \(0.517805\pi\)
\(224\) 1.92690 0.128747
\(225\) −15.8699 −1.05799
\(226\) −17.0707 −1.13552
\(227\) 0.198601 0.0131816 0.00659079 0.999978i \(-0.497902\pi\)
0.00659079 + 0.999978i \(0.497902\pi\)
\(228\) 0 0
\(229\) 9.34936 0.617823 0.308912 0.951091i \(-0.400035\pi\)
0.308912 + 0.951091i \(0.400035\pi\)
\(230\) −17.6098 −1.16116
\(231\) 0.919634 0.0605075
\(232\) −6.22398 −0.408625
\(233\) −0.0118010 −0.000773106 0 −0.000386553 1.00000i \(-0.500123\pi\)
−0.000386553 1.00000i \(0.500123\pi\)
\(234\) 2.92365 0.191125
\(235\) −20.8939 −1.36297
\(236\) 11.5500 0.751843
\(237\) −4.14028 −0.268940
\(238\) −4.77411 −0.309460
\(239\) 12.3396 0.798182 0.399091 0.916911i \(-0.369326\pi\)
0.399091 + 0.916911i \(0.369326\pi\)
\(240\) −0.892279 −0.0575964
\(241\) −6.83547 −0.440311 −0.220156 0.975465i \(-0.570656\pi\)
−0.220156 + 0.975465i \(0.570656\pi\)
\(242\) 8.01658 0.515325
\(243\) 7.20885 0.462448
\(244\) −1.76476 −0.112977
\(245\) 10.6147 0.678148
\(246\) −2.37334 −0.151319
\(247\) 0 0
\(248\) 5.87659 0.373164
\(249\) −2.69708 −0.170920
\(250\) 1.38248 0.0874360
\(251\) 20.5068 1.29438 0.647190 0.762329i \(-0.275944\pi\)
0.647190 + 0.762329i \(0.275944\pi\)
\(252\) 5.63360 0.354883
\(253\) 9.41911 0.592174
\(254\) 9.74384 0.611383
\(255\) 2.21072 0.138440
\(256\) 1.00000 0.0625000
\(257\) −4.11725 −0.256827 −0.128413 0.991721i \(-0.540988\pi\)
−0.128413 + 0.991721i \(0.540988\pi\)
\(258\) −1.84139 −0.114640
\(259\) −19.1606 −1.19058
\(260\) −3.22926 −0.200270
\(261\) −18.1968 −1.12635
\(262\) −8.05727 −0.497780
\(263\) 9.44613 0.582473 0.291237 0.956651i \(-0.405933\pi\)
0.291237 + 0.956651i \(0.405933\pi\)
\(264\) 0.477260 0.0293733
\(265\) −43.3070 −2.66033
\(266\) 0 0
\(267\) 2.26132 0.138390
\(268\) −3.85273 −0.235343
\(269\) 15.1222 0.922015 0.461007 0.887396i \(-0.347488\pi\)
0.461007 + 0.887396i \(0.347488\pi\)
\(270\) −5.28555 −0.321668
\(271\) −15.3658 −0.933406 −0.466703 0.884414i \(-0.654558\pi\)
−0.466703 + 0.884414i \(0.654558\pi\)
\(272\) −2.47761 −0.150227
\(273\) −0.532424 −0.0322238
\(274\) 5.87887 0.355156
\(275\) −9.37575 −0.565379
\(276\) −1.50678 −0.0906976
\(277\) −31.6325 −1.90061 −0.950307 0.311316i \(-0.899230\pi\)
−0.950307 + 0.311316i \(0.899230\pi\)
\(278\) −2.76234 −0.165674
\(279\) 17.1811 1.02861
\(280\) −6.22247 −0.371864
\(281\) 7.80476 0.465593 0.232797 0.972525i \(-0.425212\pi\)
0.232797 + 0.972525i \(0.425212\pi\)
\(282\) −1.78779 −0.106461
\(283\) 4.73088 0.281222 0.140611 0.990065i \(-0.455093\pi\)
0.140611 + 0.990065i \(0.455093\pi\)
\(284\) 6.95717 0.412832
\(285\) 0 0
\(286\) 1.72726 0.102135
\(287\) −16.5509 −0.976970
\(288\) 2.92365 0.172278
\(289\) −10.8615 −0.638910
\(290\) 20.0989 1.18025
\(291\) −2.79564 −0.163883
\(292\) 3.75939 0.220001
\(293\) 1.31373 0.0767492 0.0383746 0.999263i \(-0.487782\pi\)
0.0383746 + 0.999263i \(0.487782\pi\)
\(294\) 0.908244 0.0529699
\(295\) −37.2981 −2.17158
\(296\) −9.94375 −0.577969
\(297\) 2.82712 0.164046
\(298\) −21.8995 −1.26861
\(299\) −5.45322 −0.315368
\(300\) 1.49985 0.0865936
\(301\) −12.8413 −0.740161
\(302\) 6.09089 0.350491
\(303\) −4.22960 −0.242984
\(304\) 0 0
\(305\) 5.69885 0.326315
\(306\) −7.24366 −0.414092
\(307\) 12.8112 0.731176 0.365588 0.930777i \(-0.380868\pi\)
0.365588 + 0.930777i \(0.380868\pi\)
\(308\) 3.32826 0.189645
\(309\) −4.26140 −0.242422
\(310\) −18.9770 −1.07782
\(311\) 30.6450 1.73772 0.868861 0.495057i \(-0.164853\pi\)
0.868861 + 0.495057i \(0.164853\pi\)
\(312\) −0.276311 −0.0156430
\(313\) −15.3927 −0.870045 −0.435022 0.900420i \(-0.643260\pi\)
−0.435022 + 0.900420i \(0.643260\pi\)
\(314\) −13.7890 −0.778157
\(315\) −18.1923 −1.02502
