Properties

Label 9386.2.a.bw.1.10
Level $9386$
Weight $2$
Character 9386.1
Self dual yes
Analytic conductor $74.948$
Analytic rank $1$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9386,2,Mod(1,9386)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9386.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9386, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9386 = 2 \cdot 13 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9386.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,-15,-3,15,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.9475873372\)
Analytic rank: \(1\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 3 x^{14} - 27 x^{13} + 70 x^{12} + 306 x^{11} - 609 x^{10} - 1854 x^{9} + 2346 x^{8} + \cdots - 24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 494)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(-0.966809\) of defining polynomial
Character \(\chi\) \(=\) 9386.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +0.966809 q^{3} +1.00000 q^{4} +3.48601 q^{5} -0.966809 q^{6} +0.573182 q^{7} -1.00000 q^{8} -2.06528 q^{9} -3.48601 q^{10} -5.12586 q^{11} +0.966809 q^{12} +1.00000 q^{13} -0.573182 q^{14} +3.37030 q^{15} +1.00000 q^{16} +1.79074 q^{17} +2.06528 q^{18} +3.48601 q^{20} +0.554157 q^{21} +5.12586 q^{22} +7.66683 q^{23} -0.966809 q^{24} +7.15223 q^{25} -1.00000 q^{26} -4.89716 q^{27} +0.573182 q^{28} -3.24609 q^{29} -3.37030 q^{30} -6.22828 q^{31} -1.00000 q^{32} -4.95572 q^{33} -1.79074 q^{34} +1.99811 q^{35} -2.06528 q^{36} +1.06657 q^{37} +0.966809 q^{39} -3.48601 q^{40} -4.45685 q^{41} -0.554157 q^{42} -10.1992 q^{43} -5.12586 q^{44} -7.19958 q^{45} -7.66683 q^{46} -3.02020 q^{47} +0.966809 q^{48} -6.67146 q^{49} -7.15223 q^{50} +1.73130 q^{51} +1.00000 q^{52} -12.8340 q^{53} +4.89716 q^{54} -17.8688 q^{55} -0.573182 q^{56} +3.24609 q^{58} -12.1429 q^{59} +3.37030 q^{60} +1.43877 q^{61} +6.22828 q^{62} -1.18378 q^{63} +1.00000 q^{64} +3.48601 q^{65} +4.95572 q^{66} +12.7844 q^{67} +1.79074 q^{68} +7.41236 q^{69} -1.99811 q^{70} +8.87515 q^{71} +2.06528 q^{72} -16.7599 q^{73} -1.06657 q^{74} +6.91484 q^{75} -2.93805 q^{77} -0.966809 q^{78} -4.04246 q^{79} +3.48601 q^{80} +1.46123 q^{81} +4.45685 q^{82} +12.3393 q^{83} +0.554157 q^{84} +6.24253 q^{85} +10.1992 q^{86} -3.13835 q^{87} +5.12586 q^{88} -14.3513 q^{89} +7.19958 q^{90} +0.573182 q^{91} +7.66683 q^{92} -6.02155 q^{93} +3.02020 q^{94} -0.966809 q^{96} +9.77646 q^{97} +6.67146 q^{98} +10.5863 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 15 q^{2} - 3 q^{3} + 15 q^{4} + 3 q^{5} + 3 q^{6} - 15 q^{8} + 18 q^{9} - 3 q^{10} - 3 q^{11} - 3 q^{12} + 15 q^{13} + 15 q^{16} + 3 q^{17} - 18 q^{18} + 3 q^{20} - 33 q^{21} + 3 q^{22} + 9 q^{23}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0.966809 0.558187 0.279094 0.960264i \(-0.409966\pi\)
0.279094 + 0.960264i \(0.409966\pi\)
\(4\) 1.00000 0.500000
\(5\) 3.48601 1.55899 0.779495 0.626409i \(-0.215476\pi\)
0.779495 + 0.626409i \(0.215476\pi\)
\(6\) −0.966809 −0.394698
\(7\) 0.573182 0.216642 0.108321 0.994116i \(-0.465453\pi\)
0.108321 + 0.994116i \(0.465453\pi\)
\(8\) −1.00000 −0.353553
\(9\) −2.06528 −0.688427
\(10\) −3.48601 −1.10237
\(11\) −5.12586 −1.54550 −0.772752 0.634708i \(-0.781120\pi\)
−0.772752 + 0.634708i \(0.781120\pi\)
\(12\) 0.966809 0.279094
\(13\) 1.00000 0.277350
\(14\) −0.573182 −0.153189
\(15\) 3.37030 0.870208
\(16\) 1.00000 0.250000
\(17\) 1.79074 0.434319 0.217159 0.976136i \(-0.430321\pi\)
0.217159 + 0.976136i \(0.430321\pi\)
\(18\) 2.06528 0.486791
\(19\) 0 0
\(20\) 3.48601 0.779495
\(21\) 0.554157 0.120927
\(22\) 5.12586 1.09284
\(23\) 7.66683 1.59864 0.799322 0.600902i \(-0.205192\pi\)
0.799322 + 0.600902i \(0.205192\pi\)
\(24\) −0.966809 −0.197349
\(25\) 7.15223 1.43045
\(26\) −1.00000 −0.196116
\(27\) −4.89716 −0.942458
\(28\) 0.573182 0.108321
\(29\) −3.24609 −0.602785 −0.301392 0.953500i \(-0.597451\pi\)
−0.301392 + 0.953500i \(0.597451\pi\)
\(30\) −3.37030 −0.615330
\(31\) −6.22828 −1.11863 −0.559316 0.828955i \(-0.688936\pi\)
−0.559316 + 0.828955i \(0.688936\pi\)
\(32\) −1.00000 −0.176777
\(33\) −4.95572 −0.862681
\(34\) −1.79074 −0.307110
\(35\) 1.99811 0.337743
\(36\) −2.06528 −0.344213
\(37\) 1.06657 0.175343 0.0876716 0.996149i \(-0.472057\pi\)
0.0876716 + 0.996149i \(0.472057\pi\)
\(38\) 0 0
\(39\) 0.966809 0.154813
\(40\) −3.48601 −0.551186
\(41\) −4.45685 −0.696042 −0.348021 0.937487i \(-0.613146\pi\)
−0.348021 + 0.937487i \(0.613146\pi\)
\(42\) −0.554157 −0.0855083
\(43\) −10.1992 −1.55536 −0.777680 0.628660i \(-0.783604\pi\)
−0.777680 + 0.628660i \(0.783604\pi\)
\(44\) −5.12586 −0.772752
\(45\) −7.19958 −1.07325
\(46\) −7.66683 −1.13041
\(47\) −3.02020 −0.440541 −0.220270 0.975439i \(-0.570694\pi\)
−0.220270 + 0.975439i \(0.570694\pi\)
\(48\) 0.966809 0.139547
\(49\) −6.67146 −0.953066
\(50\) −7.15223 −1.01148
\(51\) 1.73130 0.242431
\(52\) 1.00000 0.138675
\(53\) −12.8340 −1.76288 −0.881442 0.472293i \(-0.843426\pi\)
−0.881442 + 0.472293i \(0.843426\pi\)
\(54\) 4.89716 0.666419
\(55\) −17.8688 −2.40942
\(56\) −0.573182 −0.0765946
\(57\) 0 0
\(58\) 3.24609 0.426233
