Properties

Label 936.4.a.j.1.2
Level $936$
Weight $4$
Character 936.1
Self dual yes
Analytic conductor $55.226$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,4,Mod(1,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 936.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.2257877654\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 936.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+13.1231 q^{5} +15.6155 q^{7} +55.7235 q^{11} +13.0000 q^{13} -23.4773 q^{17} -25.6458 q^{19} +189.477 q^{23} +47.2159 q^{25} +236.739 q^{29} +47.0625 q^{31} +204.924 q^{35} -154.648 q^{37} +34.6610 q^{41} -398.833 q^{43} -582.773 q^{47} -99.1553 q^{49} +361.015 q^{53} +731.265 q^{55} -396.985 q^{59} -211.322 q^{61} +170.600 q^{65} +85.8277 q^{67} +651.602 q^{71} +927.329 q^{73} +870.152 q^{77} -1117.98 q^{79} -391.629 q^{83} -308.095 q^{85} +745.960 q^{89} +203.002 q^{91} -336.553 q^{95} -173.231 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 18 q^{5} - 10 q^{7} - 4 q^{11} + 26 q^{13} + 52 q^{17} - 142 q^{19} + 280 q^{23} - 54 q^{25} + 424 q^{29} - 178 q^{31} + 80 q^{35} + 136 q^{37} + 226 q^{41} - 72 q^{43} - 176 q^{47} + 214 q^{49} + 788 q^{53}+ \cdots - 264 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 13.1231 1.17377 0.586883 0.809672i \(-0.300355\pi\)
0.586883 + 0.809672i \(0.300355\pi\)
\(6\) 0 0
\(7\) 15.6155 0.843159 0.421580 0.906791i \(-0.361476\pi\)
0.421580 + 0.906791i \(0.361476\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 55.7235 1.52739 0.763694 0.645579i \(-0.223384\pi\)
0.763694 + 0.645579i \(0.223384\pi\)
\(12\) 0 0
\(13\) 13.0000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −23.4773 −0.334946 −0.167473 0.985877i \(-0.553561\pi\)
−0.167473 + 0.985877i \(0.553561\pi\)
\(18\) 0 0
\(19\) −25.6458 −0.309661 −0.154830 0.987941i \(-0.549483\pi\)
−0.154830 + 0.987941i \(0.549483\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 189.477 1.71777 0.858886 0.512167i \(-0.171157\pi\)
0.858886 + 0.512167i \(0.171157\pi\)
\(24\) 0 0
\(25\) 47.2159 0.377727
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 236.739 1.51591 0.757953 0.652309i \(-0.226200\pi\)
0.757953 + 0.652309i \(0.226200\pi\)
\(30\) 0 0
\(31\) 47.0625 0.272667 0.136333 0.990663i \(-0.456468\pi\)
0.136333 + 0.990663i \(0.456468\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 204.924 0.989672
\(36\) 0 0
\(37\) −154.648 −0.687133 −0.343567 0.939128i \(-0.611635\pi\)
−0.343567 + 0.939128i \(0.611635\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 34.6610 0.132028 0.0660139 0.997819i \(-0.478972\pi\)
0.0660139 + 0.997819i \(0.478972\pi\)
\(42\) 0 0
\(43\) −398.833 −1.41445 −0.707227 0.706987i \(-0.750054\pi\)
−0.707227 + 0.706987i \(0.750054\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −582.773 −1.80864 −0.904321 0.426854i \(-0.859622\pi\)
−0.904321 + 0.426854i \(0.859622\pi\)
\(48\) 0 0
\(49\) −99.1553 −0.289082
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 361.015 0.935646 0.467823 0.883822i \(-0.345038\pi\)
0.467823 + 0.883822i \(0.345038\pi\)
\(54\) 0 0
\(55\) 731.265 1.79280
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −396.985 −0.875983 −0.437992 0.898979i \(-0.644310\pi\)
−0.437992 + 0.898979i \(0.644310\pi\)
\(60\) 0 0
\(61\) −211.322 −0.443558 −0.221779 0.975097i \(-0.571186\pi\)
−0.221779 + 0.975097i \(0.571186\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 170.600 0.325544
\(66\) 0 0
\(67\) 85.8277 0.156500 0.0782502 0.996934i \(-0.475067\pi\)
0.0782502 + 0.996934i \(0.475067\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 651.602 1.08917 0.544584 0.838706i \(-0.316687\pi\)
0.544584 + 0.838706i \(0.316687\pi\)
\(72\) 0 0
\(73\) 927.329 1.48679 0.743395 0.668852i \(-0.233214\pi\)
0.743395 + 0.668852i \(0.233214\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 870.152 1.28783
\(78\) 0 0
\(79\) −1117.98 −1.59218 −0.796090 0.605178i \(-0.793102\pi\)
