Properties

Label 936.2.q.g.625.10
Level $936$
Weight $2$
Character 936.625
Analytic conductor $7.474$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(313,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.313"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,0,0,0,-3,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 625.10
Character \(\chi\) \(=\) 936.625
Dual form 936.2.q.g.313.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41854 - 0.993855i) q^{3} +(-0.804884 + 1.39410i) q^{5} +(-1.44881 - 2.50941i) q^{7} +(1.02450 - 2.81964i) q^{9} +(-2.83578 - 4.91172i) q^{11} +(-0.500000 + 0.866025i) q^{13} +(0.243775 + 2.77752i) q^{15} +4.32766 q^{17} -8.25781 q^{19} +(-4.54918 - 2.11979i) q^{21} +(-0.834069 + 1.44465i) q^{23} +(1.20432 + 2.08595i) q^{25} +(-1.34902 - 5.01798i) q^{27} +(-2.99925 - 5.19486i) q^{29} +(-2.15875 + 3.73906i) q^{31} +(-8.90421 - 4.14911i) q^{33} +4.66449 q^{35} +1.37003 q^{37} +(0.151435 + 1.72542i) q^{39} +(3.62998 - 6.28730i) q^{41} +(-3.95061 - 6.84266i) q^{43} +(3.10626 + 3.69775i) q^{45} +(-1.90852 - 3.30565i) q^{47} +(-0.698094 + 1.20913i) q^{49} +(6.13896 - 4.30107i) q^{51} +7.26904 q^{53} +9.12991 q^{55} +(-11.7140 + 8.20707i) q^{57} +(5.93765 - 10.2843i) q^{59} +(-0.141636 - 0.245321i) q^{61} +(-8.55995 + 1.51423i) q^{63} +(-0.804884 - 1.39410i) q^{65} +(-1.31735 + 2.28172i) q^{67} +(0.252614 + 2.87824i) q^{69} +4.10735 q^{71} +7.43820 q^{73} +(3.78151 + 1.76208i) q^{75} +(-8.21702 + 14.2323i) q^{77} +(1.54994 + 2.68458i) q^{79} +(-6.90079 - 5.77747i) q^{81} +(4.06719 + 7.04459i) q^{83} +(-3.48327 + 6.03320i) q^{85} +(-9.41749 - 4.38828i) q^{87} -15.7980 q^{89} +2.89762 q^{91} +(0.653819 + 7.44949i) q^{93} +(6.64658 - 11.5122i) q^{95} +(-0.917545 - 1.58924i) q^{97} +(-16.7546 + 2.96383i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 3 q^{5} - 4 q^{7} - 4 q^{9} + 5 q^{11} - 11 q^{13} + 5 q^{15} + 8 q^{17} + 10 q^{19} + 4 q^{21} + 9 q^{23} - 24 q^{25} - 12 q^{27} - 16 q^{29} - q^{31} + 9 q^{33} + 18 q^{37} + 3 q^{39} - 6 q^{41}+ \cdots - 109 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.41854 0.993855i 0.818994 0.573803i
\(4\) 0 0
\(5\) −0.804884 + 1.39410i −0.359955 + 0.623461i −0.987953 0.154755i \(-0.950541\pi\)
0.627998 + 0.778215i \(0.283875\pi\)
\(6\) 0 0
\(7\) −1.44881 2.50941i −0.547598 0.948468i −0.998438 0.0558633i \(-0.982209\pi\)
0.450840 0.892605i \(-0.351124\pi\)
\(8\) 0 0
\(9\) 1.02450 2.81964i 0.341501 0.939881i
\(10\) 0 0
\(11\) −2.83578 4.91172i −0.855021 1.48094i −0.876626 0.481173i \(-0.840211\pi\)
0.0216049 0.999767i \(-0.493122\pi\)
\(12\) 0 0
\(13\) −0.500000 + 0.866025i −0.138675 + 0.240192i
\(14\) 0 0
\(15\) 0.243775 + 2.77752i 0.0629424 + 0.717153i
\(16\) 0 0
\(17\) 4.32766 1.04961 0.524806 0.851222i \(-0.324138\pi\)
0.524806 + 0.851222i \(0.324138\pi\)
\(18\) 0 0
\(19\) −8.25781 −1.89447 −0.947236 0.320538i \(-0.896136\pi\)
−0.947236 + 0.320538i \(0.896136\pi\)
\(20\) 0 0
\(21\) −4.54918 2.11979i −0.992713 0.462576i
\(22\) 0 0
\(23\) −0.834069 + 1.44465i −0.173915 + 0.301230i −0.939785 0.341765i \(-0.888975\pi\)
0.765870 + 0.642996i \(0.222309\pi\)
\(24\) 0 0
\(25\) 1.20432 + 2.08595i 0.240865 + 0.417190i
\(26\) 0 0
\(27\) −1.34902 5.01798i −0.259619 0.965711i
\(28\) 0 0
\(29\) −2.99925 5.19486i −0.556947 0.964661i −0.997749 0.0670564i \(-0.978639\pi\)
0.440802 0.897604i \(-0.354694\pi\)
\(30\) 0 0
\(31\) −2.15875 + 3.73906i −0.387723 + 0.671555i −0.992143 0.125110i \(-0.960072\pi\)
0.604420 + 0.796666i \(0.293405\pi\)
\(32\) 0 0
\(33\) −8.90421 4.14911i −1.55002 0.722267i
\(34\) 0 0
\(35\) 4.66449 0.788443
\(36\) 0 0
\(37\) 1.37003 0.225231 0.112616 0.993639i \(-0.464077\pi\)
0.112616 + 0.993639i \(0.464077\pi\)
\(38\) 0 0
\(39\) 0.151435 + 1.72542i 0.0242490 + 0.276288i
\(40\) 0 0
\(41\) 3.62998 6.28730i 0.566907 0.981911i −0.429963 0.902847i \(-0.641473\pi\)
0.996869 0.0790648i \(-0.0251934\pi\)
\(42\) 0 0
\(43\) −3.95061 6.84266i −0.602463 1.04350i −0.992447 0.122674i \(-0.960853\pi\)
0.389984 0.920821i \(-0.372480\pi\)
\(44\) 0 0
\(45\) 3.10626 + 3.69775i 0.463054 + 0.551227i
\(46\) 0 0
\(47\) −1.90852 3.30565i −0.278386 0.482179i 0.692598 0.721324i \(-0.256466\pi\)
−0.970984 + 0.239145i \(0.923133\pi\)
\(48\) 0 0
\(49\) −0.698094 + 1.20913i −0.0997277 + 0.172733i
\(50\) 0 0
\(51\) 6.13896 4.30107i 0.859626 0.602271i
\(52\) 0 0
\(53\) 7.26904 0.998480 0.499240 0.866464i \(-0.333613\pi\)
0.499240 + 0.866464i \(0.333613\pi\)
\(54\) 0 0
\(55\) 9.12991 1.23108
\(56\) 0 0
\(57\) −11.7140 + 8.20707i −1.55156 + 1.08705i
\(58\) 0 0
\(59\) 5.93765 10.2843i 0.773016 1.33890i −0.162886 0.986645i \(-0.552080\pi\)
0.935903 0.352259i \(-0.114586\pi\)
\(60\) 0 0
\(61\) −0.141636 0.245321i −0.0181347 0.0314102i 0.856816 0.515623i \(-0.172439\pi\)
−0.874950 + 0.484213i \(0.839106\pi\)
\(62\) 0 0
\(63\) −8.55995 + 1.51423i −1.07845 + 0.190775i
\(64\) 0 0
\(65\) −0.804884 1.39410i −0.0998336 0.172917i
\(66\) 0 0
\(67\) −1.31735 + 2.28172i −0.160940 + 0.278756i −0.935206 0.354104i \(-0.884786\pi\)
0.774266 + 0.632860i \(0.218119\pi\)
\(68\) 0 0
\(69\) 0.252614 + 2.87824i 0.0304112 + 0.346499i
\(70\) 0 0
\(71\) 4.10735 0.487452 0.243726 0.969844i \(-0.421630\pi\)
0.243726 + 0.969844i \(0.421630\pi\)
\(72\) 0 0
\(73\) 7.43820 0.870575 0.435288 0.900291i \(-0.356647\pi\)
