Properties

Label 936.2.q.g.313.10
Level $936$
Weight $2$
Character 936.313
Analytic conductor $7.474$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(313,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.313"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,0,0,0,-3,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 313.10
Character \(\chi\) \(=\) 936.313
Dual form 936.2.q.g.625.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41854 + 0.993855i) q^{3} +(-0.804884 - 1.39410i) q^{5} +(-1.44881 + 2.50941i) q^{7} +(1.02450 + 2.81964i) q^{9} +(-2.83578 + 4.91172i) q^{11} +(-0.500000 - 0.866025i) q^{13} +(0.243775 - 2.77752i) q^{15} +4.32766 q^{17} -8.25781 q^{19} +(-4.54918 + 2.11979i) q^{21} +(-0.834069 - 1.44465i) q^{23} +(1.20432 - 2.08595i) q^{25} +(-1.34902 + 5.01798i) q^{27} +(-2.99925 + 5.19486i) q^{29} +(-2.15875 - 3.73906i) q^{31} +(-8.90421 + 4.14911i) q^{33} +4.66449 q^{35} +1.37003 q^{37} +(0.151435 - 1.72542i) q^{39} +(3.62998 + 6.28730i) q^{41} +(-3.95061 + 6.84266i) q^{43} +(3.10626 - 3.69775i) q^{45} +(-1.90852 + 3.30565i) q^{47} +(-0.698094 - 1.20913i) q^{49} +(6.13896 + 4.30107i) q^{51} +7.26904 q^{53} +9.12991 q^{55} +(-11.7140 - 8.20707i) q^{57} +(5.93765 + 10.2843i) q^{59} +(-0.141636 + 0.245321i) q^{61} +(-8.55995 - 1.51423i) q^{63} +(-0.804884 + 1.39410i) q^{65} +(-1.31735 - 2.28172i) q^{67} +(0.252614 - 2.87824i) q^{69} +4.10735 q^{71} +7.43820 q^{73} +(3.78151 - 1.76208i) q^{75} +(-8.21702 - 14.2323i) q^{77} +(1.54994 - 2.68458i) q^{79} +(-6.90079 + 5.77747i) q^{81} +(4.06719 - 7.04459i) q^{83} +(-3.48327 - 6.03320i) q^{85} +(-9.41749 + 4.38828i) q^{87} -15.7980 q^{89} +2.89762 q^{91} +(0.653819 - 7.44949i) q^{93} +(6.64658 + 11.5122i) q^{95} +(-0.917545 + 1.58924i) q^{97} +(-16.7546 - 2.96383i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 3 q^{5} - 4 q^{7} - 4 q^{9} + 5 q^{11} - 11 q^{13} + 5 q^{15} + 8 q^{17} + 10 q^{19} + 4 q^{21} + 9 q^{23} - 24 q^{25} - 12 q^{27} - 16 q^{29} - q^{31} + 9 q^{33} + 18 q^{37} + 3 q^{39} - 6 q^{41}+ \cdots - 109 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.41854 + 0.993855i 0.818994 + 0.573803i
\(4\) 0 0
\(5\) −0.804884 1.39410i −0.359955 0.623461i 0.627998 0.778215i \(-0.283875\pi\)
−0.987953 + 0.154755i \(0.950541\pi\)
\(6\) 0 0
\(7\) −1.44881 + 2.50941i −0.547598 + 0.948468i 0.450840 + 0.892605i \(0.351124\pi\)
−0.998438 + 0.0558633i \(0.982209\pi\)
\(8\) 0 0
\(9\) 1.02450 + 2.81964i 0.341501 + 0.939881i
\(10\) 0 0
\(11\) −2.83578 + 4.91172i −0.855021 + 1.48094i 0.0216049 + 0.999767i \(0.493122\pi\)
−0.876626 + 0.481173i \(0.840211\pi\)
\(12\) 0 0
\(13\) −0.500000 0.866025i −0.138675 0.240192i
\(14\) 0 0
\(15\) 0.243775 2.77752i 0.0629424 0.717153i
\(16\) 0 0
\(17\) 4.32766 1.04961 0.524806 0.851222i \(-0.324138\pi\)
0.524806 + 0.851222i \(0.324138\pi\)
\(18\) 0 0
\(19\) −8.25781 −1.89447 −0.947236 0.320538i \(-0.896136\pi\)
−0.947236 + 0.320538i \(0.896136\pi\)
\(20\) 0 0
\(21\) −4.54918 + 2.11979i −0.992713 + 0.462576i
\(22\) 0 0
\(23\) −0.834069 1.44465i −0.173915 0.301230i 0.765870 0.642996i \(-0.222309\pi\)
−0.939785 + 0.341765i \(0.888975\pi\)
\(24\) 0 0
\(25\) 1.20432 2.08595i 0.240865 0.417190i
\(26\) 0 0
\(27\) −1.34902 + 5.01798i −0.259619 + 0.965711i
\(28\) 0 0
\(29\) −2.99925 + 5.19486i −0.556947 + 0.964661i 0.440802 + 0.897604i \(0.354694\pi\)
−0.997749 + 0.0670564i \(0.978639\pi\)
\(30\) 0 0
\(31\) −2.15875 3.73906i −0.387723 0.671555i 0.604420 0.796666i \(-0.293405\pi\)
−0.992143 + 0.125110i \(0.960072\pi\)
\(32\) 0 0
\(33\) −8.90421 + 4.14911i −1.55002 + 0.722267i
\(34\) 0 0
\(35\) 4.66449 0.788443
\(36\) 0 0
\(37\) 1.37003 0.225231 0.112616 0.993639i \(-0.464077\pi\)
0.112616 + 0.993639i \(0.464077\pi\)
\(38\) 0 0
\(39\) 0.151435 1.72542i 0.0242490 0.276288i
\(40\) 0 0
\(41\) 3.62998 + 6.28730i 0.566907 + 0.981911i 0.996869 + 0.0790648i \(0.0251934\pi\)
−0.429963 + 0.902847i \(0.641473\pi\)
\(42\) 0 0
\(43\) −3.95061 + 6.84266i −0.602463 + 1.04350i 0.389984 + 0.920821i \(0.372480\pi\)
−0.992447 + 0.122674i \(0.960853\pi\)
\(44\) 0 0
\(45\) 3.10626 3.69775i 0.463054 0.551227i
\(46\) 0 0
\(47\) −1.90852 + 3.30565i −0.278386 + 0.482179i −0.970984 0.239145i \(-0.923133\pi\)
0.692598 + 0.721324i \(0.256466\pi\)
\(48\) 0 0
\(49\) −0.698094 1.20913i −0.0997277 0.172733i
\(50\) 0 0
\(51\) 6.13896 + 4.30107i 0.859626 + 0.602271i
\(52\) 0 0
\(53\) 7.26904 0.998480 0.499240 0.866464i \(-0.333613\pi\)
0.499240 + 0.866464i \(0.333613\pi\)
\(54\) 0 0
\(55\) 9.12991 1.23108
\(56\) 0 0
\(57\) −11.7140 8.20707i −1.55156 1.08705i
\(58\) 0 0
\(59\) 5.93765 + 10.2843i 0.773016 + 1.33890i 0.935903 + 0.352259i \(0.114586\pi\)
−0.162886 + 0.986645i \(0.552080\pi\)
\(60\) 0 0
\(61\) −0.141636 + 0.245321i −0.0181347 + 0.0314102i −0.874950 0.484213i \(-0.839106\pi\)
0.856816 + 0.515623i \(0.172439\pi\)
\(62\) 0 0
\(63\) −8.55995 1.51423i −1.07845 0.190775i
\(64\) 0 0
\(65\) −0.804884 + 1.39410i −0.0998336 + 0.172917i
\(66\) 0 0
\(67\) −1.31735 2.28172i −0.160940 0.278756i 0.774266 0.632860i \(-0.218119\pi\)
−0.935206 + 0.354104i \(0.884786\pi\)
\(68\) 0 0
\(69\) 0.252614 2.87824i 0.0304112 0.346499i
\(70\) 0 0
\(71\) 4.10735 0.487452 0.243726 0.969844i \(-0.421630\pi\)
0.243726 + 0.969844i \(0.421630\pi\)
\(72\) 0 0
\(73\) 7.43820 0.870575 0.435288 0.900291i \(-0.356647\pi\)
