Properties

Label 9386.2.a.bp.1.6
Level $9386$
Weight $2$
Character 9386.1
Self dual yes
Analytic conductor $74.948$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9386,2,Mod(1,9386)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9386.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9386, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9386 = 2 \cdot 13 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9386.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,9,-3,9,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.9475873372\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 3x^{8} - 12x^{7} + 34x^{6} + 51x^{5} - 123x^{4} - 81x^{3} + 138x^{2} + 15x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 494)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-0.147896\) of defining polynomial
Character \(\chi\) \(=\) 9386.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +0.147896 q^{3} +1.00000 q^{4} +1.20058 q^{5} +0.147896 q^{6} -3.26215 q^{7} +1.00000 q^{8} -2.97813 q^{9} +1.20058 q^{10} +1.44577 q^{11} +0.147896 q^{12} +1.00000 q^{13} -3.26215 q^{14} +0.177560 q^{15} +1.00000 q^{16} +7.42399 q^{17} -2.97813 q^{18} +1.20058 q^{20} -0.482457 q^{21} +1.44577 q^{22} -7.20751 q^{23} +0.147896 q^{24} -3.55862 q^{25} +1.00000 q^{26} -0.884138 q^{27} -3.26215 q^{28} -5.59186 q^{29} +0.177560 q^{30} +1.07736 q^{31} +1.00000 q^{32} +0.213822 q^{33} +7.42399 q^{34} -3.91646 q^{35} -2.97813 q^{36} +1.48402 q^{37} +0.147896 q^{39} +1.20058 q^{40} +5.67671 q^{41} -0.482457 q^{42} +0.300246 q^{43} +1.44577 q^{44} -3.57547 q^{45} -7.20751 q^{46} +1.48371 q^{47} +0.147896 q^{48} +3.64162 q^{49} -3.55862 q^{50} +1.09797 q^{51} +1.00000 q^{52} -5.02488 q^{53} -0.884138 q^{54} +1.73575 q^{55} -3.26215 q^{56} -5.59186 q^{58} -9.80311 q^{59} +0.177560 q^{60} -10.7846 q^{61} +1.07736 q^{62} +9.71510 q^{63} +1.00000 q^{64} +1.20058 q^{65} +0.213822 q^{66} -2.68576 q^{67} +7.42399 q^{68} -1.06596 q^{69} -3.91646 q^{70} +1.23491 q^{71} -2.97813 q^{72} -14.9720 q^{73} +1.48402 q^{74} -0.526303 q^{75} -4.71631 q^{77} +0.147896 q^{78} -7.31528 q^{79} +1.20058 q^{80} +8.80362 q^{81} +5.67671 q^{82} +9.69833 q^{83} -0.482457 q^{84} +8.91306 q^{85} +0.300246 q^{86} -0.827011 q^{87} +1.44577 q^{88} -13.6896 q^{89} -3.57547 q^{90} -3.26215 q^{91} -7.20751 q^{92} +0.159336 q^{93} +1.48371 q^{94} +0.147896 q^{96} +7.86960 q^{97} +3.64162 q^{98} -4.30568 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 9 q^{2} - 3 q^{3} + 9 q^{4} - 3 q^{5} - 3 q^{6} - 6 q^{7} + 9 q^{8} + 6 q^{9} - 3 q^{10} - 6 q^{11} - 3 q^{12} + 9 q^{13} - 6 q^{14} - 3 q^{15} + 9 q^{16} + 6 q^{18} - 3 q^{20} - 9 q^{21} - 6 q^{22}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.147896 0.0853875 0.0426938 0.999088i \(-0.486406\pi\)
0.0426938 + 0.999088i \(0.486406\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.20058 0.536914 0.268457 0.963292i \(-0.413486\pi\)
0.268457 + 0.963292i \(0.413486\pi\)
\(6\) 0.147896 0.0603781
\(7\) −3.26215 −1.23298 −0.616488 0.787364i \(-0.711445\pi\)
−0.616488 + 0.787364i \(0.711445\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.97813 −0.992709
\(10\) 1.20058 0.379656
\(11\) 1.44577 0.435915 0.217958 0.975958i \(-0.430061\pi\)
0.217958 + 0.975958i \(0.430061\pi\)
\(12\) 0.147896 0.0426938
\(13\) 1.00000 0.277350
\(14\) −3.26215 −0.871846
\(15\) 0.177560 0.0458458
\(16\) 1.00000 0.250000
\(17\) 7.42399 1.80058 0.900291 0.435289i \(-0.143354\pi\)
0.900291 + 0.435289i \(0.143354\pi\)
\(18\) −2.97813 −0.701951
\(19\) 0 0
\(20\) 1.20058 0.268457
\(21\) −0.482457 −0.105281
\(22\) 1.44577 0.308239
\(23\) −7.20751 −1.50287 −0.751435 0.659807i \(-0.770638\pi\)
−0.751435 + 0.659807i \(0.770638\pi\)
\(24\) 0.147896 0.0301890
\(25\) −3.55862 −0.711723
\(26\) 1.00000 0.196116
\(27\) −0.884138 −0.170152
\(28\) −3.26215 −0.616488
\(29\) −5.59186 −1.03838 −0.519191 0.854658i \(-0.673767\pi\)
−0.519191 + 0.854658i \(0.673767\pi\)
\(30\) 0.177560 0.0324179
\(31\) 1.07736 0.193499 0.0967496 0.995309i \(-0.469155\pi\)
0.0967496 + 0.995309i \(0.469155\pi\)
\(32\) 1.00000 0.176777
\(33\) 0.213822 0.0372217
\(34\) 7.42399 1.27320
\(35\) −3.91646 −0.662003
\(36\) −2.97813 −0.496354
\(37\) 1.48402 0.243971 0.121986 0.992532i \(-0.461074\pi\)
0.121986 + 0.992532i \(0.461074\pi\)
\(38\) 0 0
\(39\) 0.147896 0.0236822
\(40\) 1.20058 0.189828
\(41\) 5.67671 0.886554 0.443277 0.896385i \(-0.353816\pi\)
0.443277 + 0.896385i \(0.353816\pi\)
\(42\) −0.482457 −0.0744448
\(43\) 0.300246 0.0457871 0.0228935 0.999738i \(-0.492712\pi\)
0.0228935 + 0.999738i \(0.492712\pi\)
\(44\) 1.44577 0.217958
\(45\) −3.57547 −0.533000
\(46\) −7.20751 −1.06269
\(47\) 1.48371 0.216421 0.108210 0.994128i \(-0.465488\pi\)
0.108210 + 0.994128i \(0.465488\pi\)
\(48\) 0.147896 0.0213469
\(49\) 3.64162 0.520232
\(50\) −3.55862 −0.503264
\(51\) 1.09797 0.153747
\(52\) 1.00000 0.138675
\(53\) −5.02488 −0.690220 −0.345110 0.938562i \(-0.612158\pi\)
−0.345110 + 0.938562i \(0.612158\pi\)
\(54\) −0.884138 −0.120316
\(55\) 1.73575 0.234049
\(56\) −3.26215 −0.435923
\(57\) 0 0
\(58\) −5.59186 −0.734247
\(59\) −9.80311 −1.27626 −0.638128 0.769930i \(-0.720291\pi\)
