Properties

Label 936.2.q.g.313.7
Level $936$
Weight $2$
Character 936.313
Analytic conductor $7.474$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(313,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.313"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,0,0,0,-3,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 313.7
Character \(\chi\) \(=\) 936.313
Dual form 936.2.q.g.625.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.400278 + 1.68516i) q^{3} +(0.618351 + 1.07102i) q^{5} +(2.31092 - 4.00263i) q^{7} +(-2.67955 + 1.34907i) q^{9} +(-0.517400 + 0.896163i) q^{11} +(-0.500000 - 0.866025i) q^{13} +(-1.55732 + 1.47073i) q^{15} +7.43820 q^{17} +4.41618 q^{19} +(7.67010 + 2.29211i) q^{21} +(2.42822 + 4.20580i) q^{23} +(1.73528 - 3.00560i) q^{25} +(-3.34597 - 3.97549i) q^{27} +(-3.04612 + 5.27603i) q^{29} +(3.58751 + 6.21374i) q^{31} +(-1.71728 - 0.513189i) q^{33} +5.71584 q^{35} -8.61130 q^{37} +(1.25926 - 1.18923i) q^{39} +(-0.532259 - 0.921899i) q^{41} +(1.34187 - 2.32419i) q^{43} +(-3.10178 - 2.03565i) q^{45} +(4.00605 - 6.93867i) q^{47} +(-7.18071 - 12.4374i) q^{49} +(2.97735 + 12.5346i) q^{51} -10.4399 q^{53} -1.27974 q^{55} +(1.76770 + 7.44199i) q^{57} +(4.04267 + 7.00211i) q^{59} +(-5.92025 + 10.2542i) q^{61} +(-0.792412 + 13.8429i) q^{63} +(0.618351 - 1.07102i) q^{65} +(-0.406963 - 0.704881i) q^{67} +(-6.11549 + 5.77543i) q^{69} +10.3144 q^{71} +8.15391 q^{73} +(5.75953 + 1.72116i) q^{75} +(2.39134 + 4.14192i) q^{77} +(-3.78968 + 6.56392i) q^{79} +(5.36003 - 7.22981i) q^{81} +(2.56200 - 4.43752i) q^{83} +(4.59942 + 7.96643i) q^{85} +(-10.1103 - 3.02133i) q^{87} -3.37420 q^{89} -4.62184 q^{91} +(-9.03518 + 8.53276i) q^{93} +(2.73075 + 4.72980i) q^{95} +(4.96536 - 8.60025i) q^{97} +(0.177416 - 3.09932i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 3 q^{5} - 4 q^{7} - 4 q^{9} + 5 q^{11} - 11 q^{13} + 5 q^{15} + 8 q^{17} + 10 q^{19} + 4 q^{21} + 9 q^{23} - 24 q^{25} - 12 q^{27} - 16 q^{29} - q^{31} + 9 q^{33} + 18 q^{37} + 3 q^{39} - 6 q^{41}+ \cdots - 109 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.400278 + 1.68516i 0.231101 + 0.972930i
\(4\) 0 0
\(5\) 0.618351 + 1.07102i 0.276535 + 0.478973i 0.970521 0.241016i \(-0.0774805\pi\)
−0.693986 + 0.719988i \(0.744147\pi\)
\(6\) 0 0
\(7\) 2.31092 4.00263i 0.873446 1.51285i 0.0150373 0.999887i \(-0.495213\pi\)
0.858409 0.512966i \(-0.171453\pi\)
\(8\) 0 0
\(9\) −2.67955 + 1.34907i −0.893185 + 0.449690i
\(10\) 0 0
\(11\) −0.517400 + 0.896163i −0.156002 + 0.270203i −0.933423 0.358777i \(-0.883194\pi\)
0.777422 + 0.628980i \(0.216527\pi\)
\(12\) 0 0
\(13\) −0.500000 0.866025i −0.138675 0.240192i