0.435288 + 0.900291i \(0.356647\pi\)
\(74\) 0 0
\(75\) 3.78151 1.76208i 0.436651 0.203467i
\(76\) 0 0
\(77\) −8.21702 14.2323i −0.936416 1.62192i
\(78\) 0 0
\(79\) 1.54994 2.68458i 0.174382 0.302039i −0.765565 0.643358i \(-0.777541\pi\)
0.939947 + 0.341320i \(0.110874\pi\)
\(80\) 0 0
\(81\) −6.90079 + 5.77747i −0.766754 + 0.641941i
\(82\) 0 0
\(83\) 4.06719 7.04459i 0.446433 0.773244i −0.551718 0.834031i \(-0.686028\pi\)
0.998151 + 0.0607867i \(0.0193609\pi\)
\(84\) 0 0
\(85\) −3.48327 6.03320i −0.377814 0.654392i
\(86\) 0 0
\(87\) −9.41749 + 4.38828i −1.00966 + 0.470473i
\(88\) 0 0
\(89\) −15.7980 −1.67459 −0.837293 0.546755i \(-0.815863\pi\)
−0.837293 + 0.546755i \(0.815863\pi\)
\(90\) 0 0
\(91\) 2.89762 0.303753
\(92\) 0 0
\(93\) 0.653819 7.44949i 0.0677979 0.772476i
\(94\) 0 0
\(95\) 6.64658 + 11.5122i 0.681925 + 1.18113i
\(96\) 0 0
\(97\) −0.917545 + 1.58924i −0.0931626 + 0.161362i −0.908840 0.417144i \(-0.863031\pi\)
0.815678 + 0.578507i \(0.196364\pi\)
\(98\) 0 0
\(99\) −16.7546 2.96383i −1.68390 0.297876i
\(100\) 0 0
\(101\) 0.774536 1.34154i 0.0770692 0.133488i −0.824915 0.565257i \(-0.808777\pi\)
0.901984 + 0.431769i \(0.142110\pi\)
\(102\) 0 0
\(103\) −8.18778 14.1817i −0.806766 1.39736i −0.915092 0.403245i \(-0.867882\pi\)
0.108326 0.994115i \(-0.465451\pi\)
\(104\) 0 0
\(105\) 6.61676 + 4.63583i 0.645730 + 0.452411i
\(106\) 0 0
\(107\) 9.74315 0.941906 0.470953 0.882158i \(-0.343910\pi\)
0.470953 + 0.882158i \(0.343910\pi\)
\(108\) 0 0
\(109\) 17.5510 1.68108 0.840538 0.541752i \(-0.182239\pi\)
0.840538 + 0.541752i \(0.182239\pi\)
\(110\) 0 0
\(111\) 1.94344 + 1.36161i 0.184463 + 0.129238i
\(112\) 0 0
\(113\) −3.41327 5.91196i −0.321094 0.556151i 0.659620 0.751599i \(-0.270717\pi\)
−0.980714 + 0.195448i \(0.937384\pi\)
\(114\) 0 0
\(115\) −1.34266 + 2.32555i −0.125204 + 0.216859i
\(116\) 0 0
\(117\) 1.92963 2.29707i 0.178395 0.212364i
\(118\) 0 0
\(119\) −6.26996 + 10.8599i −0.574766 + 0.995524i
\(120\) 0 0
\(121\) −10.5833 18.3309i −0.962121 1.66644i
\(122\) 0 0
\(123\) −1.09941 + 12.5264i −0.0991304 + 1.12947i
\(124\) 0 0
\(125\) −11.9262 −1.06671
\(126\) 0 0
\(127\) 17.5901 1.56086 0.780432 0.625240i \(-0.214999\pi\)
0.780432 + 0.625240i \(0.214999\pi\)
\(128\) 0 0
\(129\) −12.4047 + 5.78024i −1.09217 + 0.508922i
\(130\) 0 0
\(131\) 7.07583 + 12.2557i 0.618219 + 1.07079i 0.989811 + 0.142390i \(0.0454787\pi\)
−0.371592 + 0.928396i \(0.621188\pi\)
\(132\) 0 0
\(133\) 11.9640 20.7222i 1.03741 1.79685i
\(134\) 0 0
\(135\) 8.08138 2.15822i 0.695534 0.185750i
\(136\) 0 0
\(137\) 3.59328 6.22374i 0.306994 0.531730i −0.670709 0.741721i \(-0.734010\pi\)
0.977703 + 0.209991i \(0.0673434\pi\)
\(138\) 0 0
\(139\) 5.98564 + 10.3674i 0.507696 + 0.879355i 0.999960 + 0.00890898i \(0.00283585\pi\)
−0.492265 + 0.870446i \(0.663831\pi\)
\(140\) 0 0
\(141\) −5.99265 + 2.79240i −0.504672 + 0.235163i
\(142\) 0 0
\(143\) 5.67157 0.474280
\(144\) 0 0
\(145\) 9.65620 0.801904
\(146\) 0 0
\(147\) 0.211431 2.40901i 0.0174386 0.198692i
\(148\) 0 0
\(149\) 5.98534 + 10.3669i 0.490338 + 0.849291i 0.999938 0.0111205i \(-0.00353984\pi\)
−0.509600 + 0.860412i \(0.670207\pi\)
\(150\) 0 0
\(151\) 11.2826 19.5421i 0.918169 1.59032i 0.115975 0.993252i \(-0.463001\pi\)
0.802194 0.597063i \(-0.203666\pi\)
\(152\) 0 0
\(153\) 4.43370 + 12.2025i 0.358444 + 0.986512i
\(154\) 0 0
\(155\) −3.47509 + 6.01902i −0.279126 + 0.483460i
\(156\) 0 0
\(157\) −5.00929 8.67634i −0.399785 0.692447i 0.593914 0.804528i \(-0.297582\pi\)
−0.993699 + 0.112081i \(0.964248\pi\)
\(158\) 0 0
\(159\) 10.3114 + 7.22438i 0.817749 + 0.572930i
\(160\) 0 0
\(161\) 4.83363 0.380943
\(162\) 0 0
\(163\) −16.8597 −1.32055 −0.660276 0.751023i \(-0.729561\pi\)
−0.660276 + 0.751023i \(0.729561\pi\)
\(164\) 0 0
\(165\) 12.9511 + 9.07381i 1.00824 + 0.706395i
\(166\) 0 0
\(167\) 7.76568 + 13.4506i 0.600927 + 1.04084i 0.992681 + 0.120766i \(0.0385350\pi\)
−0.391754 + 0.920070i \(0.628132\pi\)
\(168\) 0 0
\(169\) −0.500000 + 0.866025i −0.0384615 + 0.0666173i
\(170\) 0 0
\(171\) −8.46015 23.2841i −0.646964 1.78058i
\(172\) 0 0
\(173\) −5.99609 + 10.3855i −0.455874 + 0.789597i −0.998738 0.0502237i \(-0.984007\pi\)
0.542864 + 0.839821i \(0.317340\pi\)
\(174\) 0 0
\(175\) 3.48967 + 6.04428i 0.263794 + 0.456905i
\(176\) 0 0
\(177\) −1.79833 + 20.4899i −0.135171 + 1.54011i
\(178\) 0 0
\(179\) −0.296088 −0.0221307 −0.0110653 0.999939i \(-0.503522\pi\)
−0.0110653 + 0.999939i \(0.503522\pi\)
\(180\) 0 0
\(181\) −22.7246 −1.68910 −0.844552 0.535473i \(-0.820133\pi\)
−0.844552 + 0.535473i \(0.820133\pi\)
\(182\) 0 0
\(183\) −0.444730 + 0.207232i −0.0328754 + 0.0153190i
\(184\) 0 0
\(185\) −1.10271 1.90995i −0.0810731 0.140423i
\(186\) 0 0
\(187\) −12.2723 + 21.2563i −0.897441 + 1.55441i
\(188\) 0 0
\(189\) −10.6377 10.6553i −0.773779 0.775062i
\(190\) 0 0
\(191\) 3.21533 5.56911i 0.232653 0.402967i −0.725935 0.687763i \(-0.758593\pi\)
0.958588 + 0.284797i \(0.0919260\pi\)
\(192\) 0 0
\(193\) 3.76630 + 6.52342i 0.271104 + 0.469566i 0.969145 0.246492i \(-0.0792779\pi\)
−0.698041 + 0.716058i \(0.745945\pi\)
\(194\) 0 0
\(195\) −2.52729 + 1.17765i −0.180983 + 0.0843330i
\(196\) 0 0
\(197\) 14.1456 1.00783 0.503916 0.863753i \(-0.331892\pi\)
0.503916 + 0.863753i \(0.331892\pi\)
\(198\) 0 0