\(316\) −14.9841 −0.842924
\(317\) 16.1848 0.909031 0.454515 0.890739i \(-0.349812\pi\)
0.454515 + 0.890739i \(0.349812\pi\)
\(318\) −3.70556 −0.207797
\(319\) −10.7504 −0.601908
\(320\) −3.22926 −0.180521
\(321\) −2.20636 −0.123147
\(322\) −10.5078 −0.585578
\(323\) 0 0
\(324\) 8.31870 0.462150
\(325\) 5.42811 0.301097
\(326\) 6.16062 0.341205
\(327\) −0.403368 −0.0223063
\(328\) −8.58938 −0.474269
\(329\) −12.4675 −0.687353
\(330\) −1.54120 −0.0848400
\(331\) −4.00824 −0.220313 −0.110156 0.993914i \(-0.535135\pi\)
−0.110156 + 0.993914i \(0.535135\pi\)
\(332\) −9.76103 −0.535706
\(333\) −29.0721 −1.59314
\(334\) 4.05262 0.221750
\(335\) 12.4415 0.679750
\(336\) −0.532424 −0.0290461
\(337\) −0.818998 −0.0446137 −0.0223068 0.999751i \(-0.507101\pi\)
−0.0223068 + 0.999751i \(0.507101\pi\)
\(338\) −1.00000 −0.0543928
\(339\) 4.71681 0.256182
\(340\) 8.00083 0.433906
\(341\) 10.1504 0.549674
\(342\) 0 0
\(343\) 19.8221 1.07030
\(344\) −6.66422 −0.359311
\(345\) 4.86579 0.261965
\(346\) 2.19689 0.118106
\(347\) −27.9171 −1.49867 −0.749333 0.662193i \(-0.769626\pi\)
−0.749333 + 0.662193i \(0.769626\pi\)
\(348\) 1.71975 0.0921885
\(349\) 8.33854 0.446352 0.223176 0.974778i \(-0.428358\pi\)
0.223176 + 0.974778i \(0.428358\pi\)
\(350\) 10.4595 0.559081
\(351\) −1.63677 −0.0873643
\(352\) 1.72726 0.0920632
\(353\) 17.4488 0.928704 0.464352 0.885651i \(-0.346287\pi\)
0.464352 + 0.885651i \(0.346287\pi\)
\(354\) −3.19140 −0.169621
\(355\) −22.4665 −1.19240
\(356\) 8.18396 0.433749
\(357\) 1.31914 0.0698162
\(358\) 25.8048 1.36383
\(359\) 3.29874 0.174101 0.0870505 0.996204i \(-0.472256\pi\)
0.0870505 + 0.996204i \(0.472256\pi\)
\(360\) −9.44123 −0.497597
\(361\) 0 0
\(362\) −10.5212 −0.552981
\(363\) −2.21507 −0.116261
\(364\) −1.92690 −0.100997
\(365\) −12.1400 −0.635438
\(366\) 0.487621 0.0254883
\(367\) −14.1051 −0.736280 −0.368140 0.929770i \(-0.620005\pi\)
−0.368140 + 0.929770i \(0.620005\pi\)
\(368\) −5.45322 −0.284269
\(369\) −25.1124 −1.30730
\(370\) 32.1109 1.66937
\(371\) −25.8414 −1.34162
\(372\) −1.62377 −0.0841883
\(373\) −22.5858 −1.16945 −0.584724 0.811232i \(-0.698797\pi\)
−0.584724 + 0.811232i \(0.698797\pi\)
\(374\) −4.27947 −0.221286
\(375\) −0.381995 −0.0197261
\(376\) −6.47020 −0.333675
\(377\) 6.22398 0.320552
\(378\) −3.15390 −0.162219
\(379\) 18.3572 0.942944 0.471472 0.881881i \(-0.343723\pi\)
0.471472 + 0.881881i \(0.343723\pi\)
\(380\) 0 0
\(381\) −2.69233 −0.137932
\(382\) 13.1671 0.673688
\(383\) −3.58115 −0.182988 −0.0914941 0.995806i \(-0.529164\pi\)
−0.0914941 + 0.995806i \(0.529164\pi\)
\(384\) −0.276311 −0.0141004
\(385\) −10.7478 −0.547759
\(386\) 3.26304 0.166084
\(387\) −19.4839 −0.990420
\(388\) −10.1177 −0.513651
\(389\) −22.6537 −1.14859 −0.574294 0.818649i \(-0.694723\pi\)
−0.574294 + 0.818649i \(0.694723\pi\)
\(390\) 0.892279 0.0451823
\(391\) 13.5109 0.683277
\(392\) 3.28704 0.166021
\(393\) 2.22631 0.112303
\(394\) −16.5424 −0.833396
\(395\) 48.3877 2.43465
\(396\) 5.04990 0.253767
\(397\) −3.30516 −0.165881 −0.0829406 0.996554i \(-0.526431\pi\)
−0.0829406 + 0.996554i \(0.526431\pi\)
\(398\) 14.0766 0.705597
\(399\) 0 0
\(400\) 5.42811 0.271406
\(401\) −20.5487 −1.02615 −0.513077 0.858342i \(-0.671495\pi\)
−0.513077 + 0.858342i \(0.671495\pi\)
\(402\) 1.06455 0.0530950
\(403\) −5.87659 −0.292734
\(404\) −15.3074 −0.761572
\(405\) −26.8632 −1.33484
\(406\) 11.9930 0.595204
\(407\) −17.1754 −0.851354
\(408\) 0.684589 0.0338922
\(409\) −6.76400 −0.334458 −0.167229 0.985918i \(-0.553482\pi\)
−0.167229 + 0.985918i \(0.553482\pi\)
\(410\) 27.7373 1.36985
\(411\) −1.62440 −0.0801255
\(412\) −15.4225 −0.759811
\(413\) −22.2558 −1.09514