\(59\) −12.1429 −1.58087 −0.790435 0.612546i \(-0.790146\pi\)
−0.790435 + 0.612546i \(0.790146\pi\)
\(60\) 3.37030 0.435104
\(61\) 1.43877 0.184216 0.0921081 0.995749i \(-0.470639\pi\)
0.0921081 + 0.995749i \(0.470639\pi\)
\(62\) 6.22828 0.790992
\(63\) −1.18378 −0.149142
\(64\) 1.00000 0.125000
\(65\) 3.48601 0.432386
\(66\) 4.95572 0.610007
\(67\) 12.7844 1.56186 0.780930 0.624618i \(-0.214745\pi\)
0.780930 + 0.624618i \(0.214745\pi\)
\(68\) 1.79074 0.217159
\(69\) 7.41236 0.892343
\(70\) −1.99811 −0.238820
\(71\) 8.87515 1.05329 0.526643 0.850086i \(-0.323450\pi\)
0.526643 + 0.850086i \(0.323450\pi\)
\(72\) 2.06528 0.243396
\(73\) −16.7599 −1.96160 −0.980801 0.195013i \(-0.937525\pi\)
−0.980801 + 0.195013i \(0.937525\pi\)
\(74\) −1.06657 −0.123986
\(75\) 6.91484 0.798457
\(76\) 0 0
\(77\) −2.93805 −0.334821
\(78\) −0.966809 −0.109470
\(79\) −4.04246 −0.454812 −0.227406 0.973800i \(-0.573024\pi\)
−0.227406 + 0.973800i \(0.573024\pi\)
\(80\) 3.48601 0.389747
\(81\) 1.46123 0.162359
\(82\) 4.45685 0.492176
\(83\) 12.3393 1.35441 0.677207 0.735793i \(-0.263190\pi\)
0.677207 + 0.735793i \(0.263190\pi\)
\(84\) 0.554157 0.0604635
\(85\) 6.24253 0.677098
\(86\) 10.1992 1.09981
\(87\) −3.13835 −0.336467
\(88\) 5.12586 0.546418
\(89\) −14.3513 −1.52124 −0.760618 0.649200i \(-0.775104\pi\)
−0.760618 + 0.649200i \(0.775104\pi\)
\(90\) 7.19958 0.758902
\(91\) 0.573182 0.0600857
\(92\) 7.66683 0.799322
\(93\) −6.02155 −0.624406
\(94\) 3.02020 0.311509
\(95\) 0 0
\(96\) −0.966809 −0.0986745
\(97\) 9.77646 0.992649 0.496325 0.868137i \(-0.334683\pi\)
0.496325 + 0.868137i \(0.334683\pi\)
\(98\) 6.67146 0.673920
\(99\) 10.5863 1.06397
\(100\) 7.15223 0.715223
\(101\) 9.43674 0.938990 0.469495 0.882935i \(-0.344436\pi\)
0.469495 + 0.882935i \(0.344436\pi\)
\(102\) −1.73130 −0.171425
\(103\) −6.11332 −0.602363 −0.301182 0.953567i \(-0.597381\pi\)
−0.301182 + 0.953567i \(0.597381\pi\)
\(104\) −1.00000 −0.0980581
\(105\) 1.93179 0.188524
\(106\) 12.8340 1.24655
\(107\) −3.81753 −0.369054 −0.184527 0.982827i \(-0.559075\pi\)
−0.184527 + 0.982827i \(0.559075\pi\)
\(108\) −4.89716 −0.471229
\(109\) 1.99936 0.191504 0.0957519 0.995405i \(-0.469474\pi\)
0.0957519 + 0.995405i \(0.469474\pi\)
\(110\) 17.8688 1.70372
\(111\) 1.03117 0.0978743
\(112\) 0.573182 0.0541606
\(113\) −14.9780 −1.40902 −0.704508 0.709696i \(-0.748832\pi\)
−0.704508 + 0.709696i \(0.748832\pi\)
\(114\) 0 0
\(115\) 26.7266 2.49227
\(116\) −3.24609 −0.301392
\(117\) −2.06528 −0.190935
\(118\) 12.1429 1.11784
\(119\) 1.02642 0.0940918
\(120\) −3.37030 −0.307665
\(121\) 15.2744 1.38858
\(122\) −1.43877 −0.130261
\(123\) −4.30892 −0.388522
\(124\) −6.22828 −0.559316
\(125\) 7.50270 0.671062
\(126\) 1.18378 0.105460
\(127\) 0.00228665 0.000202908 0 0.000101454 1.00000i \(-0.499968\pi\)
0.000101454 1.00000i \(0.499968\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −9.86066 −0.868182
\(130\) −3.48601 −0.305743
\(131\) 4.07704 0.356213 0.178106 0.984011i \(-0.443003\pi\)
0.178106 + 0.984011i \(0.443003\pi\)
\(132\) −4.95572 −0.431340
\(133\) 0 0
\(134\) −12.7844 −1.10440
\(135\) −17.0715 −1.46928
\(136\) −1.79074 −0.153555
\(137\) −0.258828 −0.0221131 −0.0110566 0.999939i \(-0.503519\pi\)
−0.0110566 + 0.999939i \(0.503519\pi\)
\(138\) −7.41236 −0.630982
\(139\) −13.4185 −1.13814 −0.569072 0.822288i \(-0.692697\pi\)
−0.569072 + 0.822288i \(0.692697\pi\)
\(140\) 1.99811 0.168871
\(141\) −2.91995 −0.245904
\(142\) −8.87515 −0.744786
\(143\) −5.12586 −0.428646
\(144\) −2.06528 −0.172107
\(145\) −11.3159 −0.939734
\(146\) 16.7599 1.38706
\(147\) −6.45003 −0.531989
\(148\) 1.06657 0.0876716
\(149\) 18.1817 1.48950 0.744752 0.667342i \(-0.232568\pi\)
0.744752 + 0.667342i \(0.232568\pi\)
\(150\) −6.91484 −0.564595
\(151\) −0.924708 −0.0752517 −0.0376258 0.999292i \(-0.511980\pi\)
−0.0376258 + 0.999292i \(0.511980\pi\)
\(152\) 0 0
\(153\) −3.69838 −0.298997
\(154\) 2.93805 0.236755
\(155\) −21.7118 −1.74393
\(156\) 0.966809 0.0774067
\(157\) 18.9510 1.51246 0.756228 0.654308i \(-0.227040\pi\)
0.756228 + 0.654308i \(0.227040\pi\)
\(158\) 4.04246 0.321601
\(159\) −12.4080 −0.984019
\(160\) −3.48601 −0.275593
\(161\) 4.39449 0.346334
\(162\) −1.46123 −0.114805
\(163\) −8.41510 −0.659121 −0.329561 0.944134i \(-0.606901\pi\)
−0.329561 + 0.944134i \(0.606901\pi\)
\(164\) −4.45685 −0.348021
\(165\) −17.2757 −1.34491
\(166\) −12.3393 −0.957715
\(167\) −24.0781 −1.86322 −0.931608 0.363465i \(-0.881594\pi\)
−0.931608 + 0.363465i \(0.881594\pi\)
\(168\) −0.554157 −0.0427541
\(169\) 1.00000 0.0769231
\(170\) −6.24253 −0.478781
\(171\) 0 0
\(172\) −10.1992 −0.777680
\(173\) −5.46891 −0.415794 −0.207897 0.978151i \(-0.566662\pi\)
−0.207897 + 0.978151i \(0.566662\pi\)
\(174\) 3.13835 0.237918
\(175\) 4.09953 0.309895
\(176\) −5.12586 −0.386376
\(177\) −11.7399 −0.882422
\(178\) 14.3513 1.07568
\(179\) 17.2183 1.28695 0.643477 0.765466i \(-0.277491\pi\)
0.643477 + 0.765466i \(0.277491\pi\)
\(180\) −7.19958 −0.536625
\(181\) −2.50468 −0.186172 −0.0930859 0.995658i \(-0.529673\pi\)
−0.0930859 + 0.995658i \(0.529673\pi\)
\(182\) −0.573182 −0.0424870
\(183\) 1.39102 0.102827