\(199\) 0.643592 0.0456230 0.0228115 0.999740i \(-0.492738\pi\)
0.0228115 + 0.999740i \(0.492738\pi\)
\(200\) 0 0
\(201\) 0.398985 4.54595i 0.0281422 0.320647i
\(202\) 0 0
\(203\) −8.69069 15.0527i −0.609967 1.05649i
\(204\) 0 0
\(205\) 5.84342 10.1211i 0.408122 0.706888i
\(206\) 0 0
\(207\) 3.21889 3.83183i 0.223729 0.266330i
\(208\) 0 0
\(209\) 23.4174 40.5601i 1.61981 2.80560i
\(210\) 0 0
\(211\) −10.3451 17.9183i −0.712187 1.23354i −0.964035 0.265777i \(-0.914372\pi\)
0.251848 0.967767i \(-0.418962\pi\)
\(212\) 0 0
\(213\) 5.82643 + 4.08211i 0.399220 + 0.279701i
\(214\) 0 0
\(215\) 12.7191 0.867438
\(216\) 0 0
\(217\) 12.5105 0.849265
\(218\) 0 0
\(219\) 10.5514 + 7.39249i 0.712996 + 0.499538i
\(220\) 0 0
\(221\) −2.16383 3.74787i −0.145555 0.252109i
\(222\) 0 0
\(223\) −1.66319 + 2.88073i −0.111375 + 0.192908i −0.916325 0.400435i \(-0.868859\pi\)
0.804950 + 0.593343i \(0.202192\pi\)
\(224\) 0 0
\(225\) 7.11547 + 1.25870i 0.474364 + 0.0839135i
\(226\) 0 0
\(227\) 4.35549 7.54393i 0.289084 0.500708i −0.684507 0.729006i \(-0.739983\pi\)
0.973591 + 0.228298i \(0.0733160\pi\)
\(228\) 0 0
\(229\) 9.82878 + 17.0240i 0.649504 + 1.12497i 0.983241 + 0.182308i \(0.0583569\pi\)
−0.333737 + 0.942666i \(0.608310\pi\)
\(230\) 0 0
\(231\) 2.48868 28.3556i 0.163743 1.86566i
\(232\) 0 0
\(233\) 3.31654 0.217274 0.108637 0.994081i \(-0.465351\pi\)
0.108637 + 0.994081i \(0.465351\pi\)
\(234\) 0 0
\(235\) 6.14455 0.400826
\(236\) 0 0
\(237\) 4.86673 2.26776i 0.316128 0.147307i
\(238\) 0 0
\(239\) −7.52273 13.0297i −0.486605 0.842824i 0.513277 0.858223i \(-0.328431\pi\)
−0.999881 + 0.0153991i \(0.995098\pi\)
\(240\) 0 0
\(241\) 0.101896 0.176490i 0.00656372 0.0113687i −0.862725 0.505674i \(-0.831244\pi\)
0.869289 + 0.494305i \(0.164577\pi\)
\(242\) 0 0
\(243\) −15.5310 + 1.33717i −0.996314 + 0.0857797i
\(244\) 0 0
\(245\) −1.12377 + 1.94643i −0.0717950 + 0.124353i
\(246\) 0 0
\(247\) 4.12890 + 7.15147i 0.262716 + 0.455037i
\(248\) 0 0
\(249\) 12.7708 5.95082i 0.809315 0.377118i
\(250\) 0 0
\(251\) 18.6719 1.17856 0.589280 0.807929i \(-0.299411\pi\)
0.589280 + 0.807929i \(0.299411\pi\)
\(252\) 0 0
\(253\) 9.46096 0.594805
\(254\) 0 0
\(255\) 1.05498 12.0202i 0.0660652 0.752733i
\(256\) 0 0
\(257\) 13.0755 + 22.6475i 0.815629 + 1.41271i 0.908875 + 0.417068i \(0.136942\pi\)
−0.0932465 + 0.995643i \(0.529724\pi\)
\(258\) 0 0
\(259\) −1.98491 + 3.43796i −0.123336 + 0.213624i
\(260\) 0 0
\(261\) −17.7204 3.13468i −1.09686 0.194032i
\(262\) 0 0
\(263\) 14.2962 24.7618i 0.881544 1.52688i 0.0319205 0.999490i \(-0.489838\pi\)
0.849624 0.527389i \(-0.176829\pi\)
\(264\) 0 0
\(265\) −5.85074 10.1338i −0.359408 0.622513i
\(266\) 0 0
\(267\) −22.4101 15.7009i −1.37147 0.960882i
\(268\) 0 0
\(269\) −4.59176 −0.279964 −0.139982 0.990154i \(-0.544705\pi\)
−0.139982 + 0.990154i \(0.544705\pi\)
\(270\) 0 0
\(271\) −31.1500 −1.89223 −0.946115 0.323830i \(-0.895029\pi\)
−0.946115 + 0.323830i \(0.895029\pi\)
\(272\) 0 0
\(273\) 4.11038 + 2.87981i 0.248772 + 0.174294i
\(274\) 0 0
\(275\) 6.83040 + 11.8306i 0.411889 + 0.713412i
\(276\) 0 0
\(277\) −2.85590 + 4.94657i −0.171595 + 0.297210i −0.938977 0.343979i \(-0.888225\pi\)
0.767383 + 0.641189i \(0.221559\pi\)
\(278\) 0 0
\(279\) 8.33118 9.91758i 0.498775 0.593750i
\(280\) 0 0
\(281\) −5.70085 + 9.87416i −0.340084 + 0.589043i −0.984448 0.175676i \(-0.943789\pi\)
0.644364 + 0.764719i \(0.277122\pi\)
\(282\) 0 0
\(283\) 5.02801 + 8.70877i 0.298884 + 0.517682i 0.975881 0.218304i \(-0.0700523\pi\)
−0.676997 + 0.735986i \(0.736719\pi\)
\(284\) 0 0
\(285\) −2.01305 + 22.9363i −0.119243 + 1.35863i
\(286\) 0 0
\(287\) −21.0366 −1.24175
\(288\) 0 0
\(289\) 1.72868 0.101687
\(290\) 0 0
\(291\) −2.88104 + 1.34248i −0.168890 + 0.0786978i
\(292\) 0 0
\(293\) −8.78165 15.2103i −0.513029 0.888593i −0.999886 0.0151108i \(-0.995190\pi\)
0.486857 0.873482i \(-0.338143\pi\)
\(294\) 0 0
\(295\) 9.55824 16.5554i 0.556502 0.963890i
\(296\) 0 0
\(297\) −20.8214 20.8559i −1.20818 1.21018i
\(298\) 0 0
\(299\) −0.834069 + 1.44465i −0.0482355 + 0.0835463i
\(300\) 0 0
\(301\) −11.4474 19.8274i −0.659815 1.14283i
\(302\) 0 0
\(303\) 2.43200 1.13324i 0.139715 0.0651031i
\(304\) 0 0
\(305\) 0.456003 0.0261107
\(306\) 0 0
\(307\) 15.8280 0.903352 0.451676 0.892182i \(-0.350826\pi\)
0.451676 + 0.892182i \(0.350826\pi\)
\(308\) 0 0
\(309\) 2.47983 28.2547i 0.141073 1.60735i
\(310\) 0 0
\(311\) 6.10724 + 10.5781i 0.346310 + 0.599827i 0.985591 0.169147i \(-0.0541012\pi\)
−0.639281 + 0.768973i \(0.720768\pi\)
\(312\) 0 0
\(313\) −8.50666 + 14.7340i −0.480825 + 0.832813i −0.999758 0.0220019i \(-0.992996\pi\)
0.518933 + 0.854815i \(0.326329\pi\)
\(314\) 0 0
\(315\) 4.77879 + 13.1522i 0.269254 + 0.741043i
\(316\) 0 0
\(317\) −14.2906 + 24.7521i −0.802641 + 1.39022i 0.115231 + 0.993339i \(0.463239\pi\)
−0.917872 + 0.396877i \(0.870094\pi\)
\(318\) 0 0
\(319\) −17.0105 29.4630i −0.952403 1.64961i
\(320\) 0 0
\(321\) 13.8210 + 9.68328i 0.771415 + 0.540468i
\(322\) 0 0
\(323\) −35.7370 −1.98846
\(324\) 0 0
\(325\) −2.40865 −0.133608
\(326\) 0 0
\(327\) 24.8967 + 17.4431i 1.37679 + 0.964606i
\(328\) 0 0
\(329\) −5.53016 9.57851i −0.304887 0.528081i
\(330\) 0 0
\(331\) 9.80110 16.9760i 0.538717 0.933085i −0.460256 0.887786i \(-0.652243\pi\)
0.998973 0.0452993i \(-0.0144242\pi\)
