Properties

Label 9386.2.a.bw.1.3
Level $9386$
Weight $2$
Character 9386.1
Self dual yes
Analytic conductor $74.948$
Analytic rank $1$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9386,2,Mod(1,9386)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9386.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9386, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9386 = 2 \cdot 13 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9386.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,-15,-3,15,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.9475873372\)
Analytic rank: \(1\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 3 x^{14} - 27 x^{13} + 70 x^{12} + 306 x^{11} - 609 x^{10} - 1854 x^{9} + 2346 x^{8} + \cdots - 24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 494)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.90071\) of defining polynomial
Character \(\chi\) \(=\) 9386.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -2.90071 q^{3} +1.00000 q^{4} -3.22232 q^{5} +2.90071 q^{6} +1.61433 q^{7} -1.00000 q^{8} +5.41411 q^{9} +3.22232 q^{10} +2.38696 q^{11} -2.90071 q^{12} +1.00000 q^{13} -1.61433 q^{14} +9.34700 q^{15} +1.00000 q^{16} -0.480530 q^{17} -5.41411 q^{18} -3.22232 q^{20} -4.68269 q^{21} -2.38696 q^{22} +5.30742 q^{23} +2.90071 q^{24} +5.38332 q^{25} -1.00000 q^{26} -7.00262 q^{27} +1.61433 q^{28} -6.49642 q^{29} -9.34700 q^{30} +4.15494 q^{31} -1.00000 q^{32} -6.92389 q^{33} +0.480530 q^{34} -5.20187 q^{35} +5.41411 q^{36} -6.24477 q^{37} -2.90071 q^{39} +3.22232 q^{40} +3.18665 q^{41} +4.68269 q^{42} -4.03431 q^{43} +2.38696 q^{44} -17.4460 q^{45} -5.30742 q^{46} +11.0813 q^{47} -2.90071 q^{48} -4.39395 q^{49} -5.38332 q^{50} +1.39388 q^{51} +1.00000 q^{52} +0.586036 q^{53} +7.00262 q^{54} -7.69155 q^{55} -1.61433 q^{56} +6.49642 q^{58} -7.91358 q^{59} +9.34700 q^{60} -6.14389 q^{61} -4.15494 q^{62} +8.74014 q^{63} +1.00000 q^{64} -3.22232 q^{65} +6.92389 q^{66} -15.5174 q^{67} -0.480530 q^{68} -15.3953 q^{69} +5.20187 q^{70} +14.1554 q^{71} -5.41411 q^{72} +4.24087 q^{73} +6.24477 q^{74} -15.6154 q^{75} +3.85334 q^{77} +2.90071 q^{78} -8.69887 q^{79} -3.22232 q^{80} +4.07023 q^{81} -3.18665 q^{82} -10.0998 q^{83} -4.68269 q^{84} +1.54842 q^{85} +4.03431 q^{86} +18.8442 q^{87} -2.38696 q^{88} +4.41732 q^{89} +17.4460 q^{90} +1.61433 q^{91} +5.30742 q^{92} -12.0523 q^{93} -11.0813 q^{94} +2.90071 q^{96} -7.22109 q^{97} +4.39395 q^{98} +12.9233 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 15 q^{2} - 3 q^{3} + 15 q^{4} + 3 q^{5} + 3 q^{6} - 15 q^{8} + 18 q^{9} - 3 q^{10} - 3 q^{11} - 3 q^{12} + 15 q^{13} + 15 q^{16} + 3 q^{17} - 18 q^{18} + 3 q^{20} - 33 q^{21} + 3 q^{22} + 9 q^{23}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −2.90071 −1.67472 −0.837362 0.546648i \(-0.815903\pi\)
−0.837362 + 0.546648i \(0.815903\pi\)
\(4\) 1.00000 0.500000
\(5\) −3.22232 −1.44106 −0.720532 0.693422i \(-0.756102\pi\)
−0.720532 + 0.693422i \(0.756102\pi\)
\(6\) 2.90071 1.18421
\(7\) 1.61433 0.610158 0.305079 0.952327i \(-0.401317\pi\)
0.305079 + 0.952327i \(0.401317\pi\)
\(8\) −1.00000 −0.353553
\(9\) 5.41411 1.80470
\(10\) 3.22232 1.01899
\(11\) 2.38696 0.719697 0.359848 0.933011i \(-0.382828\pi\)
0.359848 + 0.933011i \(0.382828\pi\)
\(12\) −2.90071 −0.837362
\(13\) 1.00000 0.277350
\(14\) −1.61433 −0.431447
\(15\) 9.34700 2.41338
\(16\) 1.00000 0.250000
\(17\) −0.480530 −0.116546 −0.0582728 0.998301i \(-0.518559\pi\)
−0.0582728 + 0.998301i \(0.518559\pi\)
\(18\) −5.41411 −1.27612
\(19\) 0 0
\(20\) −3.22232 −0.720532
\(21\) −4.68269 −1.02185
\(22\) −2.38696 −0.508902
\(23\) 5.30742 1.10667 0.553337 0.832957i \(-0.313354\pi\)
0.553337 + 0.832957i \(0.313354\pi\)
\(24\) 2.90071 0.592105
\(25\) 5.38332 1.07666
\(26\) −1.00000 −0.196116
\(27\) −7.00262 −1.34765
\(28\) 1.61433 0.305079
\(29\) −6.49642 −1.20635 −0.603177 0.797607i \(-0.706099\pi\)
−0.603177 + 0.797607i \(0.706099\pi\)
\(30\) −9.34700 −1.70652
\(31\) 4.15494 0.746248 0.373124 0.927781i \(-0.378287\pi\)
0.373124 + 0.927781i \(0.378287\pi\)
\(32\) −1.00000 −0.176777
\(33\) −6.92389 −1.20529
\(34\) 0.480530 0.0824101
\(35\) −5.20187 −0.879276
\(36\) 5.41411 0.902351
\(37\) −6.24477 −1.02663 −0.513317 0.858199i \(-0.671584\pi\)
−0.513317 + 0.858199i \(0.671584\pi\)
\(38\) 0 0
\(39\) −2.90071 −0.464485
\(40\) 3.22232 0.509493
\(41\) 3.18665 0.497672 0.248836 0.968546i \(-0.419952\pi\)
0.248836 + 0.968546i \(0.419952\pi\)
\(42\) 4.68269 0.722555
\(43\) −4.03431 −0.615226 −0.307613 0.951512i \(-0.599530\pi\)
−0.307613 + 0.951512i \(0.599530\pi\)
\(44\) 2.38696 0.359848
\(45\) −17.4460 −2.60069
\(46\) −5.30742 −0.782537
\(47\) 11.0813 1.61637 0.808184 0.588930i \(-0.200451\pi\)
0.808184 + 0.588930i \(0.200451\pi\)
\(48\) −2.90071 −0.418681
\(49\) −4.39395 −0.627707
\(50\) −5.38332 −0.761316
\(51\) 1.39388 0.195182
\(52\) 1.00000 0.138675
\(53\) 0.586036 0.0804982 0.0402491 0.999190i \(-0.487185\pi\)
0.0402491 + 0.999190i \(0.487185\pi\)
\(54\) 7.00262 0.952936
\(55\) −7.69155 −1.03713
\(56\) −1.61433 −0.215723
\(57\) 0 0
\(58\) 6.49642 0.853022