\(184\) −7.66683 −0.565206
\(185\) 3.71807 0.273358
\(186\) 6.02155 0.441522
\(187\) −9.17908 −0.671241
\(188\) −3.02020 −0.220270
\(189\) −2.80696 −0.204176
\(190\) 0 0
\(191\) −6.44008 −0.465988 −0.232994 0.972478i \(-0.574852\pi\)
−0.232994 + 0.972478i \(0.574852\pi\)
\(192\) 0.966809 0.0697734
\(193\) −0.350714 −0.0252450 −0.0126225 0.999920i \(-0.504018\pi\)
−0.0126225 + 0.999920i \(0.504018\pi\)
\(194\) −9.77646 −0.701909
\(195\) 3.37030 0.241352
\(196\) −6.67146 −0.476533
\(197\) 18.3450 1.30703 0.653514 0.756914i \(-0.273294\pi\)
0.653514 + 0.756914i \(0.273294\pi\)
\(198\) −10.5863 −0.752338
\(199\) −13.4103 −0.950628 −0.475314 0.879816i \(-0.657665\pi\)
−0.475314 + 0.879816i \(0.657665\pi\)
\(200\) −7.15223 −0.505739
\(201\) 12.3601 0.871811
\(202\) −9.43674 −0.663967
\(203\) −1.86060 −0.130589
\(204\) 1.73130 0.121216
\(205\) −15.5366 −1.08512
\(206\) 6.11332 0.425935
\(207\) −15.8342 −1.10055
\(208\) 1.00000 0.0693375
\(209\) 0 0
\(210\) −1.93179 −0.133306
\(211\) −12.0269 −0.827964 −0.413982 0.910285i \(-0.635862\pi\)
−0.413982 + 0.910285i \(0.635862\pi\)
\(212\) −12.8340 −0.881442
\(213\) 8.58057 0.587931
\(214\) 3.81753 0.260961
\(215\) −35.5544 −2.42479
\(216\) 4.89716 0.333209
\(217\) −3.56993 −0.242343
\(218\) −1.99936 −0.135414
\(219\) −16.2036 −1.09494
\(220\) −17.8688 −1.20471
\(221\) 1.79074 0.120458
\(222\) −1.03117 −0.0692076
\(223\) −7.55163 −0.505694 −0.252847 0.967506i \(-0.581367\pi\)
−0.252847 + 0.967506i \(0.581367\pi\)
\(224\) −0.573182 −0.0382973
\(225\) −14.7714 −0.984758
\(226\) 14.9780 0.996325
\(227\) −7.93349 −0.526564 −0.263282 0.964719i \(-0.584805\pi\)
−0.263282 + 0.964719i \(0.584805\pi\)
\(228\) 0 0
\(229\) 27.6864 1.82957 0.914786 0.403940i \(-0.132359\pi\)
0.914786 + 0.403940i \(0.132359\pi\)
\(230\) −26.7266 −1.76230
\(231\) −2.84053 −0.186893
\(232\) 3.24609 0.213117
\(233\) 7.47943 0.489994 0.244997 0.969524i \(-0.421213\pi\)
0.244997 + 0.969524i \(0.421213\pi\)
\(234\) 2.06528 0.135012
\(235\) −10.5284 −0.686798
\(236\) −12.1429 −0.790435
\(237\) −3.90829 −0.253870
\(238\) −1.02642 −0.0665329
\(239\) 14.9897 0.969600 0.484800 0.874625i \(-0.338892\pi\)
0.484800 + 0.874625i \(0.338892\pi\)
\(240\) 3.37030 0.217552
\(241\) 3.63720 0.234293 0.117146 0.993115i \(-0.462625\pi\)
0.117146 + 0.993115i \(0.462625\pi\)
\(242\) −15.2744 −0.981876
\(243\) 16.1042 1.03308
\(244\) 1.43877 0.0921081
\(245\) −23.2568 −1.48582
\(246\) 4.30892 0.274727
\(247\) 0 0
\(248\) 6.22828 0.395496
\(249\) 11.9297 0.756016
\(250\) −7.50270 −0.474512
\(251\) 6.53728 0.412630 0.206315 0.978486i \(-0.433853\pi\)
0.206315 + 0.978486i \(0.433853\pi\)
\(252\) −1.18378 −0.0745712
\(253\) −39.2991 −2.47071
\(254\) −0.00228665 −0.000143477 0
\(255\) 6.03534 0.377947
\(256\) 1.00000 0.0625000
\(257\) −8.07867 −0.503934 −0.251967 0.967736i \(-0.581077\pi\)
−0.251967 + 0.967736i \(0.581077\pi\)
\(258\) 9.86066 0.613898
\(259\) 0.611339 0.0379867
\(260\) 3.48601 0.216193
\(261\) 6.70410 0.414973
\(262\) −4.07704 −0.251881
\(263\) −5.11911 −0.315658 −0.157829 0.987466i \(-0.550449\pi\)
−0.157829 + 0.987466i \(0.550449\pi\)
\(264\) 4.95572 0.305004
\(265\) −44.7393 −2.74832
\(266\) 0 0
\(267\) −13.8750 −0.849134
\(268\) 12.7844 0.780930
\(269\) −2.44282 −0.148941 −0.0744707 0.997223i \(-0.523727\pi\)
−0.0744707 + 0.997223i \(0.523727\pi\)
\(270\) 17.0715 1.03894
\(271\) 3.37593 0.205073 0.102537 0.994729i \(-0.467304\pi\)
0.102537 + 0.994729i \(0.467304\pi\)
\(272\) 1.79074 0.108580
\(273\) 0.554157 0.0335391
\(274\) 0.258828 0.0156363
\(275\) −36.6613 −2.21076
\(276\) 7.41236 0.446172
\(277\) −0.453341 −0.0272386 −0.0136193 0.999907i \(-0.504335\pi\)
−0.0136193 + 0.999907i \(0.504335\pi\)
\(278\) 13.4185 0.804789
\(279\) 12.8631 0.770096
\(280\) −1.99811 −0.119410
\(281\) 13.5681 0.809403 0.404701 0.914449i \(-0.367376\pi\)
0.404701 + 0.914449i \(0.367376\pi\)
\(282\) 2.91995 0.173881
\(283\) −7.28169 −0.432851 −0.216426 0.976299i \(-0.569440\pi\)
−0.216426 + 0.976299i \(0.569440\pi\)
\(284\) 8.87515 0.526643
\(285\) 0 0
\(286\) 5.12586 0.303098
\(287\) −2.55458 −0.150792
\(288\) 2.06528 0.121698
\(289\) −13.7932 −0.811367
\(290\) 11.3159 0.664493
\(291\) 9.45197 0.554084
\(292\) −16.7599 −0.980801
\(293\) −4.68665 −0.273797 −0.136899 0.990585i \(-0.543713\pi\)
−0.136899 + 0.990585i \(0.543713\pi\)
\(294\) 6.45003 0.376173
\(295\) −42.3302 −2.46456
\(296\) −1.06657 −0.0619932
\(297\) 25.1021 1.45657
\(298\) −18.1817 −1.05324
\(299\) 7.66683 0.443384
\(300\) 6.91484 0.399229
\(301\) −5.84598 −0.336957
\(302\) 0.924708 0.0532110
\(303\) 9.12352 0.524133
\(304\) 0 0
\(305\) 5.01558 0.287191
\(306\) 3.69838 0.211423
\(307\) −11.8048 −0.673737 −0.336868 0.941552i \(-0.609368\pi\)
−0.336868 + 0.941552i \(0.609368\pi\)
\(308\) −2.93805 −0.167411
\(309\) −5.91041 −0.336232
\(310\) 21.7118 1.23315
\(311\) 8.00247 0.453779 0.226889 0.973921i \(-0.427144\pi\)
0.226889 + 0.973921i \(0.427144\pi\)
\(312\) −0.966809 −0.0547348
\(313\) 13.4921 0.762617 0.381309 0.924448i \(-0.375474\pi\)
0.381309 + 0.924448i \(0.375474\pi\)
\(314\) −18.9510 −1.06947
\(315\) −4.12667 −0.232511