0.435288 + 0.900291i \(0.356647\pi\)
\(74\) 0 0
\(75\) 3.78151 + 1.76208i 0.436651 + 0.203467i
\(76\) 0 0
\(77\) −8.21702 + 14.2323i −0.936416 + 1.62192i
\(78\) 0 0
\(79\) 1.54994 + 2.68458i 0.174382 + 0.302039i 0.939947 0.341320i \(-0.110874\pi\)
−0.765565 + 0.643358i \(0.777541\pi\)
\(80\) 0 0
\(81\) −6.90079 5.77747i −0.766754 0.641941i
\(82\) 0 0
\(83\) 4.06719 + 7.04459i 0.446433 + 0.773244i 0.998151 0.0607867i \(-0.0193609\pi\)
−0.551718 + 0.834031i \(0.686028\pi\)
\(84\) 0 0
\(85\) −3.48327 + 6.03320i −0.377814 + 0.654392i
\(86\) 0 0
\(87\) −9.41749 4.38828i −1.00966 0.470473i
\(88\) 0 0
\(89\) −15.7980 −1.67459 −0.837293 0.546755i \(-0.815863\pi\)
−0.837293 + 0.546755i \(0.815863\pi\)
\(90\) 0 0
\(91\) 2.89762 0.303753
\(92\) 0 0
\(93\) 0.653819 + 7.44949i 0.0677979 + 0.772476i
\(94\) 0 0
\(95\) 6.64658 11.5122i 0.681925 1.18113i
\(96\) 0 0
\(97\) −0.917545 1.58924i −0.0931626 0.161362i 0.815678 0.578507i \(-0.196364\pi\)
−0.908840 + 0.417144i \(0.863031\pi\)
\(98\) 0 0
\(99\) −16.7546 + 2.96383i −1.68390 + 0.297876i
\(100\) 0 0
\(101\) 0.774536 + 1.34154i 0.0770692 + 0.133488i 0.901984 0.431769i \(-0.142110\pi\)
−0.824915 + 0.565257i \(0.808777\pi\)
\(102\) 0 0
\(103\) −8.18778 + 14.1817i −0.806766 + 1.39736i 0.108326 + 0.994115i \(0.465451\pi\)
−0.915092 + 0.403245i \(0.867882\pi\)
\(104\) 0 0
\(105\) 6.61676 4.63583i 0.645730 0.452411i
\(106\) 0 0
\(107\) 9.74315 0.941906 0.470953 0.882158i \(-0.343910\pi\)
0.470953 + 0.882158i \(0.343910\pi\)
\(108\) 0 0
\(109\) 17.5510 1.68108 0.840538 0.541752i \(-0.182239\pi\)
0.840538 + 0.541752i \(0.182239\pi\)
\(110\) 0 0
\(111\) 1.94344 1.36161i 0.184463 0.129238i
\(112\) 0 0
\(113\) −3.41327 + 5.91196i −0.321094 + 0.556151i −0.980714 0.195448i \(-0.937384\pi\)
0.659620 + 0.751599i \(0.270717\pi\)
\(114\) 0 0
\(115\) −1.34266 2.32555i −0.125204 0.216859i
\(116\) 0 0
\(117\) 1.92963 + 2.29707i 0.178395 + 0.212364i
\(118\) 0 0
\(119\) −6.26996 10.8599i −0.574766 0.995524i
\(120\) 0 0
\(121\) −10.5833 + 18.3309i −0.962121 + 1.66644i
\(122\) 0 0
\(123\) −1.09941 12.5264i −0.0991304 1.12947i
\(124\) 0 0
\(125\) −11.9262 −1.06671
\(126\) 0 0
\(127\) 17.5901 1.56086 0.780432 0.625240i \(-0.214999\pi\)
0.780432 + 0.625240i \(0.214999\pi\)
\(128\) 0 0
\(129\) −12.4047 5.78024i −1.09217 0.508922i
\(130\) 0 0
\(131\) 7.07583 12.2557i 0.618219 1.07079i −0.371592 0.928396i \(-0.621188\pi\)
0.989811 0.142390i \(-0.0454787\pi\)
\(132\) 0 0
\(133\) 11.9640 + 20.7222i 1.03741 + 1.79685i
\(134\) 0 0
\(135\) 8.08138 + 2.15822i 0.695534 + 0.185750i
\(136\) 0 0
\(137\) 3.59328 + 6.22374i 0.306994 + 0.531730i 0.977703 0.209991i \(-0.0673434\pi\)
−0.670709 + 0.741721i \(0.734010\pi\)
\(138\) 0 0
\(139\) 5.98564 10.3674i 0.507696 0.879355i −0.492265 0.870446i \(-0.663831\pi\)
0.999960 0.00890898i \(-0.00283585\pi\)
\(140\) 0 0
\(141\) −5.99265 2.79240i −0.504672 0.235163i
\(142\) 0 0
\(143\) 5.67157 0.474280
\(144\) 0 0
\(145\) 9.65620 0.801904
\(146\) 0 0
\(147\) 0.211431 + 2.40901i 0.0174386 + 0.198692i
\(148\) 0 0
\(149\) 5.98534 10.3669i 0.490338 0.849291i −0.509600 0.860412i \(-0.670207\pi\)
0.999938 + 0.0111205i \(0.00353984\pi\)
\(150\) 0 0
\(151\) 11.2826 + 19.5421i 0.918169 + 1.59032i 0.802194 + 0.597063i \(0.203666\pi\)
0.115975 + 0.993252i \(0.463001\pi\)
\(152\) 0 0
\(153\) 4.43370 12.2025i 0.358444 0.986512i
\(154\) 0 0
\(155\) −3.47509 6.01902i −0.279126 0.483460i
\(156\) 0 0
\(157\) −5.00929 + 8.67634i −0.399785 + 0.692447i −0.993699 0.112081i \(-0.964248\pi\)
0.593914 + 0.804528i \(0.297582\pi\)
\(158\) 0 0
\(159\) 10.3114 7.22438i 0.817749 0.572930i
\(160\) 0 0
\(161\) 4.83363 0.380943
\(162\) 0 0
\(163\) −16.8597 −1.32055 −0.660276 0.751023i \(-0.729561\pi\)
−0.660276 + 0.751023i \(0.729561\pi\)
\(164\) 0 0
\(165\) 12.9511 9.07381i 1.00824 0.706395i
\(166\) 0 0
\(167\) 7.76568 13.4506i 0.600927 1.04084i −0.391754 0.920070i \(-0.628132\pi\)
0.992681 0.120766i \(-0.0385350\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) 0 0
\(171\) −8.46015 + 23.2841i −0.646964 + 1.78058i
\(172\) 0 0
\(173\) −5.99609 10.3855i −0.455874 0.789597i 0.542864 0.839821i \(-0.317340\pi\)
−0.998738 + 0.0502237i \(0.984007\pi\)
\(174\) 0 0
\(175\) 3.48967 6.04428i 0.263794 0.456905i
\(176\) 0 0
\(177\) −1.79833 20.4899i −0.135171 1.54011i
\(178\) 0 0
\(179\) −0.296088 −0.0221307 −0.0110653 0.999939i \(-0.503522\pi\)
−0.0110653 + 0.999939i \(0.503522\pi\)
\(180\) 0 0
\(181\) −22.7246 −1.68910 −0.844552 0.535473i \(-0.820133\pi\)
−0.844552 + 0.535473i \(0.820133\pi\)
\(182\) 0 0
\(183\) −0.444730 0.207232i −0.0328754 0.0153190i
\(184\) 0 0
\(185\) −1.10271 + 1.90995i −0.0810731 + 0.140423i
\(186\) 0 0
\(187\) −12.2723 21.2563i −0.897441 1.55441i
\(188\) 0 0
\(189\) −10.6377 + 10.6553i −0.773779 + 0.775062i
\(190\) 0 0
\(191\) 3.21533 + 5.56911i 0.232653 + 0.402967i 0.958588 0.284797i \(-0.0919260\pi\)
−0.725935 + 0.687763i \(0.758593\pi\)
\(192\) 0 0
\(193\) 3.76630 6.52342i 0.271104 0.469566i −0.698041 0.716058i \(-0.745945\pi\)
0.969145 + 0.246492i \(0.0792779\pi\)
\(194\) 0 0
\(195\) −2.52729 1.17765i −0.180983 0.0843330i
\(196\) 0 0
\(197\) 14.1456 1.00783 0.503916 0.863753i \(-0.331892\pi\)
0.503916 + 0.863753i \(0.331892\pi\)
\(198\) 0 0
\(199\) 0.643592 0.0456230 0.0228115 0.999740i \(-0.492738\pi\)