−0.638128 + 0.769930i \(0.720291\pi\)
\(60\) 0.177560 0.0229229
\(61\) −10.7846 −1.38083 −0.690413 0.723416i \(-0.742571\pi\)
−0.690413 + 0.723416i \(0.742571\pi\)
\(62\) 1.07736 0.136825
\(63\) 9.71510 1.22399
\(64\) 1.00000 0.125000
\(65\) 1.20058 0.148913
\(66\) 0.213822 0.0263197
\(67\) −2.68576 −0.328118 −0.164059 0.986451i \(-0.552459\pi\)
−0.164059 + 0.986451i \(0.552459\pi\)
\(68\) 7.42399 0.900291
\(69\) −1.06596 −0.128326
\(70\) −3.91646 −0.468107
\(71\) 1.23491 0.146557 0.0732786 0.997312i \(-0.476654\pi\)
0.0732786 + 0.997312i \(0.476654\pi\)
\(72\) −2.97813 −0.350976
\(73\) −14.9720 −1.75234 −0.876169 0.482005i \(-0.839909\pi\)
−0.876169 + 0.482005i \(0.839909\pi\)
\(74\) 1.48402 0.172514
\(75\) −0.526303 −0.0607723
\(76\) 0 0
\(77\) −4.71631 −0.537473
\(78\) 0.147896 0.0167459
\(79\) −7.31528 −0.823034 −0.411517 0.911402i \(-0.635001\pi\)
−0.411517 + 0.911402i \(0.635001\pi\)
\(80\) 1.20058 0.134229
\(81\) 8.80362 0.978180
\(82\) 5.67671 0.626888
\(83\) 9.69833 1.06453 0.532265 0.846578i \(-0.321341\pi\)
0.532265 + 0.846578i \(0.321341\pi\)
\(84\) −0.482457 −0.0526404
\(85\) 8.91306 0.966758
\(86\) 0.300246 0.0323764
\(87\) −0.827011 −0.0886649
\(88\) 1.44577 0.154119
\(89\) −13.6896 −1.45110 −0.725549 0.688171i \(-0.758414\pi\)
−0.725549 + 0.688171i \(0.758414\pi\)
\(90\) −3.57547 −0.376888
\(91\) −3.26215 −0.341966
\(92\) −7.20751 −0.751435
\(93\) 0.159336 0.0165224
\(94\) 1.48371 0.153033
\(95\) 0 0
\(96\) 0.147896 0.0150945
\(97\) 7.86960 0.799037 0.399518 0.916725i \(-0.369177\pi\)
0.399518 + 0.916725i \(0.369177\pi\)
\(98\) 3.64162 0.367859
\(99\) −4.30568 −0.432737
\(100\) −3.55862 −0.355862
\(101\) −5.74493 −0.571642 −0.285821 0.958283i \(-0.592266\pi\)
−0.285821 + 0.958283i \(0.592266\pi\)
\(102\) 1.09797 0.108716
\(103\) 12.1340 1.19560 0.597801 0.801645i \(-0.296041\pi\)
0.597801 + 0.801645i \(0.296041\pi\)
\(104\) 1.00000 0.0980581
\(105\) −0.579227 −0.0565268
\(106\) −5.02488 −0.488059
\(107\) 15.7633 1.52389 0.761947 0.647640i \(-0.224244\pi\)
0.761947 + 0.647640i \(0.224244\pi\)
\(108\) −0.884138 −0.0850762
\(109\) 4.25725 0.407771 0.203885 0.978995i \(-0.434643\pi\)
0.203885 + 0.978995i \(0.434643\pi\)
\(110\) 1.73575 0.165498
\(111\) 0.219480 0.0208321
\(112\) −3.26215 −0.308244
\(113\) 1.07121 0.100771 0.0503853 0.998730i \(-0.483955\pi\)
0.0503853 + 0.998730i \(0.483955\pi\)
\(114\) 0 0
\(115\) −8.65317 −0.806913
\(116\) −5.59186 −0.519191
\(117\) −2.97813 −0.275328
\(118\) −9.80311 −0.902450
\(119\) −24.2182 −2.22007
\(120\) 0.177560 0.0162089
\(121\) −8.90976 −0.809978
\(122\) −10.7846 −0.976391
\(123\) 0.839560 0.0757006
\(124\) 1.07736 0.0967496
\(125\) −10.2753 −0.919048
\(126\) 9.71510 0.865490
\(127\) 1.84226 0.163474 0.0817371 0.996654i \(-0.473953\pi\)
0.0817371 + 0.996654i \(0.473953\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0.0444050 0.00390965
\(130\) 1.20058 0.105298
\(131\) 15.1808 1.32635 0.663175 0.748465i \(-0.269209\pi\)
0.663175 + 0.748465i \(0.269209\pi\)
\(132\) 0.213822 0.0186109
\(133\) 0 0
\(134\) −2.68576 −0.232015
\(135\) −1.06148 −0.0913573
\(136\) 7.42399 0.636602
\(137\) −6.98685 −0.596927 −0.298463 0.954421i \(-0.596474\pi\)
−0.298463 + 0.954421i \(0.596474\pi\)
\(138\) −1.06596 −0.0907405
\(139\) 13.5030 1.14531 0.572653 0.819798i \(-0.305914\pi\)
0.572653 + 0.819798i \(0.305914\pi\)
\(140\) −3.91646 −0.331001
\(141\) 0.219434 0.0184797
\(142\) 1.23491 0.103632
\(143\) 1.44577 0.120901
\(144\) −2.97813 −0.248177
\(145\) −6.71346 −0.557522
\(146\) −14.9720 −1.23909
\(147\) 0.538580 0.0444213
\(148\) 1.48402 0.121986
\(149\) 5.89805 0.483187 0.241594 0.970378i \(-0.422330\pi\)
0.241594 + 0.970378i \(0.422330\pi\)
\(150\) −0.526303 −0.0429725
\(151\) −10.3170 −0.839586 −0.419793 0.907620i \(-0.637897\pi\)
−0.419793 + 0.907620i \(0.637897\pi\)
\(152\) 0 0
\(153\) −22.1096 −1.78745
\(154\) −4.71631 −0.380051
\(155\) 1.29345 0.103892
\(156\) 0.147896 0.0118411
\(157\) −13.7730 −1.09920 −0.549602 0.835426i \(-0.685221\pi\)
−0.549602 + 0.835426i \(0.685221\pi\)
\(158\) −7.31528 −0.581973
\(159\) −0.743157 −0.0589362
\(160\) 1.20058 0.0949139
\(161\) 23.5120 1.85300
\(162\) 8.80362 0.691678
\(163\) −1.17427 −0.0919756 −0.0459878 0.998942i \(-0.514644\pi\)
−0.0459878 + 0.998942i \(0.514644\pi\)
\(164\) 5.67671 0.443277
\(165\) 0.256710 0.0199849
\(166\) 9.69833 0.752737
\(167\) −25.0106 −1.93538 −0.967689 0.252147i \(-0.918863\pi\)
−0.967689 + 0.252147i \(0.918863\pi\)
\(168\) −0.482457 −0.0372224
\(169\) 1.00000 0.0769231
\(170\) 8.91306 0.683601
\(171\) 0 0
\(172\) 0.300246 0.0228935
\(173\) −9.21409 −0.700534 −0.350267 0.936650i \(-0.613909\pi\)
−0.350267 + 0.936650i \(0.613909\pi\)
\(174\) −0.827011 −0.0626956
\(175\) 11.6087 0.877538
\(176\) 1.44577 0.108979
\(177\) −1.44984 −0.108976
\(178\) −13.6896 −1.02608
\(179\) −12.9958 −0.971355 −0.485678 0.874138i \(-0.661427\pi\)
−0.485678 + 0.874138i \(0.661427\pi\)
\(180\) −3.57547 −0.266500
\(181\) −11.2678 −0.837532 −0.418766 0.908094i \(-0.637537\pi\)
−0.418766 + 0.908094i \(0.637537\pi\)
\(182\) −3.26215 −0.241807
\(183\) −1.59499 −0.117905
\(184\) −7.20751 −0.531345