\(316\) −4.04246 −0.227406
\(317\) 23.0549 1.29489 0.647445 0.762112i \(-0.275838\pi\)
0.647445 + 0.762112i \(0.275838\pi\)
\(318\) 12.4080 0.695806
\(319\) 16.6390 0.931606
\(320\) 3.48601 0.194874
\(321\) −3.69082 −0.206001
\(322\) −4.39449 −0.244895
\(323\) 0 0
\(324\) 1.46123 0.0811793
\(325\) 7.15223 0.396735
\(326\) 8.41510 0.466069
\(327\) 1.93300 0.106895
\(328\) 4.45685 0.246088
\(329\) −1.73112 −0.0954398
\(330\) 17.2757 0.950995
\(331\) −11.5092 −0.632604 −0.316302 0.948659i \(-0.602441\pi\)
−0.316302 + 0.948659i \(0.602441\pi\)
\(332\) 12.3393 0.677207
\(333\) −2.20277 −0.120711
\(334\) 24.0781 1.31749
\(335\) 44.5664 2.43492
\(336\) 0.554157 0.0302317
\(337\) 0.595490 0.0324384 0.0162192 0.999868i \(-0.494837\pi\)
0.0162192 + 0.999868i \(0.494837\pi\)
\(338\) −1.00000 −0.0543928
\(339\) −14.4809 −0.786495
\(340\) 6.24253 0.338549
\(341\) 31.9253 1.72885
\(342\) 0 0
\(343\) −7.83623 −0.423117
\(344\) 10.1992 0.549903
\(345\) 25.8395 1.39115
\(346\) 5.46891 0.294010
\(347\) −33.2481 −1.78485 −0.892426 0.451194i \(-0.850998\pi\)
−0.892426 + 0.451194i \(0.850998\pi\)
\(348\) −3.13835 −0.168233
\(349\) −8.52949 −0.456573 −0.228287 0.973594i \(-0.573312\pi\)
−0.228287 + 0.973594i \(0.573312\pi\)
\(350\) −4.09953 −0.219129
\(351\) −4.89716 −0.261391
\(352\) 5.12586 0.273209
\(353\) 35.2040 1.87372 0.936860 0.349704i \(-0.113718\pi\)
0.936860 + 0.349704i \(0.113718\pi\)
\(354\) 11.7399 0.623966
\(355\) 30.9388 1.64206
\(356\) −14.3513 −0.760618
\(357\) 0.992352 0.0525208
\(358\) −17.2183 −0.910013
\(359\) −15.3519 −0.810240 −0.405120 0.914264i \(-0.632770\pi\)
−0.405120 + 0.914264i \(0.632770\pi\)
\(360\) 7.19958 0.379451
\(361\) 0 0
\(362\) 2.50468 0.131643
\(363\) 14.7674 0.775089
\(364\) 0.573182 0.0300429
\(365\) −58.4252 −3.05812
\(366\) −1.39102 −0.0727098
\(367\) 5.58516 0.291543 0.145772 0.989318i \(-0.453434\pi\)
0.145772 + 0.989318i \(0.453434\pi\)
\(368\) 7.66683 0.399661
\(369\) 9.20464 0.479174
\(370\) −3.71807 −0.193293
\(371\) −7.35620 −0.381915
\(372\) −6.02155 −0.312203
\(373\) −27.7786 −1.43832 −0.719161 0.694844i \(-0.755474\pi\)
−0.719161 + 0.694844i \(0.755474\pi\)
\(374\) 9.17908 0.474639
\(375\) 7.25368 0.374578
\(376\) 3.02020 0.155755
\(377\) −3.24609 −0.167182
\(378\) 2.80696 0.144374
\(379\) 13.2768 0.681982 0.340991 0.940067i \(-0.389237\pi\)
0.340991 + 0.940067i \(0.389237\pi\)
\(380\) 0 0
\(381\) 0.00221076 0.000113261 0
\(382\) 6.44008 0.329503
\(383\) −16.2254 −0.829079 −0.414539 0.910031i \(-0.636057\pi\)
−0.414539 + 0.910031i \(0.636057\pi\)
\(384\) −0.966809 −0.0493373
\(385\) −10.2420 −0.521983
\(386\) 0.350714 0.0178509
\(387\) 21.0642 1.07075
\(388\) 9.77646 0.496325
\(389\) 3.69557 0.187373 0.0936864 0.995602i \(-0.470135\pi\)
0.0936864 + 0.995602i \(0.470135\pi\)
\(390\) −3.37030 −0.170662
\(391\) 13.7293 0.694321
\(392\) 6.67146 0.336960
\(393\) 3.94172 0.198833
\(394\) −18.3450 −0.924208
\(395\) −14.0920 −0.709047
\(396\) 10.5863 0.531983
\(397\) −38.2776 −1.92110 −0.960549 0.278111i \(-0.910292\pi\)
−0.960549 + 0.278111i \(0.910292\pi\)
\(398\) 13.4103 0.672195
\(399\) 0 0
\(400\) 7.15223 0.357612
\(401\) 7.96776 0.397891 0.198946 0.980011i \(-0.436248\pi\)
0.198946 + 0.980011i \(0.436248\pi\)
\(402\) −12.3601 −0.616463
\(403\) −6.22828 −0.310253
\(404\) 9.43674 0.469495
\(405\) 5.09384 0.253115
\(406\) 1.86060 0.0923401
\(407\) −5.46709 −0.270994
\(408\) −1.73130 −0.0857123
\(409\) −31.8345 −1.57411 −0.787057 0.616881i \(-0.788396\pi\)
−0.787057 + 0.616881i \(0.788396\pi\)
\(410\) 15.5366 0.767298
\(411\) −0.250237 −0.0123433
\(412\) −6.11332 −0.301182
\(413\) −6.96008 −0.342483
\(414\) 15.8342 0.778206
\(415\) 43.0148 2.11152
\(416\) −1.00000 −0.0490290
\(417\) −12.9731 −0.635298
\(418\) 0 0
\(419\) −7.13988 −0.348806 −0.174403 0.984674i \(-0.555800\pi\)
−0.174403 + 0.984674i \(0.555800\pi\)
\(420\) 1.93179 0.0942619
\(421\) −15.4824 −0.754564 −0.377282 0.926098i \(-0.623141\pi\)
−0.377282 + 0.926098i \(0.623141\pi\)
\(422\) 12.0269 0.585459
\(423\) 6.23755 0.303280
\(424\) 12.8340 0.623273
\(425\) 12.8078 0.621270
\(426\) −8.58057 −0.415730
\(427\) 0.824679 0.0399090
\(428\) −3.81753 −0.184527
\(429\) −4.95572 −0.239265
\(430\) 35.5544 1.71459
\(431\) −35.0740 −1.68946 −0.844728 0.535196i \(-0.820238\pi\)
−0.844728 + 0.535196i \(0.820238\pi\)
\(432\) −4.89716 −0.235615
\(433\) 5.19189 0.249506 0.124753 0.992188i \(-0.460186\pi\)
0.124753 + 0.992188i \(0.460186\pi\)
\(434\) 3.56993 0.171362
\(435\) −10.9403 −0.524548
\(436\) 1.99936 0.0957519
\(437\) 0 0
\(438\) 16.2036 0.774240
\(439\) 31.1879 1.48852 0.744258 0.667892i \(-0.232803\pi\)
0.744258 + 0.667892i \(0.232803\pi\)
\(440\) 17.8688 0.851860
\(441\) 13.7784 0.656116
\(442\) −1.79074 −0.0851769
\(443\) −3.69892 −0.175741 −0.0878706 0.996132i \(-0.528006\pi\)
−0.0878706 + 0.996132i \(0.528006\pi\)
\(444\) 1.03117 0.0489372
\(445\) −50.0287 −2.37159
\(446\) 7.55163 0.357580
\(447\) 17.5782 0.831422
\(448\) 0.573182 0.0270803
\(449\) 35.9049 1.69446 0.847228 0.531230i \(-0.178270\pi\)
0.847228 + 0.531230i \(0.178270\pi\)
\(450\) 14.7714 0.696329
\(451\) 22.8452 1.07574