0.0228115 + 0.999740i \(0.492738\pi\)
\(200\) 0 0
\(201\) 0.398985 + 4.54595i 0.0281422 + 0.320647i
\(202\) 0 0
\(203\) −8.69069 + 15.0527i −0.609967 + 1.05649i
\(204\) 0 0
\(205\) 5.84342 + 10.1211i 0.408122 + 0.706888i
\(206\) 0 0
\(207\) 3.21889 + 3.83183i 0.223729 + 0.266330i
\(208\) 0 0
\(209\) 23.4174 + 40.5601i 1.61981 + 2.80560i
\(210\) 0 0
\(211\) −10.3451 + 17.9183i −0.712187 + 1.23354i 0.251848 + 0.967767i \(0.418962\pi\)
−0.964035 + 0.265777i \(0.914372\pi\)
\(212\) 0 0
\(213\) 5.82643 4.08211i 0.399220 0.279701i
\(214\) 0 0
\(215\) 12.7191 0.867438
\(216\) 0 0
\(217\) 12.5105 0.849265
\(218\) 0 0
\(219\) 10.5514 7.39249i 0.712996 0.499538i
\(220\) 0 0
\(221\) −2.16383 + 3.74787i −0.145555 + 0.252109i
\(222\) 0 0
\(223\) −1.66319 2.88073i −0.111375 0.192908i 0.804950 0.593343i \(-0.202192\pi\)
−0.916325 + 0.400435i \(0.868859\pi\)
\(224\) 0 0
\(225\) 7.11547 1.25870i 0.474364 0.0839135i
\(226\) 0 0
\(227\) 4.35549 + 7.54393i 0.289084 + 0.500708i 0.973591 0.228298i \(-0.0733160\pi\)
−0.684507 + 0.729006i \(0.739983\pi\)
\(228\) 0 0
\(229\) 9.82878 17.0240i 0.649504 1.12497i −0.333737 0.942666i \(-0.608310\pi\)
0.983241 0.182308i \(-0.0583569\pi\)
\(230\) 0 0
\(231\) 2.48868 + 28.3556i 0.163743 + 1.86566i
\(232\) 0 0
\(233\) 3.31654 0.217274 0.108637 0.994081i \(-0.465351\pi\)
0.108637 + 0.994081i \(0.465351\pi\)
\(234\) 0 0
\(235\) 6.14455 0.400826
\(236\) 0 0
\(237\) 4.86673 + 2.26776i 0.316128 + 0.147307i
\(238\) 0 0
\(239\) −7.52273 + 13.0297i −0.486605 + 0.842824i −0.999881 0.0153991i \(-0.995098\pi\)
0.513277 + 0.858223i \(0.328431\pi\)
\(240\) 0 0
\(241\) 0.101896 + 0.176490i 0.00656372 + 0.0113687i 0.869289 0.494305i \(-0.164577\pi\)
−0.862725 + 0.505674i \(0.831244\pi\)
\(242\) 0 0
\(243\) −15.5310 1.33717i −0.996314 0.0857797i
\(244\) 0 0
\(245\) −1.12377 1.94643i −0.0717950 0.124353i
\(246\) 0 0
\(247\) 4.12890 7.15147i 0.262716 0.455037i
\(248\) 0 0
\(249\) 12.7708 + 5.95082i 0.809315 + 0.377118i
\(250\) 0 0
\(251\) 18.6719 1.17856 0.589280 0.807929i \(-0.299411\pi\)
0.589280 + 0.807929i \(0.299411\pi\)
\(252\) 0 0
\(253\) 9.46096 0.594805
\(254\) 0 0
\(255\) 1.05498 + 12.0202i 0.0660652 + 0.752733i
\(256\) 0 0
\(257\) 13.0755 22.6475i 0.815629 1.41271i −0.0932465 0.995643i \(-0.529724\pi\)
0.908875 0.417068i \(-0.136942\pi\)
\(258\) 0 0
\(259\) −1.98491 3.43796i −0.123336 0.213624i
\(260\) 0 0
\(261\) −17.7204 + 3.13468i −1.09686 + 0.194032i
\(262\) 0 0
\(263\) 14.2962 + 24.7618i 0.881544 + 1.52688i 0.849624 + 0.527389i \(0.176829\pi\)
0.0319205 + 0.999490i \(0.489838\pi\)
\(264\) 0 0
\(265\) −5.85074 + 10.1338i −0.359408 + 0.622513i
\(266\) 0 0
\(267\) −22.4101 + 15.7009i −1.37147 + 0.960882i
\(268\) 0 0
\(269\) −4.59176 −0.279964 −0.139982 0.990154i \(-0.544705\pi\)
−0.139982 + 0.990154i \(0.544705\pi\)
\(270\) 0 0
\(271\) −31.1500 −1.89223 −0.946115 0.323830i \(-0.895029\pi\)
−0.946115 + 0.323830i \(0.895029\pi\)
\(272\) 0 0
\(273\) 4.11038 2.87981i 0.248772 0.174294i
\(274\) 0 0
\(275\) 6.83040 11.8306i 0.411889 0.713412i
\(276\) 0 0
\(277\) −2.85590 4.94657i −0.171595 0.297210i 0.767383 0.641189i \(-0.221559\pi\)
−0.938977 + 0.343979i \(0.888225\pi\)
\(278\) 0 0
\(279\) 8.33118 + 9.91758i 0.498775 + 0.593750i
\(280\) 0 0
\(281\) −5.70085 9.87416i −0.340084 0.589043i 0.644364 0.764719i \(-0.277122\pi\)
−0.984448 + 0.175676i \(0.943789\pi\)
\(282\) 0 0
\(283\) 5.02801 8.70877i 0.298884 0.517682i −0.676997 0.735986i \(-0.736719\pi\)
0.975881 + 0.218304i \(0.0700523\pi\)
\(284\) 0 0
\(285\) −2.01305 22.9363i −0.119243 1.35863i
\(286\) 0 0
\(287\) −21.0366 −1.24175
\(288\) 0 0
\(289\) 1.72868 0.101687
\(290\) 0 0
\(291\) −2.88104 1.34248i −0.168890 0.0786978i
\(292\) 0 0
\(293\) −8.78165 + 15.2103i −0.513029 + 0.888593i 0.486857 + 0.873482i \(0.338143\pi\)
−0.999886 + 0.0151108i \(0.995190\pi\)
\(294\) 0 0
\(295\) 9.55824 + 16.5554i 0.556502 + 0.963890i
\(296\) 0 0
\(297\) −20.8214 + 20.8559i −1.20818 + 1.21018i
\(298\) 0 0
\(299\) −0.834069 1.44465i −0.0482355 0.0835463i
\(300\) 0 0
\(301\) −11.4474 + 19.8274i −0.659815 + 1.14283i
\(302\) 0 0
\(303\) 2.43200 + 1.13324i 0.139715 + 0.0651031i
\(304\) 0 0
\(305\) 0.456003 0.0261107
\(306\) 0 0
\(307\) 15.8280 0.903352 0.451676 0.892182i \(-0.350826\pi\)
0.451676 + 0.892182i \(0.350826\pi\)
\(308\) 0 0
\(309\) 2.47983 + 28.2547i 0.141073 + 1.60735i
\(310\) 0 0
\(311\) 6.10724 10.5781i 0.346310 0.599827i −0.639281 0.768973i \(-0.720768\pi\)
0.985591 + 0.169147i \(0.0541012\pi\)
\(312\) 0 0
\(313\) −8.50666 14.7340i −0.480825 0.832813i 0.518933 0.854815i \(-0.326329\pi\)
−0.999758 + 0.0220019i \(0.992996\pi\)
\(314\) 0 0
\(315\) 4.77879 13.1522i 0.269254 0.741043i
\(316\) 0 0
\(317\) −14.2906 24.7521i −0.802641 1.39022i −0.917872 0.396877i \(-0.870094\pi\)
0.115231 0.993339i \(-0.463239\pi\)
\(318\) 0 0
\(319\) −17.0105 + 29.4630i −0.952403 + 1.64961i
\(320\) 0 0
\(321\) 13.8210 9.68328i 0.771415 0.540468i
\(322\) 0 0
\(323\) −35.7370 −1.98846
\(324\) 0 0
\(325\) −2.40865 −0.133608
\(326\) 0 0
\(327\) 24.8967 17.4431i 1.37679 0.964606i
\(328\) 0 0
\(329\) −5.53016 + 9.57851i −0.304887 + 0.528081i
\(330\) 0 0
\(331\) 9.80110 + 16.9760i 0.538717 + 0.933085i 0.998973 + 0.0452993i \(0.0144242\pi\)
−0.460256 + 0.887786i \(0.652243\pi\)
\(332\) 0 0