\(185\) 1.78168 0.130992
\(186\) 0.159336 0.0116831
\(187\) 10.7334 0.784900
\(188\) 1.48371 0.108210
\(189\) 2.88419 0.209794
\(190\) 0 0
\(191\) 16.8655 1.22034 0.610171 0.792270i \(-0.291101\pi\)
0.610171 + 0.792270i \(0.291101\pi\)
\(192\) 0.147896 0.0106734
\(193\) −16.2332 −1.16849 −0.584244 0.811578i \(-0.698609\pi\)
−0.584244 + 0.811578i \(0.698609\pi\)
\(194\) 7.86960 0.565004
\(195\) 0.177560 0.0127153
\(196\) 3.64162 0.260116
\(197\) −18.2105 −1.29745 −0.648724 0.761024i \(-0.724697\pi\)
−0.648724 + 0.761024i \(0.724697\pi\)
\(198\) −4.30568 −0.305991
\(199\) −14.4442 −1.02392 −0.511961 0.859008i \(-0.671081\pi\)
−0.511961 + 0.859008i \(0.671081\pi\)
\(200\) −3.55862 −0.251632
\(201\) −0.397212 −0.0280172
\(202\) −5.74493 −0.404212
\(203\) 18.2415 1.28030
\(204\) 1.09797 0.0768736
\(205\) 6.81533 0.476003
\(206\) 12.1340 0.845418
\(207\) 21.4649 1.49191
\(208\) 1.00000 0.0693375
\(209\) 0 0
\(210\) −0.579227 −0.0399705
\(211\) 15.9741 1.09970 0.549851 0.835263i \(-0.314685\pi\)
0.549851 + 0.835263i \(0.314685\pi\)
\(212\) −5.02488 −0.345110
\(213\) 0.182638 0.0125142
\(214\) 15.7633 1.07756
\(215\) 0.360468 0.0245837
\(216\) −0.884138 −0.0601580
\(217\) −3.51450 −0.238580
\(218\) 4.25725 0.288337
\(219\) −2.21429 −0.149628
\(220\) 1.73575 0.117024
\(221\) 7.42399 0.499391
\(222\) 0.219480 0.0147305
\(223\) −19.5067 −1.30627 −0.653133 0.757243i \(-0.726546\pi\)
−0.653133 + 0.757243i \(0.726546\pi\)
\(224\) −3.26215 −0.217962
\(225\) 10.5980 0.706534
\(226\) 1.07121 0.0712556
\(227\) −12.0844 −0.802067 −0.401034 0.916063i \(-0.631349\pi\)
−0.401034 + 0.916063i \(0.631349\pi\)
\(228\) 0 0
\(229\) 5.62571 0.371757 0.185879 0.982573i \(-0.440487\pi\)
0.185879 + 0.982573i \(0.440487\pi\)
\(230\) −8.65317 −0.570573
\(231\) −0.697521 −0.0458935
\(232\) −5.59186 −0.367124
\(233\) −14.3449 −0.939767 −0.469883 0.882729i \(-0.655704\pi\)
−0.469883 + 0.882729i \(0.655704\pi\)
\(234\) −2.97813 −0.194686
\(235\) 1.78130 0.116200
\(236\) −9.80311 −0.638128
\(237\) −1.08190 −0.0702768
\(238\) −24.2182 −1.56983
\(239\) −15.5343 −1.00483 −0.502416 0.864626i \(-0.667555\pi\)
−0.502416 + 0.864626i \(0.667555\pi\)
\(240\) 0.177560 0.0114614
\(241\) 13.9211 0.896739 0.448370 0.893848i \(-0.352005\pi\)
0.448370 + 0.893848i \(0.352005\pi\)
\(242\) −8.90976 −0.572741
\(243\) 3.95443 0.253677
\(244\) −10.7846 −0.690413
\(245\) 4.37205 0.279320
\(246\) 0.839560 0.0535284
\(247\) 0 0
\(248\) 1.07736 0.0684123
\(249\) 1.43434 0.0908976
\(250\) −10.2753 −0.649865
\(251\) −3.84319 −0.242580 −0.121290 0.992617i \(-0.538703\pi\)
−0.121290 + 0.992617i \(0.538703\pi\)
\(252\) 9.71510 0.611994
\(253\) −10.4204 −0.655124
\(254\) 1.84226 0.115594
\(255\) 1.31820 0.0825490
\(256\) 1.00000 0.0625000
\(257\) −28.4562 −1.77505 −0.887525 0.460760i \(-0.847577\pi\)
−0.887525 + 0.460760i \(0.847577\pi\)
\(258\) 0.0444050 0.00276454
\(259\) −4.84109 −0.300811
\(260\) 1.20058 0.0744566
\(261\) 16.6533 1.03081
\(262\) 15.1808 0.937871
\(263\) 17.2621 1.06442 0.532212 0.846611i \(-0.321361\pi\)
0.532212 + 0.846611i \(0.321361\pi\)
\(264\) 0.213822 0.0131599
\(265\) −6.03275 −0.370589
\(266\) 0 0
\(267\) −2.02463 −0.123906
\(268\) −2.68576 −0.164059
\(269\) 12.7732 0.778797 0.389399 0.921069i \(-0.372683\pi\)
0.389399 + 0.921069i \(0.372683\pi\)
\(270\) −1.06148 −0.0645993
\(271\) 5.62977 0.341984 0.170992 0.985272i \(-0.445303\pi\)
0.170992 + 0.985272i \(0.445303\pi\)
\(272\) 7.42399 0.450145
\(273\) −0.482457 −0.0291996
\(274\) −6.98685 −0.422091
\(275\) −5.14493 −0.310251
\(276\) −1.06596 −0.0641632
\(277\) −20.9621 −1.25949 −0.629746 0.776801i \(-0.716841\pi\)
−0.629746 + 0.776801i \(0.716841\pi\)
\(278\) 13.5030 0.809853
\(279\) −3.20851 −0.192088
\(280\) −3.91646 −0.234053
\(281\) −8.90538 −0.531250 −0.265625 0.964076i \(-0.585578\pi\)
−0.265625 + 0.964076i \(0.585578\pi\)
\(282\) 0.219434 0.0130671
\(283\) 19.9127 1.18369 0.591844 0.806052i \(-0.298400\pi\)
0.591844 + 0.806052i \(0.298400\pi\)
\(284\) 1.23491 0.0732786
\(285\) 0 0
\(286\) 1.44577 0.0854900
\(287\) −18.5183 −1.09310
\(288\) −2.97813 −0.175488
\(289\) 38.1156 2.24209
\(290\) −6.71346 −0.394228
\(291\) 1.16388 0.0682278
\(292\) −14.9720 −0.876169
\(293\) −19.2008 −1.12172 −0.560860 0.827911i \(-0.689529\pi\)
−0.560860 + 0.827911i \(0.689529\pi\)
\(294\) 0.538580 0.0314106
\(295\) −11.7694 −0.685240
\(296\) 1.48402 0.0862568
\(297\) −1.27826 −0.0741720
\(298\) 5.89805 0.341665
\(299\) −7.20751 −0.416821
\(300\) −0.526303 −0.0303861
\(301\) −0.979448 −0.0564544
\(302\) −10.3170 −0.593677
\(303\) −0.849649 −0.0488111
\(304\) 0 0
\(305\) −12.9477 −0.741385
\(306\) −22.1096 −1.26392
\(307\) −16.5882 −0.946737 −0.473368 0.880865i \(-0.656962\pi\)
−0.473368 + 0.880865i \(0.656962\pi\)
\(308\) −4.71631 −0.268737
\(309\) 1.79457 0.102089
\(310\) 1.29345 0.0734630
\(311\) 15.5297 0.880607 0.440304 0.897849i \(-0.354871\pi\)
0.440304 + 0.897849i \(0.354871\pi\)
\(312\) 0.147896 0.00837293
\(313\) −17.3696 −0.981788 −0.490894 0.871219i \(-0.663330\pi\)
−0.490894 + 0.871219i \(0.663330\pi\)
\(314\) −13.7730 −0.777255
\(315\) 11.6637 0.657176
\(316\) −7.31528 −0.411517