\(414\) −15.9433 −0.783571
\(415\) 31.5209 1.54730
\(416\) −1.00000 −0.0490290
\(417\) 0.763265 0.0373773
\(418\) 0 0
\(419\) −1.77080 −0.0865090 −0.0432545 0.999064i \(-0.513773\pi\)
−0.0432545 + 0.999064i \(0.513773\pi\)
\(420\) 1.71934 0.0838950
\(421\) 32.2098 1.56981 0.784904 0.619618i \(-0.212712\pi\)
0.784904 + 0.619618i \(0.212712\pi\)
\(422\) −8.92749 −0.434583
\(423\) −18.9166 −0.919757
\(424\) −13.4108 −0.651288
\(425\) −13.4487 −0.652359
\(426\) −1.92234 −0.0931377
\(427\) 3.40051 0.164562
\(428\) −7.98507 −0.385973
\(429\) −0.477260 −0.0230423
\(430\) 21.5205 1.03781
\(431\) −10.3497 −0.498530 −0.249265 0.968435i \(-0.580189\pi\)
−0.249265 + 0.968435i \(0.580189\pi\)
\(432\) −1.63677 −0.0787491
\(433\) 28.7793 1.38305 0.691523 0.722354i \(-0.256940\pi\)
0.691523 + 0.722354i \(0.256940\pi\)
\(434\) −11.3236 −0.543552
\(435\) −5.55353 −0.266271
\(436\) −1.45984 −0.0699134
\(437\) 0 0
\(438\) −1.03876 −0.0496338
\(439\) 6.47174 0.308879 0.154440 0.988002i \(-0.450643\pi\)
0.154440 + 0.988002i \(0.450643\pi\)
\(440\) −5.57776 −0.265909
\(441\) 9.61016 0.457627
\(442\) 2.47761 0.117848
\(443\) 3.51346 0.166930 0.0834648 0.996511i \(-0.473401\pi\)
0.0834648 + 0.996511i \(0.473401\pi\)
\(444\) 2.74756 0.130394
\(445\) −26.4281 −1.25281
\(446\) 1.66977 0.0790659
\(447\) 6.05108 0.286206
\(448\) −1.92690 −0.0910377
\(449\) −22.3130 −1.05302 −0.526509 0.850170i \(-0.676499\pi\)
−0.526509 + 0.850170i \(0.676499\pi\)
\(450\) 15.8699 0.748115
\(451\) −14.8361 −0.698604
\(452\) 17.0707 0.802937
\(453\) −1.68298 −0.0790732
\(454\) −0.198601 −0.00932079
\(455\) 6.22247 0.291714
\(456\) 0 0
\(457\) 3.84010 0.179632 0.0898161 0.995958i \(-0.471372\pi\)
0.0898161 + 0.995958i \(0.471372\pi\)
\(458\) −9.34936 −0.436867
\(459\) 4.05527 0.189284
\(460\) 17.6098 0.821063
\(461\) −14.7910 −0.688884 −0.344442 0.938808i \(-0.611932\pi\)
−0.344442 + 0.938808i \(0.611932\pi\)
\(462\) −0.919634 −0.0427853
\(463\) 19.7642 0.918519 0.459260 0.888302i \(-0.348115\pi\)
0.459260 + 0.888302i \(0.348115\pi\)
\(464\) 6.22398 0.288941
\(465\) 5.24356 0.243164
\(466\) 0.0118010 0.000546668 0
\(467\) 34.0785 1.57696 0.788482 0.615058i \(-0.210867\pi\)
0.788482 + 0.615058i \(0.210867\pi\)
\(468\) −2.92365 −0.135146
\(469\) 7.42385 0.342802
\(470\) 20.8939 0.963766
\(471\) 3.81004 0.175557
\(472\) −11.5500 −0.531634
\(473\) −11.5108 −0.529268
\(474\) 4.14028 0.190169
\(475\) 0 0
\(476\) 4.77411 0.218821
\(477\) −39.2086 −1.79524
\(478\) −12.3396 −0.564400
\(479\) −38.1612 −1.74363 −0.871814 0.489837i \(-0.837056\pi\)
−0.871814 + 0.489837i \(0.837056\pi\)
\(480\) 0.892279 0.0407268
\(481\) 9.94375 0.453396
\(482\) 6.83547 0.311347
\(483\) 2.90343 0.132110
\(484\) −8.01658 −0.364390
\(485\) 32.6728 1.48360
\(486\) −7.20885 −0.327000
\(487\) −28.4320 −1.28838 −0.644190 0.764866i \(-0.722805\pi\)
−0.644190 + 0.764866i \(0.722805\pi\)
\(488\) 1.76476 0.0798867
\(489\) −1.70224 −0.0769781
\(490\) −10.6147 −0.479523
\(491\) −44.0285 −1.98698 −0.993488 0.113933i \(-0.963655\pi\)
−0.993488 + 0.113933i \(0.963655\pi\)
\(492\) 2.37334 0.106998
\(493\) −15.4206 −0.694508
\(494\) 0 0
\(495\) −16.3074 −0.732965
\(496\) −5.87659 −0.263867
\(497\) −13.4058 −0.601332
\(498\) 2.69708 0.120859
\(499\) 15.7478 0.704969 0.352485 0.935818i \(-0.385337\pi\)
0.352485 + 0.935818i \(0.385337\pi\)
\(500\) −1.38248 −0.0618266
\(501\) −1.11978 −0.0500282
\(502\) −20.5068 −0.915264
\(503\) 31.8584 1.42049 0.710247 0.703953i \(-0.248583\pi\)
0.710247 + 0.703953i \(0.248583\pi\)
\(504\) −5.63360 −0.250940
\(505\) 49.4316 2.19968
\(506\) −9.41911 −0.418731
\(507\) 0.276311 0.0122714
\(508\) −9.74384 −0.432313