\(332\) 0 0
\(333\) 1.40360 + 3.86299i 0.0769166 + 0.211690i
\(334\) 0 0
\(335\) −2.12063 + 3.67303i −0.115862 + 0.200679i
\(336\) 0 0
\(337\) 1.20439 + 2.08606i 0.0656072 + 0.113635i 0.896963 0.442105i \(-0.145768\pi\)
−0.831356 + 0.555740i \(0.812435\pi\)
\(338\) 0 0
\(339\) 1.03378 11.7787i 0.0561471 0.639729i
\(340\) 0 0
\(341\) 24.4870 1.32604
\(342\) 0 0
\(343\) −16.2377 −0.876754
\(344\) 0 0
\(345\) −4.21588 + 1.96448i −0.226975 + 0.105764i
\(346\) 0 0
\(347\) 2.82819 + 4.89856i 0.151825 + 0.262969i 0.931898 0.362719i \(-0.118152\pi\)
−0.780073 + 0.625688i \(0.784818\pi\)
\(348\) 0 0
\(349\) 1.09257 1.89239i 0.0584839 0.101297i −0.835301 0.549793i \(-0.814707\pi\)
0.893785 + 0.448496i \(0.148040\pi\)
\(350\) 0 0
\(351\) 5.02021 1.34070i 0.267959 0.0715615i
\(352\) 0 0
\(353\) −1.68642 + 2.92096i −0.0897589 + 0.155467i −0.907409 0.420248i \(-0.861943\pi\)
0.817650 + 0.575715i \(0.195276\pi\)
\(354\) 0 0
\(355\) −3.30594 5.72605i −0.175461 0.303907i
\(356\) 0 0
\(357\) −19.6873 + 9.17374i −1.04196 + 0.485526i
\(358\) 0 0
\(359\) 22.6756 1.19677 0.598387 0.801207i \(-0.295809\pi\)
0.598387 + 0.801207i \(0.295809\pi\)
\(360\) 0 0
\(361\) 49.1914 2.58902
\(362\) 0 0
\(363\) 3.20537 36.5213i 0.168238 1.91687i
\(364\) 0 0
\(365\) −5.98689 10.3696i −0.313368 0.542769i
\(366\) 0 0
\(367\) −12.8781 + 22.3054i −0.672229 + 1.16433i 0.305042 + 0.952339i \(0.401330\pi\)
−0.977271 + 0.211996i \(0.932004\pi\)
\(368\) 0 0
\(369\) −14.0090 + 16.6766i −0.729281 + 0.868149i
\(370\) 0 0
\(371\) −10.5315 + 18.2410i −0.546766 + 0.947026i
\(372\) 0 0
\(373\) −2.77948 4.81421i −0.143916 0.249270i 0.785052 0.619430i \(-0.212636\pi\)
−0.928968 + 0.370160i \(0.879303\pi\)
\(374\) 0 0
\(375\) −16.9178 11.8529i −0.873630 0.612082i
\(376\) 0 0
\(377\) 5.99850 0.308939
\(378\) 0 0
\(379\) 12.2525 0.629371 0.314685 0.949196i \(-0.398101\pi\)
0.314685 + 0.949196i \(0.398101\pi\)
\(380\) 0 0
\(381\) 24.9522 + 17.4820i 1.27834 + 0.895628i
\(382\) 0 0
\(383\) 9.33013 + 16.1603i 0.476747 + 0.825750i 0.999645 0.0266451i \(-0.00848240\pi\)
−0.522898 + 0.852395i \(0.675149\pi\)
\(384\) 0 0
\(385\) −13.2275 + 22.9107i −0.674135 + 1.16764i
\(386\) 0 0
\(387\) −23.3413 4.12900i −1.18650 0.209889i
\(388\) 0 0
\(389\) −12.8764 + 22.3026i −0.652861 + 1.13079i 0.329564 + 0.944133i \(0.393098\pi\)
−0.982425 + 0.186656i \(0.940235\pi\)
\(390\) 0 0
\(391\) −3.60957 6.25196i −0.182544 0.316175i
\(392\) 0 0
\(393\) −2.14306 + 24.4175i −0.108103 + 1.23170i
\(394\) 0 0
\(395\) −4.99009 −0.251079
\(396\) 0 0
\(397\) 17.9208 0.899419 0.449710 0.893175i \(-0.351527\pi\)
0.449710 + 0.893175i \(0.351527\pi\)
\(398\) 0 0
\(399\) 37.5663 17.5048i 1.88067 0.876337i
\(400\) 0 0
\(401\) −10.2566 17.7650i −0.512191 0.887141i −0.999900 0.0141345i \(-0.995501\pi\)
0.487709 0.873006i \(-0.337833\pi\)
\(402\) 0 0
\(403\) −2.15875 + 3.73906i −0.107535 + 0.186256i
\(404\) 0 0
\(405\) 13.6087 + 4.97020i 0.676222 + 0.246971i
\(406\) 0 0
\(407\) −3.88510 + 6.72919i −0.192577 + 0.333554i
\(408\) 0 0
\(409\) 11.6278 + 20.1399i 0.574957 + 0.995854i 0.996046 + 0.0888353i \(0.0283145\pi\)
−0.421090 + 0.907019i \(0.638352\pi\)
\(410\) 0 0
\(411\) 11.2827 5.25742i 0.556535 0.259329i
\(412\) 0 0
\(413\) −34.4101 −1.69321
\(414\) 0 0
\(415\) −13.0945 −0.642783
\(416\) 0 0
\(417\) −1.81287 + 20.6555i −0.0887766 + 1.01150i
\(418\) 0 0
\(419\) 3.01143 + 5.21594i 0.147118 + 0.254816i 0.930161 0.367152i \(-0.119667\pi\)
−0.783043 + 0.621967i \(0.786334\pi\)
\(420\) 0 0
\(421\) −13.9110 + 24.0945i −0.677978 + 1.17429i 0.297610 + 0.954687i \(0.403810\pi\)
−0.975589 + 0.219605i \(0.929523\pi\)
\(422\) 0 0
\(423\) −11.2760 1.99469i −0.548260 0.0969854i
\(424\) 0 0
\(425\) 5.21191 9.02729i 0.252815 0.437888i
\(426\) 0 0
\(427\) −0.410408 0.710847i −0.0198610 0.0344003i
\(428\) 0 0
\(429\) 8.04534 + 5.63672i 0.388432 + 0.272143i
\(430\) 0 0
\(431\) −30.8395 −1.48549 −0.742743 0.669576i \(-0.766476\pi\)
−0.742743 + 0.669576i \(0.766476\pi\)
\(432\) 0 0
\(433\) 23.2262 1.11618 0.558091 0.829780i \(-0.311534\pi\)
0.558091 + 0.829780i \(0.311534\pi\)
\(434\) 0 0
\(435\) 13.6977 + 9.59687i 0.656754 + 0.460135i
\(436\) 0 0
\(437\) 6.88759 + 11.9297i 0.329478 + 0.570673i
\(438\) 0 0
\(439\) −9.12719 + 15.8088i −0.435617 + 0.754511i −0.997346 0.0728108i \(-0.976803\pi\)
0.561729 + 0.827321i \(0.310136\pi\)
\(440\) 0 0
\(441\) 2.69413 3.20714i 0.128292 0.152721i
\(442\) 0 0
\(443\) 0.452515 0.783779i 0.0214996 0.0372385i −0.855075 0.518504i \(-0.826489\pi\)
0.876575 + 0.481265i \(0.159823\pi\)
\(444\) 0 0
\(445\) 12.7156 + 22.0240i 0.602776 + 1.04404i
\(446\) 0 0
\(447\) −1.81278 + 20.6544i −0.0857415 + 0.976921i
\(448\) 0 0
\(449\) −6.11406 −0.288540 −0.144270 0.989538i \(-0.546083\pi\)
−0.144270 + 0.989538i \(0.546083\pi\)
\(450\) 0 0
\(451\) −41.1753 −1.93887
\(452\) 0 0
\(453\) 35.4269 16.5079i 1.66450 0.775610i
\(454\) 0 0
\(455\) −2.33225 4.03957i −0.109337 0.189378i
\(456\) 0 0
\(457\) −8.68386 + 15.0409i −0.406214 + 0.703583i −0.994462 0.105097i \(-0.966485\pi\)
0.588248 + 0.808681i \(0.299818\pi\)
\(458\) 0 0
\(459\) −5.83812 + 21.7161i −0.272500 + 1.01362i
\(460\) 0 0
\(461\) −6.49976 + 11.2579i −0.302724 + 0.524333i −0.976752 0.214373i \(-0.931229\pi\)
0.674028 + 0.738706i \(0.264563\pi\)
\(462\) 0 0