\(333\) 1.40360 3.86299i 0.0769166 0.211690i
\(334\) 0 0
\(335\) −2.12063 3.67303i −0.115862 0.200679i
\(336\) 0 0
\(337\) 1.20439 2.08606i 0.0656072 0.113635i −0.831356 0.555740i \(-0.812435\pi\)
0.896963 + 0.442105i \(0.145768\pi\)
\(338\) 0 0
\(339\) 1.03378 + 11.7787i 0.0561471 + 0.639729i
\(340\) 0 0
\(341\) 24.4870 1.32604
\(342\) 0 0
\(343\) −16.2377 −0.876754
\(344\) 0 0
\(345\) −4.21588 1.96448i −0.226975 0.105764i
\(346\) 0 0
\(347\) 2.82819 4.89856i 0.151825 0.262969i −0.780073 0.625688i \(-0.784818\pi\)
0.931898 + 0.362719i \(0.118152\pi\)
\(348\) 0 0
\(349\) 1.09257 + 1.89239i 0.0584839 + 0.101297i 0.893785 0.448496i \(-0.148040\pi\)
−0.835301 + 0.549793i \(0.814707\pi\)
\(350\) 0 0
\(351\) 5.02021 + 1.34070i 0.267959 + 0.0715615i
\(352\) 0 0
\(353\) −1.68642 2.92096i −0.0897589 0.155467i 0.817650 0.575715i \(-0.195276\pi\)
−0.907409 + 0.420248i \(0.861943\pi\)
\(354\) 0 0
\(355\) −3.30594 + 5.72605i −0.175461 + 0.303907i
\(356\) 0 0
\(357\) −19.6873 9.17374i −1.04196 0.485526i
\(358\) 0 0
\(359\) 22.6756 1.19677 0.598387 0.801207i \(-0.295809\pi\)
0.598387 + 0.801207i \(0.295809\pi\)
\(360\) 0 0
\(361\) 49.1914 2.58902
\(362\) 0 0
\(363\) 3.20537 + 36.5213i 0.168238 + 1.91687i
\(364\) 0 0
\(365\) −5.98689 + 10.3696i −0.313368 + 0.542769i
\(366\) 0 0
\(367\) −12.8781 22.3054i −0.672229 1.16433i −0.977271 0.211996i \(-0.932004\pi\)
0.305042 0.952339i \(-0.401330\pi\)
\(368\) 0 0
\(369\) −14.0090 16.6766i −0.729281 0.868149i
\(370\) 0 0
\(371\) −10.5315 18.2410i −0.546766 0.947026i
\(372\) 0 0
\(373\) −2.77948 + 4.81421i −0.143916 + 0.249270i −0.928968 0.370160i \(-0.879303\pi\)
0.785052 + 0.619430i \(0.212636\pi\)
\(374\) 0 0
\(375\) −16.9178 + 11.8529i −0.873630 + 0.612082i
\(376\) 0 0
\(377\) 5.99850 0.308939
\(378\) 0 0
\(379\) 12.2525 0.629371 0.314685 0.949196i \(-0.398101\pi\)
0.314685 + 0.949196i \(0.398101\pi\)
\(380\) 0 0
\(381\) 24.9522 17.4820i 1.27834 0.895628i
\(382\) 0 0
\(383\) 9.33013 16.1603i 0.476747 0.825750i −0.522898 0.852395i \(-0.675149\pi\)
0.999645 + 0.0266451i \(0.00848240\pi\)
\(384\) 0 0
\(385\) −13.2275 22.9107i −0.674135 1.16764i
\(386\) 0 0
\(387\) −23.3413 + 4.12900i −1.18650 + 0.209889i
\(388\) 0 0
\(389\) −12.8764 22.3026i −0.652861 1.13079i −0.982425 0.186656i \(-0.940235\pi\)
0.329564 0.944133i \(-0.393098\pi\)
\(390\) 0 0
\(391\) −3.60957 + 6.25196i −0.182544 + 0.316175i
\(392\) 0 0
\(393\) −2.14306 24.4175i −0.108103 1.23170i
\(394\) 0 0
\(395\) −4.99009 −0.251079
\(396\) 0 0
\(397\) 17.9208 0.899419 0.449710 0.893175i \(-0.351527\pi\)
0.449710 + 0.893175i \(0.351527\pi\)
\(398\) 0 0
\(399\) 37.5663 + 17.5048i 1.88067 + 0.876337i
\(400\) 0 0
\(401\) −10.2566 + 17.7650i −0.512191 + 0.887141i 0.487709 + 0.873006i \(0.337833\pi\)
−0.999900 + 0.0141345i \(0.995501\pi\)
\(402\) 0 0
\(403\) −2.15875 3.73906i −0.107535 0.186256i
\(404\) 0 0
\(405\) 13.6087 4.97020i 0.676222 0.246971i
\(406\) 0 0
\(407\) −3.88510 6.72919i −0.192577 0.333554i
\(408\) 0 0
\(409\) 11.6278 20.1399i 0.574957 0.995854i −0.421090 0.907019i \(-0.638352\pi\)
0.996046 0.0888353i \(-0.0283145\pi\)
\(410\) 0 0
\(411\) 11.2827 + 5.25742i 0.556535 + 0.259329i
\(412\) 0 0
\(413\) −34.4101 −1.69321
\(414\) 0 0
\(415\) −13.0945 −0.642783
\(416\) 0 0
\(417\) −1.81287 20.6555i −0.0887766 1.01150i
\(418\) 0 0
\(419\) 3.01143 5.21594i 0.147118 0.254816i −0.783043 0.621967i \(-0.786334\pi\)
0.930161 + 0.367152i \(0.119667\pi\)
\(420\) 0 0
\(421\) −13.9110 24.0945i −0.677978 1.17429i −0.975589 0.219605i \(-0.929523\pi\)
0.297610 0.954687i \(-0.403810\pi\)
\(422\) 0 0
\(423\) −11.2760 + 1.99469i −0.548260 + 0.0969854i
\(424\) 0 0
\(425\) 5.21191 + 9.02729i 0.252815 + 0.437888i
\(426\) 0 0
\(427\) −0.410408 + 0.710847i −0.0198610 + 0.0344003i
\(428\) 0 0
\(429\) 8.04534 5.63672i 0.388432 0.272143i
\(430\) 0 0
\(431\) −30.8395 −1.48549 −0.742743 0.669576i \(-0.766476\pi\)
−0.742743 + 0.669576i \(0.766476\pi\)
\(432\) 0 0
\(433\) 23.2262 1.11618 0.558091 0.829780i \(-0.311534\pi\)
0.558091 + 0.829780i \(0.311534\pi\)
\(434\) 0 0
\(435\) 13.6977 9.59687i 0.656754 0.460135i
\(436\) 0 0
\(437\) 6.88759 11.9297i 0.329478 0.570673i
\(438\) 0 0
\(439\) −9.12719 15.8088i −0.435617 0.754511i 0.561729 0.827321i \(-0.310136\pi\)
−0.997346 + 0.0728108i \(0.976803\pi\)
\(440\) 0 0
\(441\) 2.69413 + 3.20714i 0.128292 + 0.152721i
\(442\) 0 0
\(443\) 0.452515 + 0.783779i 0.0214996 + 0.0372385i 0.876575 0.481265i \(-0.159823\pi\)
−0.855075 + 0.518504i \(0.826489\pi\)
\(444\) 0 0
\(445\) 12.7156 22.0240i 0.602776 1.04404i
\(446\) 0 0
\(447\) −1.81278 20.6544i −0.0857415 0.976921i
\(448\) 0 0
\(449\) −6.11406 −0.288540 −0.144270 0.989538i \(-0.546083\pi\)
−0.144270 + 0.989538i \(0.546083\pi\)
\(450\) 0 0
\(451\) −41.1753 −1.93887
\(452\) 0 0
\(453\) 35.4269 + 16.5079i 1.66450 + 0.775610i
\(454\) 0 0
\(455\) −2.33225 + 4.03957i −0.109337 + 0.189378i
\(456\) 0 0
\(457\) −8.68386 15.0409i −0.406214 0.703583i 0.588248 0.808681i \(-0.299818\pi\)
−0.994462 + 0.105097i \(0.966485\pi\)
\(458\) 0 0
\(459\) −5.83812 21.7161i −0.272500 1.01362i
\(460\) 0 0
\(461\) −6.49976 11.2579i −0.302724 0.524333i 0.674028 0.738706i \(-0.264563\pi\)
−0.976752 + 0.214373i \(0.931229\pi\)
\(462\) 0 0
\(463\) 1.93117 3.34488i 0.0897489 0.155450i −0.817656 0.575707i \(-0.804727\pi\)