\(509\) 24.3510 1.07934 0.539670 0.841877i \(-0.318549\pi\)
0.539670 + 0.841877i \(0.318549\pi\)
\(510\) −2.21072 −0.0978921
\(511\) −7.24398 −0.320455
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 4.11725 0.181604
\(515\) 49.8032 2.19459
\(516\) 1.84139 0.0810629
\(517\) −11.1757 −0.491507
\(518\) 19.1606 0.841871
\(519\) −0.607025 −0.0266454
\(520\) 3.22926 0.141612
\(521\) −30.0183 −1.31513 −0.657563 0.753400i \(-0.728413\pi\)
−0.657563 + 0.753400i \(0.728413\pi\)
\(522\) 18.1968 0.796451
\(523\) 21.7114 0.949374 0.474687 0.880155i \(-0.342561\pi\)
0.474687 + 0.880155i \(0.342561\pi\)
\(524\) 8.05727 0.351984
\(525\) −2.89006 −0.126133
\(526\) −9.44613 −0.411871
\(527\) 14.5599 0.634238
\(528\) −0.477260 −0.0207701
\(529\) 6.73757 0.292938
\(530\) 43.3070 1.88114
\(531\) −33.7683 −1.46542
\(532\) 0 0
\(533\) 8.58938 0.372047
\(534\) −2.26132 −0.0978567
\(535\) 25.7859 1.11482
\(536\) 3.85273 0.166413
\(537\) −7.13014 −0.307688
\(538\) −15.1222 −0.651963
\(539\) 5.67757 0.244550
\(540\) 5.28555 0.227454
\(541\) 0.485991 0.0208944 0.0104472 0.999945i \(-0.496674\pi\)
0.0104472 + 0.999945i \(0.496674\pi\)
\(542\) 15.3658 0.660018
\(543\) 2.90711 0.124756
\(544\) 2.47761 0.106227
\(545\) 4.71419 0.201934
\(546\) 0.532424 0.0227857
\(547\) 21.2491 0.908546 0.454273 0.890863i \(-0.349899\pi\)
0.454273 + 0.890863i \(0.349899\pi\)
\(548\) −5.87887 −0.251133
\(549\) 5.15953 0.220203
\(550\) 9.37575 0.399783
\(551\) 0 0
\(552\) 1.50678 0.0641329
\(553\) 28.8730 1.22781
\(554\) 31.6325 1.34394
\(555\) −8.87260 −0.376621
\(556\) 2.76234 0.117149
\(557\) −4.29477 −0.181975 −0.0909875 0.995852i \(-0.529002\pi\)
−0.0909875 + 0.995852i \(0.529002\pi\)
\(558\) −17.1811 −0.727334
\(559\) 6.66422 0.281866
\(560\) 6.22247 0.262947
\(561\) 1.18246 0.0499236
\(562\) −7.80476 −0.329224
\(563\) 14.2007 0.598487 0.299243 0.954177i \(-0.403266\pi\)
0.299243 + 0.954177i \(0.403266\pi\)
\(564\) 1.78779 0.0752793
\(565\) −55.1256 −2.31915
\(566\) −4.73088 −0.198854
\(567\) −16.0293 −0.673169
\(568\) −6.95717 −0.291916
\(569\) −26.1253 −1.09523 −0.547614 0.836731i \(-0.684464\pi\)
−0.547614 + 0.836731i \(0.684464\pi\)
\(570\) 0 0
\(571\) −31.4721 −1.31707 −0.658533 0.752552i \(-0.728823\pi\)
−0.658533 + 0.752552i \(0.728823\pi\)
\(572\) −1.72726 −0.0722203
\(573\) −3.63821 −0.151989
\(574\) 16.5509 0.690822
\(575\) −29.6007 −1.23443
\(576\) −2.92365 −0.121819
\(577\) −28.9964 −1.20714 −0.603568 0.797312i \(-0.706255\pi\)
−0.603568 + 0.797312i \(0.706255\pi\)
\(578\) 10.8615 0.451777
\(579\) −0.901613 −0.0374698
\(580\) −20.0989 −0.834560
\(581\) 18.8086 0.780311
\(582\) 2.79564 0.115883
\(583\) −23.1640 −0.959353
\(584\) −3.75939 −0.155564
\(585\) 9.44123 0.390347
\(586\) −1.31373 −0.0542699
\(587\) 13.8961 0.573555 0.286777 0.957997i \(-0.407416\pi\)
0.286777 + 0.957997i \(0.407416\pi\)
\(588\) −0.908244 −0.0374554
\(589\) 0 0
\(590\) 37.2981 1.53554
\(591\) 4.57085 0.188020
\(592\) 9.94375 0.408685
\(593\) −48.4492 −1.98957 −0.994785 0.101997i \(-0.967477\pi\)
−0.994785 + 0.101997i \(0.967477\pi\)
\(594\) −2.82712 −0.115998
\(595\) −15.4168 −0.632029
\(596\) 21.8995 0.897040
\(597\) −3.88952 −0.159187
\(598\) 5.45322 0.222999
\(599\) −42.7274 −1.74579 −0.872897 0.487905i \(-0.837761\pi\)
−0.872897 + 0.487905i \(0.837761\pi\)
\(600\) −1.49985 −0.0612309
\(601\) 3.20221 0.130621 0.0653104 0.997865i \(-0.479196\pi\)
0.0653104 + 0.997865i \(0.479196\pi\)
\(602\) 12.8413 0.523373
\(603\) 11.2641 0.458708
\(604\) −6.09089 −0.247835
\(605\) 25.8876 1.05248
\(606\) 4.22960 0.171816
\(607\) 43.0384 1.74687 0.873437 0.486938i \(-0.161886\pi\)
0.873437 + 0.486938i \(0.161886\pi\)
\(608\) 0 0