\(452\) −14.9780 −0.704508
\(453\) −0.894016 −0.0420045
\(454\) 7.93349 0.372337
\(455\) 1.99811 0.0936730
\(456\) 0 0
\(457\) 4.74688 0.222050 0.111025 0.993818i \(-0.464587\pi\)
0.111025 + 0.993818i \(0.464587\pi\)
\(458\) −27.6864 −1.29370
\(459\) −8.76954 −0.409327
\(460\) 26.7266 1.24613
\(461\) 0.00970915 0.000452200 0 0.000226100 1.00000i \(-0.499928\pi\)
0.000226100 1.00000i \(0.499928\pi\)
\(462\) 2.84053 0.132153
\(463\) −14.1936 −0.659634 −0.329817 0.944045i \(-0.606987\pi\)
−0.329817 + 0.944045i \(0.606987\pi\)
\(464\) −3.24609 −0.150696
\(465\) −20.9912 −0.973442
\(466\) −7.47943 −0.346478
\(467\) −19.6259 −0.908179 −0.454090 0.890956i \(-0.650035\pi\)
−0.454090 + 0.890956i \(0.650035\pi\)
\(468\) −2.06528 −0.0954676
\(469\) 7.32777 0.338365
\(470\) 10.5284 0.485640
\(471\) 18.3220 0.844234
\(472\) 12.1429 0.558922
\(473\) 52.2795 2.40382
\(474\) 3.90829 0.179514
\(475\) 0 0
\(476\) 1.02642 0.0470459
\(477\) 26.5058 1.21362
\(478\) −14.9897 −0.685611
\(479\) 20.8569 0.952974 0.476487 0.879181i \(-0.341910\pi\)
0.476487 + 0.879181i \(0.341910\pi\)
\(480\) −3.37030 −0.153832
\(481\) 1.06657 0.0486314
\(482\) −3.63720 −0.165670
\(483\) 4.24863 0.193319
\(484\) 15.2744 0.694291
\(485\) 34.0808 1.54753
\(486\) −16.1042 −0.730501
\(487\) −26.1602 −1.18543 −0.592715 0.805412i \(-0.701944\pi\)
−0.592715 + 0.805412i \(0.701944\pi\)
\(488\) −1.43877 −0.0651303
\(489\) −8.13579 −0.367913
\(490\) 23.2568 1.05063
\(491\) −37.0128 −1.67036 −0.835182 0.549974i \(-0.814638\pi\)
−0.835182 + 0.549974i \(0.814638\pi\)
\(492\) −4.30892 −0.194261
\(493\) −5.81292 −0.261801
\(494\) 0 0
\(495\) 36.9040 1.65871
\(496\) −6.22828 −0.279658
\(497\) 5.08707 0.228186
\(498\) −11.9297 −0.534584
\(499\) 29.0035 1.29837 0.649186 0.760629i \(-0.275110\pi\)
0.649186 + 0.760629i \(0.275110\pi\)
\(500\) 7.50270 0.335531
\(501\) −23.2789 −1.04002
\(502\) −6.53728 −0.291773
\(503\) −17.7812 −0.792822 −0.396411 0.918073i \(-0.629745\pi\)
−0.396411 + 0.918073i \(0.629745\pi\)
\(504\) 1.18378 0.0527298
\(505\) 32.8965 1.46388
\(506\) 39.2991 1.74706
\(507\) 0.966809 0.0429375
\(508\) 0.00228665 0.000101454 0
\(509\) 12.4185 0.550441 0.275220 0.961381i \(-0.411249\pi\)
0.275220 + 0.961381i \(0.411249\pi\)
\(510\) −6.03534 −0.267249
\(511\) −9.60648 −0.424966
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 8.07867 0.356335
\(515\) −21.3111 −0.939078
\(516\) −9.86066 −0.434091
\(517\) 15.4811 0.680858
\(518\) −0.611339 −0.0268607
\(519\) −5.28739 −0.232091
\(520\) −3.48601 −0.152871
\(521\) −27.8556 −1.22037 −0.610187 0.792257i \(-0.708906\pi\)
−0.610187 + 0.792257i \(0.708906\pi\)
\(522\) −6.70410 −0.293430
\(523\) 18.0840 0.790760 0.395380 0.918518i \(-0.370613\pi\)
0.395380 + 0.918518i \(0.370613\pi\)
\(524\) 4.07704 0.178106
\(525\) 3.96346 0.172980
\(526\) 5.11911 0.223204
\(527\) −11.1532 −0.485843
\(528\) −4.95572 −0.215670
\(529\) 35.7803 1.55566
\(530\) 44.7393 1.94335
\(531\) 25.0785 1.08831
\(532\) 0 0
\(533\) −4.45685 −0.193047
\(534\) 13.8750 0.600429
\(535\) −13.3079 −0.575352
\(536\) −12.7844 −0.552201
\(537\) 16.6468 0.718361
\(538\) 2.44282 0.105318
\(539\) 34.1970 1.47297
\(540\) −17.0715 −0.734641
\(541\) −10.7082 −0.460380 −0.230190 0.973146i \(-0.573935\pi\)
−0.230190 + 0.973146i \(0.573935\pi\)
\(542\) −3.37593 −0.145009
\(543\) −2.42155 −0.103919
\(544\) −1.79074 −0.0767774
\(545\) 6.96977 0.298552
\(546\) −0.554157 −0.0237157
\(547\) 3.52018 0.150512 0.0752561 0.997164i \(-0.476023\pi\)
0.0752561 + 0.997164i \(0.476023\pi\)
\(548\) −0.258828 −0.0110566
\(549\) −2.97147 −0.126819
\(550\) 36.6613 1.56324
\(551\) 0 0
\(552\) −7.41236 −0.315491
\(553\) −2.31706 −0.0985316
\(554\) 0.453341 0.0192606
\(555\) 3.59466 0.152585
\(556\) −13.4185 −0.569072
\(557\) 28.3353 1.20060 0.600302 0.799773i \(-0.295047\pi\)
0.600302 + 0.799773i \(0.295047\pi\)
\(558\) −12.8631 −0.544540
\(559\) −10.1992 −0.431379
\(560\) 1.99811 0.0844357
\(561\) −8.87442 −0.374678
\(562\) −13.5681 −0.572334
\(563\) 31.8537 1.34247 0.671236 0.741243i \(-0.265764\pi\)
0.671236 + 0.741243i \(0.265764\pi\)
\(564\) −2.91995 −0.122952
\(565\) −52.2135 −2.19664
\(566\) 7.28169 0.306072
\(567\) 0.837548 0.0351737
\(568\) −8.87515 −0.372393
\(569\) −12.0558 −0.505405 −0.252703 0.967544i \(-0.581319\pi\)
−0.252703 + 0.967544i \(0.581319\pi\)
\(570\) 0 0
\(571\) −19.8282 −0.829783 −0.414892 0.909871i \(-0.636180\pi\)
−0.414892 + 0.909871i \(0.636180\pi\)
\(572\) −5.12586 −0.214323
\(573\) −6.22633 −0.260109
\(574\) 2.55458 0.106626
\(575\) 54.8350 2.28678
\(576\) −2.06528 −0.0860534
\(577\) 40.4738 1.68495 0.842474 0.538737i \(-0.181098\pi\)
0.842474 + 0.538737i \(0.181098\pi\)
\(578\) 13.7932 0.573723
\(579\) −0.339074 −0.0140914
\(580\) −11.3159 −0.469867
\(581\) 7.07265 0.293423
\(582\) −9.45197 −0.391797
\(583\) 65.7852 2.72454
\(584\) 16.7599 0.693531
\(585\) −7.19958 −0.297666
\(586\) 4.68665 0.193604
\(587\) −19.5138 −0.805421 −0.402710 0.915327i \(-0.631932\pi\)
−0.402710 + 0.915327i \(0.631932\pi\)
\(588\) −6.45003 −0.265995
\(589\) 0 0
\(590\) 42.3302 1.74271
\(591\) 17.7361 0.729566
\(592\) 1.06657 0.0438358