0.907405 + 0.420257i \(0.138060\pi\)
\(464\) 0 0
\(465\) −10.9116 5.08449i −0.506013 0.235787i
\(466\) 0 0
\(467\) −30.3460 −1.40425 −0.702123 0.712056i \(-0.747764\pi\)
−0.702123 + 0.712056i \(0.747764\pi\)
\(468\) 0 0
\(469\) 7.63435 0.352521
\(470\) 0 0
\(471\) 1.51716 + 17.2862i 0.0699071 + 0.796508i
\(472\) 0 0
\(473\) −22.4062 + 38.8086i −1.03024 + 1.78442i
\(474\) 0 0
\(475\) −9.94507 17.2254i −0.456311 0.790354i
\(476\) 0 0
\(477\) 7.44716 20.4961i 0.340982 0.938453i
\(478\) 0 0
\(479\) 20.5870 + 35.6578i 0.940645 + 1.62924i 0.764245 + 0.644926i \(0.223112\pi\)
0.176400 + 0.984319i \(0.443555\pi\)
\(480\) 0 0
\(481\) −0.685013 + 1.18648i −0.0312339 + 0.0540987i
\(482\) 0 0
\(483\) 6.85669 4.80393i 0.311990 0.218586i
\(484\) 0 0
\(485\) 2.95407 0.134137
\(486\) 0 0
\(487\) 40.0582 1.81521 0.907605 0.419824i \(-0.137908\pi\)
0.907605 + 0.419824i \(0.137908\pi\)
\(488\) 0 0
\(489\) −23.9161 + 16.7561i −1.08152 + 0.757736i
\(490\) 0 0
\(491\) 8.04240 13.9298i 0.362948 0.628645i −0.625496 0.780227i \(-0.715104\pi\)
0.988445 + 0.151582i \(0.0484368\pi\)
\(492\) 0 0
\(493\) −12.9798 22.4816i −0.584579 1.01252i
\(494\) 0 0
\(495\) 9.35362 25.7431i 0.420414 1.15707i
\(496\) 0 0
\(497\) −5.95076 10.3070i −0.266928 0.462333i
\(498\) 0 0
\(499\) 10.9793 19.0166i 0.491499 0.851301i −0.508453 0.861090i \(-0.669783\pi\)
0.999952 + 0.00978866i \(0.00311588\pi\)
\(500\) 0 0
\(501\) −2.35199 26.7981i −0.105079 1.19725i
\(502\) 0 0
\(503\) −11.7924 −0.525797 −0.262899 0.964823i \(-0.584678\pi\)
−0.262899 + 0.964823i \(0.584678\pi\)
\(504\) 0 0
\(505\) −2.49365 −0.110966
\(506\) 0 0
\(507\) −1.56997 0.731563i −0.0697250 0.0324898i
\(508\) 0 0
\(509\) −13.0155 + 22.5435i −0.576902 + 0.999224i 0.418930 + 0.908018i \(0.362405\pi\)
−0.995832 + 0.0912052i \(0.970928\pi\)
\(510\) 0 0
\(511\) −10.7765 18.6655i −0.476726 0.825713i
\(512\) 0 0
\(513\) 11.1400 + 41.4375i 0.491842 + 1.82951i
\(514\) 0 0
\(515\) −13.1804 22.8292i −0.580799 1.00597i
\(516\) 0 0
\(517\) −10.8243 + 18.7482i −0.476052 + 0.824546i
\(518\) 0 0
\(519\) −18.8274 8.77303i −0.826431 0.385093i
\(520\) 0 0
\(521\) 14.3702 0.629571 0.314786 0.949163i \(-0.398067\pi\)
0.314786 + 0.949163i \(0.398067\pi\)
\(522\) 0 0
\(523\) −24.6825 −1.07929 −0.539644 0.841893i \(-0.681441\pi\)
−0.539644 + 0.841893i \(0.681441\pi\)
\(524\) 0 0
\(525\) −1.05691 12.0423i −0.0461275 0.525568i
\(526\) 0 0
\(527\) −9.34234 + 16.1814i −0.406959 + 0.704873i
\(528\) 0 0
\(529\) 10.1087 + 17.5087i 0.439507 + 0.761248i
\(530\) 0 0
\(531\) −22.9150 27.2784i −0.994425 1.18378i
\(532\) 0 0
\(533\) 3.62998 + 6.28730i 0.157232 + 0.272333i
\(534\) 0 0
\(535\) −7.84211 + 13.5829i −0.339044 + 0.587241i
\(536\) 0 0
\(537\) −0.420013 + 0.294269i −0.0181249 + 0.0126986i
\(538\) 0 0
\(539\) 7.91857 0.341077
\(540\) 0 0
\(541\) −20.9800 −0.902000 −0.451000 0.892524i \(-0.648933\pi\)
−0.451000 + 0.892524i \(0.648933\pi\)
\(542\) 0 0
\(543\) −32.2357 + 22.5849i −1.38337 + 0.969212i
\(544\) 0 0
\(545\) −14.1265 + 24.4678i −0.605112 + 1.04809i
\(546\) 0 0
\(547\) −12.6478 21.9066i −0.540780 0.936659i −0.998859 0.0477474i \(-0.984796\pi\)
0.458079 0.888911i \(-0.348538\pi\)
\(548\) 0 0
\(549\) −0.836826 + 0.148032i −0.0357148 + 0.00631784i
\(550\) 0 0
\(551\) 24.7673 + 42.8981i 1.05512 + 1.82752i
\(552\) 0 0
\(553\) 4.49114 7.77888i 0.190983 0.330792i
\(554\) 0 0
\(555\) 0.333978 + 3.80528i 0.0141766 + 0.161525i
\(556\) 0 0
\(557\) 7.04885 0.298670 0.149335 0.988787i \(-0.452287\pi\)
0.149335 + 0.988787i \(0.452287\pi\)
\(558\) 0 0
\(559\) 7.90122 0.334186
\(560\) 0 0
\(561\) −38.5344 17.9559i −1.62692 0.758100i
\(562\) 0 0
\(563\) 6.98261 12.0942i 0.294282 0.509711i −0.680536 0.732715i \(-0.738253\pi\)
0.974818 + 0.223004i \(0.0715862\pi\)
\(564\) 0 0
\(565\) −5.49458 9.51689i −0.231159 0.400379i
\(566\) 0 0
\(567\) −4.50011 + 25.6874i −0.188987 + 1.07877i
\(568\) 0 0
\(569\) −9.62667 16.6739i −0.403571 0.699006i 0.590583 0.806977i \(-0.298898\pi\)
−0.994154 + 0.107971i \(0.965565\pi\)
\(570\) 0 0
\(571\) −12.1751 + 21.0880i −0.509514 + 0.882504i 0.490425 + 0.871483i \(0.336841\pi\)
−0.999939 + 0.0110210i \(0.996492\pi\)
\(572\) 0 0
\(573\) 10.0960 + 4.70443i 0.421765 + 0.196530i
\(574\) 0 0
\(575\) −4.01796 −0.167560
\(576\) 0 0
\(577\) −14.3504 −0.597414 −0.298707 0.954345i \(-0.596555\pi\)
−0.298707 + 0.954345i \(0.596555\pi\)
\(578\) 0 0
\(579\) −1.14070 12.9969i −0.0474058 0.540132i
\(580\) 0 0
\(581\) 11.7852 20.4125i 0.488931 0.846854i
\(582\) 0 0
\(583\) −20.6134 35.7035i −0.853721 1.47869i
\(584\) 0 0
\(585\) −4.75547 + 0.841227i −0.196615 + 0.0347805i
\(586\) 0 0
\(587\) −1.38679 2.40198i −0.0572388 0.0991405i 0.835986 0.548751i \(-0.184896\pi\)
−0.893225 + 0.449610i \(0.851563\pi\)
\(588\) 0 0
\(589\) 17.8265 30.8765i 0.734530 1.27224i
\(590\) 0 0
\(591\) 20.0661 14.0587i 0.825407 0.578296i
\(592\) 0 0
\(593\) 5.07967 0.208597 0.104299 0.994546i \(-0.466740\pi\)
0.104299 + 0.994546i \(0.466740\pi\)
\(594\) 0 0
\(595\) 20.1864 0.827560
\(596\) 0 0
\(597\) 0.912960 0.639637i 0.0373650 0.0261786i
\(598\) 0 0
\(599\) 2.95659 5.12097i 0.120803 0.209237i −0.799281 0.600957i \(-0.794786\pi\)
0.920085 + 0.391720i \(0.128120\pi\)
\(600\) 0 0
\(601\) −14.0561 24.3460i −0.573362 0.993092i −0.996217 0.0868952i \(-0.972305\pi\)