\(609\) −3.31380 −0.134282
\(610\) −5.69885 −0.230740
\(611\) 6.47020 0.261756
\(612\) 7.24366 0.292808
\(613\) −5.58776 −0.225687 −0.112844 0.993613i \(-0.535996\pi\)
−0.112844 + 0.993613i \(0.535996\pi\)
\(614\) −12.8112 −0.517020
\(615\) −7.66412 −0.309047
\(616\) −3.32826 −0.134099
\(617\) −11.2298 −0.452096 −0.226048 0.974116i \(-0.572581\pi\)
−0.226048 + 0.974116i \(0.572581\pi\)
\(618\) 4.26140 0.171419
\(619\) 5.41866 0.217794 0.108897 0.994053i \(-0.465268\pi\)
0.108897 + 0.994053i \(0.465268\pi\)
\(620\) 18.9770 0.762136
\(621\) 8.92565 0.358174
\(622\) −30.6450 −1.22875
\(623\) −15.7697 −0.631800
\(624\) 0.276311 0.0110613
\(625\) −22.6762 −0.907046
\(626\) 15.3927 0.615215
\(627\) 0 0
\(628\) 13.7890 0.550240
\(629\) −24.6367 −0.982329
\(630\) 18.1923 0.724800
\(631\) −3.08072 −0.122642 −0.0613208 0.998118i \(-0.519531\pi\)
−0.0613208 + 0.998118i \(0.519531\pi\)
\(632\) 14.9841 0.596037
\(633\) 2.46676 0.0980449
\(634\) −16.1848 −0.642782
\(635\) 31.4654 1.24867
\(636\) 3.70556 0.146935
\(637\) −3.28704 −0.130237
\(638\) 10.7504 0.425613
\(639\) −20.3403 −0.804652
\(640\) 3.22926 0.127648
\(641\) 36.5937 1.44537 0.722683 0.691180i \(-0.242909\pi\)
0.722683 + 0.691180i \(0.242909\pi\)
\(642\) 2.20636 0.0870781
\(643\) 16.8901 0.666080 0.333040 0.942913i \(-0.391926\pi\)
0.333040 + 0.942913i \(0.391926\pi\)
\(644\) 10.5078 0.414066
\(645\) −5.94634 −0.234137
\(646\) 0 0
\(647\) −34.3958 −1.35224 −0.676119 0.736793i \(-0.736339\pi\)
−0.676119 + 0.736793i \(0.736339\pi\)
\(648\) −8.31870 −0.326789
\(649\) −19.9499 −0.783102
\(650\) −5.42811 −0.212908
\(651\) 3.12884 0.122629
\(652\) −6.16062 −0.241268
\(653\) 44.8741 1.75606 0.878030 0.478606i \(-0.158858\pi\)
0.878030 + 0.478606i \(0.158858\pi\)
\(654\) 0.403368 0.0157729
\(655\) −26.0190 −1.01665
\(656\) 8.58938 0.335359
\(657\) −10.9911 −0.428805
\(658\) 12.4675 0.486032
\(659\) −8.42070 −0.328024 −0.164012 0.986458i \(-0.552444\pi\)
−0.164012 + 0.986458i \(0.552444\pi\)
\(660\) 1.54120 0.0599910
\(661\) 3.90934 0.152056 0.0760278 0.997106i \(-0.475776\pi\)
0.0760278 + 0.997106i \(0.475776\pi\)
\(662\) 4.00824 0.155785
\(663\) −0.684589 −0.0265872
\(664\) 9.76103 0.378801
\(665\) 0 0
\(666\) 29.0721 1.12652
\(667\) −33.9407 −1.31419
\(668\) −4.05262 −0.156801
\(669\) −0.461375 −0.0178378
\(670\) −12.4415 −0.480656
\(671\) 3.04819 0.117674
\(672\) 0.532424 0.0205387
\(673\) −14.7146 −0.567205 −0.283603 0.958942i \(-0.591530\pi\)
−0.283603 + 0.958942i \(0.591530\pi\)
\(674\) 0.818998 0.0315466
\(675\) −8.88456 −0.341967
\(676\) 1.00000 0.0384615
\(677\) −7.23755 −0.278162 −0.139081 0.990281i \(-0.544415\pi\)
−0.139081 + 0.990281i \(0.544415\pi\)
\(678\) −4.71681 −0.181148
\(679\) 19.4959 0.748185
\(680\) −8.00083 −0.306818
\(681\) 0.0548755 0.00210283
\(682\) −10.1504 −0.388678
\(683\) 11.5050 0.440228 0.220114 0.975474i \(-0.429357\pi\)
0.220114 + 0.975474i \(0.429357\pi\)
\(684\) 0 0
\(685\) 18.9844 0.725356
\(686\) −19.8221 −0.756813
\(687\) 2.58333 0.0985602
\(688\) 6.66422 0.254071
\(689\) 13.4108 0.510912
\(690\) −4.86579 −0.185237
\(691\) −41.2049 −1.56751 −0.783754 0.621071i \(-0.786698\pi\)
−0.783754 + 0.621071i \(0.786698\pi\)
\(692\) −2.19689 −0.0835133
\(693\) −9.73068 −0.369638
\(694\) 27.9171 1.05972
\(695\) −8.92032 −0.338367
\(696\) −1.71975 −0.0651871
\(697\) −21.2811 −0.806079
\(698\) −8.33854 −0.315618
\(699\) −0.00326073 −0.000123332 0
\(700\) −10.4595 −0.395330
\(701\) 7.79854 0.294547 0.147273 0.989096i \(-0.452950\pi\)
0.147273 + 0.989096i \(0.452950\pi\)
\(702\) 1.63677 0.0617759
\(703\) 0 0
\(704\) −1.72726 −0.0650985
\(705\) −5.77322 −0.217432
\(706\) −17.4488 −0.656693