\(59\) −7.91358 −1.03026 −0.515130 0.857112i \(-0.672256\pi\)
−0.515130 + 0.857112i \(0.672256\pi\)
\(60\) 9.34700 1.20669
\(61\) −6.14389 −0.786644 −0.393322 0.919401i \(-0.628674\pi\)
−0.393322 + 0.919401i \(0.628674\pi\)
\(62\) −4.15494 −0.527677
\(63\) 8.74014 1.10115
\(64\) 1.00000 0.125000
\(65\) −3.22232 −0.399679
\(66\) 6.92389 0.852271
\(67\) −15.5174 −1.89575 −0.947874 0.318646i \(-0.896772\pi\)
−0.947874 + 0.318646i \(0.896772\pi\)
\(68\) −0.480530 −0.0582728
\(69\) −15.3953 −1.85337
\(70\) 5.20187 0.621742
\(71\) 14.1554 1.67993 0.839967 0.542638i \(-0.182574\pi\)
0.839967 + 0.542638i \(0.182574\pi\)
\(72\) −5.41411 −0.638059
\(73\) 4.24087 0.496356 0.248178 0.968714i \(-0.420168\pi\)
0.248178 + 0.968714i \(0.420168\pi\)
\(74\) 6.24477 0.725940
\(75\) −15.6154 −1.80312
\(76\) 0 0
\(77\) 3.85334 0.439129
\(78\) 2.90071 0.328441
\(79\) −8.69887 −0.978699 −0.489349 0.872088i \(-0.662766\pi\)
−0.489349 + 0.872088i \(0.662766\pi\)
\(80\) −3.22232 −0.360266
\(81\) 4.07023 0.452248
\(82\) −3.18665 −0.351907
\(83\) −10.0998 −1.10860 −0.554298 0.832319i \(-0.687013\pi\)
−0.554298 + 0.832319i \(0.687013\pi\)
\(84\) −4.68269 −0.510923
\(85\) 1.54842 0.167950
\(86\) 4.03431 0.435031
\(87\) 18.8442 2.02031
\(88\) −2.38696 −0.254451
\(89\) 4.41732 0.468235 0.234117 0.972208i \(-0.424780\pi\)
0.234117 + 0.972208i \(0.424780\pi\)
\(90\) 17.4460 1.83897
\(91\) 1.61433 0.169227
\(92\) 5.30742 0.553337
\(93\) −12.0523 −1.24976
\(94\) −11.0813 −1.14294
\(95\) 0 0
\(96\) 2.90071 0.296052
\(97\) −7.22109 −0.733190 −0.366595 0.930381i \(-0.619477\pi\)
−0.366595 + 0.930381i \(0.619477\pi\)
\(98\) 4.39395 0.443856
\(99\) 12.9233 1.29884
\(100\) 5.38332 0.538332
\(101\) −1.98447 −0.197462 −0.0987311 0.995114i \(-0.531478\pi\)
−0.0987311 + 0.995114i \(0.531478\pi\)
\(102\) −1.39388 −0.138014
\(103\) 16.4406 1.61994 0.809970 0.586471i \(-0.199483\pi\)
0.809970 + 0.586471i \(0.199483\pi\)
\(104\) −1.00000 −0.0980581
\(105\) 15.0891 1.47255
\(106\) −0.586036 −0.0569208
\(107\) 11.3983 1.10192 0.550959 0.834532i \(-0.314262\pi\)
0.550959 + 0.834532i \(0.314262\pi\)
\(108\) −7.00262 −0.673827
\(109\) −17.0126 −1.62951 −0.814757 0.579802i \(-0.803130\pi\)
−0.814757 + 0.579802i \(0.803130\pi\)
\(110\) 7.69155 0.733361
\(111\) 18.1143 1.71933
\(112\) 1.61433 0.152540
\(113\) −8.38862 −0.789135 −0.394567 0.918867i \(-0.629106\pi\)
−0.394567 + 0.918867i \(0.629106\pi\)
\(114\) 0 0
\(115\) −17.1022 −1.59479
\(116\) −6.49642 −0.603177
\(117\) 5.41411 0.500534
\(118\) 7.91358 0.728504
\(119\) −0.775732 −0.0711112
\(120\) −9.34700 −0.853260
\(121\) −5.30240 −0.482037
\(122\) 6.14389 0.556241
\(123\) −9.24355 −0.833463
\(124\) 4.15494 0.373124
\(125\) −1.23518 −0.110477
\(126\) −8.74014 −0.778633
\(127\) 13.9561 1.23840 0.619202 0.785232i \(-0.287456\pi\)
0.619202 + 0.785232i \(0.287456\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 11.7023 1.03033
\(130\) 3.22232 0.282616
\(131\) 11.7378 1.02554 0.512768 0.858527i \(-0.328620\pi\)
0.512768 + 0.858527i \(0.328620\pi\)
\(132\) −6.92389 −0.602647
\(133\) 0 0
\(134\) 15.5174 1.34050
\(135\) 22.5646 1.94206
\(136\) 0.480530 0.0412051
\(137\) 5.35044 0.457119 0.228559 0.973530i \(-0.426599\pi\)
0.228559 + 0.973530i \(0.426599\pi\)
\(138\) 15.3953 1.31053
\(139\) −5.10591 −0.433078 −0.216539 0.976274i \(-0.569477\pi\)
−0.216539 + 0.976274i \(0.569477\pi\)
\(140\) −5.20187 −0.439638
\(141\) −32.1435 −2.70697
\(142\) −14.1554 −1.18789
\(143\) 2.38696 0.199608
\(144\) 5.41411 0.451176
\(145\) 20.9335 1.73843
\(146\) −4.24087 −0.350977
\(147\) 12.7456 1.05124
\(148\) −6.24477 −0.513317
\(149\) 7.17107 0.587477 0.293738 0.955886i \(-0.405101\pi\)
0.293738 + 0.955886i \(0.405101\pi\)
\(150\) 15.6154 1.27500
\(151\) −24.0585 −1.95786 −0.978928 0.204204i \(-0.934539\pi\)
−0.978928 + 0.204204i \(0.934539\pi\)
\(152\) 0 0
\(153\) −2.60164 −0.210330
\(154\) −3.85334 −0.310511
\(155\) −13.3885 −1.07539
\(156\) −2.90071 −0.232243
\(157\) 24.0177 1.91682 0.958411 0.285393i \(-0.0921241\pi\)
0.958411 + 0.285393i \(0.0921241\pi\)
\(158\) 8.69887 0.692045
\(159\) −1.69992 −0.134812
\(160\) 3.22232 0.254746
\(161\) 8.56791 0.675246
\(162\) −4.07023 −0.319788
\(163\) 9.70246 0.759955 0.379978 0.924996i \(-0.375932\pi\)
0.379978 + 0.924996i \(0.375932\pi\)
\(164\) 3.18665 0.248836
\(165\) 22.3109 1.73690
\(166\) 10.0998 0.783895
\(167\) −21.6034 −1.67172 −0.835860 0.548943i \(-0.815031\pi\)
−0.835860 + 0.548943i \(0.815031\pi\)
\(168\) 4.68269 0.361277
\(169\) 1.00000 0.0769231
\(170\) −1.54842 −0.118758
\(171\) 0 0
\(172\) −4.03431 −0.307613
\(173\) −1.29516 −0.0984692 −0.0492346 0.998787i \(-0.515678\pi\)
−0.0492346 + 0.998787i \(0.515678\pi\)
\(174\) −18.8442 −1.42858
\(175\) 8.69043 0.656935
\(176\) 2.38696 0.179924
\(177\) 22.9550 1.72540
\(178\) −4.41732 −0.331092
\(179\) 25.3948 1.89810 0.949049 0.315128i \(-0.102047\pi\)
0.949049 + 0.315128i \(0.102047\pi\)
\(180\) −17.4460 −1.30035
\(181\) −14.2965 −1.06265 −0.531327 0.847167i \(-0.678306\pi\)
−0.531327 + 0.847167i \(0.678306\pi\)
\(182\) −1.61433 −0.119662
\(183\) 17.8216 1.31741