−0.796090 + 0.605178i \(0.793102\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −391.629 −0.517914 −0.258957 0.965889i \(-0.583379\pi\)
−0.258957 + 0.965889i \(0.583379\pi\)
\(84\) 0 0
\(85\) −308.095 −0.393148
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 745.960 0.888445 0.444223 0.895916i \(-0.353480\pi\)
0.444223 + 0.895916i \(0.353480\pi\)
\(90\) 0 0
\(91\) 203.002 0.233850
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −336.553 −0.363470
\(96\) 0 0
\(97\) −173.231 −0.181329 −0.0906647 0.995881i \(-0.528899\pi\)
−0.0906647 + 0.995881i \(0.528899\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1263.45 1.24473 0.622367 0.782726i \(-0.286171\pi\)
0.622367 + 0.782726i \(0.286171\pi\)
\(102\) 0 0
\(103\) 874.401 0.836479 0.418240 0.908337i \(-0.362647\pi\)
0.418240 + 0.908337i \(0.362647\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1591.89 −1.43826 −0.719128 0.694877i \(-0.755459\pi\)
−0.719128 + 0.694877i \(0.755459\pi\)
\(108\) 0 0
\(109\) 371.788 0.326705 0.163352 0.986568i \(-0.447769\pi\)
0.163352 + 0.986568i \(0.447769\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1173.98 −0.977335 −0.488667 0.872470i \(-0.662517\pi\)
−0.488667 + 0.872470i \(0.662517\pi\)
\(114\) 0 0
\(115\) 2486.53 2.01626
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −366.610 −0.282412
\(120\) 0 0
\(121\) 1774.11 1.33291
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1020.77 −0.730403
\(126\) 0 0
\(127\) 739.360 0.516595 0.258298 0.966065i \(-0.416839\pi\)
0.258298 + 0.966065i \(0.416839\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2131.58 −1.42166 −0.710829 0.703365i \(-0.751680\pi\)
−0.710829 + 0.703365i \(0.751680\pi\)
\(132\) 0 0
\(133\) −400.473 −0.261094
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 256.934 0.160229 0.0801144 0.996786i \(-0.474471\pi\)
0.0801144 + 0.996786i \(0.474471\pi\)
\(138\) 0 0
\(139\) 437.443 0.266931 0.133466 0.991053i \(-0.457389\pi\)
0.133466 + 0.991053i \(0.457389\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 724.405 0.423621
\(144\) 0 0
\(145\) 3106.75 1.77932
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3406.65 1.87304 0.936522 0.350609i \(-0.114025\pi\)
0.936522 + 0.350609i \(0.114025\pi\)
\(150\) 0 0
\(151\) 3275.77 1.76542 0.882710 0.469918i \(-0.155717\pi\)
0.882710 + 0.469918i \(0.155717\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 617.606 0.320047
\(156\) 0 0
\(157\) 1074.34 0.546128 0.273064 0.961996i \(-0.411963\pi\)
0.273064 + 0.961996i \(0.411963\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2958.79 1.44835
\(162\) 0 0
\(163\) 2031.49 0.976186 0.488093 0.872792i \(-0.337693\pi\)
0.488093 + 0.872792i \(0.337693\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −299.697 −0.138870 −0.0694349 0.997586i \(-0.522120\pi\)
−0.0694349 + 0.997586i \(0.522120\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2371.16 −1.04206 −0.521028 0.853540i \(-0.674451\pi\)
−0.521028 + 0.853540i \(0.674451\pi\)
\(174\) 0 0
\(175\) 737.301 0.318484
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 249.613 0.104229 0.0521145 0.998641i \(-0.483404\pi\)
0.0521145 + 0.998641i \(0.483404\pi\)
\(180\) 0 0
\(181\) −3151.45 −1.29417 −0.647087 0.762416i \(-0.724013\pi\)
−0.647087 + 0.762416i \(0.724013\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2029.46 −0.806534
\(186\) 0 0
\(187\) −1308.24 −0.511592
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4739.45 1.79547 0.897735 0.440535i \(-0.145211\pi\)
0.897735 + 0.440535i \(0.145211\pi\)
\(192\) 0 0
\(193\) 636.818 0.237509 0.118754 0.992924i \(-0.462110\pi\)
0.118754 + 0.992924i \(0.462110\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3001.13 1.08539 0.542695 0.839930i \(-0.317404\pi\)
0.542695 + 0.839930i \(0.317404\pi\)
\(198\) 0 0
\(199\) −648.958 −0.231173 −0.115587 0.993297i \(-0.536875\pi\)
−0.115587 + 0.993297i \(0.536875\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3696.80 1.27815
\(204\) 0 0
\(205\) 454.860 0.154970