\(317\) −30.8243 −1.73126 −0.865632 0.500681i \(-0.833083\pi\)
−0.865632 + 0.500681i \(0.833083\pi\)
\(318\) −0.743157 −0.0416742
\(319\) −8.08453 −0.452647
\(320\) 1.20058 0.0671143
\(321\) 2.33132 0.130121
\(322\) 23.5120 1.31027
\(323\) 0 0
\(324\) 8.80362 0.489090
\(325\) −3.55862 −0.197396
\(326\) −1.17427 −0.0650366
\(327\) 0.629628 0.0348185
\(328\) 5.67671 0.313444
\(329\) −4.84008 −0.266842
\(330\) 0.256710 0.0141314
\(331\) −27.3801 −1.50495 −0.752475 0.658621i \(-0.771140\pi\)
−0.752475 + 0.658621i \(0.771140\pi\)
\(332\) 9.69833 0.532265
\(333\) −4.41959 −0.242192
\(334\) −25.0106 −1.36852
\(335\) −3.22446 −0.176171
\(336\) −0.482457 −0.0263202
\(337\) −35.9229 −1.95685 −0.978423 0.206610i \(-0.933757\pi\)
−0.978423 + 0.206610i \(0.933757\pi\)
\(338\) 1.00000 0.0543928
\(339\) 0.158427 0.00860456
\(340\) 8.91306 0.483379
\(341\) 1.55761 0.0843492
\(342\) 0 0
\(343\) 10.9555 0.591543
\(344\) 0.300246 0.0161882
\(345\) −1.27977 −0.0689003
\(346\) −9.21409 −0.495353
\(347\) −20.7791 −1.11548 −0.557741 0.830015i \(-0.688332\pi\)
−0.557741 + 0.830015i \(0.688332\pi\)
\(348\) −0.827011 −0.0443324
\(349\) −27.2581 −1.45909 −0.729546 0.683931i \(-0.760269\pi\)
−0.729546 + 0.683931i \(0.760269\pi\)
\(350\) 11.6087 0.620513
\(351\) −0.884138 −0.0471918
\(352\) 1.44577 0.0770596
\(353\) 23.4930 1.25040 0.625202 0.780463i \(-0.285017\pi\)
0.625202 + 0.780463i \(0.285017\pi\)
\(354\) −1.44984 −0.0770579
\(355\) 1.48261 0.0786886
\(356\) −13.6896 −0.725549
\(357\) −3.58176 −0.189567
\(358\) −12.9958 −0.686852
\(359\) 13.2622 0.699954 0.349977 0.936758i \(-0.386189\pi\)
0.349977 + 0.936758i \(0.386189\pi\)
\(360\) −3.57547 −0.188444
\(361\) 0 0
\(362\) −11.2678 −0.592225
\(363\) −1.31771 −0.0691620
\(364\) −3.26215 −0.170983
\(365\) −17.9750 −0.940855
\(366\) −1.59499 −0.0833716
\(367\) 34.3445 1.79277 0.896385 0.443276i \(-0.146184\pi\)
0.896385 + 0.443276i \(0.146184\pi\)
\(368\) −7.20751 −0.375718
\(369\) −16.9060 −0.880090
\(370\) 1.78168 0.0926250
\(371\) 16.3919 0.851026
\(372\) 0.159336 0.00826120
\(373\) 19.8835 1.02953 0.514763 0.857332i \(-0.327880\pi\)
0.514763 + 0.857332i \(0.327880\pi\)
\(374\) 10.7334 0.555008
\(375\) −1.51967 −0.0784753
\(376\) 1.48371 0.0765164
\(377\) −5.59186 −0.287995
\(378\) 2.88419 0.148347
\(379\) 3.33959 0.171543 0.0857717 0.996315i \(-0.472664\pi\)
0.0857717 + 0.996315i \(0.472664\pi\)
\(380\) 0 0
\(381\) 0.272462 0.0139587
\(382\) 16.8655 0.862912
\(383\) −23.5276 −1.20221 −0.601103 0.799171i \(-0.705272\pi\)
−0.601103 + 0.799171i \(0.705272\pi\)
\(384\) 0.147896 0.00754726
\(385\) −5.66229 −0.288577
\(386\) −16.2332 −0.826246
\(387\) −0.894171 −0.0454533
\(388\) 7.86960 0.399518
\(389\) 25.2558 1.28052 0.640260 0.768159i \(-0.278827\pi\)
0.640260 + 0.768159i \(0.278827\pi\)
\(390\) 0.177560 0.00899109
\(391\) −53.5085 −2.70604
\(392\) 3.64162 0.183930
\(393\) 2.24517 0.113254
\(394\) −18.2105 −0.917434
\(395\) −8.78256 −0.441898
\(396\) −4.30568 −0.216368
\(397\) −12.7191 −0.638352 −0.319176 0.947695i \(-0.603406\pi\)
−0.319176 + 0.947695i \(0.603406\pi\)
\(398\) −14.4442 −0.724023
\(399\) 0 0
\(400\) −3.55862 −0.177931
\(401\) −5.49595 −0.274455 −0.137227 0.990540i \(-0.543819\pi\)
−0.137227 + 0.990540i \(0.543819\pi\)
\(402\) −0.397212 −0.0198112
\(403\) 1.07736 0.0536670
\(404\) −5.74493 −0.285821
\(405\) 10.5694 0.525199
\(406\) 18.2415 0.905310
\(407\) 2.14554 0.106351
\(408\) 1.09797 0.0543578
\(409\) 17.1252 0.846786 0.423393 0.905946i \(-0.360839\pi\)
0.423393 + 0.905946i \(0.360839\pi\)
\(410\) 6.81533 0.336585
\(411\) −1.03332 −0.0509701
\(412\) 12.1340 0.597801
\(413\) 31.9792 1.57359
\(414\) 21.4649 1.05494
\(415\) 11.6436 0.571562
\(416\) 1.00000 0.0490290
\(417\) 1.99703 0.0977948
\(418\) 0 0
\(419\) −27.4907 −1.34301 −0.671504 0.741001i \(-0.734351\pi\)
−0.671504 + 0.741001i \(0.734351\pi\)
\(420\) −0.579227 −0.0282634
\(421\) 15.9882 0.779217 0.389608 0.920981i \(-0.372610\pi\)
0.389608 + 0.920981i \(0.372610\pi\)
\(422\) 15.9741 0.777607
\(423\) −4.41867 −0.214843
\(424\) −5.02488 −0.244030
\(425\) −26.4191 −1.28152
\(426\) 0.182638 0.00884884
\(427\) 35.1810 1.70253
\(428\) 15.7633 0.761947
\(429\) 0.213822 0.0103234
\(430\) 0.360468 0.0173833
\(431\) 17.8523 0.859916 0.429958 0.902849i \(-0.358528\pi\)
0.429958 + 0.902849i \(0.358528\pi\)
\(432\) −0.884138 −0.0425381
\(433\) 18.2809 0.878522 0.439261 0.898359i \(-0.355240\pi\)
0.439261 + 0.898359i \(0.355240\pi\)
\(434\) −3.51450 −0.168701
\(435\) −0.992890 −0.0476054
\(436\) 4.25725 0.203885
\(437\) 0 0
\(438\) −2.21429 −0.105803
\(439\) −19.8760 −0.948631 −0.474316 0.880355i \(-0.657304\pi\)
−0.474316 + 0.880355i \(0.657304\pi\)
\(440\) 1.73575 0.0827488
\(441\) −10.8452 −0.516439
\(442\) 7.42399 0.353123
\(443\) 24.8341 1.17990 0.589952 0.807439i \(-0.299147\pi\)
0.589952 + 0.807439i \(0.299147\pi\)
\(444\) 0.219480 0.0104160
\(445\) −16.4354 −0.779115
\(446\) −19.5067 −0.923670
\(447\) 0.872295 0.0412582
\(448\) −3.26215 −0.154122
\(449\) 9.18647 0.433536 0.216768 0.976223i \(-0.430448\pi\)
0.216768 + 0.976223i \(0.430448\pi\)
\(450\) 10.5980 0.499595
\(451\) 8.20720 0.386462