0.422855 0.906197i \(-0.361028\pi\)
\(602\) 0 0
\(603\) 5.08400 + 6.05208i 0.207036 + 0.246460i
\(604\) 0 0
\(605\) −17.0367 29.5085i −0.692641 1.19969i
\(606\) 0 0
\(607\) 11.9330 20.6685i 0.484344 0.838909i −0.515494 0.856893i \(-0.672392\pi\)
0.999838 + 0.0179843i \(0.00572489\pi\)
\(608\) 0 0
\(609\) 2.63214 + 29.9901i 0.106660 + 1.21526i
\(610\) 0 0
\(611\) 3.81704 0.154421
\(612\) 0 0
\(613\) −7.62213 −0.307855 −0.153927 0.988082i \(-0.549192\pi\)
−0.153927 + 0.988082i \(0.549192\pi\)
\(614\) 0 0
\(615\) 18.3480 + 8.54965i 0.739864 + 0.344755i
\(616\) 0 0
\(617\) −6.54893 + 11.3431i −0.263650 + 0.456655i −0.967209 0.253982i \(-0.918260\pi\)
0.703559 + 0.710637i \(0.251593\pi\)
\(618\) 0 0
\(619\) 17.4754 + 30.2683i 0.702396 + 1.21659i 0.967623 + 0.252400i \(0.0812198\pi\)
−0.265227 + 0.964186i \(0.585447\pi\)
\(620\) 0 0
\(621\) 8.37441 + 2.23648i 0.336053 + 0.0897468i
\(622\) 0 0
\(623\) 22.8883 + 39.6437i 0.917000 + 1.58829i
\(624\) 0 0
\(625\) 3.57760 6.19658i 0.143104 0.247863i
\(626\) 0 0
\(627\) 73.5293 + 34.2625i 2.93648 + 1.36831i
\(628\) 0 0
\(629\) 5.92902 0.236405
\(630\) 0 0
\(631\) 34.0914 1.35716 0.678579 0.734527i \(-0.262596\pi\)
0.678579 + 0.734527i \(0.262596\pi\)
\(632\) 0 0
\(633\) 3.13322 + 35.6993i 0.124534 + 1.41892i
\(634\) 0 0
\(635\) −14.1580 + 24.5223i −0.561841 + 0.973138i
\(636\) 0 0
\(637\) −0.698094 1.20913i −0.0276595 0.0479077i
\(638\) 0 0
\(639\) 4.20799 11.5813i 0.166465 0.458147i
\(640\) 0 0
\(641\) 17.6408 + 30.5547i 0.696769 + 1.20684i 0.969581 + 0.244771i \(0.0787129\pi\)
−0.272812 + 0.962067i \(0.587954\pi\)
\(642\) 0 0
\(643\) −9.67066 + 16.7501i −0.381374 + 0.660559i −0.991259 0.131931i \(-0.957882\pi\)
0.609885 + 0.792490i \(0.291216\pi\)
\(644\) 0 0
\(645\) 18.0426 12.6410i 0.710426 0.497738i
\(646\) 0 0
\(647\) −19.9094 −0.782718 −0.391359 0.920238i \(-0.627995\pi\)
−0.391359 + 0.920238i \(0.627995\pi\)
\(648\) 0 0
\(649\) −67.3516 −2.64378
\(650\) 0 0
\(651\) 17.7466 12.4336i 0.695543 0.487311i
\(652\) 0 0
\(653\) 7.34363 12.7195i 0.287378 0.497754i −0.685805 0.727785i \(-0.740550\pi\)
0.973183 + 0.230032i \(0.0738830\pi\)
\(654\) 0 0
\(655\) 11.3905 + 19.7288i 0.445062 + 0.770870i
\(656\) 0 0
\(657\) 7.62046 20.9731i 0.297302 0.818238i
\(658\) 0 0
\(659\) 19.6127 + 33.9702i 0.764003 + 1.32329i 0.940772 + 0.339040i \(0.110102\pi\)
−0.176769 + 0.984252i \(0.556564\pi\)
\(660\) 0 0
\(661\) −10.9667 + 18.9950i −0.426557 + 0.738818i −0.996564 0.0828214i \(-0.973607\pi\)
0.570008 + 0.821639i \(0.306940\pi\)
\(662\) 0 0
\(663\) 0.655359 + 7.46703i 0.0254520 + 0.289995i
\(664\) 0 0
\(665\) −38.5185 −1.49368
\(666\) 0 0
\(667\) 10.0063 0.387447
\(668\) 0 0
\(669\) −5.22232 2.43345i −0.201907 0.0940827i
\(670\) 0 0
\(671\) −0.803300 + 1.39136i −0.0310110 + 0.0537127i
\(672\) 0 0
\(673\) 1.14213 + 1.97823i 0.0440260 + 0.0762553i 0.887199 0.461388i \(-0.152648\pi\)
−0.843173 + 0.537643i \(0.819315\pi\)
\(674\) 0 0
\(675\) 8.84259 8.85726i 0.340352 0.340916i
\(676\) 0 0
\(677\) 9.40122 + 16.2834i 0.361318 + 0.625821i 0.988178 0.153311i \(-0.0489935\pi\)
−0.626860 + 0.779132i \(0.715660\pi\)
\(678\) 0 0
\(679\) −2.65870 + 4.60500i −0.102031 + 0.176724i
\(680\) 0 0
\(681\) 13.6760 + 6.37263i 0.524066 + 0.244200i
\(682\) 0 0
\(683\) −43.1705 −1.65187 −0.825936 0.563763i \(-0.809353\pi\)
−0.825936 + 0.563763i \(0.809353\pi\)
\(684\) 0 0
\(685\) −11.5687 −0.442017
\(686\) 0 0
\(687\) −2.97684 33.9175i −0.113574 1.29403i
\(688\) 0 0
\(689\) −3.63452 + 6.29518i −0.138464 + 0.239827i
\(690\) 0 0
\(691\) −1.55075 2.68598i −0.0589933 0.102179i 0.835020 0.550219i \(-0.185456\pi\)
−0.894014 + 0.448039i \(0.852122\pi\)
\(692\) 0 0
\(693\) 31.7116 + 37.7501i 1.20463 + 1.43401i
\(694\) 0 0
\(695\) 9.63550 + 16.6892i 0.365495 + 0.633056i
\(696\) 0 0
\(697\) 15.7093 27.2093i 0.595033 1.03063i
\(698\) 0 0
\(699\) 4.70464 3.29616i 0.177946 0.124672i
\(700\) 0 0
\(701\) −11.3838 −0.429960 −0.214980 0.976618i \(-0.568969\pi\)
−0.214980 + 0.976618i \(0.568969\pi\)
\(702\) 0 0
\(703\) −11.3134 −0.426694
\(704\) 0 0
\(705\) 8.71627 6.10679i 0.328274 0.229995i
\(706\) 0 0
\(707\) 2.24431 3.88726i 0.0844059 0.146195i
\(708\) 0 0
\(709\) 13.7715 + 23.8529i 0.517200 + 0.895816i 0.999800 + 0.0199757i \(0.00635888\pi\)
−0.482601 + 0.875840i \(0.660308\pi\)
\(710\) 0 0
\(711\) 9.15747 1.61993i 0.343432 0.0607520i
\(712\) 0 0
\(713\) −3.60109 6.23728i −0.134862 0.233588i
\(714\) 0 0
\(715\) −4.56495 + 7.90673i −0.170720 + 0.295695i
\(716\) 0 0
\(717\) 2.27841 + 25.9597i 0.0850886 + 0.969483i
\(718\) 0 0
\(719\) −9.38378 −0.349956 −0.174978 0.984572i \(-0.555985\pi\)
−0.174978 + 0.984572i \(0.555985\pi\)
\(720\) 0 0
\(721\) 47.4501 1.76714
\(722\) 0 0
\(723\) 0.319949 + 0.149087i 0.0118990 + 0.00554461i
\(724\) 0 0
\(725\) 7.22414 12.5126i 0.268298 0.464705i
\(726\) 0 0
\(727\) −19.1669 33.1980i −0.710859 1.23124i −0.964535 0.263955i \(-0.914973\pi\)
0.253676 0.967289i \(-0.418360\pi\)
\(728\) 0 0
\(729\) −23.3603 + 13.5387i −0.865196 + 0.501435i
\(730\) 0 0
\(731\) −17.0969 29.6127i −0.632352 1.09527i
\(732\) 0 0
\(733\) −18.9625 + 32.8440i −0.700395 + 1.21312i 0.267933 + 0.963437i \(0.413659\pi\)
−0.968328 + 0.249682i \(0.919674\pi\)
\(734\) 0 0
\(735\) −3.52858 1.64422i −0.130154 0.0606478i
\(736\) 0 0