\(463\) 1.93117 + 3.34488i 0.0897489 + 0.155450i 0.907405 0.420257i \(-0.138060\pi\)
−0.817656 + 0.575707i \(0.804727\pi\)
\(464\) 0 0
\(465\) −10.9116 + 5.08449i −0.506013 + 0.235787i
\(466\) 0 0
\(467\) −30.3460 −1.40425 −0.702123 0.712056i \(-0.747764\pi\)
−0.702123 + 0.712056i \(0.747764\pi\)
\(468\) 0 0
\(469\) 7.63435 0.352521
\(470\) 0 0
\(471\) 1.51716 17.2862i 0.0699071 0.796508i
\(472\) 0 0
\(473\) −22.4062 38.8086i −1.03024 1.78442i
\(474\) 0 0
\(475\) −9.94507 + 17.2254i −0.456311 + 0.790354i
\(476\) 0 0
\(477\) 7.44716 + 20.4961i 0.340982 + 0.938453i
\(478\) 0 0
\(479\) 20.5870 35.6578i 0.940645 1.62924i 0.176400 0.984319i \(-0.443555\pi\)
0.764245 0.644926i \(-0.223112\pi\)
\(480\) 0 0
\(481\) −0.685013 1.18648i −0.0312339 0.0540987i
\(482\) 0 0
\(483\) 6.85669 + 4.80393i 0.311990 + 0.218586i
\(484\) 0 0
\(485\) 2.95407 0.134137
\(486\) 0 0
\(487\) 40.0582 1.81521 0.907605 0.419824i \(-0.137908\pi\)
0.907605 + 0.419824i \(0.137908\pi\)
\(488\) 0 0
\(489\) −23.9161 16.7561i −1.08152 0.757736i
\(490\) 0 0
\(491\) 8.04240 + 13.9298i 0.362948 + 0.628645i 0.988445 0.151582i \(-0.0484368\pi\)
−0.625496 + 0.780227i \(0.715104\pi\)
\(492\) 0 0
\(493\) −12.9798 + 22.4816i −0.584579 + 1.01252i
\(494\) 0 0
\(495\) 9.35362 + 25.7431i 0.420414 + 1.15707i
\(496\) 0 0
\(497\) −5.95076 + 10.3070i −0.266928 + 0.462333i
\(498\) 0 0
\(499\) 10.9793 + 19.0166i 0.491499 + 0.851301i 0.999952 0.00978866i \(-0.00311588\pi\)
−0.508453 + 0.861090i \(0.669783\pi\)
\(500\) 0 0
\(501\) −2.35199 + 26.7981i −0.105079 + 1.19725i
\(502\) 0 0
\(503\) −11.7924 −0.525797 −0.262899 0.964823i \(-0.584678\pi\)
−0.262899 + 0.964823i \(0.584678\pi\)
\(504\) 0 0
\(505\) −2.49365 −0.110966
\(506\) 0 0
\(507\) −1.56997 + 0.731563i −0.0697250 + 0.0324898i
\(508\) 0 0
\(509\) −13.0155 22.5435i −0.576902 0.999224i −0.995832 0.0912052i \(-0.970928\pi\)
0.418930 0.908018i \(-0.362405\pi\)
\(510\) 0 0
\(511\) −10.7765 + 18.6655i −0.476726 + 0.825713i
\(512\) 0 0
\(513\) 11.1400 41.4375i 0.491842 1.82951i
\(514\) 0 0
\(515\) −13.1804 + 22.8292i −0.580799 + 1.00597i
\(516\) 0 0
\(517\) −10.8243 18.7482i −0.476052 0.824546i
\(518\) 0 0
\(519\) −18.8274 + 8.77303i −0.826431 + 0.385093i
\(520\) 0 0
\(521\) 14.3702 0.629571 0.314786 0.949163i \(-0.398067\pi\)
0.314786 + 0.949163i \(0.398067\pi\)
\(522\) 0 0
\(523\) −24.6825 −1.07929 −0.539644 0.841893i \(-0.681441\pi\)
−0.539644 + 0.841893i \(0.681441\pi\)
\(524\) 0 0
\(525\) −1.05691 + 12.0423i −0.0461275 + 0.525568i
\(526\) 0 0
\(527\) −9.34234 16.1814i −0.406959 0.704873i
\(528\) 0 0
\(529\) 10.1087 17.5087i 0.439507 0.761248i
\(530\) 0 0
\(531\) −22.9150 + 27.2784i −0.994425 + 1.18378i
\(532\) 0 0
\(533\) 3.62998 6.28730i 0.157232 0.272333i
\(534\) 0 0
\(535\) −7.84211 13.5829i −0.339044 0.587241i
\(536\) 0 0
\(537\) −0.420013 0.294269i −0.0181249 0.0126986i
\(538\) 0 0
\(539\) 7.91857 0.341077
\(540\) 0 0
\(541\) −20.9800 −0.902000 −0.451000 0.892524i \(-0.648933\pi\)
−0.451000 + 0.892524i \(0.648933\pi\)
\(542\) 0 0
\(543\) −32.2357 22.5849i −1.38337 0.969212i
\(544\) 0 0
\(545\) −14.1265 24.4678i −0.605112 1.04809i
\(546\) 0 0
\(547\) −12.6478 + 21.9066i −0.540780 + 0.936659i 0.458079 + 0.888911i \(0.348538\pi\)
−0.998859 + 0.0477474i \(0.984796\pi\)
\(548\) 0 0
\(549\) −0.836826 0.148032i −0.0357148 0.00631784i
\(550\) 0 0
\(551\) 24.7673 42.8981i 1.05512 1.82752i
\(552\) 0 0
\(553\) 4.49114 + 7.77888i 0.190983 + 0.330792i
\(554\) 0 0
\(555\) 0.333978 3.80528i 0.0141766 0.161525i
\(556\) 0 0
\(557\) 7.04885 0.298670 0.149335 0.988787i \(-0.452287\pi\)
0.149335 + 0.988787i \(0.452287\pi\)
\(558\) 0 0
\(559\) 7.90122 0.334186
\(560\) 0 0
\(561\) −38.5344 + 17.9559i −1.62692 + 0.758100i
\(562\) 0 0
\(563\) 6.98261 + 12.0942i 0.294282 + 0.509711i 0.974818 0.223004i \(-0.0715862\pi\)
−0.680536 + 0.732715i \(0.738253\pi\)
\(564\) 0 0
\(565\) −5.49458 + 9.51689i −0.231159 + 0.400379i
\(566\) 0 0
\(567\) −4.50011 25.6874i −0.188987 1.07877i
\(568\) 0 0
\(569\) −9.62667 + 16.6739i −0.403571 + 0.699006i −0.994154 0.107971i \(-0.965565\pi\)
0.590583 + 0.806977i \(0.298898\pi\)
\(570\) 0 0
\(571\) −12.1751 21.0880i −0.509514 0.882504i −0.999939 0.0110210i \(-0.996492\pi\)
0.490425 0.871483i \(-0.336841\pi\)
\(572\) 0 0
\(573\) 10.0960 4.70443i 0.421765 0.196530i
\(574\) 0 0
\(575\) −4.01796 −0.167560
\(576\) 0 0
\(577\) −14.3504 −0.597414 −0.298707 0.954345i \(-0.596555\pi\)
−0.298707 + 0.954345i \(0.596555\pi\)
\(578\) 0 0
\(579\) −1.14070 + 12.9969i −0.0474058 + 0.540132i
\(580\) 0 0
\(581\) 11.7852 + 20.4125i 0.488931 + 0.846854i
\(582\) 0 0
\(583\) −20.6134 + 35.7035i −0.853721 + 1.47869i
\(584\) 0 0
\(585\) −4.75547 0.841227i −0.196615 0.0347805i
\(586\) 0 0
\(587\) −1.38679 + 2.40198i −0.0572388 + 0.0991405i −0.893225 0.449610i \(-0.851563\pi\)
0.835986 + 0.548751i \(0.184896\pi\)
\(588\) 0 0
\(589\) 17.8265 + 30.8765i 0.734530 + 1.27224i
\(590\) 0 0
\(591\) 20.0661 + 14.0587i 0.825407 + 0.578296i
\(592\) 0 0
\(593\) 5.07967 0.208597 0.104299 0.994546i \(-0.466740\pi\)
0.104299 + 0.994546i \(0.466740\pi\)
\(594\) 0 0
\(595\) 20.1864 0.827560
\(596\) 0 0
\(597\) 0.912960 + 0.639637i 0.0373650 + 0.0261786i
\(598\) 0 0
\(599\) 2.95659 + 5.12097i 0.120803 + 0.209237i 0.920085 0.391720i \(-0.128120\pi\)
−0.799281 + 0.600957i \(0.794786\pi\)
\(600\) 0 0