\(452\) 1.07121 0.0503853
\(453\) −1.52584 −0.0716901
\(454\) −12.0844 −0.567147
\(455\) −3.91646 −0.183607
\(456\) 0 0
\(457\) −7.90161 −0.369622 −0.184811 0.982774i \(-0.559167\pi\)
−0.184811 + 0.982774i \(0.559167\pi\)
\(458\) 5.62571 0.262872
\(459\) −6.56383 −0.306373
\(460\) −8.65317 −0.403456
\(461\) 7.31985 0.340920 0.170460 0.985365i \(-0.445475\pi\)
0.170460 + 0.985365i \(0.445475\pi\)
\(462\) −0.697521 −0.0324516
\(463\) −15.8660 −0.737355 −0.368677 0.929557i \(-0.620189\pi\)
−0.368677 + 0.929557i \(0.620189\pi\)
\(464\) −5.59186 −0.259596
\(465\) 0.191295 0.00887112
\(466\) −14.3449 −0.664515
\(467\) 6.56283 0.303692 0.151846 0.988404i \(-0.451478\pi\)
0.151846 + 0.988404i \(0.451478\pi\)
\(468\) −2.97813 −0.137664
\(469\) 8.76136 0.404562
\(470\) 1.78130 0.0821655
\(471\) −2.03696 −0.0938584
\(472\) −9.80311 −0.451225
\(473\) 0.434086 0.0199593
\(474\) −1.08190 −0.0496932
\(475\) 0 0
\(476\) −24.2182 −1.11004
\(477\) 14.9647 0.685188
\(478\) −15.5343 −0.710524
\(479\) −31.2995 −1.43011 −0.715056 0.699067i \(-0.753599\pi\)
−0.715056 + 0.699067i \(0.753599\pi\)
\(480\) 0.177560 0.00810446
\(481\) 1.48402 0.0676654
\(482\) 13.9211 0.634090
\(483\) 3.47732 0.158223
\(484\) −8.90976 −0.404989
\(485\) 9.44806 0.429014
\(486\) 3.95443 0.179377
\(487\) 37.2463 1.68779 0.843895 0.536509i \(-0.180257\pi\)
0.843895 + 0.536509i \(0.180257\pi\)
\(488\) −10.7846 −0.488196
\(489\) −0.173669 −0.00785357
\(490\) 4.37205 0.197509
\(491\) 20.2698 0.914761 0.457381 0.889271i \(-0.348788\pi\)
0.457381 + 0.889271i \(0.348788\pi\)
\(492\) 0.839560 0.0378503
\(493\) −41.5139 −1.86969
\(494\) 0 0
\(495\) −5.16929 −0.232343
\(496\) 1.07736 0.0483748
\(497\) −4.02847 −0.180702
\(498\) 1.43434 0.0642743
\(499\) 21.4350 0.959564 0.479782 0.877388i \(-0.340716\pi\)
0.479782 + 0.877388i \(0.340716\pi\)
\(500\) −10.2753 −0.459524
\(501\) −3.69895 −0.165257
\(502\) −3.84319 −0.171530
\(503\) −3.01709 −0.134526 −0.0672628 0.997735i \(-0.521427\pi\)
−0.0672628 + 0.997735i \(0.521427\pi\)
\(504\) 9.71510 0.432745
\(505\) −6.89723 −0.306922
\(506\) −10.4204 −0.463243
\(507\) 0.147896 0.00656827
\(508\) 1.84226 0.0817371
\(509\) −5.42969 −0.240667 −0.120333 0.992734i \(-0.538396\pi\)
−0.120333 + 0.992734i \(0.538396\pi\)
\(510\) 1.31820 0.0583710
\(511\) 48.8408 2.16059
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −28.4562 −1.25515
\(515\) 14.5678 0.641935
\(516\) 0.0444050 0.00195482
\(517\) 2.14510 0.0943412
\(518\) −4.84109 −0.212705
\(519\) −1.36272 −0.0598169
\(520\) 1.20058 0.0526488
\(521\) −13.0130 −0.570108 −0.285054 0.958511i \(-0.592012\pi\)
−0.285054 + 0.958511i \(0.592012\pi\)
\(522\) 16.6533 0.728894
\(523\) −1.28818 −0.0563283 −0.0281642 0.999603i \(-0.508966\pi\)
−0.0281642 + 0.999603i \(0.508966\pi\)
\(524\) 15.1808 0.663175
\(525\) 1.71688 0.0749308
\(526\) 17.2621 0.752662
\(527\) 7.99829 0.348411
\(528\) 0.213822 0.00930543
\(529\) 28.9483 1.25862
\(530\) −6.03275 −0.262046
\(531\) 29.1949 1.26695
\(532\) 0 0
\(533\) 5.67671 0.245886
\(534\) −2.02463 −0.0876145
\(535\) 18.9250 0.818200
\(536\) −2.68576 −0.116007
\(537\) −1.92203 −0.0829416
\(538\) 12.7732 0.550693
\(539\) 5.26494 0.226777
\(540\) −1.06148 −0.0456786
\(541\) 37.6826 1.62010 0.810051 0.586359i \(-0.199439\pi\)
0.810051 + 0.586359i \(0.199439\pi\)
\(542\) 5.62977 0.241819
\(543\) −1.66646 −0.0715148
\(544\) 7.42399 0.318301
\(545\) 5.11115 0.218938
\(546\) −0.482457 −0.0206473
\(547\) 20.5730 0.879638 0.439819 0.898086i \(-0.355043\pi\)
0.439819 + 0.898086i \(0.355043\pi\)
\(548\) −6.98685 −0.298463
\(549\) 32.1179 1.37076
\(550\) −5.14493 −0.219380
\(551\) 0 0
\(552\) −1.06596 −0.0453702
\(553\) 23.8635 1.01478
\(554\) −20.9621 −0.890596
\(555\) 0.263502 0.0111850
\(556\) 13.5030 0.572653
\(557\) 38.6141 1.63613 0.818066 0.575125i \(-0.195046\pi\)
0.818066 + 0.575125i \(0.195046\pi\)
\(558\) −3.20851 −0.135827
\(559\) 0.300246 0.0126991
\(560\) −3.91646 −0.165501
\(561\) 1.58741 0.0670207
\(562\) −8.90538 −0.375651
\(563\) 9.79248 0.412704 0.206352 0.978478i \(-0.433841\pi\)
0.206352 + 0.978478i \(0.433841\pi\)
\(564\) 0.219434 0.00923983
\(565\) 1.28607 0.0541052
\(566\) 19.9127 0.836994
\(567\) −28.7187 −1.20607
\(568\) 1.23491 0.0518158
\(569\) −40.1136 −1.68165 −0.840824 0.541308i \(-0.817929\pi\)
−0.840824 + 0.541308i \(0.817929\pi\)
\(570\) 0 0
\(571\) 24.0783 1.00765 0.503823 0.863807i \(-0.331926\pi\)
0.503823 + 0.863807i \(0.331926\pi\)
\(572\) 1.44577 0.0604505
\(573\) 2.49433 0.104202
\(574\) −18.5183 −0.772938
\(575\) 25.6488 1.06963
\(576\) −2.97813 −0.124089
\(577\) 25.0825 1.04420 0.522100 0.852885i \(-0.325149\pi\)
0.522100 + 0.852885i \(0.325149\pi\)
\(578\) 38.1156 1.58540
\(579\) −2.40081 −0.0997744
\(580\) −6.71346 −0.278761
\(581\) −31.6374 −1.31254
\(582\) 1.16388 0.0482443
\(583\) −7.26480 −0.300877
\(584\) −14.9720 −0.619545
\(585\) −3.57547 −0.147827
\(586\) −19.2008 −0.793176
\(587\) −18.3805 −0.758645 −0.379322 0.925265i \(-0.623843\pi\)
−0.379322 + 0.925265i \(0.623843\pi\)
\(588\) 0.538580 0.0222107
\(589\) 0 0
\(590\) −11.7694 −0.484538
\(591\) −2.69326 −0.110786
\(592\) 1.48402 0.0609928