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1429.08 −0.472972
\(210\) 0 0
\(211\) −240.114 −0.0783418 −0.0391709 0.999233i \(-0.512472\pi\)
−0.0391709 + 0.999233i \(0.512472\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −5233.93 −1.66024
\(216\) 0 0
\(217\) 734.906 0.229902
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −305.204 −0.0928972
\(222\) 0 0
\(223\) −1104.37 −0.331633 −0.165816 0.986157i \(-0.553026\pi\)
−0.165816 + 0.986157i \(0.553026\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −497.034 −0.145327 −0.0726636 0.997357i \(-0.523150\pi\)
−0.0726636 + 0.997357i \(0.523150\pi\)
\(228\) 0 0
\(229\) 2879.05 0.830800 0.415400 0.909639i \(-0.363642\pi\)
0.415400 + 0.909639i \(0.363642\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3846.91 1.08163 0.540814 0.841142i \(-0.318116\pi\)
0.540814 + 0.841142i \(0.318116\pi\)
\(234\) 0 0
\(235\) −7647.79 −2.12292
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2903.25 −0.785755 −0.392877 0.919591i \(-0.628520\pi\)
−0.392877 + 0.919591i \(0.628520\pi\)
\(240\) 0 0
\(241\) −4801.06 −1.28325 −0.641626 0.767018i \(-0.721740\pi\)
−0.641626 + 0.767018i \(0.721740\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1301.23 −0.339315
\(246\) 0 0
\(247\) −333.396 −0.0858845
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4768.20 −1.19907 −0.599534 0.800350i \(-0.704647\pi\)
−0.599534 + 0.800350i \(0.704647\pi\)
\(252\) 0 0
\(253\) 10558.3 2.62370
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6002.18 −1.45683 −0.728415 0.685136i \(-0.759743\pi\)
−0.728415 + 0.685136i \(0.759743\pi\)
\(258\) 0 0
\(259\) −2414.91 −0.579363
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3268.33 0.766289 0.383145 0.923688i \(-0.374841\pi\)
0.383145 + 0.923688i \(0.374841\pi\)
\(264\) 0 0
\(265\) 4737.64 1.09823
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 8690.14 1.96969 0.984846 0.173431i \(-0.0554854\pi\)
0.984846 + 0.173431i \(0.0554854\pi\)
\(270\) 0 0
\(271\) −3239.17 −0.726073 −0.363036 0.931775i \(-0.618260\pi\)
−0.363036 + 0.931775i \(0.618260\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2631.03 0.576936
\(276\) 0 0
\(277\) −220.091 −0.0477400 −0.0238700 0.999715i \(-0.507599\pi\)
−0.0238700 + 0.999715i \(0.507599\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −587.233 −0.124667 −0.0623334 0.998055i \(-0.519854\pi\)
−0.0623334 + 0.998055i \(0.519854\pi\)
\(282\) 0 0
\(283\) −8274.09 −1.73796 −0.868981 0.494845i \(-0.835225\pi\)
−0.868981 + 0.494845i \(0.835225\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 541.250 0.111320
\(288\) 0 0
\(289\) −4361.82 −0.887812
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5382.07 1.07312 0.536559 0.843863i \(-0.319724\pi\)
0.536559 + 0.843863i \(0.319724\pi\)
\(294\) 0 0
\(295\) −5209.67 −1.02820
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2463.20 0.476424
\(300\) 0 0
\(301\) −6227.99 −1.19261
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2773.20 −0.520633
\(306\) 0 0
\(307\) −3095.92 −0.575549 −0.287774 0.957698i \(-0.592915\pi\)
−0.287774 + 0.957698i \(0.592915\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −3474.58 −0.633521 −0.316761 0.948506i \(-0.602595\pi\)
−0.316761 + 0.948506i \(0.602595\pi\)
\(312\) 0 0
\(313\) −3523.92 −0.636370 −0.318185 0.948029i \(-0.603073\pi\)
−0.318185 + 0.948029i \(0.603073\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 323.396 0.0572988 0.0286494 0.999590i \(-0.490879\pi\)
0.0286494 + 0.999590i \(0.490879\pi\)
\(318\) 0 0
\(319\) 13191.9 2.31537
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 602.094 0.103720
\(324\) 0 0
\(325\) 613.807 0.104763
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −9100.30 −1.52497
\(330\) 0 0
\(331\) −1057.74 −0.175646 −0.0878228 0.996136i \(-0.527991\pi\)
−0.0878228 + 0.996136i \(0.527991\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1126.33 0.183695
\(336\) 0 0
\(337\) 11538.4 1.86510 0.932550 0.361041i \(-0.117578\pi\)