\(184\) −5.30742 −0.391268
\(185\) 20.1226 1.47945
\(186\) 12.0523 0.883714
\(187\) −1.14701 −0.0838774
\(188\) 11.0813 0.808184
\(189\) −11.3045 −0.822282
\(190\) 0 0
\(191\) −7.21424 −0.522004 −0.261002 0.965338i \(-0.584053\pi\)
−0.261002 + 0.965338i \(0.584053\pi\)
\(192\) −2.90071 −0.209341
\(193\) −2.97961 −0.214477 −0.107238 0.994233i \(-0.534201\pi\)
−0.107238 + 0.994233i \(0.534201\pi\)
\(194\) 7.22109 0.518444
\(195\) 9.34700 0.669352
\(196\) −4.39395 −0.313854
\(197\) 25.8408 1.84108 0.920542 0.390644i \(-0.127748\pi\)
0.920542 + 0.390644i \(0.127748\pi\)
\(198\) −12.9233 −0.918417
\(199\) 18.8369 1.33531 0.667655 0.744471i \(-0.267298\pi\)
0.667655 + 0.744471i \(0.267298\pi\)
\(200\) −5.38332 −0.380658
\(201\) 45.0113 3.17486
\(202\) 1.98447 0.139627
\(203\) −10.4873 −0.736067
\(204\) 1.39388 0.0975908
\(205\) −10.2684 −0.717176
\(206\) −16.4406 −1.14547
\(207\) 28.7350 1.99722
\(208\) 1.00000 0.0693375
\(209\) 0 0
\(210\) −15.0891 −1.04125
\(211\) −1.51125 −0.104039 −0.0520194 0.998646i \(-0.516566\pi\)
−0.0520194 + 0.998646i \(0.516566\pi\)
\(212\) 0.586036 0.0402491
\(213\) −41.0606 −2.81343
\(214\) −11.3983 −0.779174
\(215\) 12.9998 0.886580
\(216\) 7.00262 0.476468
\(217\) 6.70742 0.455330
\(218\) 17.0126 1.15224
\(219\) −12.3015 −0.831259
\(220\) −7.69155 −0.518564
\(221\) −0.480530 −0.0323239
\(222\) −18.1143 −1.21575
\(223\) −1.60290 −0.107338 −0.0536690 0.998559i \(-0.517092\pi\)
−0.0536690 + 0.998559i \(0.517092\pi\)
\(224\) −1.61433 −0.107862
\(225\) 29.1459 1.94306
\(226\) 8.38862 0.558003
\(227\) 12.4678 0.827519 0.413759 0.910386i \(-0.364215\pi\)
0.413759 + 0.910386i \(0.364215\pi\)
\(228\) 0 0
\(229\) −10.3992 −0.687197 −0.343598 0.939117i \(-0.611646\pi\)
−0.343598 + 0.939117i \(0.611646\pi\)
\(230\) 17.1022 1.12769
\(231\) −11.1774 −0.735420
\(232\) 6.49642 0.426511
\(233\) 8.08782 0.529851 0.264925 0.964269i \(-0.414653\pi\)
0.264925 + 0.964269i \(0.414653\pi\)
\(234\) −5.41411 −0.353931
\(235\) −35.7073 −2.32929
\(236\) −7.91358 −0.515130
\(237\) 25.2329 1.63905
\(238\) 0.775732 0.0502832
\(239\) −5.47828 −0.354361 −0.177180 0.984178i \(-0.556698\pi\)
−0.177180 + 0.984178i \(0.556698\pi\)
\(240\) 9.34700 0.603346
\(241\) 11.1029 0.715198 0.357599 0.933875i \(-0.383595\pi\)
0.357599 + 0.933875i \(0.383595\pi\)
\(242\) 5.30240 0.340851
\(243\) 9.20130 0.590264
\(244\) −6.14389 −0.393322
\(245\) 14.1587 0.904566
\(246\) 9.24355 0.589347
\(247\) 0 0
\(248\) −4.15494 −0.263839
\(249\) 29.2965 1.85659
\(250\) 1.23518 0.0781194
\(251\) 1.85041 0.116797 0.0583985 0.998293i \(-0.481401\pi\)
0.0583985 + 0.998293i \(0.481401\pi\)
\(252\) 8.74014 0.550577
\(253\) 12.6686 0.796470
\(254\) −13.9561 −0.875683
\(255\) −4.49151 −0.281269
\(256\) 1.00000 0.0625000
\(257\) 24.6849 1.53980 0.769899 0.638165i \(-0.220306\pi\)
0.769899 + 0.638165i \(0.220306\pi\)
\(258\) −11.7023 −0.728556
\(259\) −10.0811 −0.626409
\(260\) −3.22232 −0.199840
\(261\) −35.1723 −2.17711
\(262\) −11.7378 −0.725163
\(263\) −10.8873 −0.671340 −0.335670 0.941980i \(-0.608963\pi\)
−0.335670 + 0.941980i \(0.608963\pi\)
\(264\) 6.92389 0.426136
\(265\) −1.88839 −0.116003
\(266\) 0 0
\(267\) −12.8134 −0.784164
\(268\) −15.5174 −0.947874
\(269\) −4.68270 −0.285509 −0.142755 0.989758i \(-0.545596\pi\)
−0.142755 + 0.989758i \(0.545596\pi\)
\(270\) −22.5646 −1.37324
\(271\) −21.2266 −1.28942 −0.644712 0.764426i \(-0.723023\pi\)
−0.644712 + 0.764426i \(0.723023\pi\)
\(272\) −0.480530 −0.0291364
\(273\) −4.68269 −0.283409
\(274\) −5.35044 −0.323232
\(275\) 12.8498 0.774871
\(276\) −15.3953 −0.926687
\(277\) −14.9983 −0.901163 −0.450581 0.892735i \(-0.648783\pi\)
−0.450581 + 0.892735i \(0.648783\pi\)
\(278\) 5.10591 0.306232
\(279\) 22.4953 1.34676
\(280\) 5.20187 0.310871
\(281\) −10.7525 −0.641438 −0.320719 0.947174i \(-0.603925\pi\)
−0.320719 + 0.947174i \(0.603925\pi\)
\(282\) 32.1435 1.91412
\(283\) 8.21489 0.488325 0.244162 0.969734i \(-0.421487\pi\)
0.244162 + 0.969734i \(0.421487\pi\)
\(284\) 14.1554 0.839967
\(285\) 0 0
\(286\) −2.38696 −0.141144
\(287\) 5.14430 0.303658
\(288\) −5.41411 −0.319029
\(289\) −16.7691 −0.986417
\(290\) −20.9335 −1.22926
\(291\) 20.9463 1.22789
\(292\) 4.24087 0.248178
\(293\) 31.9264 1.86516 0.932579 0.360967i \(-0.117553\pi\)
0.932579 + 0.360967i \(0.117553\pi\)
\(294\) −12.7456 −0.743337
\(295\) 25.5001 1.48467
\(296\) 6.24477 0.362970
\(297\) −16.7150 −0.969903
\(298\) −7.17107 −0.415409
\(299\) 5.30742 0.306936
\(300\) −15.6154 −0.901558
\(301\) −6.51269 −0.375385
\(302\) 24.0585 1.38441
\(303\) 5.75637 0.330695
\(304\) 0 0
\(305\) 19.7975 1.13360
\(306\) 2.60164 0.148726
\(307\) −6.07992 −0.346999 −0.173500 0.984834i \(-0.555508\pi\)
−0.173500 + 0.984834i \(0.555508\pi\)
\(308\) 3.85334 0.219564
\(309\) −47.6894 −2.71295
\(310\) 13.3885 0.760417
\(311\) −25.6708 −1.45566 −0.727829 0.685759i \(-0.759470\pi\)
−0.727829 + 0.685759i \(0.759470\pi\)
\(312\) 2.90071 0.164220
\(313\) −18.4727 −1.04414 −0.522068 0.852904i \(-0.674839\pi\)
−0.522068 + 0.852904i \(0.674839\pi\)
\(314\) −24.0177 −1.35540
\(315\) −28.1635 −1.58683