\(593\) −4.50096 −0.184832 −0.0924161 0.995720i \(-0.529459\pi\)
−0.0924161 + 0.995720i \(0.529459\pi\)
\(594\) −25.1021 −1.02995
\(595\) 3.57811 0.146688
\(596\) 18.1817 0.744752
\(597\) −12.9652 −0.530628
\(598\) −7.66683 −0.313520
\(599\) 5.74887 0.234892 0.117446 0.993079i \(-0.462529\pi\)
0.117446 + 0.993079i \(0.462529\pi\)
\(600\) −6.91484 −0.282297
\(601\) 21.1196 0.861487 0.430744 0.902474i \(-0.358251\pi\)
0.430744 + 0.902474i \(0.358251\pi\)
\(602\) 5.84598 0.238264
\(603\) −26.4033 −1.07523
\(604\) −0.924708 −0.0376258
\(605\) 53.2467 2.16479
\(606\) −9.12352 −0.370618
\(607\) −20.5668 −0.834782 −0.417391 0.908727i \(-0.637055\pi\)
−0.417391 + 0.908727i \(0.637055\pi\)
\(608\) 0 0
\(609\) −1.79885 −0.0728929
\(610\) −5.01558 −0.203075
\(611\) −3.02020 −0.122184
\(612\) −3.69838 −0.149498
\(613\) −31.6690 −1.27910 −0.639550 0.768749i \(-0.720879\pi\)
−0.639550 + 0.768749i \(0.720879\pi\)
\(614\) 11.8048 0.476404
\(615\) −15.0209 −0.605702
\(616\) 2.93805 0.118377
\(617\) −21.0511 −0.847486 −0.423743 0.905783i \(-0.639284\pi\)
−0.423743 + 0.905783i \(0.639284\pi\)
\(618\) 5.91041 0.237752
\(619\) −2.66809 −0.107240 −0.0536199 0.998561i \(-0.517076\pi\)
−0.0536199 + 0.998561i \(0.517076\pi\)
\(620\) −21.7118 −0.871967
\(621\) −37.5457 −1.50666
\(622\) −8.00247 −0.320870
\(623\) −8.22590 −0.329564
\(624\) 0.966809 0.0387033
\(625\) −9.60672 −0.384269
\(626\) −13.4921 −0.539252
\(627\) 0 0
\(628\) 18.9510 0.756228
\(629\) 1.90995 0.0761548
\(630\) 4.12667 0.164410
\(631\) −46.2028 −1.83930 −0.919652 0.392735i \(-0.871529\pi\)
−0.919652 + 0.392735i \(0.871529\pi\)
\(632\) 4.04246 0.160800
\(633\) −11.6277 −0.462159
\(634\) −23.0549 −0.915626
\(635\) 0.00797129 0.000316331 0
\(636\) −12.4080 −0.492009
\(637\) −6.67146 −0.264333
\(638\) −16.6390 −0.658745
\(639\) −18.3297 −0.725111
\(640\) −3.48601 −0.137796
\(641\) −1.58556 −0.0626257 −0.0313129 0.999510i \(-0.509969\pi\)
−0.0313129 + 0.999510i \(0.509969\pi\)
\(642\) 3.69082 0.145665
\(643\) −25.6417 −1.01121 −0.505605 0.862765i \(-0.668731\pi\)
−0.505605 + 0.862765i \(0.668731\pi\)
\(644\) 4.39449 0.173167
\(645\) −34.3743 −1.35349
\(646\) 0 0
\(647\) −18.3543 −0.721583 −0.360792 0.932646i \(-0.617493\pi\)
−0.360792 + 0.932646i \(0.617493\pi\)
\(648\) −1.46123 −0.0574024
\(649\) 62.2427 2.44324
\(650\) −7.15223 −0.280534
\(651\) −3.45144 −0.135273
\(652\) −8.41510 −0.329561
\(653\) 27.3920 1.07193 0.535966 0.844239i \(-0.319947\pi\)
0.535966 + 0.844239i \(0.319947\pi\)
\(654\) −1.93300 −0.0755862
\(655\) 14.2126 0.555332
\(656\) −4.45685 −0.174011
\(657\) 34.6140 1.35042
\(658\) 1.73112 0.0674861
\(659\) 26.2346 1.02196 0.510978 0.859594i \(-0.329283\pi\)
0.510978 + 0.859594i \(0.329283\pi\)
\(660\) −17.2757 −0.672455
\(661\) 14.7472 0.573598 0.286799 0.957991i \(-0.407409\pi\)
0.286799 + 0.957991i \(0.407409\pi\)
\(662\) 11.5092 0.447318
\(663\) 1.73130 0.0672383
\(664\) −12.3393 −0.478857
\(665\) 0 0
\(666\) 2.20277 0.0853555
\(667\) −24.8873 −0.963638
\(668\) −24.0781 −0.931608
\(669\) −7.30098 −0.282272
\(670\) −44.5664 −1.72175
\(671\) −7.37495 −0.284707
\(672\) −0.554157 −0.0213771
\(673\) 25.1045 0.967709 0.483854 0.875149i \(-0.339236\pi\)
0.483854 + 0.875149i \(0.339236\pi\)
\(674\) −0.595490 −0.0229374
\(675\) −35.0256 −1.34814
\(676\) 1.00000 0.0384615
\(677\) 6.25280 0.240315 0.120157 0.992755i \(-0.461660\pi\)
0.120157 + 0.992755i \(0.461660\pi\)
\(678\) 14.4809 0.556136
\(679\) 5.60369 0.215050
\(680\) −6.24253 −0.239390
\(681\) −7.67017 −0.293921
\(682\) −31.9253 −1.22248
\(683\) −36.9876 −1.41529 −0.707645 0.706568i \(-0.750242\pi\)
−0.707645 + 0.706568i \(0.750242\pi\)
\(684\) 0 0
\(685\) −0.902274 −0.0344741
\(686\) 7.83623 0.299189
\(687\) 26.7675 1.02124
\(688\) −10.1992 −0.388840
\(689\) −12.8340 −0.488936
\(690\) −25.8395 −0.983694
\(691\) 24.2271 0.921643 0.460821 0.887493i \(-0.347555\pi\)
0.460821 + 0.887493i \(0.347555\pi\)
\(692\) −5.46891 −0.207897
\(693\) 6.06789 0.230500
\(694\) 33.2481 1.26208
\(695\) −46.7770 −1.77435
\(696\) 3.13835 0.118959
\(697\) −7.98106 −0.302304
\(698\) 8.52949 0.322846
\(699\) 7.23118 0.273508
\(700\) 4.09953 0.154948
\(701\) −24.1094 −0.910598 −0.455299 0.890339i \(-0.650468\pi\)
−0.455299 + 0.890339i \(0.650468\pi\)
\(702\) 4.89716 0.184831
\(703\) 0 0
\(704\) −5.12586 −0.193188
\(705\) −10.1790 −0.383362
\(706\) −35.2040 −1.32492
\(707\) 5.40896 0.203425
\(708\) −11.7399 −0.441211
\(709\) −10.5363 −0.395700 −0.197850 0.980232i \(-0.563396\pi\)
−0.197850 + 0.980232i \(0.563396\pi\)
\(710\) −30.9388 −1.16111
\(711\) 8.34881 0.313105
\(712\) 14.3513 0.537838
\(713\) −47.7512 −1.78829
\(714\) −0.992352 −0.0371378
\(715\) −17.8688 −0.668254
\(716\) 17.2183 0.643477
\(717\) 14.4921 0.541219
\(718\) 15.3519 0.572926
\(719\) −44.7780 −1.66994 −0.834969 0.550298i \(-0.814514\pi\)
−0.834969 + 0.550298i \(0.814514\pi\)
\(720\) −7.19958 −0.268313
\(721\) −3.50404 −0.130497
\(722\) 0 0
\(723\) 3.51648 0.130779
\(724\) −2.50468 −0.0930859
\(725\) −23.2168 −0.862251
\(726\) −14.7674 −0.548071
\(727\) −21.0982 −0.782488 −0.391244 0.920287i \(-0.627955\pi\)
−0.391244 + 0.920287i \(0.627955\pi\)