0.932550 + 0.361041i \(0.117578\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2622.49 0.416468
\(342\) 0 0
\(343\) −6904.49 −1.08690
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −5211.75 −0.806286 −0.403143 0.915137i \(-0.632082\pi\)
−0.403143 + 0.915137i \(0.632082\pi\)
\(348\) 0 0
\(349\) −2369.81 −0.363476 −0.181738 0.983347i \(-0.558172\pi\)
−0.181738 + 0.983347i \(0.558172\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 8997.40 1.35661 0.678305 0.734780i \(-0.262715\pi\)
0.678305 + 0.734780i \(0.262715\pi\)
\(354\) 0 0
\(355\) 8551.05 1.27843
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10863.4 −1.59707 −0.798537 0.601946i \(-0.794392\pi\)
−0.798537 + 0.601946i \(0.794392\pi\)
\(360\) 0 0
\(361\) −6201.29 −0.904110
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 12169.4 1.74514
\(366\) 0 0
\(367\) −13552.2 −1.92757 −0.963785 0.266682i \(-0.914073\pi\)
−0.963785 + 0.266682i \(0.914073\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5637.44 0.788899
\(372\) 0 0
\(373\) 2255.64 0.313118 0.156559 0.987669i \(-0.449960\pi\)
0.156559 + 0.987669i \(0.449960\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3077.60 0.420437
\(378\) 0 0
\(379\) −7698.92 −1.04345 −0.521724 0.853114i \(-0.674711\pi\)
−0.521724 + 0.853114i \(0.674711\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −211.235 −0.0281818 −0.0140909 0.999901i \(-0.504485\pi\)
−0.0140909 + 0.999901i \(0.504485\pi\)
\(384\) 0 0
\(385\) 11419.1 1.51161
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −3515.25 −0.458175 −0.229088 0.973406i \(-0.573574\pi\)
−0.229088 + 0.973406i \(0.573574\pi\)
\(390\) 0 0
\(391\) −4448.41 −0.575360
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −14671.3 −1.86885
\(396\) 0 0
\(397\) −10968.8 −1.38667 −0.693337 0.720613i \(-0.743860\pi\)
−0.693337 + 0.720613i \(0.743860\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −6508.24 −0.810488 −0.405244 0.914208i \(-0.632813\pi\)
−0.405244 + 0.914208i \(0.632813\pi\)
\(402\) 0 0
\(403\) 611.812 0.0756242
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −8617.51 −1.04952
\(408\) 0 0
\(409\) 9363.46 1.13201 0.566006 0.824401i \(-0.308488\pi\)
0.566006 + 0.824401i \(0.308488\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −6199.13 −0.738594
\(414\) 0 0
\(415\) −5139.39 −0.607910
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 12057.8 1.40588 0.702940 0.711249i \(-0.251870\pi\)
0.702940 + 0.711249i \(0.251870\pi\)
\(420\) 0 0
\(421\) −15937.1 −1.84496 −0.922479 0.386047i \(-0.873840\pi\)
−0.922479 + 0.386047i \(0.873840\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1108.50 −0.126518
\(426\) 0 0
\(427\) −3299.90 −0.373990
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6792.37 −0.759111 −0.379556 0.925169i \(-0.623923\pi\)
−0.379556 + 0.925169i \(0.623923\pi\)
\(432\) 0 0
\(433\) −3338.00 −0.370471 −0.185235 0.982694i \(-0.559305\pi\)
−0.185235 + 0.982694i \(0.559305\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4859.30 −0.531927
\(438\) 0 0
\(439\) 13313.1 1.44738 0.723688 0.690127i \(-0.242445\pi\)
0.723688 + 0.690127i \(0.242445\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5175.32 −0.555050 −0.277525 0.960718i \(-0.589514\pi\)
−0.277525 + 0.960718i \(0.589514\pi\)
\(444\) 0 0
\(445\) 9789.31 1.04283
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 4090.57 0.429947 0.214973 0.976620i \(-0.431034\pi\)
0.214973 + 0.976620i \(0.431034\pi\)
\(450\) 0 0
\(451\) 1931.43 0.201658
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2664.01 0.274486
\(456\) 0 0
\(457\) −4300.78 −0.440224 −0.220112 0.975475i \(-0.570642\pi\)
−0.220112 + 0.975475i \(0.570642\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2578.07 0.260461 0.130231 0.991484i \(-0.458428\pi\)
0.130231 + 0.991484i \(0.458428\pi\)
\(462\) 0 0
\(463\) −4529.58 −0.454660 −0.227330 0.973818i \(-0.573000\pi\)