\(737\) 14.9429 0.550427
\(738\) 0 0
\(739\) 29.4326 1.08269 0.541347 0.840799i \(-0.317914\pi\)
0.541347 + 0.840799i \(0.317914\pi\)
\(740\) 0 0
\(741\) −1.25052 14.2482i −0.0459390 0.523420i
\(742\) 0 0
\(743\) −8.78556 + 15.2170i −0.322311 + 0.558259i −0.980964 0.194188i \(-0.937793\pi\)
0.658654 + 0.752446i \(0.271126\pi\)
\(744\) 0 0
\(745\) 9.63502 + 16.6883i 0.353000 + 0.611413i
\(746\) 0 0
\(747\) 24.0301 4.25084i 0.879215 0.155530i
\(748\) 0 0
\(749\) −14.1160 24.4496i −0.515786 0.893368i
\(750\) 0 0
\(751\) 12.9846 22.4901i 0.473816 0.820674i −0.525735 0.850649i \(-0.676209\pi\)
0.999551 + 0.0299751i \(0.00954280\pi\)
\(752\) 0 0
\(753\) 26.4868 18.5572i 0.965233 0.676261i
\(754\) 0 0
\(755\) −36.3249 −1.32200
\(756\) 0 0
\(757\) 6.14605 0.223382 0.111691 0.993743i \(-0.464373\pi\)
0.111691 + 0.993743i \(0.464373\pi\)
\(758\) 0 0
\(759\) 13.4207 9.40283i 0.487142 0.341301i
\(760\) 0 0
\(761\) −14.9298 + 25.8592i −0.541205 + 0.937394i 0.457630 + 0.889142i \(0.348698\pi\)
−0.998835 + 0.0482516i \(0.984635\pi\)
\(762\) 0 0
\(763\) −25.4280 44.0426i −0.920555 1.59445i
\(764\) 0 0
\(765\) 13.4429 + 16.0026i 0.486027 + 0.578575i
\(766\) 0 0
\(767\) 5.93765 + 10.2843i 0.214396 + 0.371345i
\(768\) 0 0
\(769\) −9.44482 + 16.3589i −0.340589 + 0.589917i −0.984542 0.175147i \(-0.943960\pi\)
0.643953 + 0.765065i \(0.277293\pi\)
\(770\) 0 0
\(771\) −3.96018 45.1215i −0.142622 1.62501i
\(772\) 0 0
\(773\) 27.3117 0.982334 0.491167 0.871066i \(-0.336571\pi\)
0.491167 + 0.871066i \(0.336571\pi\)
\(774\) 0 0
\(775\) −10.3993 −0.373555
\(776\) 0 0
\(777\) −6.23250 2.90417i −0.223590 0.104186i
\(778\) 0 0
\(779\) −29.9756 + 51.9193i −1.07399 + 1.86020i
\(780\) 0 0
\(781\) −11.6475 20.1741i −0.416782 0.721887i
\(782\) 0 0
\(783\) −22.0216 + 22.0582i −0.786989 + 0.788295i
\(784\) 0 0
\(785\) −8.06379 13.9669i −0.287809 0.498500i
\(786\) 0 0
\(787\) 22.3982 38.7949i 0.798411 1.38289i −0.122240 0.992501i \(-0.539008\pi\)
0.920651 0.390388i \(-0.127659\pi\)
\(788\) 0 0
\(789\) 44.8894 + 20.9172i 1.59811 + 0.744672i
\(790\) 0 0
\(791\) 19.7807 0.703322
\(792\) 0 0
\(793\) 0.283273 0.0100593
\(794\) 0 0
\(795\) 1.77201 + 20.1899i 0.0628467 + 0.716063i
\(796\) 0 0
\(797\) −4.14872 + 7.18579i −0.146955 + 0.254534i −0.930101 0.367305i \(-0.880281\pi\)
0.783146 + 0.621838i \(0.213614\pi\)
\(798\) 0 0
\(799\) −8.25943 14.3057i −0.292198 0.506101i
\(800\) 0 0
\(801\) −16.1851 + 44.5448i −0.571872 + 1.57391i
\(802\) 0 0
\(803\) −21.0931 36.5344i −0.744360 1.28927i
\(804\) 0 0
\(805\) −3.89051 + 6.73856i −0.137122 + 0.237503i
\(806\) 0 0
\(807\) −6.51359 + 4.56354i −0.229289 + 0.160644i
\(808\) 0 0
\(809\) 30.1958 1.06163 0.530813 0.847489i \(-0.321886\pi\)
0.530813 + 0.847489i \(0.321886\pi\)
\(810\) 0 0
\(811\) −9.96847 −0.350040 −0.175020 0.984565i \(-0.555999\pi\)
−0.175020 + 0.984565i \(0.555999\pi\)
\(812\) 0 0
\(813\) −44.1875 + 30.9586i −1.54972 + 1.08577i
\(814\) 0 0
\(815\) 13.5701 23.5041i 0.475340 0.823312i
\(816\) 0 0
\(817\) 32.6234 + 56.5054i 1.14135 + 1.97687i
\(818\) 0 0
\(819\) 2.96862 8.17025i 0.103732 0.285492i
\(820\) 0 0
\(821\) −15.7467 27.2741i −0.549564 0.951873i −0.998304 0.0582104i \(-0.981461\pi\)
0.448740 0.893662i \(-0.351873\pi\)
\(822\) 0 0
\(823\) −6.06383 + 10.5029i −0.211372 + 0.366107i −0.952144 0.305649i \(-0.901126\pi\)
0.740772 + 0.671756i \(0.234460\pi\)
\(824\) 0 0
\(825\) −2.06872 23.5706i −0.0720236 0.820622i
\(826\) 0 0
\(827\) 51.5625 1.79301 0.896503 0.443038i \(-0.146099\pi\)
0.896503 + 0.443038i \(0.146099\pi\)
\(828\) 0 0
\(829\) −48.4620 −1.68316 −0.841578 0.540135i \(-0.818373\pi\)
−0.841578 + 0.540135i \(0.818373\pi\)
\(830\) 0 0
\(831\) −8.96738 4.17854i −0.311075 0.144952i
\(832\) 0 0
\(833\) −3.02112 + 5.23273i −0.104676 + 0.181303i
\(834\) 0 0
\(835\) 12.5010 + 21.6523i 0.432613 + 0.749308i
\(836\) 0 0
\(837\) 21.6747 + 5.78848i 0.749189 + 0.200079i
\(838\) 0 0
\(839\) −5.01668 8.68915i −0.173195 0.299983i 0.766340 0.642435i \(-0.222076\pi\)
−0.939535 + 0.342452i \(0.888742\pi\)
\(840\) 0 0
\(841\) −3.49103 + 6.04664i −0.120380 + 0.208505i
\(842\) 0 0
\(843\) −17.9004 8.34106i −0.616521 0.287281i
\(844\) 0 0
\(845\) 1.60977 0.0553777
\(846\) 0 0
\(847\) 61.3329 2.10742
\(848\) 0 0
\(849\) −1.52283 17.3508i −0.0522634 0.595479i
\(850\) 0 0
\(851\) −1.14270 + 1.97921i −0.0391712 + 0.0678464i
\(852\) 0 0
\(853\) 20.8972 + 36.1950i 0.715507 + 1.23929i 0.962764 + 0.270344i \(0.0871376\pi\)
−0.247257 + 0.968950i \(0.579529\pi\)
\(854\) 0 0
\(855\) −25.6509 30.5353i −0.877243 1.04428i
\(856\) 0 0
\(857\) 8.27930 + 14.3402i 0.282815 + 0.489851i 0.972077 0.234662i \(-0.0753983\pi\)
−0.689262 + 0.724513i \(0.742065\pi\)
\(858\) 0 0
\(859\) −13.7568 + 23.8274i −0.469375 + 0.812981i −0.999387 0.0350088i \(-0.988854\pi\)
0.530012 + 0.847990i \(0.322187\pi\)
\(860\) 0 0
\(861\) −29.8412 + 20.9073i −1.01698 + 0.712519i
\(862\) 0 0
\(863\) −17.4729 −0.594783 −0.297391 0.954756i \(-0.596117\pi\)
−0.297391 + 0.954756i \(0.596117\pi\)
\(864\) 0 0
\(865\) 19.3046 0.656377
\(866\) 0 0
\(867\) 2.45220 1.71806i 0.0832811 0.0583483i
\(868\) 0 0
\(869\) 8.79060 15.2258i 0.298201 0.516499i
\(870\) 0 0
\(871\) −1.31735 2.28172i −0.0446367 0.0773130i
\(872\) 0 0
\(873\) −5.42111 + 0.958976i −0.183477 + 0.0324564i