\(707\) 29.4959 1.10931
\(708\) 3.19140 0.119940
\(709\) 32.1720 1.20825 0.604123 0.796891i \(-0.293524\pi\)
0.604123 + 0.796891i \(0.293524\pi\)
\(710\) 22.4665 0.843153
\(711\) 43.8084 1.64294
\(712\) −8.18396 −0.306707
\(713\) 32.0463 1.20014
\(714\) −1.31914 −0.0493675
\(715\) 5.57776 0.208596
\(716\) −25.8048 −0.964371
\(717\) 3.40956 0.127333
\(718\) −3.29874 −0.123108
\(719\) −3.10751 −0.115890 −0.0579452 0.998320i \(-0.518455\pi\)
−0.0579452 + 0.998320i \(0.518455\pi\)
\(720\) 9.44123 0.351854
\(721\) 29.7176 1.10674
\(722\) 0 0
\(723\) −1.88871 −0.0702420
\(724\) 10.5212 0.391016
\(725\) 33.7845 1.25472
\(726\) 2.21507 0.0822089
\(727\) 6.08806 0.225794 0.112897 0.993607i \(-0.463987\pi\)
0.112897 + 0.993607i \(0.463987\pi\)
\(728\) 1.92690 0.0714158
\(729\) −22.9642 −0.850527
\(730\) 12.1400 0.449323
\(731\) −16.5113 −0.610693
\(732\) −0.487621 −0.0180230
\(733\) −42.4333 −1.56731 −0.783654 0.621197i \(-0.786647\pi\)
−0.783654 + 0.621197i \(0.786647\pi\)
\(734\) 14.1051 0.520629
\(735\) 2.93296 0.108184
\(736\) 5.45322 0.201008
\(737\) 6.65466 0.245128
\(738\) 25.1124 0.924399
\(739\) 37.8382 1.39190 0.695950 0.718090i \(-0.254984\pi\)
0.695950 + 0.718090i \(0.254984\pi\)
\(740\) −32.1109 −1.18042
\(741\) 0 0
\(742\) 25.8414 0.948667
\(743\) 17.2309 0.632141 0.316070 0.948736i \(-0.397636\pi\)
0.316070 + 0.948736i \(0.397636\pi\)
\(744\) 1.62377 0.0595301
\(745\) −70.7192 −2.59095
\(746\) 22.5858 0.826925
\(747\) 28.5379 1.04415
\(748\) 4.27947 0.156473
\(749\) 15.3865 0.562209
\(750\) 0.381995 0.0139485
\(751\) 22.1918 0.809789 0.404894 0.914363i \(-0.367308\pi\)
0.404894 + 0.914363i \(0.367308\pi\)
\(752\) 6.47020 0.235944
\(753\) 5.66626 0.206490
\(754\) −6.22398 −0.226664
\(755\) 19.6691 0.715830
\(756\) 3.15390 0.114706
\(757\) −37.0445 −1.34641 −0.673203 0.739458i \(-0.735082\pi\)
−0.673203 + 0.739458i \(0.735082\pi\)
\(758\) −18.3572 −0.666762
\(759\) 2.60260 0.0944684
\(760\) 0 0
\(761\) −15.2357 −0.552294 −0.276147 0.961115i \(-0.589058\pi\)
−0.276147 + 0.961115i \(0.589058\pi\)
\(762\) 2.69233 0.0975328
\(763\) 2.81296 0.101836
\(764\) −13.1671 −0.476369
\(765\) −23.3917 −0.845727
\(766\) 3.58115 0.129392
\(767\) 11.5500 0.417048
\(768\) 0.276311 0.00997051
\(769\) 18.7931 0.677696 0.338848 0.940841i \(-0.389963\pi\)
0.338848 + 0.940841i \(0.389963\pi\)
\(770\) 10.7478 0.387324
\(771\) −1.13764 −0.0409711
\(772\) −3.26304 −0.117439
\(773\) −23.8080 −0.856315 −0.428157 0.903704i \(-0.640837\pi\)
−0.428157 + 0.903704i \(0.640837\pi\)
\(774\) 19.4839 0.700333
\(775\) −31.8988 −1.14584
\(776\) 10.1177 0.363206
\(777\) −5.29429 −0.189932
\(778\) 22.6537 0.812174
\(779\) 0 0
\(780\) −0.892279 −0.0319487
\(781\) −12.0168 −0.429996
\(782\) −13.5109 −0.483150
\(783\) −10.1872 −0.364062
\(784\) −3.28704 −0.117394
\(785\) −44.5282 −1.58928
\(786\) −2.22631 −0.0794099
\(787\) 24.4686 0.872212 0.436106 0.899895i \(-0.356357\pi\)
0.436106 + 0.899895i \(0.356357\pi\)
\(788\) 16.5424 0.589300
\(789\) 2.61007 0.0929209
\(790\) −48.3877 −1.72156
\(791\) −32.8935 −1.16956
\(792\) −5.04990 −0.179440
\(793\) −1.76476 −0.0626683
\(794\) 3.30516 0.117296
\(795\) −11.9662 −0.424397
\(796\) −14.0766 −0.498932
\(797\) 17.5583 0.621946 0.310973 0.950419i \(-0.399345\pi\)
0.310973 + 0.950419i \(0.399345\pi\)
\(798\) 0 0
\(799\) −16.0306 −0.567122
\(800\) −5.42811 −0.191913
\(801\) −23.9270 −0.845421
\(802\) 20.5487 0.725601
\(803\) −6.49343 −0.229148
\(804\) −1.06455 −0.0375438
\(805\) −33.9325 −1.19596
\(806\) 5.87659 0.206994
\(807\) 4.17842 0.147087
\(808\) 15.3074 0.538512
\(809\) −11.7959 −0.414720 −0.207360 0.978265i \(-0.566487\pi\)
−0.207360 + 0.978265i \(0.566487\pi\)
