Properties

Label 936.4.a.j
Level $936$
Weight $4$
Character orbit 936.a
Self dual yes
Analytic conductor $55.226$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,4,Mod(1,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 936.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.2257877654\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{17}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta + 9) q^{5} + ( - 5 \beta - 5) q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta + 9) q^{5} + ( - 5 \beta - 5) q^{7} + ( - 14 \beta - 2) q^{11} + 13 q^{13} + (12 \beta + 26) q^{17} + ( - 11 \beta - 71) q^{19} + ( - 12 \beta + 140) q^{23} + ( - 18 \beta - 27) q^{25} + ( - 6 \beta + 212) q^{29} + ( - 33 \beta - 89) q^{31} + ( - 40 \beta + 40) q^{35} + (54 \beta + 68) q^{37} + (19 \beta + 113) q^{41} + (88 \beta - 36) q^{43} + (120 \beta - 88) q^{47} + (50 \beta + 107) q^{49} + (8 \beta + 394) q^{53} + ( - 124 \beta + 220) q^{55} + (8 \beta - 364) q^{59} + ( - 38 \beta - 368) q^{61} + ( - 13 \beta + 117) q^{65} + (107 \beta + 527) q^{67} + ( - 78 \beta + 330) q^{71} + ( - 222 \beta + 12) q^{73} + (80 \beta + 1200) q^{77} + (276 \beta + 20) q^{79} + ( - 68 \beta - 672) q^{83} + (82 \beta + 30) q^{85} + ( - 219 \beta - 157) q^{89} + ( - 65 \beta - 65) q^{91} + ( - 28 \beta - 452) q^{95} + (10 \beta - 132) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 18 q^{5} - 10 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 18 q^{5} - 10 q^{7} - 4 q^{11} + 26 q^{13} + 52 q^{17} - 142 q^{19} + 280 q^{23} - 54 q^{25} + 424 q^{29} - 178 q^{31} + 80 q^{35} + 136 q^{37} + 226 q^{41} - 72 q^{43} - 176 q^{47} + 214 q^{49} + 788 q^{53} + 440 q^{55} - 728 q^{59} - 736 q^{61} + 234 q^{65} + 1054 q^{67} + 660 q^{71} + 24 q^{73} + 2400 q^{77} + 40 q^{79} - 1344 q^{83} + 60 q^{85} - 314 q^{89} - 130 q^{91} - 904 q^{95} - 264 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.56155
−1.56155
0 0 0 4.87689 0 −25.6155 0 0 0
1.2 0 0 0 13.1231 0 15.6155 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 936.4.a.j 2
3.b odd 2 1 312.4.a.d 2
4.b odd 2 1 1872.4.a.bi 2
12.b even 2 1 624.4.a.j 2
24.f even 2 1 2496.4.a.bj 2
24.h odd 2 1 2496.4.a.ba 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
312.4.a.d 2 3.b odd 2 1
624.4.a.j 2 12.b even 2 1
936.4.a.j 2 1.a even 1 1 trivial
1872.4.a.bi 2 4.b odd 2 1
2496.4.a.ba 2 24.h odd 2 1
2496.4.a.bj 2 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 18T_{5} + 64 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(936))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 18T + 64 \) Copy content Toggle raw display
$7$ \( T^{2} + 10T - 400 \) Copy content Toggle raw display
$11$ \( T^{2} + 4T - 3328 \) Copy content Toggle raw display
$13$ \( (T - 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 52T - 1772 \) Copy content Toggle raw display
$19$ \( T^{2} + 142T + 2984 \) Copy content Toggle raw display
$23$ \( T^{2} - 280T + 17152 \) Copy content Toggle raw display
$29$ \( T^{2} - 424T + 44332 \) Copy content Toggle raw display
$31$ \( T^{2} + 178T - 10592 \) Copy content Toggle raw display
$37$ \( T^{2} - 136T - 44948 \) Copy content Toggle raw display
$41$ \( T^{2} - 226T + 6632 \) Copy content Toggle raw display
$43$ \( T^{2} + 72T - 130352 \) Copy content Toggle raw display
$47$ \( T^{2} + 176T - 237056 \) Copy content Toggle raw display
$53$ \( T^{2} - 788T + 154148 \) Copy content Toggle raw display
$59$ \( T^{2} + 728T + 131408 \) Copy content Toggle raw display
$61$ \( T^{2} + 736T + 110876 \) Copy content Toggle raw display
$67$ \( T^{2} - 1054T + 83096 \) Copy content Toggle raw display
$71$ \( T^{2} - 660T + 5472 \) Copy content Toggle raw display
$73$ \( T^{2} - 24T - 837684 \) Copy content Toggle raw display
$79$ \( T^{2} - 40T - 1294592 \) Copy content Toggle raw display
$83$ \( T^{2} + 1344 T + 372976 \) Copy content Toggle raw display
$89$ \( T^{2} + 314T - 790688 \) Copy content Toggle raw display
$97$ \( T^{2} + 264T + 15724 \) Copy content Toggle raw display
show more
show less