\(316\) −8.69887 −0.489349
\(317\) −11.6868 −0.656397 −0.328198 0.944609i \(-0.606441\pi\)
−0.328198 + 0.944609i \(0.606441\pi\)
\(318\) 1.69992 0.0953267
\(319\) −15.5067 −0.868209
\(320\) −3.22232 −0.180133
\(321\) −33.0632 −1.84541
\(322\) −8.56791 −0.477471
\(323\) 0 0
\(324\) 4.07023 0.226124
\(325\) 5.38332 0.298613
\(326\) −9.70246 −0.537369
\(327\) 49.3487 2.72899
\(328\) −3.18665 −0.175954
\(329\) 17.8888 0.986240
\(330\) −22.3109 −1.22818
\(331\) 27.6056 1.51734 0.758671 0.651474i \(-0.225849\pi\)
0.758671 + 0.651474i \(0.225849\pi\)
\(332\) −10.0998 −0.554298
\(333\) −33.8099 −1.85277
\(334\) 21.6034 1.18208
\(335\) 50.0019 2.73189
\(336\) −4.68269 −0.255462
\(337\) −13.9431 −0.759527 −0.379764 0.925084i \(-0.623995\pi\)
−0.379764 + 0.925084i \(0.623995\pi\)
\(338\) −1.00000 −0.0543928
\(339\) 24.3329 1.32158
\(340\) 1.54842 0.0839748
\(341\) 9.91768 0.537073
\(342\) 0 0
\(343\) −18.3936 −0.993159
\(344\) 4.03431 0.217515
\(345\) 49.6085 2.67083
\(346\) 1.29516 0.0696283
\(347\) 18.0715 0.970127 0.485063 0.874479i \(-0.338797\pi\)
0.485063 + 0.874479i \(0.338797\pi\)
\(348\) 18.8442 1.01016
\(349\) 6.85462 0.366919 0.183460 0.983027i \(-0.441270\pi\)
0.183460 + 0.983027i \(0.441270\pi\)
\(350\) −8.69043 −0.464523
\(351\) −7.00262 −0.373772
\(352\) −2.38696 −0.127226
\(353\) 23.5277 1.25225 0.626126 0.779722i \(-0.284640\pi\)
0.626126 + 0.779722i \(0.284640\pi\)
\(354\) −22.9550 −1.22004
\(355\) −45.6131 −2.42089
\(356\) 4.41732 0.234117
\(357\) 2.25017 0.119092
\(358\) −25.3948 −1.34216
\(359\) −25.6994 −1.35636 −0.678182 0.734894i \(-0.737232\pi\)
−0.678182 + 0.734894i \(0.737232\pi\)
\(360\) 17.4460 0.919483
\(361\) 0 0
\(362\) 14.2965 0.751410
\(363\) 15.3807 0.807279
\(364\) 1.61433 0.0846137
\(365\) −13.6654 −0.715280
\(366\) −17.8216 −0.931551
\(367\) 9.42932 0.492207 0.246103 0.969244i \(-0.420850\pi\)
0.246103 + 0.969244i \(0.420850\pi\)
\(368\) 5.30742 0.276669
\(369\) 17.2529 0.898149
\(370\) −20.1226 −1.04613
\(371\) 0.946053 0.0491166
\(372\) −12.0523 −0.624880
\(373\) −10.8902 −0.563873 −0.281936 0.959433i \(-0.590977\pi\)
−0.281936 + 0.959433i \(0.590977\pi\)
\(374\) 1.14701 0.0593103
\(375\) 3.58288 0.185019
\(376\) −11.0813 −0.571472
\(377\) −6.49642 −0.334583
\(378\) 11.3045 0.581441
\(379\) 31.3484 1.61026 0.805130 0.593099i \(-0.202096\pi\)
0.805130 + 0.593099i \(0.202096\pi\)
\(380\) 0 0
\(381\) −40.4826 −2.07398
\(382\) 7.21424 0.369113
\(383\) −15.1855 −0.775941 −0.387971 0.921672i \(-0.626824\pi\)
−0.387971 + 0.921672i \(0.626824\pi\)
\(384\) 2.90071 0.148026
\(385\) −12.4167 −0.632812
\(386\) 2.97961 0.151658
\(387\) −21.8422 −1.11030
\(388\) −7.22109 −0.366595
\(389\) −4.37696 −0.221921 −0.110960 0.993825i \(-0.535393\pi\)
−0.110960 + 0.993825i \(0.535393\pi\)
\(390\) −9.34700 −0.473304
\(391\) −2.55037 −0.128978
\(392\) 4.39395 0.221928
\(393\) −34.0479 −1.71749
\(394\) −25.8408 −1.30184
\(395\) 28.0305 1.41037
\(396\) 12.9233 0.649419
\(397\) −13.7731 −0.691251 −0.345625 0.938373i \(-0.612333\pi\)
−0.345625 + 0.938373i \(0.612333\pi\)
\(398\) −18.8369 −0.944207
\(399\) 0 0
\(400\) 5.38332 0.269166
\(401\) 8.89253 0.444072 0.222036 0.975039i \(-0.428730\pi\)
0.222036 + 0.975039i \(0.428730\pi\)
\(402\) −45.0113 −2.24496
\(403\) 4.15494 0.206972
\(404\) −1.98447 −0.0987311
\(405\) −13.1156 −0.651718
\(406\) 10.4873 0.520478
\(407\) −14.9060 −0.738865
\(408\) −1.39388 −0.0690071
\(409\) 32.6858 1.61621 0.808105 0.589038i \(-0.200493\pi\)
0.808105 + 0.589038i \(0.200493\pi\)
\(410\) 10.2684 0.507120
\(411\) −15.5201 −0.765548
\(412\) 16.4406 0.809970
\(413\) −12.7751 −0.628622
\(414\) −28.7350 −1.41225
\(415\) 32.5447 1.59756
\(416\) −1.00000 −0.0490290
\(417\) 14.8108 0.725286
\(418\) 0 0
\(419\) −19.0007 −0.928246 −0.464123 0.885771i \(-0.653630\pi\)
−0.464123 + 0.885771i \(0.653630\pi\)
\(420\) 15.0891 0.736273
\(421\) 35.0992 1.71063 0.855316 0.518107i \(-0.173363\pi\)
0.855316 + 0.518107i \(0.173363\pi\)
\(422\) 1.51125 0.0735665
\(423\) 59.9951 2.91706
\(424\) −0.586036 −0.0284604
\(425\) −2.58684 −0.125480
\(426\) 41.0606 1.98939
\(427\) −9.91824 −0.479977
\(428\) 11.3983 0.550959
\(429\) −6.92389 −0.334288
\(430\) −12.9998 −0.626907
\(431\) −1.63152 −0.0785878 −0.0392939 0.999228i \(-0.512511\pi\)
−0.0392939 + 0.999228i \(0.512511\pi\)
\(432\) −7.00262 −0.336914
\(433\) −5.60635 −0.269424 −0.134712 0.990885i \(-0.543011\pi\)
−0.134712 + 0.990885i \(0.543011\pi\)
\(434\) −6.70742 −0.321967
\(435\) −60.7220 −2.91140
\(436\) −17.0126 −0.814757
\(437\) 0 0
\(438\) 12.3015 0.587789
\(439\) −24.5930 −1.17376 −0.586880 0.809674i \(-0.699644\pi\)
−0.586880 + 0.809674i \(0.699644\pi\)
\(440\) 7.69155 0.366680
\(441\) −23.7893 −1.13282
\(442\) 0.480530 0.0228565
\(443\) −19.0053 −0.902969 −0.451485 0.892279i \(-0.649105\pi\)
−0.451485 + 0.892279i \(0.649105\pi\)
\(444\) 18.1143 0.859665
\(445\) −14.2340 −0.674756
\(446\) 1.60290 0.0758994
\(447\) −20.8012 −0.983862
\(448\) 1.61433 0.0762698
\(449\) −2.13840 −0.100917 −0.0504587 0.998726i \(-0.516068\pi\)
−0.0504587 + 0.998726i \(0.516068\pi\)
\(450\) −29.1459 −1.37395