\(593\) 24.9611 1.02503 0.512515 0.858678i \(-0.328714\pi\)
0.512515 + 0.858678i \(0.328714\pi\)
\(594\) −1.27826 −0.0524475
\(595\) −29.0758 −1.19199
\(596\) 5.89805 0.241594
\(597\) −2.13623 −0.0874302
\(598\) −7.20751 −0.294737
\(599\) −23.6178 −0.964997 −0.482499 0.875897i \(-0.660271\pi\)
−0.482499 + 0.875897i \(0.660271\pi\)
\(600\) −0.526303 −0.0214862
\(601\) 18.6115 0.759181 0.379590 0.925155i \(-0.376065\pi\)
0.379590 + 0.925155i \(0.376065\pi\)
\(602\) −0.979448 −0.0399193
\(603\) 7.99854 0.325726
\(604\) −10.3170 −0.419793
\(605\) −10.6968 −0.434889
\(606\) −0.849649 −0.0345146
\(607\) 26.8602 1.09022 0.545112 0.838363i \(-0.316487\pi\)
0.545112 + 0.838363i \(0.316487\pi\)
\(608\) 0 0
\(609\) 2.69783 0.109322
\(610\) −12.9477 −0.524238
\(611\) 1.48371 0.0600244
\(612\) −22.1096 −0.893727
\(613\) 17.7110 0.715341 0.357671 0.933848i \(-0.383571\pi\)
0.357671 + 0.933848i \(0.383571\pi\)
\(614\) −16.5882 −0.669444
\(615\) 1.00796 0.0406447
\(616\) −4.71631 −0.190025
\(617\) 3.66322 0.147476 0.0737378 0.997278i \(-0.476507\pi\)
0.0737378 + 0.997278i \(0.476507\pi\)
\(618\) 1.79457 0.0721881
\(619\) 13.0426 0.524226 0.262113 0.965037i \(-0.415581\pi\)
0.262113 + 0.965037i \(0.415581\pi\)
\(620\) 1.29345 0.0519462
\(621\) 6.37244 0.255717
\(622\) 15.5297 0.622683
\(623\) 44.6576 1.78917
\(624\) 0.147896 0.00592056
\(625\) 5.45683 0.218273
\(626\) −17.3696 −0.694229
\(627\) 0 0
\(628\) −13.7730 −0.549602
\(629\) 11.0173 0.439290
\(630\) 11.6637 0.464694
\(631\) −6.40055 −0.254802 −0.127401 0.991851i \(-0.540664\pi\)
−0.127401 + 0.991851i \(0.540664\pi\)
\(632\) −7.31528 −0.290986
\(633\) 2.36250 0.0939008
\(634\) −30.8243 −1.22419
\(635\) 2.21177 0.0877716
\(636\) −0.743157 −0.0294681
\(637\) 3.64162 0.144286
\(638\) −8.08453 −0.320069
\(639\) −3.67773 −0.145489
\(640\) 1.20058 0.0474570
\(641\) 24.0962 0.951742 0.475871 0.879515i \(-0.342133\pi\)
0.475871 + 0.879515i \(0.342133\pi\)
\(642\) 2.33132 0.0920098
\(643\) 29.6300 1.16849 0.584247 0.811576i \(-0.301390\pi\)
0.584247 + 0.811576i \(0.301390\pi\)
\(644\) 23.5120 0.926502
\(645\) 0.0533117 0.00209914
\(646\) 0 0
\(647\) −6.75705 −0.265647 −0.132823 0.991140i \(-0.542404\pi\)
−0.132823 + 0.991140i \(0.542404\pi\)
\(648\) 8.80362 0.345839
\(649\) −14.1730 −0.556339
\(650\) −3.55862 −0.139580
\(651\) −0.519779 −0.0203717
\(652\) −1.17427 −0.0459878
\(653\) −44.9535 −1.75916 −0.879582 0.475747i \(-0.842178\pi\)
−0.879582 + 0.475747i \(0.842178\pi\)
\(654\) 0.629628 0.0246204
\(655\) 18.2257 0.712136
\(656\) 5.67671 0.221638
\(657\) 44.5884 1.73956
\(658\) −4.84008 −0.188686
\(659\) −26.5490 −1.03420 −0.517101 0.855924i \(-0.672989\pi\)
−0.517101 + 0.855924i \(0.672989\pi\)
\(660\) 0.256710 0.00999243
\(661\) −15.8611 −0.616926 −0.308463 0.951236i \(-0.599815\pi\)
−0.308463 + 0.951236i \(0.599815\pi\)
\(662\) −27.3801 −1.06416
\(663\) 1.09797 0.0426418
\(664\) 9.69833 0.376368
\(665\) 0 0
\(666\) −4.41959 −0.171256
\(667\) 40.3034 1.56055
\(668\) −25.0106 −0.967689
\(669\) −2.88496 −0.111539
\(670\) −3.22446 −0.124572
\(671\) −15.5920 −0.601923
\(672\) −0.482457 −0.0186112
\(673\) 17.7121 0.682752 0.341376 0.939927i \(-0.389107\pi\)
0.341376 + 0.939927i \(0.389107\pi\)
\(674\) −35.9229 −1.38370
\(675\) 3.14631 0.121101
\(676\) 1.00000 0.0384615
\(677\) 30.1110 1.15726 0.578630 0.815590i \(-0.303588\pi\)
0.578630 + 0.815590i \(0.303588\pi\)
\(678\) 0.158427 0.00608434
\(679\) −25.6718 −0.985194
\(680\) 8.91306 0.341800
\(681\) −1.78722 −0.0684865
\(682\) 1.55761 0.0596439
\(683\) −45.2179 −1.73022 −0.865108 0.501585i \(-0.832750\pi\)
−0.865108 + 0.501585i \(0.832750\pi\)
\(684\) 0 0
\(685\) −8.38825 −0.320499
\(686\) 10.9555 0.418284
\(687\) 0.832017 0.0317434
\(688\) 0.300246 0.0114468
\(689\) −5.02488 −0.191433
\(690\) −1.27977 −0.0487198
\(691\) −8.11651 −0.308766 −0.154383 0.988011i \(-0.549339\pi\)
−0.154383 + 0.988011i \(0.549339\pi\)
\(692\) −9.21409 −0.350267
\(693\) 14.0458 0.533554
\(694\) −20.7791 −0.788765
\(695\) 16.2113 0.614931
\(696\) −0.827011 −0.0313478
\(697\) 42.1438 1.59631
\(698\) −27.2581 −1.03173
\(699\) −2.12155 −0.0802443
\(700\) 11.6087 0.438769
\(701\) 10.8337 0.409183 0.204592 0.978847i \(-0.434413\pi\)
0.204592 + 0.978847i \(0.434413\pi\)
\(702\) −0.884138 −0.0333696
\(703\) 0 0
\(704\) 1.44577 0.0544894
\(705\) 0.263447 0.00992199
\(706\) 23.4930 0.884169
\(707\) 18.7408 0.704821
\(708\) −1.44984 −0.0544882
\(709\) 16.4839 0.619066 0.309533 0.950889i \(-0.399827\pi\)
0.309533 + 0.950889i \(0.399827\pi\)
\(710\) 1.48261 0.0556413
\(711\) 21.7858 0.817033
\(712\) −13.6896 −0.513040
\(713\) −7.76507 −0.290804
\(714\) −3.58176 −0.134044
\(715\) 1.73575 0.0649135
\(716\) −12.9958 −0.485678
\(717\) −2.29746 −0.0858001
\(718\) 13.2622 0.494942
\(719\) −25.8609 −0.964451 −0.482225 0.876047i \(-0.660171\pi\)
−0.482225 + 0.876047i \(0.660171\pi\)
\(720\) −3.57547 −0.133250
\(721\) −39.5830 −1.47415
\(722\) 0 0
\(723\) 2.05887 0.0765703
\(724\) −11.2678 −0.418766
\(725\) 19.8993 0.739041
\(726\) −1.31771 −0.0489049
\(727\) 8.59757 0.318866 0.159433 0.987209i \(-0.449033\pi\)
0.159433 + 0.987209i \(0.449033\pi\)
\(728\) −3.26215 −0.120903