\(601\) −14.0561 + 24.3460i −0.573362 + 0.993092i 0.422855 + 0.906197i \(0.361028\pi\)
−0.996217 + 0.0868952i \(0.972305\pi\)
\(602\) 0 0
\(603\) 5.08400 6.05208i 0.207036 0.246460i
\(604\) 0 0
\(605\) −17.0367 + 29.5085i −0.692641 + 1.19969i
\(606\) 0 0
\(607\) 11.9330 + 20.6685i 0.484344 + 0.838909i 0.999838 0.0179843i \(-0.00572489\pi\)
−0.515494 + 0.856893i \(0.672392\pi\)
\(608\) 0 0
\(609\) 2.63214 29.9901i 0.106660 1.21526i
\(610\) 0 0
\(611\) 3.81704 0.154421
\(612\) 0 0
\(613\) −7.62213 −0.307855 −0.153927 0.988082i \(-0.549192\pi\)
−0.153927 + 0.988082i \(0.549192\pi\)
\(614\) 0 0
\(615\) 18.3480 8.54965i 0.739864 0.344755i
\(616\) 0 0
\(617\) −6.54893 11.3431i −0.263650 0.456655i 0.703559 0.710637i \(-0.251593\pi\)
−0.967209 + 0.253982i \(0.918260\pi\)
\(618\) 0 0
\(619\) 17.4754 30.2683i 0.702396 1.21659i −0.265227 0.964186i \(-0.585447\pi\)
0.967623 0.252400i \(-0.0812198\pi\)
\(620\) 0 0
\(621\) 8.37441 2.23648i 0.336053 0.0897468i
\(622\) 0 0
\(623\) 22.8883 39.6437i 0.917000 1.58829i
\(624\) 0 0
\(625\) 3.57760 + 6.19658i 0.143104 + 0.247863i
\(626\) 0 0
\(627\) 73.5293 34.2625i 2.93648 1.36831i
\(628\) 0 0
\(629\) 5.92902 0.236405
\(630\) 0 0
\(631\) 34.0914 1.35716 0.678579 0.734527i \(-0.262596\pi\)
0.678579 + 0.734527i \(0.262596\pi\)
\(632\) 0 0
\(633\) 3.13322 35.6993i 0.124534 1.41892i
\(634\) 0 0
\(635\) −14.1580 24.5223i −0.561841 0.973138i
\(636\) 0 0
\(637\) −0.698094 + 1.20913i −0.0276595 + 0.0479077i
\(638\) 0 0
\(639\) 4.20799 + 11.5813i 0.166465 + 0.458147i
\(640\) 0 0
\(641\) 17.6408 30.5547i 0.696769 1.20684i −0.272812 0.962067i \(-0.587954\pi\)
0.969581 0.244771i \(-0.0787129\pi\)
\(642\) 0 0
\(643\) −9.67066 16.7501i −0.381374 0.660559i 0.609885 0.792490i \(-0.291216\pi\)
−0.991259 + 0.131931i \(0.957882\pi\)
\(644\) 0 0
\(645\) 18.0426 + 12.6410i 0.710426 + 0.497738i
\(646\) 0 0
\(647\) −19.9094 −0.782718 −0.391359 0.920238i \(-0.627995\pi\)
−0.391359 + 0.920238i \(0.627995\pi\)
\(648\) 0 0
\(649\) −67.3516 −2.64378
\(650\) 0 0
\(651\) 17.7466 + 12.4336i 0.695543 + 0.487311i
\(652\) 0 0
\(653\) 7.34363 + 12.7195i 0.287378 + 0.497754i 0.973183 0.230032i \(-0.0738830\pi\)
−0.685805 + 0.727785i \(0.740550\pi\)
\(654\) 0 0
\(655\) 11.3905 19.7288i 0.445062 0.770870i
\(656\) 0 0
\(657\) 7.62046 + 20.9731i 0.297302 + 0.818238i
\(658\) 0 0
\(659\) 19.6127 33.9702i 0.764003 1.32329i −0.176769 0.984252i \(-0.556564\pi\)
0.940772 0.339040i \(-0.110102\pi\)
\(660\) 0 0
\(661\) −10.9667 18.9950i −0.426557 0.738818i 0.570008 0.821639i \(-0.306940\pi\)
−0.996564 + 0.0828214i \(0.973607\pi\)
\(662\) 0 0
\(663\) 0.655359 7.46703i 0.0254520 0.289995i
\(664\) 0 0
\(665\) −38.5185 −1.49368
\(666\) 0 0
\(667\) 10.0063 0.387447
\(668\) 0 0
\(669\) −5.22232 + 2.43345i −0.201907 + 0.0940827i
\(670\) 0 0
\(671\) −0.803300 1.39136i −0.0310110 0.0537127i
\(672\) 0 0
\(673\) 1.14213 1.97823i 0.0440260 0.0762553i −0.843173 0.537643i \(-0.819315\pi\)
0.887199 + 0.461388i \(0.152648\pi\)
\(674\) 0 0
\(675\) 8.84259 + 8.85726i 0.340352 + 0.340916i
\(676\) 0 0
\(677\) 9.40122 16.2834i 0.361318 0.625821i −0.626860 0.779132i \(-0.715660\pi\)
0.988178 + 0.153311i \(0.0489935\pi\)
\(678\) 0 0
\(679\) −2.65870 4.60500i −0.102031 0.176724i
\(680\) 0 0
\(681\) 13.6760 6.37263i 0.524066 0.244200i
\(682\) 0 0
\(683\) −43.1705 −1.65187 −0.825936 0.563763i \(-0.809353\pi\)
−0.825936 + 0.563763i \(0.809353\pi\)
\(684\) 0 0
\(685\) −11.5687 −0.442017
\(686\) 0 0
\(687\) −2.97684 + 33.9175i −0.113574 + 1.29403i
\(688\) 0 0
\(689\) −3.63452 6.29518i −0.138464 0.239827i
\(690\) 0 0
\(691\) −1.55075 + 2.68598i −0.0589933 + 0.102179i −0.894014 0.448039i \(-0.852122\pi\)
0.835020 + 0.550219i \(0.185456\pi\)
\(692\) 0 0
\(693\) 31.7116 37.7501i 1.20463 1.43401i
\(694\) 0 0
\(695\) 9.63550 16.6892i 0.365495 0.633056i
\(696\) 0 0
\(697\) 15.7093 + 27.2093i 0.595033 + 1.03063i
\(698\) 0 0
\(699\) 4.70464 + 3.29616i 0.177946 + 0.124672i
\(700\) 0 0
\(701\) −11.3838 −0.429960 −0.214980 0.976618i \(-0.568969\pi\)
−0.214980 + 0.976618i \(0.568969\pi\)
\(702\) 0 0
\(703\) −11.3134 −0.426694
\(704\) 0 0
\(705\) 8.71627 + 6.10679i 0.328274 + 0.229995i
\(706\) 0 0
\(707\) 2.24431 + 3.88726i 0.0844059 + 0.146195i
\(708\) 0 0
\(709\) 13.7715 23.8529i 0.517200 0.895816i −0.482601 0.875840i \(-0.660308\pi\)
0.999800 0.0199757i \(-0.00635888\pi\)
\(710\) 0 0
\(711\) 9.15747 + 1.61993i 0.343432 + 0.0607520i
\(712\) 0 0
\(713\) −3.60109 + 6.23728i −0.134862 + 0.233588i
\(714\) 0 0
\(715\) −4.56495 7.90673i −0.170720 0.295695i
\(716\) 0 0
\(717\) 2.27841 25.9597i 0.0850886 0.969483i
\(718\) 0 0
\(719\) −9.38378 −0.349956 −0.174978 0.984572i \(-0.555985\pi\)
−0.174978 + 0.984572i \(0.555985\pi\)
\(720\) 0 0
\(721\) 47.4501 1.76714
\(722\) 0 0
\(723\) 0.319949 0.149087i 0.0118990 0.00554461i
\(724\) 0 0
\(725\) 7.22414 + 12.5126i 0.268298 + 0.464705i
\(726\) 0 0
\(727\) −19.1669 + 33.1980i −0.710859 + 1.23124i 0.253676 + 0.967289i \(0.418360\pi\)
−0.964535 + 0.263955i \(0.914973\pi\)
\(728\) 0 0
\(729\) −23.3603 13.5387i −0.865196 0.501435i
\(730\) 0 0
\(731\) −17.0969 + 29.6127i −0.632352 + 1.09527i
\(732\) 0 0
\(733\) −18.9625 32.8440i −0.700395 1.21312i −0.968328 0.249682i \(-0.919674\pi\)
0.267933 0.963437i \(-0.413659\pi\)
\(734\) 0 0
\(735\) −3.52858 + 1.64422i −0.130154 + 0.0606478i