\(14\) 0 0
\(15\) −1.55732 + 1.47073i −0.402099 + 0.379740i
\(16\) 0 0
\(17\) 7.43820 1.80403 0.902015 0.431705i \(-0.142088\pi\)
0.902015 + 0.431705i \(0.142088\pi\)
\(18\) 0 0
\(19\) 4.41618 1.01314 0.506571 0.862198i \(-0.330913\pi\)
0.506571 + 0.862198i \(0.330913\pi\)
\(20\) 0 0
\(21\) 7.67010 + 2.29211i 1.67375 + 0.500180i
\(22\) 0 0
\(23\) 2.42822 + 4.20580i 0.506318 + 0.876969i 0.999973 + 0.00731127i \(0.00232727\pi\)
−0.493655 + 0.869658i \(0.664339\pi\)
\(24\) 0 0
\(25\) 1.73528 3.00560i 0.347057 0.601120i
\(26\) 0 0
\(27\) −3.34597 3.97549i −0.643932 0.765083i
\(28\) 0 0
\(29\) −3.04612 + 5.27603i −0.565650 + 0.979734i 0.431339 + 0.902190i \(0.358041\pi\)
−0.996989 + 0.0775442i \(0.975292\pi\)
\(30\) 0 0
\(31\) 3.58751 + 6.21374i 0.644335 + 1.11602i 0.984455 + 0.175639i \(0.0561992\pi\)
−0.340119 + 0.940382i \(0.610467\pi\)
\(32\) 0 0
\(33\) −1.71728 0.513189i −0.298941 0.0893347i
\(34\) 0 0
\(35\) 5.71584 0.966154
\(36\) 0 0
\(37\) −8.61130 −1.41569 −0.707844 0.706368i \(-0.750332\pi\)
−0.707844 + 0.706368i \(0.750332\pi\)
\(38\) 0 0
\(39\) 1.25926 1.18923i 0.201642 0.190430i
\(40\) 0 0
\(41\) −0.532259 0.921899i −0.0831249 0.143976i 0.821466 0.570258i \(-0.193157\pi\)
−0.904591 + 0.426281i \(0.859823\pi\)
\(42\) 0 0
\(43\) 1.34187 2.32419i 0.204634 0.354436i −0.745382 0.666637i \(-0.767733\pi\)
0.950016 + 0.312201i \(0.101066\pi\)
\(44\) 0 0
\(45\) −3.10178 2.03565i −0.462386 0.303456i
\(46\) 0 0
\(47\) 4.00605 6.93867i 0.584342 1.01211i −0.410615 0.911809i \(-0.634686\pi\)
0.994957 0.100301i \(-0.0319806\pi\)
\(48\) 0 0
\(49\) −7.18071 12.4374i −1.02582 1.77677i
\(50\) 0 0
\(51\) 2.97735 + 12.5346i 0.416913 + 1.75519i
\(52\) 0 0
\(53\) −10.4399 −1.43403 −0.717017 0.697056i \(-0.754493\pi\)
−0.717017 + 0.697056i \(0.754493\pi\)
\(54\) 0 0
\(55\) −1.27974 −0.172560
\(56\) 0 0
\(57\) 1.76770 + 7.44199i 0.234138 + 0.985716i
\(58\) 0 0
\(59\) 4.04267 + 7.00211i 0.526311 + 0.911597i 0.999530 + 0.0306521i \(0.00975841\pi\)
−0.473220 + 0.880945i \(0.656908\pi\)
\(60\) 0 0
\(61\) −5.92025 + 10.2542i −0.758011 + 1.31291i 0.185853 + 0.982578i \(0.440495\pi\)
−0.943864 + 0.330335i \(0.892838\pi\)
\(62\) 0 0
\(63\) −0.792412 + 13.8429i −0.0998345 + 1.74404i
\(64\) 0 0
\(65\) 0.618351 1.07102i 0.0766970 0.132843i
\(66\) 0 0
\(67\) −0.406963 0.704881i −0.0497185 0.0861149i 0.840095 0.542439i \(-0.182499\pi\)
−0.889814 + 0.456324i \(0.849166\pi\)
\(68\) 0 0
\(69\) −6.11549 + 5.77543i −0.736219 + 0.695280i
\(70\) 0 0
\(71\) 10.3144 1.22409 0.612044 0.790824i \(-0.290347\pi\)
0.612044 + 0.790824i \(0.290347\pi\)
\(72\) 0 0
\(73\) 8.15391 0.954343 0.477171 0.878810i \(-0.341662\pi\)