\(451\) 7.60643 0.358173
\(452\) −8.38862 −0.394567
\(453\) 69.7868 3.27887
\(454\) −12.4678 −0.585144
\(455\) −5.20187 −0.243867
\(456\) 0 0
\(457\) −16.7817 −0.785016 −0.392508 0.919749i \(-0.628392\pi\)
−0.392508 + 0.919749i \(0.628392\pi\)
\(458\) 10.3992 0.485922
\(459\) 3.36497 0.157063
\(460\) −17.1022 −0.797394
\(461\) −11.2496 −0.523946 −0.261973 0.965075i \(-0.584373\pi\)
−0.261973 + 0.965075i \(0.584373\pi\)
\(462\) 11.1774 0.520020
\(463\) 30.9991 1.44065 0.720326 0.693636i \(-0.243992\pi\)
0.720326 + 0.693636i \(0.243992\pi\)
\(464\) −6.49642 −0.301589
\(465\) 38.8362 1.80098
\(466\) −8.08782 −0.374661
\(467\) −7.22785 −0.334465 −0.167233 0.985917i \(-0.553483\pi\)
−0.167233 + 0.985917i \(0.553483\pi\)
\(468\) 5.41411 0.250267
\(469\) −25.0501 −1.15671
\(470\) 35.7073 1.64706
\(471\) −69.6683 −3.21015
\(472\) 7.91358 0.364252
\(473\) −9.62975 −0.442776
\(474\) −25.2329 −1.15898
\(475\) 0 0
\(476\) −0.775732 −0.0355556
\(477\) 3.17286 0.145275
\(478\) 5.47828 0.250571
\(479\) −8.40367 −0.383973 −0.191987 0.981398i \(-0.561493\pi\)
−0.191987 + 0.981398i \(0.561493\pi\)
\(480\) −9.34700 −0.426630
\(481\) −6.24477 −0.284737
\(482\) −11.1029 −0.505721
\(483\) −24.8530 −1.13085
\(484\) −5.30240 −0.241018
\(485\) 23.2686 1.05657
\(486\) −9.20130 −0.417380
\(487\) −39.0864 −1.77117 −0.885587 0.464473i \(-0.846244\pi\)
−0.885587 + 0.464473i \(0.846244\pi\)
\(488\) 6.14389 0.278121
\(489\) −28.1440 −1.27272
\(490\) −14.1587 −0.639625
\(491\) −34.1244 −1.54001 −0.770006 0.638037i \(-0.779747\pi\)
−0.770006 + 0.638037i \(0.779747\pi\)
\(492\) −9.24355 −0.416731
\(493\) 3.12172 0.140595
\(494\) 0 0
\(495\) −41.6429 −1.87171
\(496\) 4.15494 0.186562
\(497\) 22.8514 1.02502
\(498\) −29.2965 −1.31281
\(499\) −16.1855 −0.724562 −0.362281 0.932069i \(-0.618002\pi\)
−0.362281 + 0.932069i \(0.618002\pi\)
\(500\) −1.23518 −0.0552387
\(501\) 62.6651 2.79967
\(502\) −1.85041 −0.0825879
\(503\) −21.9120 −0.977009 −0.488504 0.872561i \(-0.662457\pi\)
−0.488504 + 0.872561i \(0.662457\pi\)
\(504\) −8.74014 −0.389317
\(505\) 6.39459 0.284556
\(506\) −12.6686 −0.563189
\(507\) −2.90071 −0.128825
\(508\) 13.9561 0.619202
\(509\) −34.3483 −1.52246 −0.761231 0.648481i \(-0.775405\pi\)
−0.761231 + 0.648481i \(0.775405\pi\)
\(510\) 4.49151 0.198887
\(511\) 6.84614 0.302855
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −24.6849 −1.08880
\(515\) −52.9768 −2.33444
\(516\) 11.7023 0.515167
\(517\) 26.4506 1.16329
\(518\) 10.0811 0.442938
\(519\) 3.75688 0.164909
\(520\) 3.22232 0.141308
\(521\) 35.6790 1.56313 0.781563 0.623827i \(-0.214423\pi\)
0.781563 + 0.623827i \(0.214423\pi\)
\(522\) 35.1723 1.53945
\(523\) −8.02294 −0.350819 −0.175409 0.984496i \(-0.556125\pi\)
−0.175409 + 0.984496i \(0.556125\pi\)
\(524\) 11.7378 0.512768
\(525\) −25.2084 −1.10019
\(526\) 10.8873 0.474709
\(527\) −1.99657 −0.0869719
\(528\) −6.92389 −0.301323
\(529\) 5.16874 0.224728
\(530\) 1.88839 0.0820265
\(531\) −42.8450 −1.85931
\(532\) 0 0
\(533\) 3.18665 0.138029
\(534\) 12.8134 0.554488
\(535\) −36.7290 −1.58793
\(536\) 15.5174 0.670248
\(537\) −73.6630 −3.17879
\(538\) 4.68270 0.201886
\(539\) −10.4882 −0.451759
\(540\) 22.5646 0.971028
\(541\) −31.5951 −1.35838 −0.679189 0.733963i \(-0.737668\pi\)
−0.679189 + 0.733963i \(0.737668\pi\)
\(542\) 21.2266 0.911760
\(543\) 41.4701 1.77965
\(544\) 0.480530 0.0206025
\(545\) 54.8201 2.34823
\(546\) 4.68269 0.200401
\(547\) 18.3126 0.782992 0.391496 0.920180i \(-0.371958\pi\)
0.391496 + 0.920180i \(0.371958\pi\)
\(548\) 5.35044 0.228559
\(549\) −33.2637 −1.41966
\(550\) −12.8498 −0.547917
\(551\) 0 0
\(552\) 15.3953 0.655267
\(553\) −14.0428 −0.597161
\(554\) 14.9983 0.637218
\(555\) −58.3699 −2.47766
\(556\) −5.10591 −0.216539
\(557\) −13.1018 −0.555141 −0.277570 0.960705i \(-0.589529\pi\)
−0.277570 + 0.960705i \(0.589529\pi\)
\(558\) −22.4953 −0.952301
\(559\) −4.03431 −0.170633
\(560\) −5.20187 −0.219819
\(561\) 3.32713 0.140472
\(562\) 10.7525 0.453565
\(563\) 10.3286 0.435301 0.217650 0.976027i \(-0.430161\pi\)
0.217650 + 0.976027i \(0.430161\pi\)
\(564\) −32.1435 −1.35349
\(565\) 27.0308 1.13719
\(566\) −8.21489 −0.345298
\(567\) 6.57068 0.275943
\(568\) −14.1554 −0.593946
\(569\) −9.62426 −0.403470 −0.201735 0.979440i \(-0.564658\pi\)
−0.201735 + 0.979440i \(0.564658\pi\)
\(570\) 0 0
\(571\) 46.0612 1.92760 0.963801 0.266622i \(-0.0859076\pi\)
0.963801 + 0.266622i \(0.0859076\pi\)
\(572\) 2.38696 0.0998040
\(573\) 20.9264 0.874214
\(574\) −5.14430 −0.214719
\(575\) 28.5716 1.19152
\(576\) 5.41411 0.225588
\(577\) −26.4621 −1.10163 −0.550816 0.834626i \(-0.685684\pi\)
−0.550816 + 0.834626i \(0.685684\pi\)
\(578\) 16.7691 0.697502
\(579\) 8.64297 0.359189
\(580\) 20.9335 0.869217
\(581\) −16.3043 −0.676418
\(582\) −20.9463 −0.868251
\(583\) 1.39885 0.0579343
\(584\) −4.24087 −0.175488
\(585\) −17.4460 −0.721302
\(586\) −31.9264 −1.31887
\(587\) 1.90301 0.0785456 0.0392728 0.999229i \(-0.487496\pi\)
0.0392728 + 0.999229i \(0.487496\pi\)
\(588\) 12.7456 0.525618
\(589\) 0 0
\(590\) −25.5001 −1.04982
\(591\) −74.9567 −3.08331