\(729\) −25.8260 −0.956519
\(730\) −17.9750 −0.665285
\(731\) 2.22902 0.0824434
\(732\) −1.59499 −0.0589526
\(733\) 43.2245 1.59653 0.798267 0.602304i \(-0.205751\pi\)
0.798267 + 0.602304i \(0.205751\pi\)
\(734\) 34.3445 1.26768
\(735\) 0.646606 0.0238504
\(736\) −7.20751 −0.265673
\(737\) −3.88299 −0.143032
\(738\) −16.9060 −0.622317
\(739\) 0.248247 0.00913191 0.00456596 0.999990i \(-0.498547\pi\)
0.00456596 + 0.999990i \(0.498547\pi\)
\(740\) 1.78168 0.0654958
\(741\) 0 0
\(742\) 16.3919 0.601766
\(743\) 20.4301 0.749506 0.374753 0.927125i \(-0.377727\pi\)
0.374753 + 0.927125i \(0.377727\pi\)
\(744\) 0.159336 0.00584155
\(745\) 7.08106 0.259430
\(746\) 19.8835 0.727985
\(747\) −28.8829 −1.05677
\(748\) 10.7334 0.392450
\(749\) −51.4222 −1.87893
\(750\) −1.51967 −0.0554904
\(751\) −25.9834 −0.948149 −0.474075 0.880485i \(-0.657217\pi\)
−0.474075 + 0.880485i \(0.657217\pi\)
\(752\) 1.48371 0.0541052
\(753\) −0.568390 −0.0207133
\(754\) −5.59186 −0.203644
\(755\) −12.3864 −0.450785
\(756\) 2.88419 0.104897
\(757\) −15.0463 −0.546869 −0.273434 0.961891i \(-0.588160\pi\)
−0.273434 + 0.961891i \(0.588160\pi\)
\(758\) 3.33959 0.121299
\(759\) −1.54113 −0.0559394
\(760\) 0 0
\(761\) 45.4148 1.64629 0.823143 0.567834i \(-0.192219\pi\)
0.823143 + 0.567834i \(0.192219\pi\)
\(762\) 0.272462 0.00987026
\(763\) −13.8878 −0.502772
\(764\) 16.8655 0.610171
\(765\) −26.5442 −0.959709
\(766\) −23.5276 −0.850088
\(767\) −9.80311 −0.353970
\(768\) 0.147896 0.00533672
\(769\) 10.3865 0.374547 0.187273 0.982308i \(-0.440035\pi\)
0.187273 + 0.982308i \(0.440035\pi\)
\(770\) −5.66229 −0.204055
\(771\) −4.20855 −0.151567
\(772\) −16.2332 −0.584244
\(773\) −21.7655 −0.782850 −0.391425 0.920210i \(-0.628018\pi\)
−0.391425 + 0.920210i \(0.628018\pi\)
\(774\) −0.894171 −0.0321403
\(775\) −3.83390 −0.137718
\(776\) 7.86960 0.282502
\(777\) −0.715976 −0.0256855
\(778\) 25.2558 0.905464
\(779\) 0 0
\(780\) 0.177560 0.00635766
\(781\) 1.78540 0.0638865
\(782\) −53.5085 −1.91346
\(783\) 4.94398 0.176683
\(784\) 3.64162 0.130058
\(785\) −16.5355 −0.590179
\(786\) 2.24517 0.0800825
\(787\) 8.37615 0.298577 0.149289 0.988794i \(-0.452302\pi\)
0.149289 + 0.988794i \(0.452302\pi\)
\(788\) −18.2105 −0.648724
\(789\) 2.55298 0.0908885
\(790\) −8.78256 −0.312469
\(791\) −3.49444 −0.124248
\(792\) −4.30568 −0.152996
\(793\) −10.7846 −0.382972
\(794\) −12.7191 −0.451383
\(795\) −0.892217 −0.0316437
\(796\) −14.4442 −0.511961
\(797\) −33.6743 −1.19280 −0.596402 0.802686i \(-0.703404\pi\)
−0.596402 + 0.802686i \(0.703404\pi\)
\(798\) 0 0
\(799\) 11.0150 0.389684
\(800\) −3.55862 −0.125816
\(801\) 40.7694 1.44052
\(802\) −5.49595 −0.194069
\(803\) −21.6460 −0.763870
\(804\) −0.397212 −0.0140086
\(805\) 28.2279 0.994904
\(806\) 1.07736 0.0379483
\(807\) 1.88910 0.0664996
\(808\) −5.74493 −0.202106
\(809\) 12.0457 0.423505 0.211752 0.977323i \(-0.432083\pi\)
0.211752 + 0.977323i \(0.432083\pi\)
\(810\) 10.5694 0.371372
\(811\) 32.8925 1.15501 0.577507 0.816386i \(-0.304026\pi\)
0.577507 + 0.816386i \(0.304026\pi\)
\(812\) 18.2415 0.640151
\(813\) 0.832618 0.0292012
\(814\) 2.14554 0.0752013
\(815\) −1.40980 −0.0493830
\(816\) 1.09797 0.0384368
\(817\) 0 0
\(818\) 17.1252 0.598768
\(819\) 9.71510 0.339473
\(820\) 6.81533 0.238002
\(821\) 3.30171 0.115231 0.0576153 0.998339i \(-0.481650\pi\)
0.0576153 + 0.998339i \(0.481650\pi\)
\(822\) −1.03332 −0.0360413
\(823\) −9.83170 −0.342712 −0.171356 0.985209i \(-0.554815\pi\)
−0.171356 + 0.985209i \(0.554815\pi\)
\(824\) 12.1340 0.422709
\(825\) −0.760912 −0.0264915
\(826\) 31.9792 1.11270
\(827\) 25.9646 0.902878 0.451439 0.892302i \(-0.350911\pi\)
0.451439 + 0.892302i \(0.350911\pi\)
\(828\) 21.4649 0.745957
\(829\) −52.4096 −1.82026 −0.910131 0.414322i \(-0.864019\pi\)
−0.910131 + 0.414322i \(0.864019\pi\)
\(830\) 11.6436 0.404155
\(831\) −3.10021 −0.107545
\(832\) 1.00000 0.0346688
\(833\) 27.0354 0.936720
\(834\) 1.99703 0.0691513
\(835\) −30.0271 −1.03913
\(836\) 0 0
\(837\) −0.952533 −0.0329244
\(838\) −27.4907 −0.949650
\(839\) −43.5134 −1.50225 −0.751124 0.660161i \(-0.770488\pi\)
−0.751124 + 0.660161i \(0.770488\pi\)
\(840\) −0.579227 −0.0199852
\(841\) 2.26891 0.0782382
\(842\) 15.9882 0.550989
\(843\) −1.31707 −0.0453621
\(844\) 15.9741 0.549851
\(845\) 1.20058 0.0413011
\(846\) −4.41867 −0.151917
\(847\) 29.0650 0.998684
\(848\) −5.02488 −0.172555
\(849\) 2.94500 0.101072
\(850\) −26.4191 −0.906168
\(851\) −10.6961 −0.366657
\(852\) 0.182638 0.00625708
\(853\) −53.1030 −1.81821 −0.909107 0.416563i \(-0.863234\pi\)
−0.909107 + 0.416563i \(0.863234\pi\)
\(854\) 35.1810 1.20387
\(855\) 0 0
\(856\) 15.7633 0.538778
\(857\) −32.0252 −1.09396 −0.546980 0.837146i \(-0.684222\pi\)
−0.546980 + 0.837146i \(0.684222\pi\)
\(858\) 0.213822 0.00729978
\(859\) −0.189522 −0.00646642 −0.00323321 0.999995i \(-0.501029\pi\)
−0.00323321 + 0.999995i \(0.501029\pi\)
\(860\) 0.360468 0.0122919
\(861\) −2.73877 −0.0933371
\(862\) 17.8523 0.608052
\(863\) 49.0309 1.66903 0.834516 0.550984i \(-0.185748\pi\)
0.834516 + 0.550984i \(0.185748\pi\)
\(864\) −0.884138 −0.0300790
\(865\) −11.0622 −0.376127
\(866\) 18.2809 0.621209