\(736\) 0 0
\(737\) 14.9429 0.550427
\(738\) 0 0
\(739\) 29.4326 1.08269 0.541347 0.840799i \(-0.317914\pi\)
0.541347 + 0.840799i \(0.317914\pi\)
\(740\) 0 0
\(741\) −1.25052 + 14.2482i −0.0459390 + 0.523420i
\(742\) 0 0
\(743\) −8.78556 15.2170i −0.322311 0.558259i 0.658654 0.752446i \(-0.271126\pi\)
−0.980964 + 0.194188i \(0.937793\pi\)
\(744\) 0 0
\(745\) 9.63502 16.6883i 0.353000 0.611413i
\(746\) 0 0
\(747\) 24.0301 + 4.25084i 0.879215 + 0.155530i
\(748\) 0 0
\(749\) −14.1160 + 24.4496i −0.515786 + 0.893368i
\(750\) 0 0
\(751\) 12.9846 + 22.4901i 0.473816 + 0.820674i 0.999551 0.0299751i \(-0.00954280\pi\)
−0.525735 + 0.850649i \(0.676209\pi\)
\(752\) 0 0
\(753\) 26.4868 + 18.5572i 0.965233 + 0.676261i
\(754\) 0 0
\(755\) −36.3249 −1.32200
\(756\) 0 0
\(757\) 6.14605 0.223382 0.111691 0.993743i \(-0.464373\pi\)
0.111691 + 0.993743i \(0.464373\pi\)
\(758\) 0 0
\(759\) 13.4207 + 9.40283i 0.487142 + 0.341301i
\(760\) 0 0
\(761\) −14.9298 25.8592i −0.541205 0.937394i −0.998835 0.0482516i \(-0.984635\pi\)
0.457630 0.889142i \(-0.348698\pi\)
\(762\) 0 0
\(763\) −25.4280 + 44.0426i −0.920555 + 1.59445i
\(764\) 0 0
\(765\) 13.4429 16.0026i 0.486027 0.578575i
\(766\) 0 0
\(767\) 5.93765 10.2843i 0.214396 0.371345i
\(768\) 0 0
\(769\) −9.44482 16.3589i −0.340589 0.589917i 0.643953 0.765065i \(-0.277293\pi\)
−0.984542 + 0.175147i \(0.943960\pi\)
\(770\) 0 0
\(771\) −3.96018 + 45.1215i −0.142622 + 1.62501i
\(772\) 0 0
\(773\) 27.3117 0.982334 0.491167 0.871066i \(-0.336571\pi\)
0.491167 + 0.871066i \(0.336571\pi\)
\(774\) 0 0
\(775\) −10.3993 −0.373555
\(776\) 0 0
\(777\) −6.23250 + 2.90417i −0.223590 + 0.104186i
\(778\) 0 0
\(779\) −29.9756 51.9193i −1.07399 1.86020i
\(780\) 0 0
\(781\) −11.6475 + 20.1741i −0.416782 + 0.721887i
\(782\) 0 0
\(783\) −22.0216 22.0582i −0.786989 0.788295i
\(784\) 0 0
\(785\) −8.06379 + 13.9669i −0.287809 + 0.498500i
\(786\) 0 0
\(787\) 22.3982 + 38.7949i 0.798411 + 1.38289i 0.920651 + 0.390388i \(0.127659\pi\)
−0.122240 + 0.992501i \(0.539008\pi\)
\(788\) 0 0
\(789\) 44.8894 20.9172i 1.59811 0.744672i
\(790\) 0 0
\(791\) 19.7807 0.703322
\(792\) 0 0
\(793\) 0.283273 0.0100593
\(794\) 0 0
\(795\) 1.77201 20.1899i 0.0628467 0.716063i
\(796\) 0 0
\(797\) −4.14872 7.18579i −0.146955 0.254534i 0.783146 0.621838i \(-0.213614\pi\)
−0.930101 + 0.367305i \(0.880281\pi\)
\(798\) 0 0
\(799\) −8.25943 + 14.3057i −0.292198 + 0.506101i
\(800\) 0 0
\(801\) −16.1851 44.5448i −0.571872 1.57391i
\(802\) 0 0
\(803\) −21.0931 + 36.5344i −0.744360 + 1.28927i
\(804\) 0 0
\(805\) −3.89051 6.73856i −0.137122 0.237503i
\(806\) 0 0
\(807\) −6.51359 4.56354i −0.229289 0.160644i
\(808\) 0 0
\(809\) 30.1958 1.06163 0.530813 0.847489i \(-0.321886\pi\)
0.530813 + 0.847489i \(0.321886\pi\)
\(810\) 0 0
\(811\) −9.96847 −0.350040 −0.175020 0.984565i \(-0.555999\pi\)
−0.175020 + 0.984565i \(0.555999\pi\)
\(812\) 0 0
\(813\) −44.1875 30.9586i −1.54972 1.08577i
\(814\) 0 0
\(815\) 13.5701 + 23.5041i 0.475340 + 0.823312i
\(816\) 0 0
\(817\) 32.6234 56.5054i 1.14135 1.97687i
\(818\) 0 0
\(819\) 2.96862 + 8.17025i 0.103732 + 0.285492i
\(820\) 0 0
\(821\) −15.7467 + 27.2741i −0.549564 + 0.951873i 0.448740 + 0.893662i \(0.351873\pi\)
−0.998304 + 0.0582104i \(0.981461\pi\)
\(822\) 0 0
\(823\) −6.06383 10.5029i −0.211372 0.366107i 0.740772 0.671756i \(-0.234460\pi\)
−0.952144 + 0.305649i \(0.901126\pi\)
\(824\) 0 0
\(825\) −2.06872 + 23.5706i −0.0720236 + 0.820622i
\(826\) 0 0
\(827\) 51.5625 1.79301 0.896503 0.443038i \(-0.146099\pi\)
0.896503 + 0.443038i \(0.146099\pi\)
\(828\) 0 0
\(829\) −48.4620 −1.68316 −0.841578 0.540135i \(-0.818373\pi\)
−0.841578 + 0.540135i \(0.818373\pi\)
\(830\) 0 0
\(831\) −8.96738 + 4.17854i −0.311075 + 0.144952i
\(832\) 0 0
\(833\) −3.02112 5.23273i −0.104676 0.181303i
\(834\) 0 0
\(835\) 12.5010 21.6523i 0.432613 0.749308i
\(836\) 0 0
\(837\) 21.6747 5.78848i 0.749189 0.200079i
\(838\) 0 0
\(839\) −5.01668 + 8.68915i −0.173195 + 0.299983i −0.939535 0.342452i \(-0.888742\pi\)
0.766340 + 0.642435i \(0.222076\pi\)
\(840\) 0 0
\(841\) −3.49103 6.04664i −0.120380 0.208505i
\(842\) 0 0
\(843\) −17.9004 + 8.34106i −0.616521 + 0.287281i
\(844\) 0 0
\(845\) 1.60977 0.0553777
\(846\) 0 0
\(847\) 61.3329 2.10742
\(848\) 0 0
\(849\) −1.52283 + 17.3508i −0.0522634 + 0.595479i
\(850\) 0 0
\(851\) −1.14270 1.97921i −0.0391712 0.0678464i
\(852\) 0 0
\(853\) 20.8972 36.1950i 0.715507 1.23929i −0.247257 0.968950i \(-0.579529\pi\)
0.962764 0.270344i \(-0.0871376\pi\)
\(854\) 0 0
\(855\) −25.6509 + 30.5353i −0.877243 + 1.04428i
\(856\) 0 0
\(857\) 8.27930 14.3402i 0.282815 0.489851i −0.689262 0.724513i \(-0.742065\pi\)
0.972077 + 0.234662i \(0.0753983\pi\)
\(858\) 0 0
\(859\) −13.7568 23.8274i −0.469375 0.812981i 0.530012 0.847990i \(-0.322187\pi\)
−0.999387 + 0.0350088i \(0.988854\pi\)
\(860\) 0 0
\(861\) −29.8412 20.9073i −1.01698 0.712519i
\(862\) 0 0
\(863\) −17.4729 −0.594783 −0.297391 0.954756i \(-0.596117\pi\)
−0.297391 + 0.954756i \(0.596117\pi\)
\(864\) 0 0
\(865\) 19.3046 0.656377
\(866\) 0 0
\(867\) 2.45220 + 1.71806i 0.0832811 + 0.0583483i
\(868\) 0 0
\(869\) 8.79060 + 15.2258i 0.298201 + 0.516499i
\(870\) 0 0
\(871\) −1.31735 + 2.28172i −0.0446367 + 0.0773130i
\(872\) 0 0
\(873\) −5.42111 0.958976i −0.183477 0.0324564i