\(728\) −0.573182 −0.0212435
\(729\) 11.1860 0.414296
\(730\) 58.4252 2.16241
\(731\) −18.2641 −0.675522
\(732\) 1.39102 0.0514136
\(733\) 49.0116 1.81029 0.905143 0.425108i \(-0.139764\pi\)
0.905143 + 0.425108i \(0.139764\pi\)
\(734\) −5.58516 −0.206152
\(735\) −22.4848 −0.829366
\(736\) −7.66683 −0.282603
\(737\) −65.5309 −2.41386
\(738\) −9.20464 −0.338827
\(739\) −6.60219 −0.242865 −0.121433 0.992600i \(-0.538749\pi\)
−0.121433 + 0.992600i \(0.538749\pi\)
\(740\) 3.71807 0.136679
\(741\) 0 0
\(742\) 7.35620 0.270055
\(743\) −36.8012 −1.35011 −0.675053 0.737769i \(-0.735879\pi\)
−0.675053 + 0.737769i \(0.735879\pi\)
\(744\) 6.02155 0.220761
\(745\) 63.3815 2.32212
\(746\) 27.7786 1.01705
\(747\) −25.4841 −0.932415
\(748\) −9.17908 −0.335621
\(749\) −2.18814 −0.0799528
\(750\) −7.25368 −0.264867
\(751\) 39.4647 1.44009 0.720044 0.693929i \(-0.244122\pi\)
0.720044 + 0.693929i \(0.244122\pi\)
\(752\) −3.02020 −0.110135
\(753\) 6.32030 0.230325
\(754\) 3.24609 0.118216
\(755\) −3.22354 −0.117317
\(756\) −2.80696 −0.102088
\(757\) −20.8335 −0.757207 −0.378603 0.925559i \(-0.623596\pi\)
−0.378603 + 0.925559i \(0.623596\pi\)
\(758\) −13.2768 −0.482234
\(759\) −37.9947 −1.37912
\(760\) 0 0
\(761\) −3.40954 −0.123596 −0.0617978 0.998089i \(-0.519683\pi\)
−0.0617978 + 0.998089i \(0.519683\pi\)
\(762\) −0.00221076 −8.00873e−5 0
\(763\) 1.14600 0.0414878
\(764\) −6.44008 −0.232994
\(765\) −12.8926 −0.466132
\(766\) 16.2254 0.586247
\(767\) −12.1429 −0.438455
\(768\) 0.966809 0.0348867
\(769\) 35.3080 1.27324 0.636620 0.771178i \(-0.280332\pi\)
0.636620 + 0.771178i \(0.280332\pi\)
\(770\) 10.2420 0.369098
\(771\) −7.81053 −0.281289
\(772\) −0.350714 −0.0126225
\(773\) −11.6068 −0.417466 −0.208733 0.977973i \(-0.566934\pi\)
−0.208733 + 0.977973i \(0.566934\pi\)
\(774\) −21.0642 −0.757136
\(775\) −44.5461 −1.60014
\(776\) −9.77646 −0.350954
\(777\) 0.591048 0.0212037
\(778\) −3.69557 −0.132493
\(779\) 0 0
\(780\) 3.37030 0.120676
\(781\) −45.4927 −1.62786
\(782\) −13.7293 −0.490959
\(783\) 15.8966 0.568099
\(784\) −6.67146 −0.238267
\(785\) 66.0634 2.35790
\(786\) −3.94172 −0.140597
\(787\) −2.91361 −0.103859 −0.0519295 0.998651i \(-0.516537\pi\)
−0.0519295 + 0.998651i \(0.516537\pi\)
\(788\) 18.3450 0.653514
\(789\) −4.94920 −0.176196
\(790\) 14.0920 0.501372
\(791\) −8.58514 −0.305252
\(792\) −10.5863 −0.376169
\(793\) 1.43877 0.0510924
\(794\) 38.2776 1.35842
\(795\) −43.2544 −1.53407
\(796\) −13.4103 −0.475314
\(797\) −33.1674 −1.17485 −0.587426 0.809278i \(-0.699859\pi\)
−0.587426 + 0.809278i \(0.699859\pi\)
\(798\) 0 0
\(799\) −5.40839 −0.191335
\(800\) −7.15223 −0.252870
\(801\) 29.6395 1.04726
\(802\) −7.96776 −0.281352
\(803\) 85.9090 3.03166
\(804\) 12.3601 0.435905
\(805\) 15.3192 0.539931
\(806\) 6.22828 0.219382
\(807\) −2.36174 −0.0831373
\(808\) −9.43674 −0.331983
\(809\) 21.5983 0.759357 0.379678 0.925119i \(-0.376035\pi\)
0.379678 + 0.925119i \(0.376035\pi\)
\(810\) −5.09384 −0.178979
\(811\) −31.3858 −1.10210 −0.551052 0.834471i \(-0.685773\pi\)
−0.551052 + 0.834471i \(0.685773\pi\)
\(812\) −1.86060 −0.0652943
\(813\) 3.26388 0.114469
\(814\) 5.46709 0.191621
\(815\) −29.3351 −1.02756
\(816\) 1.73130 0.0606078
\(817\) 0 0
\(818\) 31.8345 1.11307
\(819\) −1.18378 −0.0413646
\(820\) −15.5366 −0.542561
\(821\) −48.1093 −1.67903 −0.839513 0.543339i \(-0.817160\pi\)
−0.839513 + 0.543339i \(0.817160\pi\)
\(822\) 0.250237 0.00872801
\(823\) −10.4224 −0.363302 −0.181651 0.983363i \(-0.558144\pi\)
−0.181651 + 0.983363i \(0.558144\pi\)
\(824\) 6.11332 0.212968
\(825\) −35.4445 −1.23402
\(826\) 6.96008 0.242172
\(827\) 41.1559 1.43113 0.715566 0.698545i \(-0.246169\pi\)
0.715566 + 0.698545i \(0.246169\pi\)
\(828\) −15.8342 −0.550275
\(829\) 23.7120 0.823550 0.411775 0.911285i \(-0.364909\pi\)
0.411775 + 0.911285i \(0.364909\pi\)
\(830\) −43.0148 −1.49307
\(831\) −0.438294 −0.0152042
\(832\) 1.00000 0.0346688
\(833\) −11.9469 −0.413934
\(834\) 12.9731 0.449223
\(835\) −83.9362 −2.90473
\(836\) 0 0
\(837\) 30.5009 1.05426
\(838\) 7.13988 0.246643
\(839\) −26.2168 −0.905105 −0.452553 0.891738i \(-0.649487\pi\)
−0.452553 + 0.891738i \(0.649487\pi\)
\(840\) −1.93179 −0.0666532
\(841\) −18.4629 −0.636651
\(842\) 15.4824 0.533557
\(843\) 13.1177 0.451798
\(844\) −12.0269 −0.413982
\(845\) 3.48601 0.119922
\(846\) −6.23755 −0.214451
\(847\) 8.75501 0.300826
\(848\) −12.8340 −0.440721
\(849\) −7.04000 −0.241612
\(850\) −12.8078 −0.439304
\(851\) 8.17722 0.280311
\(852\) 8.58057 0.293966
\(853\) −39.6167 −1.35645 −0.678226 0.734854i \(-0.737251\pi\)
−0.678226 + 0.734854i \(0.737251\pi\)
\(854\) −0.824679 −0.0282199
\(855\) 0 0
\(856\) 3.81753 0.130480
\(857\) −7.12159 −0.243269 −0.121634 0.992575i \(-0.538814\pi\)
−0.121634 + 0.992575i \(0.538814\pi\)
\(858\) 4.95572 0.169186
\(859\) 29.1935 0.996069 0.498035 0.867157i \(-0.334055\pi\)
0.498035 + 0.867157i \(0.334055\pi\)
\(860\) −35.5544 −1.21239
\(861\) −2.46979 −0.0841703
\(862\) 35.0740 1.19463
\(863\) 49.4830 1.68442 0.842211 0.539148i \(-0.181254\pi\)
0.842211 + 0.539148i \(0.181254\pi\)
\(864\) 4.89716 0.166605
\(865\) −19.0647 −0.648218