\(810\) 26.8632 0.943878
\(811\) 2.00999 0.0705803 0.0352901 0.999377i \(-0.488764\pi\)
0.0352901 + 0.999377i \(0.488764\pi\)
\(812\) −11.9930 −0.420873
\(813\) −4.24574 −0.148905
\(814\) 17.1754 0.601998
\(815\) 19.8942 0.696864
\(816\) −0.684589 −0.0239654
\(817\) 0 0
\(818\) 6.76400 0.236498
\(819\) 5.63360 0.196854
\(820\) −27.7373 −0.968630
\(821\) 7.38073 0.257589 0.128795 0.991671i \(-0.458889\pi\)
0.128795 + 0.991671i \(0.458889\pi\)
\(822\) 1.62440 0.0566573
\(823\) 2.07397 0.0722942 0.0361471 0.999346i \(-0.488492\pi\)
0.0361471 + 0.999346i \(0.488492\pi\)
\(824\) 15.4225 0.537267
\(825\) −2.59062 −0.0901938
\(826\) 22.2558 0.774379
\(827\) −21.3025 −0.740760 −0.370380 0.928880i \(-0.620773\pi\)
−0.370380 + 0.928880i \(0.620773\pi\)
\(828\) 15.9433 0.554068
\(829\) −26.5490 −0.922086 −0.461043 0.887378i \(-0.652525\pi\)
−0.461043 + 0.887378i \(0.652525\pi\)
\(830\) −31.5209 −1.09411
\(831\) −8.74040 −0.303201
\(832\) 1.00000 0.0346688
\(833\) 8.14399 0.282173
\(834\) −0.763265 −0.0264297
\(835\) 13.0870 0.452893
\(836\) 0 0
\(837\) 9.61862 0.332468
\(838\) 1.77080 0.0611711
\(839\) −40.8842 −1.41148 −0.705740 0.708471i \(-0.749385\pi\)
−0.705740 + 0.708471i \(0.749385\pi\)
\(840\) −1.71934 −0.0593227
\(841\) 9.73798 0.335792
\(842\) −32.2098 −1.11002
\(843\) 2.15654 0.0742752
\(844\) 8.92749 0.307297
\(845\) −3.22926 −0.111090
\(846\) 18.9166 0.650366
\(847\) 15.4472 0.530772
\(848\) 13.4108 0.460530
\(849\) 1.30719 0.0448628
\(850\) 13.4487 0.461287
\(851\) −54.2254 −1.85882
\(852\) 1.92234 0.0658583
\(853\) 5.85098 0.200334 0.100167 0.994971i \(-0.468062\pi\)
0.100167 + 0.994971i \(0.468062\pi\)
\(854\) −3.40051 −0.116363
\(855\) 0 0
\(856\) 7.98507 0.272924
\(857\) 23.3634 0.798079 0.399039 0.916934i \(-0.369344\pi\)
0.399039 + 0.916934i \(0.369344\pi\)
\(858\) 0.477260 0.0162934
\(859\) 42.8689 1.46267 0.731334 0.682019i \(-0.238898\pi\)
0.731334 + 0.682019i \(0.238898\pi\)
\(860\) −21.5205 −0.733842
\(861\) −4.57320 −0.155854
\(862\) 10.3497 0.352514
\(863\) −47.9658 −1.63277 −0.816387 0.577505i \(-0.804026\pi\)
−0.816387 + 0.577505i \(0.804026\pi\)
\(864\) 1.63677 0.0556840
\(865\) 7.09434 0.241215
\(866\) −28.7793 −0.977962
\(867\) −3.00114 −0.101924
\(868\) 11.3236 0.384349
\(869\) 25.8815 0.877969
\(870\) 5.55353 0.188282
\(871\) −3.85273 −0.130545
\(872\) 1.45984 0.0494363
\(873\) 29.5808 1.00116
\(874\) 0 0
\(875\) 2.66391 0.0900567
\(876\) 1.03876 0.0350964
\(877\) −6.62271 −0.223633 −0.111817 0.993729i \(-0.535667\pi\)
−0.111817 + 0.993729i \(0.535667\pi\)
\(878\) −6.47174 −0.218411
\(879\) 0.362999 0.0122437
\(880\) 5.57776 0.188026
\(881\) −50.7597 −1.71014 −0.855068 0.518515i \(-0.826485\pi\)
−0.855068 + 0.518515i \(0.826485\pi\)
\(882\) −9.61016 −0.323591
\(883\) 6.69751 0.225389 0.112694 0.993630i \(-0.464052\pi\)
0.112694 + 0.993630i \(0.464052\pi\)
\(884\) −2.47761 −0.0833309
\(885\) −10.3059 −0.346428
\(886\) −3.51346 −0.118037
\(887\) 6.03875 0.202761 0.101381 0.994848i \(-0.467674\pi\)
0.101381 + 0.994848i \(0.467674\pi\)
\(888\) −2.74756 −0.0922022
\(889\) 18.7755 0.629709
\(890\) 26.4281 0.885872
\(891\) −14.3685 −0.481364
\(892\) −1.66977 −0.0559080
\(893\) 0 0
\(894\) −6.05108 −0.202378
\(895\) 83.3304 2.78543
\(896\) 1.92690 0.0643734
\(897\) −1.50678 −0.0503100
\(898\) 22.3130 0.744596
\(899\) −36.5758 −1.21987
\(900\) −15.8699 −0.528997
\(901\) −33.2268 −1.10694
\(902\) 14.8361 0.493987
\(903\) −3.54819 −0.118076
\(904\) −17.0707 −0.567762
\(905\) −33.9756 −1.12939
\(906\) 1.68298 0.0559132
\(907\) 29.1315 0.967295 0.483647 0.875263i \(-0.339312\pi\)
0.483647 + 0.875263i \(0.339312\pi\)
\(908\) 0.198601 0.00659079