−0.227330 + 0.973818i \(0.573000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4761.89 −0.471850 −0.235925 0.971771i \(-0.575812\pi\)
−0.235925 + 0.971771i \(0.575812\pi\)
\(468\) 0 0
\(469\) 1340.24 0.131955
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −22224.4 −2.16042
\(474\) 0 0
\(475\) −1210.89 −0.116967
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −11621.4 −1.10855 −0.554275 0.832333i \(-0.687005\pi\)
−0.554275 + 0.832333i \(0.687005\pi\)
\(480\) 0 0
\(481\) −2010.42 −0.190576
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2273.33 −0.212838
\(486\) 0 0
\(487\) 7836.62 0.729181 0.364590 0.931168i \(-0.381209\pi\)
0.364590 + 0.931168i \(0.381209\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 14163.9 1.30185 0.650925 0.759142i \(-0.274381\pi\)
0.650925 + 0.759142i \(0.274381\pi\)
\(492\) 0 0
\(493\) −5557.98 −0.507746
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10175.1 0.918342
\(498\) 0 0
\(499\) −811.953 −0.0728417 −0.0364208 0.999337i \(-0.511596\pi\)
−0.0364208 + 0.999337i \(0.511596\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −9718.41 −0.861476 −0.430738 0.902477i \(-0.641747\pi\)
−0.430738 + 0.902477i \(0.641747\pi\)
\(504\) 0 0
\(505\) 16580.4 1.46103
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 10546.5 0.918403 0.459201 0.888332i \(-0.348136\pi\)
0.459201 + 0.888332i \(0.348136\pi\)
\(510\) 0 0
\(511\) 14480.7 1.25360
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 11474.9 0.981831
\(516\) 0 0
\(517\) −32474.1 −2.76250
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1157.10 −0.0973005 −0.0486503 0.998816i \(-0.515492\pi\)
−0.0486503 + 0.998816i \(0.515492\pi\)
\(522\) 0 0
\(523\) 19193.0 1.60468 0.802342 0.596865i \(-0.203587\pi\)
0.802342 + 0.596865i \(0.203587\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1104.90 −0.0913285
\(528\) 0 0
\(529\) 23734.6 1.95074
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 450.593 0.0366179
\(534\) 0 0
\(535\) −20890.5 −1.68818
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −5525.28 −0.441541
\(540\) 0 0
\(541\) −7809.48 −0.620620 −0.310310 0.950635i \(-0.600433\pi\)
−0.310310 + 0.950635i \(0.600433\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 4879.01 0.383475
\(546\) 0 0
\(547\) 4979.12 0.389199 0.194599 0.980883i \(-0.437659\pi\)
0.194599 + 0.980883i \(0.437659\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −6071.36 −0.469417
\(552\) 0 0
\(553\) −17457.8 −1.34246
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −24508.2 −1.86435 −0.932176 0.362005i \(-0.882092\pi\)
−0.932176 + 0.362005i \(0.882092\pi\)
\(558\) 0 0
\(559\) −5184.83 −0.392299
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −14957.3 −1.11967 −0.559836 0.828604i \(-0.689136\pi\)
−0.559836 + 0.828604i \(0.689136\pi\)
\(564\) 0 0
\(565\) −15406.3 −1.14716
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −5756.83 −0.424146 −0.212073 0.977254i \(-0.568021\pi\)
−0.212073 + 0.977254i \(0.568021\pi\)
\(570\) 0 0
\(571\) −7292.96 −0.534502 −0.267251 0.963627i \(-0.586115\pi\)
−0.267251 + 0.963627i \(0.586115\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8946.34 0.648849
\(576\) 0 0
\(577\) 20749.7 1.49709 0.748544 0.663085i \(-0.230753\pi\)
0.748544 + 0.663085i \(0.230753\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −6115.49 −0.436684
\(582\) 0 0
\(583\) 20117.0 1.42909
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2046.37 −0.143889 −0.0719444 0.997409i \(-0.522920\pi\)
−0.0719444 + 0.997409i \(0.522920\pi\)
\(588\) 0 0
\(589\) −1206.96 −0.0844343
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −12664.1 −0.876988 −0.438494 0.898734i \(-0.644488\pi\)
−0.438494 + 0.898734i \(0.644488\pi\)
\(594\) 0 0
\(595\) −4811.06 −0.331486
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −5788.48 −0.394843 −0.197421 0.980319i \(-0.563257\pi\)
−0.197421 + 0.980319i \(0.563257\pi\)
\(600\) 0 0
\(601\) −19622.2 −1.33179 −0.665897 0.746044i \(-0.731951\pi\)