\(874\) 0 0
\(875\) 17.2788 29.9277i 0.584130 1.01174i
\(876\) 0 0
\(877\) −11.8206 20.4739i −0.399153 0.691353i 0.594469 0.804119i \(-0.297362\pi\)
−0.993622 + 0.112766i \(0.964029\pi\)
\(878\) 0 0
\(879\) 2.65969 30.3040i 0.0897093 1.02213i
\(880\) 0 0
\(881\) 39.2429 1.32213 0.661064 0.750330i \(-0.270105\pi\)
0.661064 + 0.750330i \(0.270105\pi\)
\(882\) 0 0
\(883\) 10.6796 0.359397 0.179699 0.983722i \(-0.442488\pi\)
0.179699 + 0.983722i \(0.442488\pi\)
\(884\) 0 0
\(885\) 30.0124 13.9849i 1.00885 0.470097i
\(886\) 0 0
\(887\) 4.98368 + 8.63200i 0.167336 + 0.289834i 0.937482 0.348033i \(-0.113150\pi\)
−0.770147 + 0.637867i \(0.779817\pi\)
\(888\) 0 0
\(889\) −25.4846 + 44.1407i −0.854727 + 1.48043i
\(890\) 0 0
\(891\) −8.80816 50.2784i −0.295085 1.68439i
\(892\) 0 0
\(893\) 15.7602 27.2974i 0.527394 0.913474i
\(894\) 0 0
\(895\) 0.238317 + 0.412777i 0.00796605 + 0.0137976i
\(896\) 0 0
\(897\) −2.61893 + 1.22035i −0.0874436 + 0.0407462i
\(898\) 0 0
\(899\) 25.8985 0.863764
\(900\) 0 0
\(901\) 31.4580 1.04802
\(902\) 0 0
\(903\) 3.46706 39.5030i 0.115376 1.31458i
\(904\) 0 0
\(905\) 18.2906 + 31.6803i 0.608002 + 1.05309i
\(906\) 0 0
\(907\) −8.23145 + 14.2573i −0.273321 + 0.473405i −0.969710 0.244259i \(-0.921455\pi\)
0.696389 + 0.717664i \(0.254789\pi\)
\(908\) 0 0
\(909\) 4.57617 + 0.809509i 0.151782 + 0.0268497i
\(910\) 0 0
\(911\) −10.1543 + 17.5878i −0.336428 + 0.582711i −0.983758 0.179499i \(-0.942552\pi\)
0.647330 + 0.762210i \(0.275886\pi\)
\(912\) 0 0
\(913\) 23.0674 + 39.9538i 0.763418 + 1.32228i
\(914\) 0 0
\(915\) 0.646858 + 0.453201i 0.0213845 + 0.0149824i
\(916\) 0 0
\(917\) −41.0061 −1.35414
\(918\) 0 0
\(919\) −11.8028 −0.389340 −0.194670 0.980869i \(-0.562364\pi\)
−0.194670 + 0.980869i \(0.562364\pi\)
\(920\) 0 0
\(921\) 22.4526 + 15.7307i 0.739839 + 0.518346i
\(922\) 0 0
\(923\) −2.05367 3.55707i −0.0675975 0.117082i
\(924\) 0 0
\(925\) 1.64996 2.85781i 0.0542502 0.0939641i
\(926\) 0 0
\(927\) 31.5988 37.6158i 1.03784 1.23546i
\(928\) 0 0
\(929\) 17.9408 31.0745i 0.588620 1.01952i −0.405793 0.913965i \(-0.633005\pi\)
0.994413 0.105555i \(-0.0336619\pi\)
\(930\) 0 0
\(931\) 5.76473 + 9.98480i 0.188931 + 0.327239i
\(932\) 0 0
\(933\) −1.84970 + 21.0751i −0.0605564 + 0.689968i
\(934\) 0 0
\(935\) 39.5112 1.29215
\(936\) 0 0
\(937\) 0.492587 0.0160921 0.00804606 0.999968i \(-0.497439\pi\)
0.00804606 + 0.999968i \(0.497439\pi\)
\(938\) 0 0
\(939\) −26.7105 + 12.4463i −0.871663 + 0.406170i
\(940\) 0 0
\(941\) −12.8095 22.1867i −0.417577 0.723264i 0.578118 0.815953i \(-0.303787\pi\)
−0.995695 + 0.0926887i \(0.970454\pi\)
\(942\) 0 0
\(943\) 6.05530 10.4881i 0.197188 0.341539i
\(944\) 0 0
\(945\) −6.29250 + 23.4063i −0.204695 + 0.761408i
\(946\) 0 0
\(947\) −12.6845 + 21.9702i −0.412190 + 0.713934i −0.995129 0.0985817i \(-0.968569\pi\)
0.582939 + 0.812516i \(0.301903\pi\)
\(948\) 0 0
\(949\) −3.71910 6.44167i −0.120727 0.209105i
\(950\) 0 0
\(951\) −44.8718 + 20.9090i −1.45507 + 0.678020i
\(952\) 0 0
\(953\) −13.3452 −0.432293 −0.216146 0.976361i \(-0.569349\pi\)
−0.216146 + 0.976361i \(0.569349\pi\)
\(954\) 0 0
\(955\) −10.3519 −0.334979
\(956\) 0 0
\(957\) 5.15195 58.7003i 0.166539 1.89751i
\(958\) 0 0
\(959\) 10.4119 + 18.0340i 0.336219 + 0.582349i
\(960\) 0 0
\(961\) 6.17961 10.7034i 0.199342 0.345271i
\(962\) 0 0
\(963\) 9.98188 + 27.4722i 0.321662 + 0.885280i
\(964\) 0 0
\(965\) 6.06287 10.5012i 0.195171 0.338045i
\(966\) 0 0
\(967\) −3.43388 5.94766i −0.110426 0.191264i 0.805516 0.592574i \(-0.201888\pi\)
−0.915942 + 0.401310i \(0.868555\pi\)
\(968\) 0 0
\(969\) −50.6944 35.5174i −1.62854 1.14098i
\(970\) 0 0
\(971\) 35.4548 1.13780 0.568899 0.822407i \(-0.307370\pi\)
0.568899 + 0.822407i \(0.307370\pi\)
\(972\) 0 0
\(973\) −34.6882 −1.11205
\(974\) 0 0
\(975\) −3.41676 2.39385i −0.109424 0.0766644i
\(976\) 0 0
\(977\) 21.7385 + 37.6521i 0.695475 + 1.20460i 0.970020 + 0.243024i \(0.0781395\pi\)
−0.274545 + 0.961574i \(0.588527\pi\)
\(978\) 0 0
\(979\) 44.7997 77.5954i 1.43181 2.47996i
\(980\) 0 0
\(981\) 17.9810 + 49.4875i 0.574089 + 1.58001i
\(982\) 0 0
\(983\) −16.1529 + 27.9776i −0.515197 + 0.892347i 0.484648 + 0.874710i \(0.338948\pi\)
−0.999844 + 0.0176376i \(0.994385\pi\)
\(984\) 0 0
\(985\) −11.3856 19.7204i −0.362774 0.628343i
\(986\) 0 0
\(987\) 1.67492 19.0837i 0.0533132 0.607440i
\(988\) 0 0
\(989\) 13.1803 0.419110
\(990\) 0 0
\(991\) 23.2443 0.738380 0.369190 0.929354i \(-0.379635\pi\)
0.369190 + 0.929354i \(0.379635\pi\)
\(992\) 0 0
\(993\) 30.7749 14.3402i 0.976613 0.455074i
\(994\) 0 0
\(995\) −0.518017 0.897231i −0.0164222 0.0284441i
\(996\) 0 0
\(997\) −27.8090 + 48.1666i −0.880720 + 1.52545i −0.0301788 + 0.999545i \(0.509608\pi\)
−0.850542 + 0.525908i \(0.823726\pi\)
\(998\) 0 0
\(999\) −1.84820 + 6.87477i −0.0584744 + 0.217508i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.q.g.313.10 22
3.2 odd 2 2808.2.q.g.937.7 22
9.2 odd 6 8424.2.a.be.1.5 11
9.4 even 3 inner 936.2.q.g.625.10 yes 22
9.5 odd 6 2808.2.q.g.1873.7 22
9.7 even 3 8424.2.a.bf.1.7 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.q.g.313.10 22 1.1 even 1 trivial
936.2.q.g.625.10 yes 22 9.4 even 3 inner
2808.2.q.g.937.7 22 3.2 odd 2
2808.2.q.g.1873.7 22 9.5 odd 6
8424.2.a.be.1.5 11 9.2 odd 6
8424.2.a.bf.1.7 11 9.7 even 3