\(909\) 44.7535 1.48438
\(910\) −6.22247 −0.206273
\(911\) 15.5852 0.516360 0.258180 0.966097i \(-0.416877\pi\)
0.258180 + 0.966097i \(0.416877\pi\)
\(912\) 0 0
\(913\) 16.8598 0.557978
\(914\) −3.84010 −0.127019
\(915\) 1.57465 0.0520564
\(916\) 9.34936 0.308912
\(917\) −15.5256 −0.512700
\(918\) −4.05527 −0.133844
\(919\) 29.9657 0.988477 0.494239 0.869326i \(-0.335447\pi\)
0.494239 + 0.869326i \(0.335447\pi\)
\(920\) −17.6098 −0.580579
\(921\) 3.53988 0.116643
\(922\) 14.7910 0.487115
\(923\) 6.95717 0.228998
\(924\) 0.919634 0.0302537
\(925\) 53.9758 1.77471
\(926\) −19.7642 −0.649491
\(927\) 45.0900 1.48095
\(928\) −6.22398 −0.204312
\(929\) −0.907211 −0.0297646 −0.0148823 0.999889i \(-0.504737\pi\)
−0.0148823 + 0.999889i \(0.504737\pi\)
\(930\) −5.24356 −0.171943
\(931\) 0 0
\(932\) −0.0118010 −0.000386553 0
\(933\) 8.46756 0.277215
\(934\) −34.0785 −1.11508
\(935\) −13.8195 −0.451946
\(936\) 2.92365 0.0955626
\(937\) −36.5835 −1.19513 −0.597565 0.801820i \(-0.703865\pi\)
−0.597565 + 0.801820i \(0.703865\pi\)
\(938\) −7.42385 −0.242397
\(939\) −4.25316 −0.138797
\(940\) −20.8939 −0.681485
\(941\) 30.2431 0.985898 0.492949 0.870058i \(-0.335919\pi\)
0.492949 + 0.870058i \(0.335919\pi\)
\(942\) −3.81004 −0.124138
\(943\) −46.8398 −1.52531
\(944\) 11.5500 0.375922
\(945\) −10.1847 −0.331310
\(946\) 11.5108 0.374249
\(947\) 31.1032 1.01072 0.505359 0.862909i \(-0.331360\pi\)
0.505359 + 0.862909i \(0.331360\pi\)
\(948\) −4.14028 −0.134470
\(949\) 3.75939 0.122035
\(950\) 0 0
\(951\) 4.47204 0.145016
\(952\) −4.77411 −0.154730
\(953\) −29.7160 −0.962596 −0.481298 0.876557i \(-0.659835\pi\)
−0.481298 + 0.876557i \(0.659835\pi\)
\(954\) 39.2086 1.26943
\(955\) 42.5200 1.37592
\(956\) 12.3396 0.399091
\(957\) −2.97046 −0.0960213
\(958\) 38.1612 1.23293
\(959\) 11.3280 0.365801
\(960\) −0.892279 −0.0287982
\(961\) 3.53431 0.114010
\(962\) −9.94375 −0.320599
\(963\) 23.3456 0.752301
\(964\) −6.83547 −0.220156
\(965\) 10.5372 0.339205
\(966\) −2.90343 −0.0934162
\(967\) 57.3280 1.84354 0.921771 0.387734i \(-0.126742\pi\)
0.921771 + 0.387734i \(0.126742\pi\)
\(968\) 8.01658 0.257663
\(969\) 0 0
\(970\) −32.6728 −1.04906
\(971\) −45.5484 −1.46172 −0.730859 0.682529i \(-0.760880\pi\)
−0.730859 + 0.682529i \(0.760880\pi\)
\(972\) 7.20885 0.231224
\(973\) −5.32277 −0.170640
\(974\) 28.4320 0.911022
\(975\) 1.49985 0.0480335
\(976\) −1.76476 −0.0564884
\(977\) 42.2238 1.35086 0.675430 0.737424i \(-0.263958\pi\)
0.675430 + 0.737424i \(0.263958\pi\)
\(978\) 1.70224 0.0544318
\(979\) −14.1358 −0.451782
\(980\) 10.6147 0.339074
\(981\) 4.26805 0.136268
\(982\) 44.0285 1.40500
\(983\) 2.11220 0.0673687 0.0336844 0.999433i \(-0.489276\pi\)
0.0336844 + 0.999433i \(0.489276\pi\)
\(984\) −2.37334 −0.0756593
\(985\) −53.4198 −1.70210
\(986\) 15.4206 0.491091
\(987\) −3.44489 −0.109652
\(988\) 0 0
\(989\) −36.3414 −1.15559
\(990\) 16.3074 0.518284
\(991\) −28.7171 −0.912229 −0.456114 0.889921i \(-0.650759\pi\)
−0.456114 + 0.889921i \(0.650759\pi\)
\(992\) 5.87659 0.186582
\(993\) −1.10752 −0.0351461
\(994\) 13.4058 0.425206
\(995\) 45.4570 1.44108
\(996\) −2.69708 −0.0854601
\(997\) 14.1738 0.448888 0.224444 0.974487i \(-0.427943\pi\)
0.224444 + 0.974487i \(0.427943\pi\)
\(998\) −15.7478 −0.498489
\(999\) −16.2756 −0.514938
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9386.2.a.bw.1.9 15
19.3 odd 18 494.2.x.d.313.3 yes 30
19.13 odd 18 494.2.x.d.131.3 30
19.18 odd 2 9386.2.a.bz.1.7 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
494.2.x.d.131.3 30 19.13 odd 18
494.2.x.d.313.3 yes 30 19.3 odd 18
9386.2.a.bw.1.9 15 1.1 even 1 trivial
9386.2.a.bz.1.7 15 19.18 odd 2