−0.665897 + 0.746044i \(0.731951\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 23281.8 1.56453
\(606\) 0 0
\(607\) −11386.5 −0.761389 −0.380695 0.924701i \(-0.624315\pi\)
−0.380695 + 0.924701i \(0.624315\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −7576.04 −0.501627
\(612\) 0 0
\(613\) −16046.0 −1.05725 −0.528623 0.848857i \(-0.677291\pi\)
−0.528623 + 0.848857i \(0.677291\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 25943.8 1.69280 0.846402 0.532545i \(-0.178764\pi\)
0.846402 + 0.532545i \(0.178764\pi\)
\(618\) 0 0
\(619\) 22044.1 1.43139 0.715693 0.698415i \(-0.246111\pi\)
0.715693 + 0.698415i \(0.246111\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 11648.6 0.749101
\(624\) 0 0
\(625\) −19297.6 −1.23505
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3630.71 0.230152
\(630\) 0 0
\(631\) −6948.74 −0.438392 −0.219196 0.975681i \(-0.570343\pi\)
−0.219196 + 0.975681i \(0.570343\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 9702.70 0.606362
\(636\) 0 0
\(637\) −1289.02 −0.0801770
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 17916.9 1.10402 0.552009 0.833838i \(-0.313861\pi\)
0.552009 + 0.833838i \(0.313861\pi\)
\(642\) 0 0
\(643\) 10248.9 0.628581 0.314290 0.949327i \(-0.398233\pi\)
0.314290 + 0.949327i \(0.398233\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 13034.7 0.792035 0.396018 0.918243i \(-0.370392\pi\)
0.396018 + 0.918243i \(0.370392\pi\)
\(648\) 0 0
\(649\) −22121.4 −1.33797
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −5517.54 −0.330656 −0.165328 0.986239i \(-0.552868\pi\)
−0.165328 + 0.986239i \(0.552868\pi\)
\(654\) 0 0
\(655\) −27973.0 −1.66869
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 31919.9 1.88683 0.943416 0.331610i \(-0.107592\pi\)
0.943416 + 0.331610i \(0.107592\pi\)
\(660\) 0 0
\(661\) −3517.33 −0.206972 −0.103486 0.994631i \(-0.533000\pi\)
−0.103486 + 0.994631i \(0.533000\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −5255.45 −0.306463
\(666\) 0 0
\(667\) 44856.6 2.60398
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −11775.6 −0.677484
\(672\) 0 0
\(673\) −33399.0 −1.91298 −0.956490 0.291766i \(-0.905757\pi\)
−0.956490 + 0.291766i \(0.905757\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 15843.8 0.899450 0.449725 0.893167i \(-0.351522\pi\)
0.449725 + 0.893167i \(0.351522\pi\)
\(678\) 0 0
\(679\) −2705.09 −0.152890
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 10145.6 0.568392 0.284196 0.958766i \(-0.408273\pi\)
0.284196 + 0.958766i \(0.408273\pi\)
\(684\) 0 0
\(685\) 3371.77 0.188071
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 4693.20 0.259502
\(690\) 0 0
\(691\) 18650.9 1.02679 0.513396 0.858152i \(-0.328387\pi\)
0.513396 + 0.858152i \(0.328387\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5740.61 0.313315
\(696\) 0 0
\(697\) −813.745 −0.0442221
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −25182.9 −1.35684 −0.678420 0.734675i \(-0.737335\pi\)
−0.678420 + 0.734675i \(0.737335\pi\)
\(702\) 0 0
\(703\) 3966.07 0.212778
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 19729.4 1.04951
\(708\) 0 0
\(709\) 16697.6 0.884473 0.442236 0.896899i \(-0.354185\pi\)
0.442236 + 0.896899i \(0.354185\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 8917.27 0.468379
\(714\) 0 0
\(715\) 9506.45 0.497232
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −22657.4 −1.17521 −0.587606 0.809147i \(-0.699930\pi\)
−0.587606 + 0.809147i \(0.699930\pi\)
\(720\) 0 0
\(721\) 13654.2 0.705285
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 11177.8 0.572599
\(726\) 0 0
\(727\) −32052.8 −1.63518 −0.817588 0.575803i \(-0.804690\pi\)
−0.817588 + 0.575803i \(0.804690\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 9363.52 0.473765
\(732\) 0 0
\(733\) 22728.1 1.14527 0.572634 0.819811i \(-0.305922\pi\)
0.572634 + 0.819811i \(0.305922\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4782.62 0.239037
\(738\) 0 0