\(592\) −6.24477 −0.256659
\(593\) −21.7482 −0.893092 −0.446546 0.894761i \(-0.647346\pi\)
−0.446546 + 0.894761i \(0.647346\pi\)
\(594\) 16.7150 0.685825
\(595\) 2.49965 0.102476
\(596\) 7.17107 0.293738
\(597\) −54.6403 −2.23628
\(598\) −5.30742 −0.217037
\(599\) −18.4707 −0.754694 −0.377347 0.926072i \(-0.623164\pi\)
−0.377347 + 0.926072i \(0.623164\pi\)
\(600\) 15.6154 0.637498
\(601\) −20.8248 −0.849461 −0.424730 0.905320i \(-0.639631\pi\)
−0.424730 + 0.905320i \(0.639631\pi\)
\(602\) 6.51269 0.265437
\(603\) −84.0127 −3.42126
\(604\) −24.0585 −0.978928
\(605\) 17.0860 0.694645
\(606\) −5.75637 −0.233837
\(607\) 37.1365 1.50732 0.753661 0.657263i \(-0.228286\pi\)
0.753661 + 0.657263i \(0.228286\pi\)
\(608\) 0 0
\(609\) 30.4207 1.23271
\(610\) −19.7975 −0.801579
\(611\) 11.0813 0.448300
\(612\) −2.60164 −0.105165
\(613\) 28.3288 1.14419 0.572094 0.820188i \(-0.306131\pi\)
0.572094 + 0.820188i \(0.306131\pi\)
\(614\) 6.07992 0.245366
\(615\) 29.7856 1.20107
\(616\) −3.85334 −0.155255
\(617\) −3.31640 −0.133513 −0.0667567 0.997769i \(-0.521265\pi\)
−0.0667567 + 0.997769i \(0.521265\pi\)
\(618\) 47.6894 1.91835
\(619\) 24.2555 0.974909 0.487455 0.873148i \(-0.337925\pi\)
0.487455 + 0.873148i \(0.337925\pi\)
\(620\) −13.3885 −0.537696
\(621\) −37.1659 −1.49141
\(622\) 25.6708 1.02931
\(623\) 7.13099 0.285697
\(624\) −2.90071 −0.116121
\(625\) −22.9365 −0.917459
\(626\) 18.4727 0.738316
\(627\) 0 0
\(628\) 24.0177 0.958411
\(629\) 3.00080 0.119650
\(630\) 28.1635 1.12206
\(631\) 38.9655 1.55119 0.775595 0.631231i \(-0.217450\pi\)
0.775595 + 0.631231i \(0.217450\pi\)
\(632\) 8.69887 0.346022
\(633\) 4.38369 0.174236
\(634\) 11.6868 0.464143
\(635\) −44.9709 −1.78462
\(636\) −1.69992 −0.0674062
\(637\) −4.39395 −0.174095
\(638\) 15.5067 0.613917
\(639\) 76.6387 3.03178
\(640\) 3.22232 0.127373
\(641\) 5.93366 0.234365 0.117183 0.993110i \(-0.462614\pi\)
0.117183 + 0.993110i \(0.462614\pi\)
\(642\) 33.0632 1.30490
\(643\) 20.0765 0.791738 0.395869 0.918307i \(-0.370443\pi\)
0.395869 + 0.918307i \(0.370443\pi\)
\(644\) 8.56791 0.337623
\(645\) −37.7087 −1.48478
\(646\) 0 0
\(647\) −3.89165 −0.152996 −0.0764982 0.997070i \(-0.524374\pi\)
−0.0764982 + 0.997070i \(0.524374\pi\)
\(648\) −4.07023 −0.159894
\(649\) −18.8894 −0.741475
\(650\) −5.38332 −0.211151
\(651\) −19.4563 −0.762551
\(652\) 9.70246 0.379978
\(653\) −12.3661 −0.483924 −0.241962 0.970286i \(-0.577791\pi\)
−0.241962 + 0.970286i \(0.577791\pi\)
\(654\) −49.3487 −1.92969
\(655\) −37.8229 −1.47786
\(656\) 3.18665 0.124418
\(657\) 22.9605 0.895774
\(658\) −17.8888 −0.697377
\(659\) 13.4769 0.524986 0.262493 0.964934i \(-0.415455\pi\)
0.262493 + 0.964934i \(0.415455\pi\)
\(660\) 22.3109 0.868452
\(661\) 7.37597 0.286892 0.143446 0.989658i \(-0.454182\pi\)
0.143446 + 0.989658i \(0.454182\pi\)
\(662\) −27.6056 −1.07292
\(663\) 1.39388 0.0541337
\(664\) 10.0998 0.391948
\(665\) 0 0
\(666\) 33.8099 1.31011
\(667\) −34.4792 −1.33504
\(668\) −21.6034 −0.835860
\(669\) 4.64954 0.179761
\(670\) −50.0019 −1.93174
\(671\) −14.6652 −0.566145
\(672\) 4.68269 0.180639
\(673\) 6.27761 0.241984 0.120992 0.992653i \(-0.461392\pi\)
0.120992 + 0.992653i \(0.461392\pi\)
\(674\) 13.9431 0.537067
\(675\) −37.6973 −1.45097
\(676\) 1.00000 0.0384615
\(677\) 0.692027 0.0265967 0.0132984 0.999912i \(-0.495767\pi\)
0.0132984 + 0.999912i \(0.495767\pi\)
\(678\) −24.3329 −0.934501
\(679\) −11.6572 −0.447362
\(680\) −1.54842 −0.0593791
\(681\) −36.1655 −1.38587
\(682\) −9.91768 −0.379768
\(683\) −42.5373 −1.62764 −0.813822 0.581114i \(-0.802617\pi\)
−0.813822 + 0.581114i \(0.802617\pi\)
\(684\) 0 0
\(685\) −17.2408 −0.658737
\(686\) 18.3936 0.702269
\(687\) 30.1650 1.15087
\(688\) −4.03431 −0.153807
\(689\) 0.586036 0.0223262
\(690\) −49.6085 −1.88856
\(691\) −7.56745 −0.287880 −0.143940 0.989586i \(-0.545977\pi\)
−0.143940 + 0.989586i \(0.545977\pi\)
\(692\) −1.29516 −0.0492346
\(693\) 20.8624 0.792497
\(694\) −18.0715 −0.685983
\(695\) 16.4529 0.624093
\(696\) −18.8442 −0.714288
\(697\) −1.53128 −0.0580014
\(698\) −6.85462 −0.259451
\(699\) −23.4604 −0.887354
\(700\) 8.69043 0.328468
\(701\) −28.1528 −1.06332 −0.531658 0.846959i \(-0.678431\pi\)
−0.531658 + 0.846959i \(0.678431\pi\)
\(702\) 7.00262 0.264297
\(703\) 0 0
\(704\) 2.38696 0.0899621
\(705\) 103.576 3.90092
\(706\) −23.5277 −0.885475
\(707\) −3.20358 −0.120483
\(708\) 22.9550 0.862701
\(709\) −20.6522 −0.775611 −0.387806 0.921741i \(-0.626767\pi\)
−0.387806 + 0.921741i \(0.626767\pi\)
\(710\) 45.6131 1.71183
\(711\) −47.0966 −1.76626
\(712\) −4.41732 −0.165546
\(713\) 22.0520 0.825854
\(714\) −2.25017 −0.0842105
\(715\) −7.69155 −0.287648
\(716\) 25.3948 0.949049
\(717\) 15.8909 0.593457
\(718\) 25.6994 0.959094
\(719\) 0.386691 0.0144211 0.00721057 0.999974i \(-0.497705\pi\)
0.00721057 + 0.999974i \(0.497705\pi\)
\(720\) −17.4460 −0.650173
\(721\) 26.5405 0.988419
\(722\) 0 0
\(723\) −32.2062 −1.19776
\(724\) −14.2965 −0.531327
\(725\) −34.9723 −1.29884
\(726\) −15.3807 −0.570832
\(727\) −36.2780 −1.34548 −0.672738 0.739880i \(-0.734882\pi\)
−0.672738 + 0.739880i \(0.734882\pi\)