\(874\) 0 0
\(875\) 17.2788 + 29.9277i 0.584130 + 1.01174i
\(876\) 0 0
\(877\) −11.8206 + 20.4739i −0.399153 + 0.691353i −0.993622 0.112766i \(-0.964029\pi\)
0.594469 + 0.804119i \(0.297362\pi\)
\(878\) 0 0
\(879\) 2.65969 + 30.3040i 0.0897093 + 1.02213i
\(880\) 0 0
\(881\) 39.2429 1.32213 0.661064 0.750330i \(-0.270105\pi\)
0.661064 + 0.750330i \(0.270105\pi\)
\(882\) 0 0
\(883\) 10.6796 0.359397 0.179699 0.983722i \(-0.442488\pi\)
0.179699 + 0.983722i \(0.442488\pi\)
\(884\) 0 0
\(885\) 30.0124 + 13.9849i 1.00885 + 0.470097i
\(886\) 0 0
\(887\) 4.98368 8.63200i 0.167336 0.289834i −0.770147 0.637867i \(-0.779817\pi\)
0.937482 + 0.348033i \(0.113150\pi\)
\(888\) 0 0
\(889\) −25.4846 44.1407i −0.854727 1.48043i
\(890\) 0 0
\(891\) −8.80816 + 50.2784i −0.295085 + 1.68439i
\(892\) 0 0
\(893\) 15.7602 + 27.2974i 0.527394 + 0.913474i
\(894\) 0 0
\(895\) 0.238317 0.412777i 0.00796605 0.0137976i
\(896\) 0 0
\(897\) −2.61893 1.22035i −0.0874436 0.0407462i
\(898\) 0 0
\(899\) 25.8985 0.863764
\(900\) 0 0
\(901\) 31.4580 1.04802
\(902\) 0 0
\(903\) 3.46706 + 39.5030i 0.115376 + 1.31458i
\(904\) 0 0
\(905\) 18.2906 31.6803i 0.608002 1.05309i
\(906\) 0 0
\(907\) −8.23145 14.2573i −0.273321 0.473405i 0.696389 0.717664i \(-0.254789\pi\)
−0.969710 + 0.244259i \(0.921455\pi\)
\(908\) 0 0
\(909\) 4.57617 0.809509i 0.151782 0.0268497i
\(910\) 0 0
\(911\) −10.1543 17.5878i −0.336428 0.582711i 0.647330 0.762210i \(-0.275886\pi\)
−0.983758 + 0.179499i \(0.942552\pi\)
\(912\) 0 0
\(913\) 23.0674 39.9538i 0.763418 1.32228i
\(914\) 0 0
\(915\) 0.646858 0.453201i 0.0213845 0.0149824i
\(916\) 0 0
\(917\) −41.0061 −1.35414
\(918\) 0 0
\(919\) −11.8028 −0.389340 −0.194670 0.980869i \(-0.562364\pi\)
−0.194670 + 0.980869i \(0.562364\pi\)
\(920\) 0 0
\(921\) 22.4526 15.7307i 0.739839 0.518346i
\(922\) 0 0
\(923\) −2.05367 + 3.55707i −0.0675975 + 0.117082i
\(924\) 0 0
\(925\) 1.64996 + 2.85781i 0.0542502 + 0.0939641i
\(926\) 0 0
\(927\) 31.5988 + 37.6158i 1.03784 + 1.23546i
\(928\) 0 0
\(929\) 17.9408 + 31.0745i 0.588620 + 1.01952i 0.994413 + 0.105555i \(0.0336619\pi\)
−0.405793 + 0.913965i \(0.633005\pi\)
\(930\) 0 0
\(931\) 5.76473 9.98480i 0.188931 0.327239i
\(932\) 0 0
\(933\) −1.84970 21.0751i −0.0605564 0.689968i
\(934\) 0 0
\(935\) 39.5112 1.29215
\(936\) 0 0
\(937\) 0.492587 0.0160921 0.00804606 0.999968i \(-0.497439\pi\)
0.00804606 + 0.999968i \(0.497439\pi\)
\(938\) 0 0
\(939\) −26.7105 12.4463i −0.871663 0.406170i
\(940\) 0 0
\(941\) −12.8095 + 22.1867i −0.417577 + 0.723264i −0.995695 0.0926887i \(-0.970454\pi\)
0.578118 + 0.815953i \(0.303787\pi\)
\(942\) 0 0
\(943\) 6.05530 + 10.4881i 0.197188 + 0.341539i
\(944\) 0 0
\(945\) −6.29250 23.4063i −0.204695 0.761408i
\(946\) 0 0
\(947\) −12.6845 21.9702i −0.412190 0.713934i 0.582939 0.812516i \(-0.301903\pi\)
−0.995129 + 0.0985817i \(0.968569\pi\)
\(948\) 0 0
\(949\) −3.71910 + 6.44167i −0.120727 + 0.209105i
\(950\) 0 0
\(951\) −44.8718 20.9090i −1.45507 0.678020i
\(952\) 0 0
\(953\) −13.3452 −0.432293 −0.216146 0.976361i \(-0.569349\pi\)
−0.216146 + 0.976361i \(0.569349\pi\)
\(954\) 0 0
\(955\) −10.3519 −0.334979
\(956\) 0 0
\(957\) 5.15195 + 58.7003i 0.166539 + 1.89751i
\(958\) 0 0
\(959\) 10.4119 18.0340i 0.336219 0.582349i
\(960\) 0 0
\(961\) 6.17961 + 10.7034i 0.199342 + 0.345271i
\(962\) 0 0
\(963\) 9.98188 27.4722i 0.321662 0.885280i
\(964\) 0 0
\(965\) 6.06287 + 10.5012i 0.195171 + 0.338045i
\(966\) 0 0
\(967\) −3.43388 + 5.94766i −0.110426 + 0.191264i −0.915942 0.401310i \(-0.868555\pi\)
0.805516 + 0.592574i \(0.201888\pi\)
\(968\) 0 0
\(969\) −50.6944 + 35.5174i −1.62854 + 1.14098i
\(970\) 0 0
\(971\) 35.4548 1.13780 0.568899 0.822407i \(-0.307370\pi\)
0.568899 + 0.822407i \(0.307370\pi\)
\(972\) 0 0
\(973\) −34.6882 −1.11205
\(974\) 0 0
\(975\) −3.41676 + 2.39385i −0.109424 + 0.0766644i
\(976\) 0 0
\(977\) 21.7385 37.6521i 0.695475 1.20460i −0.274545 0.961574i \(-0.588527\pi\)
0.970020 0.243024i \(-0.0781395\pi\)
\(978\) 0 0
\(979\) 44.7997 + 77.5954i 1.43181 + 2.47996i
\(980\) 0 0
\(981\) 17.9810 49.4875i 0.574089 1.58001i
\(982\) 0 0
\(983\) −16.1529 27.9776i −0.515197 0.892347i −0.999844 0.0176376i \(-0.994385\pi\)
0.484648 0.874710i \(-0.338948\pi\)
\(984\) 0 0
\(985\) −11.3856 + 19.7204i −0.362774 + 0.628343i
\(986\) 0 0
\(987\) 1.67492 + 19.0837i 0.0533132 + 0.607440i
\(988\) 0 0
\(989\) 13.1803 0.419110
\(990\) 0 0
\(991\) 23.2443 0.738380 0.369190 0.929354i \(-0.379635\pi\)
0.369190 + 0.929354i \(0.379635\pi\)
\(992\) 0 0
\(993\) 30.7749 + 14.3402i 0.976613 + 0.455074i
\(994\) 0 0
\(995\) −0.518017 + 0.897231i −0.0164222 + 0.0284441i
\(996\) 0 0
\(997\) −27.8090 48.1666i −0.880720 1.52545i −0.850542 0.525908i \(-0.823726\pi\)
−0.0301788 0.999545i \(-0.509608\pi\)
\(998\) 0 0
\(999\) −1.84820 6.87477i −0.0584744 0.217508i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.q.g.625.10 yes 22
3.2 odd 2 2808.2.q.g.1873.7 22
9.2 odd 6 2808.2.q.g.937.7 22
9.4 even 3 8424.2.a.bf.1.7 11
9.5 odd 6 8424.2.a.be.1.5 11
9.7 even 3 inner 936.2.q.g.313.10 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.q.g.313.10 22 9.7 even 3 inner
936.2.q.g.625.10 yes 22 1.1 even 1 trivial
2808.2.q.g.937.7 22 9.2 odd 6
2808.2.q.g.1873.7 22 3.2 odd 2
8424.2.a.be.1.5 11 9.5 odd 6
8424.2.a.bf.1.7 11 9.4 even 3