\(739\) 3741.58 0.186247 0.0931234 0.995655i \(-0.470315\pi\)
0.0931234 + 0.995655i \(0.470315\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 23932.4 1.18169 0.590844 0.806786i \(-0.298795\pi\)
0.590844 + 0.806786i \(0.298795\pi\)
\(744\) 0 0
\(745\) 44705.8 2.19852
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −24858.1 −1.21268
\(750\) 0 0
\(751\) −15777.6 −0.766623 −0.383311 0.923619i \(-0.625216\pi\)
−0.383311 + 0.923619i \(0.625216\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 42988.3 2.07219
\(756\) 0 0
\(757\) 32474.4 1.55919 0.779593 0.626287i \(-0.215426\pi\)
0.779593 + 0.626287i \(0.215426\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −24471.4 −1.16569 −0.582844 0.812584i \(-0.698060\pi\)
−0.582844 + 0.812584i \(0.698060\pi\)
\(762\) 0 0
\(763\) 5805.66 0.275464
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −5160.80 −0.242954
\(768\) 0 0
\(769\) 5185.33 0.243157 0.121578 0.992582i \(-0.461204\pi\)
0.121578 + 0.992582i \(0.461204\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −6218.64 −0.289352 −0.144676 0.989479i \(-0.546214\pi\)
−0.144676 + 0.989479i \(0.546214\pi\)
\(774\) 0 0
\(775\) 2222.10 0.102994
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −888.910 −0.0408838
\(780\) 0 0
\(781\) 36309.5 1.66358
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 14098.7 0.641026
\(786\) 0 0
\(787\) −15933.8 −0.721702 −0.360851 0.932623i \(-0.617514\pi\)
−0.360851 + 0.932623i \(0.617514\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −18332.3 −0.824049
\(792\) 0 0
\(793\) −2747.19 −0.123021
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 825.379 0.0366831 0.0183415 0.999832i \(-0.494161\pi\)
0.0183415 + 0.999832i \(0.494161\pi\)
\(798\) 0 0
\(799\) 13681.9 0.605796
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 51674.0 2.27090
\(804\) 0 0
\(805\) 38828.5 1.70003
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −23981.8 −1.04222 −0.521110 0.853490i \(-0.674482\pi\)
−0.521110 + 0.853490i \(0.674482\pi\)
\(810\) 0 0
\(811\) −1359.77 −0.0588753 −0.0294376 0.999567i \(-0.509372\pi\)
−0.0294376 + 0.999567i \(0.509372\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 26659.4 1.14581
\(816\) 0 0
\(817\) 10228.4 0.438001
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 29276.9 1.24455 0.622273 0.782801i \(-0.286209\pi\)
0.622273 + 0.782801i \(0.286209\pi\)
\(822\) 0 0
\(823\) −3971.15 −0.168196 −0.0840982 0.996457i \(-0.526801\pi\)
−0.0840982 + 0.996457i \(0.526801\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 18920.5 0.795564 0.397782 0.917480i \(-0.369780\pi\)
0.397782 + 0.917480i \(0.369780\pi\)
\(828\) 0 0
\(829\) 29902.3 1.25277 0.626387 0.779512i \(-0.284533\pi\)
0.626387 + 0.779512i \(0.284533\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2327.90 0.0968269
\(834\) 0 0
\(835\) −3932.95 −0.163001
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −41125.0 −1.69224 −0.846121 0.532991i \(-0.821068\pi\)
−0.846121 + 0.532991i \(0.821068\pi\)
\(840\) 0 0
\(841\) 31656.2 1.29797
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2217.80 0.0902897
\(846\) 0 0
\(847\) 27703.6 1.12386
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −29302.2 −1.18034
\(852\) 0 0
\(853\) 2252.79 0.0904266 0.0452133 0.998977i \(-0.485603\pi\)
0.0452133 + 0.998977i \(0.485603\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −16608.6 −0.662005 −0.331002 0.943630i \(-0.607387\pi\)
−0.331002 + 0.943630i \(0.607387\pi\)
\(858\) 0 0
\(859\) −14112.0 −0.560529 −0.280265 0.959923i \(-0.590422\pi\)
−0.280265 + 0.959923i \(0.590422\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −40154.6 −1.58387 −0.791934 0.610607i \(-0.790925\pi\)
−0.791934 + 0.610607i \(0.790925\pi\)
\(864\) 0 0
\(865\) −31116.9 −1.22313
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −62297.6 −2.43188
\(870\) 0 0
\(871\) 1115.76 0.0434054
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −15939.8 −0.615846
\(876\) 0 0