\(866\) −5.19189 −0.176428
\(867\) −13.3354 −0.452895
\(868\) −3.56993 −0.121171
\(869\) 20.7211 0.702914
\(870\) 10.9403 0.370911
\(871\) 12.7844 0.433182
\(872\) −1.99936 −0.0677068
\(873\) −20.1911 −0.683366
\(874\) 0 0
\(875\) 4.30041 0.145380
\(876\) −16.2036 −0.547471
\(877\) 43.8562 1.48092 0.740459 0.672102i \(-0.234608\pi\)
0.740459 + 0.672102i \(0.234608\pi\)
\(878\) −31.1879 −1.05254
\(879\) −4.53110 −0.152830
\(880\) −17.8688 −0.602356
\(881\) 28.3826 0.956236 0.478118 0.878296i \(-0.341319\pi\)
0.478118 + 0.878296i \(0.341319\pi\)
\(882\) −13.7784 −0.463944
\(883\) 7.24457 0.243799 0.121900 0.992542i \(-0.461101\pi\)
0.121900 + 0.992542i \(0.461101\pi\)
\(884\) 1.79074 0.0602292
\(885\) −40.9252 −1.37569
\(886\) 3.69892 0.124268
\(887\) −17.6920 −0.594038 −0.297019 0.954872i \(-0.595993\pi\)
−0.297019 + 0.954872i \(0.595993\pi\)
\(888\) −1.03117 −0.0346038
\(889\) 0.00131067 4.39584e−5 0
\(890\) 50.0287 1.67697
\(891\) −7.49004 −0.250926
\(892\) −7.55163 −0.252847
\(893\) 0 0
\(894\) −17.5782 −0.587904
\(895\) 60.0229 2.00635
\(896\) −0.573182 −0.0191487
\(897\) 7.41236 0.247491
\(898\) −35.9049 −1.19816
\(899\) 20.2176 0.674294
\(900\) −14.7714 −0.492379
\(901\) −22.9823 −0.765653
\(902\) −22.8452 −0.760661
\(903\) −5.65195 −0.188085
\(904\) 14.9780 0.498162
\(905\) −8.73134 −0.290240
\(906\) 0.894016 0.0297017
\(907\) 19.8984 0.660715 0.330358 0.943856i \(-0.392831\pi\)
0.330358 + 0.943856i \(0.392831\pi\)
\(908\) −7.93349 −0.263282
\(909\) −19.4895 −0.646426
\(910\) −1.99811 −0.0662368
\(911\) 25.8071 0.855026 0.427513 0.904009i \(-0.359390\pi\)
0.427513 + 0.904009i \(0.359390\pi\)
\(912\) 0 0
\(913\) −63.2495 −2.09325
\(914\) −4.74688 −0.157013
\(915\) 4.84910 0.160306
\(916\) 27.6864 0.914786
\(917\) 2.33689 0.0771708
\(918\) 8.76954 0.289438
\(919\) −9.29086 −0.306477 −0.153239 0.988189i \(-0.548970\pi\)
−0.153239 + 0.988189i \(0.548970\pi\)
\(920\) −26.7266 −0.881150
\(921\) −11.4130 −0.376071
\(922\) −0.00970915 −0.000319754 0
\(923\) 8.87515 0.292129
\(924\) −2.84053 −0.0934465
\(925\) 7.62836 0.250819
\(926\) 14.1936 0.466432
\(927\) 12.6257 0.414683
\(928\) 3.24609 0.106558
\(929\) 31.0222 1.01781 0.508903 0.860824i \(-0.330051\pi\)
0.508903 + 0.860824i \(0.330051\pi\)
\(930\) 20.9912 0.688328
\(931\) 0 0
\(932\) 7.47943 0.244997
\(933\) 7.73686 0.253293
\(934\) 19.6259 0.642180
\(935\) −31.9983 −1.04646
\(936\) 2.06528 0.0675058
\(937\) 17.7981 0.581440 0.290720 0.956808i \(-0.406105\pi\)
0.290720 + 0.956808i \(0.406105\pi\)
\(938\) −7.32777 −0.239260
\(939\) 13.0443 0.425683
\(940\) −10.5284 −0.343399
\(941\) 56.4127 1.83900 0.919502 0.393086i \(-0.128593\pi\)
0.919502 + 0.393086i \(0.128593\pi\)
\(942\) −18.3220 −0.596963
\(943\) −34.1699 −1.11272
\(944\) −12.1429 −0.395218
\(945\) −9.78508 −0.318309
\(946\) −52.2795 −1.69975
\(947\) 4.17295 0.135603 0.0678013 0.997699i \(-0.478402\pi\)
0.0678013 + 0.997699i \(0.478402\pi\)
\(948\) −3.90829 −0.126935
\(949\) −16.7599 −0.544050
\(950\) 0 0
\(951\) 22.2896 0.722791
\(952\) −1.02642 −0.0332665
\(953\) 16.2256 0.525598 0.262799 0.964851i \(-0.415354\pi\)
0.262799 + 0.964851i \(0.415354\pi\)
\(954\) −26.5058 −0.858156
\(955\) −22.4502 −0.726470
\(956\) 14.9897 0.484800
\(957\) 16.0867 0.520011
\(958\) −20.8569 −0.673855
\(959\) −0.148355 −0.00479064
\(960\) 3.37030 0.108776
\(961\) 7.79145 0.251337
\(962\) −1.06657 −0.0343876
\(963\) 7.88427 0.254067
\(964\) 3.63720 0.117146
\(965\) −1.22259 −0.0393566
\(966\) −4.24863 −0.136697
\(967\) 8.33229 0.267948 0.133974 0.990985i \(-0.457226\pi\)
0.133974 + 0.990985i \(0.457226\pi\)
\(968\) −15.2744 −0.490938
\(969\) 0 0
\(970\) −34.0808 −1.09427
\(971\) 31.1940 1.00106 0.500532 0.865718i \(-0.333138\pi\)
0.500532 + 0.865718i \(0.333138\pi\)
\(972\) 16.1042 0.516542
\(973\) −7.69125 −0.246570
\(974\) 26.1602 0.838226
\(975\) 6.91484 0.221452
\(976\) 1.43877 0.0460540
\(977\) 44.3550 1.41904 0.709520 0.704685i \(-0.248912\pi\)
0.709520 + 0.704685i \(0.248912\pi\)
\(978\) 8.13579 0.260154
\(979\) 73.5627 2.35108
\(980\) −23.2568 −0.742910
\(981\) −4.12924 −0.131836
\(982\) 37.0128 1.18113
\(983\) 18.3796 0.586218 0.293109 0.956079i \(-0.405310\pi\)
0.293109 + 0.956079i \(0.405310\pi\)
\(984\) 4.30892 0.137363
\(985\) 63.9508 2.03764
\(986\) 5.81292 0.185121
\(987\) −1.67366 −0.0532733
\(988\) 0 0
\(989\) −78.1954 −2.48647
\(990\) −36.9040 −1.17289
\(991\) 22.7970 0.724172 0.362086 0.932145i \(-0.382065\pi\)
0.362086 + 0.932145i \(0.382065\pi\)
\(992\) 6.22828 0.197748
\(993\) −11.1272 −0.353111
\(994\) −5.08707 −0.161352
\(995\) −46.7482 −1.48202
\(996\) 11.9297 0.378008
\(997\) 35.0642 1.11049 0.555247 0.831685i \(-0.312624\pi\)
0.555247 + 0.831685i \(0.312624\pi\)
\(998\) −29.0035 −0.918088
\(999\) −5.22317 −0.165254
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9386.2.a.bw.1.10 15
19.14 odd 18 494.2.x.d.443.4 yes 30
19.15 odd 18 494.2.x.d.339.4 30
19.18 odd 2 9386.2.a.bz.1.6 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
494.2.x.d.339.4 30 19.15 odd 18
494.2.x.d.443.4 yes 30 19.14 odd 18
9386.2.a.bw.1.10 15 1.1 even 1 trivial
9386.2.a.bz.1.6 15 19.18 odd 2