\(728\) −1.61433 −0.0598309
\(729\) −38.9010 −1.44078
\(730\) 13.6654 0.505779
\(731\) 1.93860 0.0717019
\(732\) 17.8216 0.658706
\(733\) −3.37369 −0.124610 −0.0623051 0.998057i \(-0.519845\pi\)
−0.0623051 + 0.998057i \(0.519845\pi\)
\(734\) −9.42932 −0.348043
\(735\) −41.0702 −1.51490
\(736\) −5.30742 −0.195634
\(737\) −37.0394 −1.36436
\(738\) −17.2529 −0.635087
\(739\) −28.7986 −1.05937 −0.529687 0.848193i \(-0.677690\pi\)
−0.529687 + 0.848193i \(0.677690\pi\)
\(740\) 20.1226 0.739723
\(741\) 0 0
\(742\) −0.946053 −0.0347307
\(743\) 2.60303 0.0954959 0.0477479 0.998859i \(-0.484796\pi\)
0.0477479 + 0.998859i \(0.484796\pi\)
\(744\) 12.0523 0.441857
\(745\) −23.1074 −0.846591
\(746\) 10.8902 0.398718
\(747\) −54.6813 −2.00068
\(748\) −1.14701 −0.0419387
\(749\) 18.4006 0.672344
\(750\) −3.58288 −0.130828
\(751\) −29.3147 −1.06971 −0.534854 0.844944i \(-0.679634\pi\)
−0.534854 + 0.844944i \(0.679634\pi\)
\(752\) 11.0813 0.404092
\(753\) −5.36750 −0.195603
\(754\) 6.49642 0.236586
\(755\) 77.5242 2.82140
\(756\) −11.3045 −0.411141
\(757\) −10.9189 −0.396853 −0.198426 0.980116i \(-0.563583\pi\)
−0.198426 + 0.980116i \(0.563583\pi\)
\(758\) −31.3484 −1.13863
\(759\) −36.7480 −1.33387
\(760\) 0 0
\(761\) 29.8756 1.08299 0.541495 0.840704i \(-0.317859\pi\)
0.541495 + 0.840704i \(0.317859\pi\)
\(762\) 40.4826 1.46653
\(763\) −27.4639 −0.994261
\(764\) −7.21424 −0.261002
\(765\) 8.38330 0.303099
\(766\) 15.1855 0.548673
\(767\) −7.91358 −0.285743
\(768\) −2.90071 −0.104670
\(769\) 36.7846 1.32649 0.663244 0.748403i \(-0.269179\pi\)
0.663244 + 0.748403i \(0.269179\pi\)
\(770\) 12.4167 0.447466
\(771\) −71.6035 −2.57874
\(772\) −2.97961 −0.107238
\(773\) −28.5296 −1.02614 −0.513069 0.858347i \(-0.671492\pi\)
−0.513069 + 0.858347i \(0.671492\pi\)
\(774\) 21.8422 0.785101
\(775\) 22.3673 0.803459
\(776\) 7.22109 0.259222
\(777\) 29.2423 1.04906
\(778\) 4.37696 0.156922
\(779\) 0 0
\(780\) 9.34700 0.334676
\(781\) 33.7884 1.20904
\(782\) 2.55037 0.0912012
\(783\) 45.4919 1.62575
\(784\) −4.39395 −0.156927
\(785\) −77.3926 −2.76226
\(786\) 34.0479 1.21445
\(787\) −15.2974 −0.545292 −0.272646 0.962114i \(-0.587899\pi\)
−0.272646 + 0.962114i \(0.587899\pi\)
\(788\) 25.8408 0.920542
\(789\) 31.5809 1.12431
\(790\) −28.0305 −0.997280
\(791\) −13.5420 −0.481497
\(792\) −12.9233 −0.459209
\(793\) −6.14389 −0.218176
\(794\) 13.7731 0.488788
\(795\) 5.47767 0.194273
\(796\) 18.8369 0.667655
\(797\) 22.1294 0.783863 0.391931 0.919994i \(-0.371807\pi\)
0.391931 + 0.919994i \(0.371807\pi\)
\(798\) 0 0
\(799\) −5.32487 −0.188380
\(800\) −5.38332 −0.190329
\(801\) 23.9158 0.845025
\(802\) −8.89253 −0.314006
\(803\) 10.1228 0.357226
\(804\) 45.0113 1.58743
\(805\) −27.6085 −0.973073
\(806\) −4.15494 −0.146351
\(807\) 13.5831 0.478150
\(808\) 1.98447 0.0698134
\(809\) 23.3963 0.822569 0.411284 0.911507i \(-0.365080\pi\)
0.411284 + 0.911507i \(0.365080\pi\)
\(810\) 13.1156 0.460834
\(811\) −4.04053 −0.141882 −0.0709411 0.997481i \(-0.522600\pi\)
−0.0709411 + 0.997481i \(0.522600\pi\)
\(812\) −10.4873 −0.368033
\(813\) 61.5721 2.15943
\(814\) 14.9060 0.522457
\(815\) −31.2644 −1.09514
\(816\) 1.39388 0.0487954
\(817\) 0 0
\(818\) −32.6858 −1.14283
\(819\) 8.74014 0.305405
\(820\) −10.2684 −0.358588
\(821\) 22.6358 0.789993 0.394997 0.918683i \(-0.370746\pi\)
0.394997 + 0.918683i \(0.370746\pi\)
\(822\) 15.5201 0.541324
\(823\) 32.0170 1.11604 0.558021 0.829827i \(-0.311561\pi\)
0.558021 + 0.829827i \(0.311561\pi\)
\(824\) −16.4406 −0.572735
\(825\) −37.2735 −1.29770
\(826\) 12.7751 0.444503
\(827\) −10.5760 −0.367765 −0.183882 0.982948i \(-0.558867\pi\)
−0.183882 + 0.982948i \(0.558867\pi\)
\(828\) 28.7350 0.998609
\(829\) 10.9830 0.381455 0.190727 0.981643i \(-0.438915\pi\)
0.190727 + 0.981643i \(0.438915\pi\)
\(830\) −32.5447 −1.12964
\(831\) 43.5058 1.50920
\(832\) 1.00000 0.0346688
\(833\) 2.11142 0.0731565
\(834\) −14.8108 −0.512855
\(835\) 69.6129 2.40905
\(836\) 0 0
\(837\) −29.0954 −1.00569
\(838\) 19.0007 0.656369
\(839\) 44.4742 1.53542 0.767711 0.640797i \(-0.221396\pi\)
0.767711 + 0.640797i \(0.221396\pi\)
\(840\) −15.0891 −0.520624
\(841\) 13.2035 0.455291
\(842\) −35.0992 −1.20960
\(843\) 31.1898 1.07423
\(844\) −1.51125 −0.0520194
\(845\) −3.22232 −0.110851
\(846\) −59.9951 −2.06267
\(847\) −8.55981 −0.294118
\(848\) 0.586036 0.0201246
\(849\) −23.8290 −0.817809
\(850\) 2.58684 0.0887280
\(851\) −33.1437 −1.13615
\(852\) −41.0606 −1.40671
\(853\) 12.2291 0.418716 0.209358 0.977839i \(-0.432863\pi\)
0.209358 + 0.977839i \(0.432863\pi\)
\(854\) 9.91824 0.339395
\(855\) 0 0
\(856\) −11.3983 −0.389587
\(857\) 54.5003 1.86170 0.930848 0.365406i \(-0.119070\pi\)
0.930848 + 0.365406i \(0.119070\pi\)
\(858\) 6.92389 0.236378
\(859\) −38.1826 −1.30277 −0.651386 0.758746i \(-0.725812\pi\)
−0.651386 + 0.758746i \(0.725812\pi\)
\(860\) 12.9998 0.443290
\(861\) −14.9221 −0.508544
\(862\) 1.63152 0.0555699
\(863\) 27.6662 0.941768 0.470884 0.882195i \(-0.343935\pi\)
0.470884 + 0.882195i \(0.343935\pi\)
\(864\) 7.00262 0.238234
\(865\) 4.17342 0.141900