0.477171 + 0.878810i \(0.341662\pi\)
\(74\) 0 0
\(75\) 5.75953 + 1.72116i 0.665053 + 0.198743i
\(76\) 0 0
\(77\) 2.39134 + 4.14192i 0.272518 + 0.472016i
\(78\) 0 0
\(79\) −3.78968 + 6.56392i −0.426373 + 0.738499i −0.996548 0.0830244i \(-0.973542\pi\)
0.570175 + 0.821523i \(0.306875\pi\)
\(80\) 0 0
\(81\) 5.36003 7.22981i 0.595558 0.803312i
\(82\) 0 0
\(83\) 2.56200 4.43752i 0.281216 0.487081i −0.690468 0.723363i \(-0.742595\pi\)
0.971685 + 0.236282i \(0.0759288\pi\)
\(84\) 0 0
\(85\) 4.59942 + 7.96643i 0.498877 + 0.864081i
\(86\) 0 0
\(87\) −10.1103 3.02133i −1.08393 0.323920i
\(88\) 0 0
\(89\) −3.37420 −0.357665 −0.178832 0.983880i \(-0.557232\pi\)
−0.178832 + 0.983880i \(0.557232\pi\)
\(90\) 0 0
\(91\) −4.62184 −0.484501
\(92\) 0 0
\(93\) −9.03518 + 8.53276i −0.936904 + 0.884806i
\(94\) 0 0
\(95\) 2.73075 + 4.72980i 0.280169 + 0.485267i
\(96\) 0 0
\(97\) 4.96536 8.60025i 0.504156 0.873223i −0.495833 0.868418i \(-0.665137\pi\)
0.999988 0.00480529i \(-0.00152958\pi\)
\(98\) 0 0
\(99\) 0.177416 3.09932i 0.0178310 0.311494i
\(100\) 0 0
\(101\) 2.98103 5.16330i 0.296624 0.513768i −0.678737 0.734381i \(-0.737473\pi\)
0.975361 + 0.220613i \(0.0708059\pi\)
\(102\) 0 0
\(103\) −2.65513 4.59883i −0.261618 0.453136i 0.705054 0.709154i \(-0.250923\pi\)
−0.966672 + 0.256018i \(0.917589\pi\)
\(104\) 0 0
\(105\) 2.28793 + 9.63213i 0.223279 + 0.940000i
\(106\) 0 0
\(107\) −2.79266 −0.269977 −0.134988 0.990847i \(-0.543100\pi\)
−0.134988 + 0.990847i \(0.543100\pi\)
\(108\) 0 0
\(109\) −11.3696 −1.08901 −0.544507 0.838756i \(-0.683283\pi\)
−0.544507 + 0.838756i \(0.683283\pi\)
\(110\) 0 0
\(111\) −3.44692 14.5114i −0.327167 1.37737i
\(112\) 0 0
\(113\) −8.99219 15.5749i −0.845914 1.46517i −0.884825 0.465924i \(-0.845722\pi\)
0.0389108 0.999243i \(-0.487611\pi\)
\(114\) 0 0
\(115\) −3.00298 + 5.20132i −0.280029 + 0.485025i
\(116\) 0 0
\(117\) 2.50811 + 1.64603i 0.231874 + 0.152175i
\(118\) 0 0
\(119\) 17.1891 29.7724i 1.57572 2.72923i
\(120\) 0 0
\(121\) 4.96460 + 8.59893i 0.451327 + 0.781721i
\(122\) 0 0
\(123\) 1.34050 1.26596i 0.120869 0.114148i
\(124\) 0 0
\(125\) 10.4756 0.936963
\(126\) 0 0
\(127\) −8.20363 −0.727954 −0.363977 0.931408i \(-0.618581\pi\)
−0.363977 + 0.931408i \(0.618581\pi\)
\(128\) 0 0
\(129\) 4.45376 + 1.33095i 0.392132 + 0.117184i
\(130\) 0 0
\(131\) 5.73112 + 9.92658i 0.500730 + 0.867290i 1.00000 0.000843000i \(0.000268335\pi\)
−0.499270 + 0.866447i \(0.666398\pi\)
\(132\) 0 0
\(133\) 10.2055 17.6764i 0.884925 1.53274i
\(134\) 0 0
\(135\) 2.18882 6.04183i 0.188384 0.519998i
\(136\) 0 0
\(137\) −10.5319 + 18.2418i −0.899800 + 1.55850i −0.0720520 + 0.997401i \(0.522955\pi\)