\(877\) −22495.6 −0.866161 −0.433080 0.901355i \(-0.642573\pi\)
−0.433080 + 0.901355i \(0.642573\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 42296.3 1.61748 0.808740 0.588166i \(-0.200150\pi\)
0.808740 + 0.588166i \(0.200150\pi\)
\(882\) 0 0
\(883\) −37440.9 −1.42694 −0.713469 0.700687i \(-0.752877\pi\)
−0.713469 + 0.700687i \(0.752877\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −3372.82 −0.127675 −0.0638377 0.997960i \(-0.520334\pi\)
−0.0638377 + 0.997960i \(0.520334\pi\)
\(888\) 0 0
\(889\) 11545.5 0.435572
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 14945.7 0.560066
\(894\) 0 0
\(895\) 3275.70 0.122340
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 11141.5 0.413337
\(900\) 0 0
\(901\) −8475.65 −0.313390
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −41356.8 −1.51906
\(906\) 0 0
\(907\) 30130.3 1.10304 0.551522 0.834160i \(-0.314047\pi\)
0.551522 + 0.834160i \(0.314047\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 26089.9 0.948844 0.474422 0.880297i \(-0.342657\pi\)
0.474422 + 0.880297i \(0.342657\pi\)
\(912\) 0 0
\(913\) −21822.9 −0.791055
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −33285.8 −1.19868
\(918\) 0 0
\(919\) −5142.55 −0.184589 −0.0922944 0.995732i \(-0.529420\pi\)
−0.0922944 + 0.995732i \(0.529420\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 8470.83 0.302081
\(924\) 0 0
\(925\) −7301.83 −0.259549
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −23311.6 −0.823282 −0.411641 0.911346i \(-0.635044\pi\)
−0.411641 + 0.911346i \(0.635044\pi\)
\(930\) 0 0
\(931\) 2542.92 0.0895176
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −17168.1 −0.600489
\(936\) 0 0
\(937\) −17214.9 −0.600199 −0.300099 0.953908i \(-0.597020\pi\)
−0.300099 + 0.953908i \(0.597020\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 27871.2 0.965541 0.482770 0.875747i \(-0.339631\pi\)
0.482770 + 0.875747i \(0.339631\pi\)
\(942\) 0 0
\(943\) 6567.47 0.226793
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 14956.7 0.513227 0.256614 0.966514i \(-0.417393\pi\)
0.256614 + 0.966514i \(0.417393\pi\)
\(948\) 0 0
\(949\) 12055.3 0.412361
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 2056.14 0.0698898 0.0349449 0.999389i \(-0.488874\pi\)
0.0349449 + 0.999389i \(0.488874\pi\)
\(954\) 0 0
\(955\) 62196.4 2.10746
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 4012.16 0.135098
\(960\) 0 0
\(961\) −27576.1 −0.925653
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 8357.03 0.278780
\(966\) 0 0
\(967\) 25282.1 0.840764 0.420382 0.907347i \(-0.361896\pi\)
0.420382 + 0.907347i \(0.361896\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −22919.6 −0.757493 −0.378747 0.925500i \(-0.623645\pi\)
−0.378747 + 0.925500i \(0.623645\pi\)
\(972\) 0 0
\(973\) 6830.91 0.225066
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −42964.8 −1.40693 −0.703463 0.710732i \(-0.748364\pi\)
−0.703463 + 0.710732i \(0.748364\pi\)
\(978\) 0 0
\(979\) 41567.5 1.35700
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 53757.9 1.74426 0.872132 0.489271i \(-0.162737\pi\)
0.872132 + 0.489271i \(0.162737\pi\)
\(984\) 0 0
\(985\) 39384.2 1.27399
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −75569.8 −2.42971
\(990\) 0 0
\(991\) −28021.7 −0.898224 −0.449112 0.893475i \(-0.648260\pi\)
−0.449112 + 0.893475i \(0.648260\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −8516.35 −0.271343
\(996\) 0 0
\(997\) 7057.01 0.224170 0.112085 0.993699i \(-0.464247\pi\)
0.112085 + 0.993699i \(0.464247\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.4.a.j.1.2 2
3.2 odd 2 312.4.a.d.1.1 2
4.3 odd 2 1872.4.a.bi.1.2 2
12.11 even 2 624.4.a.j.1.1 2
24.5 odd 2 2496.4.a.ba.1.2 2
24.11 even 2 2496.4.a.bj.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.a.d.1.1 2 3.2 odd 2
624.4.a.j.1.1 2 12.11 even 2
936.4.a.j.1.2 2 1.1 even 1 trivial
1872.4.a.bi.1.2 2 4.3 odd 2
2496.4.a.ba.1.2 2 24.5 odd 2
2496.4.a.bj.1.2 2 24.11 even 2