\(866\) 5.60635 0.190511
\(867\) 48.6422 1.65198
\(868\) 6.70742 0.227665
\(869\) −20.7639 −0.704366
\(870\) 60.7220 2.05867
\(871\) −15.5174 −0.525786
\(872\) 17.0126 0.576120
\(873\) −39.0957 −1.32319
\(874\) 0 0
\(875\) −1.99398 −0.0674087
\(876\) −12.3015 −0.415630
\(877\) −7.66019 −0.258666 −0.129333 0.991601i \(-0.541284\pi\)
−0.129333 + 0.991601i \(0.541284\pi\)
\(878\) 24.5930 0.829973
\(879\) −92.6090 −3.12362
\(880\) −7.69155 −0.259282
\(881\) −20.1132 −0.677631 −0.338815 0.940853i \(-0.610026\pi\)
−0.338815 + 0.940853i \(0.610026\pi\)
\(882\) 23.7893 0.801028
\(883\) 0.971252 0.0326852 0.0163426 0.999866i \(-0.494798\pi\)
0.0163426 + 0.999866i \(0.494798\pi\)
\(884\) −0.480530 −0.0161620
\(885\) −73.9682 −2.48641
\(886\) 19.0053 0.638496
\(887\) −31.0454 −1.04240 −0.521201 0.853434i \(-0.674516\pi\)
−0.521201 + 0.853434i \(0.674516\pi\)
\(888\) −18.1143 −0.607875
\(889\) 22.5297 0.755622
\(890\) 14.2340 0.477125
\(891\) 9.71550 0.325481
\(892\) −1.60290 −0.0536690
\(893\) 0 0
\(894\) 20.8012 0.695695
\(895\) −81.8302 −2.73528
\(896\) −1.61433 −0.0539309
\(897\) −15.3953 −0.514034
\(898\) 2.13840 0.0713593
\(899\) −26.9922 −0.900240
\(900\) 29.1459 0.971529
\(901\) −0.281607 −0.00938171
\(902\) −7.60643 −0.253266
\(903\) 18.8914 0.628667
\(904\) 8.38862 0.279001
\(905\) 46.0680 1.53135
\(906\) −69.7868 −2.31851
\(907\) 3.77407 0.125316 0.0626580 0.998035i \(-0.480042\pi\)
0.0626580 + 0.998035i \(0.480042\pi\)
\(908\) 12.4678 0.413759
\(909\) −10.7441 −0.356360
\(910\) 5.20187 0.172440
\(911\) −44.8830 −1.48704 −0.743519 0.668715i \(-0.766845\pi\)
−0.743519 + 0.668715i \(0.766845\pi\)
\(912\) 0 0
\(913\) −24.1078 −0.797852
\(914\) 16.7817 0.555090
\(915\) −57.4269 −1.89847
\(916\) −10.3992 −0.343598
\(917\) 18.9486 0.625739
\(918\) −3.36497 −0.111060
\(919\) −35.7410 −1.17899 −0.589493 0.807773i \(-0.700672\pi\)
−0.589493 + 0.807773i \(0.700672\pi\)
\(920\) 17.1022 0.563843
\(921\) 17.6361 0.581129
\(922\) 11.2496 0.370485
\(923\) 14.1554 0.465930
\(924\) −11.1774 −0.367710
\(925\) −33.6176 −1.10534
\(926\) −30.9991 −1.01869
\(927\) 89.0111 2.92351
\(928\) 6.49642 0.213255
\(929\) 9.22422 0.302637 0.151318 0.988485i \(-0.451648\pi\)
0.151318 + 0.988485i \(0.451648\pi\)
\(930\) −38.8362 −1.27349
\(931\) 0 0
\(932\) 8.08782 0.264925
\(933\) 74.4635 2.43783
\(934\) 7.22785 0.236503
\(935\) 3.69602 0.120873
\(936\) −5.41411 −0.176966
\(937\) −22.0910 −0.721682 −0.360841 0.932627i \(-0.617510\pi\)
−0.360841 + 0.932627i \(0.617510\pi\)
\(938\) 25.0501 0.817914
\(939\) 53.5838 1.74864
\(940\) −35.7073 −1.16464
\(941\) 37.2279 1.21360 0.606798 0.794856i \(-0.292454\pi\)
0.606798 + 0.794856i \(0.292454\pi\)
\(942\) 69.6683 2.26992
\(943\) 16.9129 0.550760
\(944\) −7.91358 −0.257565
\(945\) 36.4267 1.18496
\(946\) 9.62975 0.313090
\(947\) 14.2094 0.461744 0.230872 0.972984i \(-0.425842\pi\)
0.230872 + 0.972984i \(0.425842\pi\)
\(948\) 25.2329 0.819526
\(949\) 4.24087 0.137664
\(950\) 0 0
\(951\) 33.9000 1.09928
\(952\) 0.775732 0.0251416
\(953\) −55.2027 −1.78819 −0.894095 0.447878i \(-0.852180\pi\)
−0.894095 + 0.447878i \(0.852180\pi\)
\(954\) −3.17286 −0.102725
\(955\) 23.2466 0.752241
\(956\) −5.47828 −0.177180
\(957\) 44.9805 1.45401
\(958\) 8.40367 0.271510
\(959\) 8.63735 0.278915
\(960\) 9.34700 0.301673
\(961\) −13.7365 −0.443113
\(962\) 6.24477 0.201340
\(963\) 61.7118 1.98863
\(964\) 11.1029 0.357599
\(965\) 9.60123 0.309075
\(966\) 24.8530 0.799633
\(967\) −4.87359 −0.156724 −0.0783621 0.996925i \(-0.524969\pi\)
−0.0783621 + 0.996925i \(0.524969\pi\)
\(968\) 5.30240 0.170426
\(969\) 0 0
\(970\) −23.2686 −0.747110
\(971\) 24.1961 0.776489 0.388244 0.921556i \(-0.373082\pi\)
0.388244 + 0.921556i \(0.373082\pi\)
\(972\) 9.20130 0.295132
\(973\) −8.24261 −0.264246
\(974\) 39.0864 1.25241
\(975\) −15.6154 −0.500094
\(976\) −6.14389 −0.196661
\(977\) 57.0584 1.82546 0.912731 0.408562i \(-0.133970\pi\)
0.912731 + 0.408562i \(0.133970\pi\)
\(978\) 28.1440 0.899946
\(979\) 10.5440 0.336987
\(980\) 14.1587 0.452283
\(981\) −92.1082 −2.94079
\(982\) 34.1244 1.08895
\(983\) 48.0041 1.53109 0.765547 0.643380i \(-0.222468\pi\)
0.765547 + 0.643380i \(0.222468\pi\)
\(984\) 9.24355 0.294674
\(985\) −83.2673 −2.65312
\(986\) −3.12172 −0.0994158
\(987\) −51.8901 −1.65168
\(988\) 0 0
\(989\) −21.4118 −0.680855
\(990\) 41.6429 1.32350
\(991\) −0.421547 −0.0133909 −0.00669544 0.999978i \(-0.502131\pi\)
−0.00669544 + 0.999978i \(0.502131\pi\)
\(992\) −4.15494 −0.131919
\(993\) −80.0758 −2.54113
\(994\) −22.8514 −0.724802
\(995\) −60.6983 −1.92427
\(996\) 29.2965 0.928296
\(997\) 34.4456 1.09090 0.545452 0.838142i \(-0.316358\pi\)
0.545452 + 0.838142i \(0.316358\pi\)
\(998\) 16.1855 0.512342
\(999\) 43.7298 1.38355
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9386.2.a.bw.1.3 15
19.2 odd 18 494.2.x.d.365.4 yes 30
19.10 odd 18 494.2.x.d.157.4 30
19.18 odd 2 9386.2.a.bz.1.13 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
494.2.x.d.157.4 30 19.10 odd 18
494.2.x.d.365.4 yes 30 19.2 odd 18
9386.2.a.bw.1.3 15 1.1 even 1 trivial
9386.2.a.bz.1.13 15 19.18 odd 2