\(867\) 5.63712 0.191447
\(868\) −3.51450 −0.119290
\(869\) −10.5762 −0.358773
\(870\) −0.992890 −0.0336621
\(871\) −2.68576 −0.0910036
\(872\) 4.25725 0.144169
\(873\) −23.4367 −0.793211
\(874\) 0 0
\(875\) 33.5195 1.13317
\(876\) −2.21429 −0.0748139
\(877\) 32.2540 1.08914 0.544571 0.838715i \(-0.316693\pi\)
0.544571 + 0.838715i \(0.316693\pi\)
\(878\) −19.8760 −0.670784
\(879\) −2.83970 −0.0957809
\(880\) 1.73575 0.0585122
\(881\) 0.195455 0.00658506 0.00329253 0.999995i \(-0.498952\pi\)
0.00329253 + 0.999995i \(0.498952\pi\)
\(882\) −10.8452 −0.365177
\(883\) 48.6870 1.63845 0.819224 0.573473i \(-0.194404\pi\)
0.819224 + 0.573473i \(0.194404\pi\)
\(884\) 7.42399 0.249696
\(885\) −1.74064 −0.0585110
\(886\) 24.8341 0.834318
\(887\) 17.5243 0.588410 0.294205 0.955742i \(-0.404945\pi\)
0.294205 + 0.955742i \(0.404945\pi\)
\(888\) 0.219480 0.00736525
\(889\) −6.00973 −0.201560
\(890\) −16.4354 −0.550917
\(891\) 12.7280 0.426403
\(892\) −19.5067 −0.653133
\(893\) 0 0
\(894\) 0.872295 0.0291739
\(895\) −15.6025 −0.521534
\(896\) −3.26215 −0.108981
\(897\) −1.06596 −0.0355913
\(898\) 9.18647 0.306557
\(899\) −6.02443 −0.200926
\(900\) 10.5980 0.353267
\(901\) −37.3046 −1.24280
\(902\) 8.20720 0.273270
\(903\) −0.144856 −0.00482050
\(904\) 1.07121 0.0356278
\(905\) −13.5279 −0.449683
\(906\) −1.52584 −0.0506926
\(907\) 7.13497 0.236913 0.118456 0.992959i \(-0.462205\pi\)
0.118456 + 0.992959i \(0.462205\pi\)
\(908\) −12.0844 −0.401034
\(909\) 17.1091 0.567474
\(910\) −3.91646 −0.129829
\(911\) 6.92966 0.229590 0.114795 0.993389i \(-0.463379\pi\)
0.114795 + 0.993389i \(0.463379\pi\)
\(912\) 0 0
\(913\) 14.0215 0.464045
\(914\) −7.90161 −0.261362
\(915\) −1.91491 −0.0633050
\(916\) 5.62571 0.185879
\(917\) −49.5219 −1.63536
\(918\) −6.56383 −0.216639
\(919\) 39.4656 1.30185 0.650924 0.759142i \(-0.274381\pi\)
0.650924 + 0.759142i \(0.274381\pi\)
\(920\) −8.65317 −0.285287
\(921\) −2.45332 −0.0808395
\(922\) 7.31985 0.241066
\(923\) 1.23491 0.0406476
\(924\) −0.697521 −0.0229467
\(925\) −5.28105 −0.173640
\(926\) −15.8660 −0.521389
\(927\) −36.1367 −1.18688
\(928\) −5.59186 −0.183562
\(929\) 41.4126 1.35870 0.679351 0.733813i \(-0.262261\pi\)
0.679351 + 0.733813i \(0.262261\pi\)
\(930\) 0.191295 0.00627283
\(931\) 0 0
\(932\) −14.3449 −0.469883
\(933\) 2.29677 0.0751929
\(934\) 6.56283 0.214742
\(935\) 12.8862 0.421424
\(936\) −2.97813 −0.0973431
\(937\) 30.8438 1.00762 0.503812 0.863813i \(-0.331931\pi\)
0.503812 + 0.863813i \(0.331931\pi\)
\(938\) 8.76136 0.286069
\(939\) −2.56889 −0.0838324
\(940\) 1.78130 0.0580998
\(941\) 19.7867 0.645029 0.322514 0.946565i \(-0.395472\pi\)
0.322514 + 0.946565i \(0.395472\pi\)
\(942\) −2.03696 −0.0663679
\(943\) −40.9150 −1.33238
\(944\) −9.80311 −0.319064
\(945\) 3.46269 0.112641
\(946\) 0.434086 0.0141133
\(947\) −14.2742 −0.463848 −0.231924 0.972734i \(-0.574502\pi\)
−0.231924 + 0.972734i \(0.574502\pi\)
\(948\) −1.08190 −0.0351384
\(949\) −14.9720 −0.486011
\(950\) 0 0
\(951\) −4.55877 −0.147828
\(952\) −24.2182 −0.784915
\(953\) 49.4499 1.60184 0.800920 0.598771i \(-0.204344\pi\)
0.800920 + 0.598771i \(0.204344\pi\)
\(954\) 14.9647 0.484501
\(955\) 20.2483 0.655219
\(956\) −15.5343 −0.502416
\(957\) −1.19567 −0.0386504
\(958\) −31.2995 −1.01124
\(959\) 22.7922 0.735997
\(960\) 0.177560 0.00573072
\(961\) −29.8393 −0.962558
\(962\) 1.48402 0.0478467
\(963\) −46.9450 −1.51278
\(964\) 13.9211 0.448370
\(965\) −19.4892 −0.627378
\(966\) 3.47732 0.111881
\(967\) 50.5368 1.62515 0.812577 0.582854i \(-0.198064\pi\)
0.812577 + 0.582854i \(0.198064\pi\)
\(968\) −8.90976 −0.286370
\(969\) 0 0
\(970\) 9.44806 0.303359
\(971\) 5.78573 0.185673 0.0928364 0.995681i \(-0.470407\pi\)
0.0928364 + 0.995681i \(0.470407\pi\)
\(972\) 3.95443 0.126838
\(973\) −44.0487 −1.41213
\(974\) 37.2463 1.19345
\(975\) −0.526303 −0.0168552
\(976\) −10.7846 −0.345206
\(977\) 25.5842 0.818512 0.409256 0.912419i \(-0.365788\pi\)
0.409256 + 0.912419i \(0.365788\pi\)
\(978\) −0.173669 −0.00555331
\(979\) −19.7920 −0.632555
\(980\) 4.37205 0.139660
\(981\) −12.6786 −0.404797
\(982\) 20.2698 0.646834
\(983\) −8.82077 −0.281339 −0.140669 0.990057i \(-0.544925\pi\)
−0.140669 + 0.990057i \(0.544925\pi\)
\(984\) 0.839560 0.0267642
\(985\) −21.8632 −0.696618
\(986\) −41.5139 −1.32207
\(987\) −0.715826 −0.0227850
\(988\) 0 0
\(989\) −2.16403 −0.0688121
\(990\) −5.16929 −0.164291
\(991\) −44.3000 −1.40723 −0.703617 0.710579i \(-0.748433\pi\)
−0.703617 + 0.710579i \(0.748433\pi\)
\(992\) 1.07736 0.0342061
\(993\) −4.04940 −0.128504
\(994\) −4.02847 −0.127775
\(995\) −17.3414 −0.549759
\(996\) 1.43434 0.0454488
\(997\) −58.4338 −1.85062 −0.925308 0.379215i \(-0.876194\pi\)
−0.925308 + 0.379215i \(0.876194\pi\)
\(998\) 21.4350 0.678514
\(999\) −1.31208 −0.0415123
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9386.2.a.bp.1.6 9
19.4 even 9 494.2.x.b.339.2 18
19.5 even 9 494.2.x.b.443.2 yes 18
19.18 odd 2 9386.2.a.bo.1.4 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
494.2.x.b.339.2 18 19.4 even 9
494.2.x.b.443.2 yes 18 19.5 even 9
9386.2.a.bo.1.4 9 19.18 odd 2
9386.2.a.bp.1.6 9 1.1 even 1 trivial