−0.827749 + 0.561099i \(0.810379\pi\)
\(138\) 0 0
\(139\) −11.7804 20.4042i −0.999200 1.73067i −0.534227 0.845341i \(-0.679397\pi\)
−0.464973 0.885325i \(-0.653936\pi\)
\(140\) 0 0
\(141\) 13.2963 + 3.97344i 1.11975 + 0.334624i
\(142\) 0 0
\(143\) 1.03480 0.0865343
\(144\) 0 0
\(145\) −7.53428 −0.625688
\(146\) 0 0
\(147\) 18.0847 17.0791i 1.49160 1.40866i
\(148\) 0 0
\(149\) 1.17486 + 2.03492i 0.0962485 + 0.166707i 0.910129 0.414325i \(-0.135982\pi\)
−0.813880 + 0.581032i \(0.802649\pi\)
\(150\) 0 0
\(151\) 0.914469 1.58391i 0.0744184 0.128896i −0.826415 0.563062i \(-0.809623\pi\)
0.900833 + 0.434165i \(0.142957\pi\)
\(152\) 0 0
\(153\) −19.9311 + 10.0346i −1.61133 + 0.811253i
\(154\) 0 0
\(155\) −4.43668 + 7.68455i −0.356363 + 0.617238i
\(156\) 0 0
\(157\) −9.53466 16.5145i −0.760948 1.31800i −0.942362 0.334594i \(-0.891401\pi\)
0.181414 0.983407i \(-0.441933\pi\)
\(158\) 0 0
\(159\) −4.17887 17.5930i −0.331406 1.39521i
\(160\) 0 0
\(161\) 22.4457 1.76897
\(162\) 0 0
\(163\) 5.40033 0.422986 0.211493 0.977379i \(-0.432167\pi\)
0.211493 + 0.977379i \(0.432167\pi\)
\(164\) 0 0
\(165\) −0.512251 2.15657i −0.0398787 0.167889i
\(166\) 0 0
\(167\) 4.80911 + 8.32963i 0.372140 + 0.644566i 0.989895 0.141805i \(-0.0452907\pi\)
−0.617754 + 0.786371i \(0.711957\pi\)
\(168\) 0 0
\(169\) −0.500000 + 0.866025i −0.0384615 + 0.0666173i
\(170\) 0 0
\(171\) −11.8334 + 5.95774i −0.904923 + 0.455600i
\(172\) 0 0
\(173\) −0.182732 + 0.316501i −0.0138929 + 0.0240632i −0.872888 0.487920i \(-0.837756\pi\)
0.858995 + 0.511983i \(0.171089\pi\)
\(174\) 0 0
\(175\) −8.02021 13.8914i −0.606271 1.05009i
\(176\) 0 0
\(177\) −10.1815 + 9.61535i −0.765289 + 0.722734i
\(178\) 0 0
\(179\) 3.94330 0.294736 0.147368 0.989082i \(-0.452920\pi\)
0.147368 + 0.989082i \(0.452920\pi\)
\(180\) 0 0
\(181\) 5.11469 0.380172 0.190086 0.981767i \(-0.439123\pi\)
0.190086 + 0.981767i \(0.439123\pi\)
\(182\) 0 0
\(183\) −19.6497 5.87207i −1.45255 0.434076i
\(184\) 0 0
\(185\) −5.32481 9.22283i −0.391487 0.678076i
\(186\) 0 0
\(187\) −3.84852 + 6.66584i −0.281432 + 0.487454i
\(188\) 0 0
\(189\) −23.6447 + 4.20565i −1.71990 + 0.305916i
\(190\) 0 0
\(191\) −0.217758 + 0.377168i −0.0157564 + 0.0272909i −0.873796 0.486292i \(-0.838349\pi\)
0.858040 + 0.513583i \(0.171682\pi\)
\(192\) 0 0
\(193\) −8.14261 14.1034i −0.586118 1.01519i −0.994735 0.102480i \(-0.967322\pi\)
0.408617 0.912706i \(-0.366011\pi\)
\(194\) 0 0
\(195\) 2.05235 + 0.613319i 0.146972 + 0.0439207i
\(196\) 0 0
\(197\) −15.9126 −1.13373 −0.566863 0.823812i \(-0.691843\pi\)
−0.566863 + 0.823812i \(0.691843\pi\)
\(198\) 0 0
\(199\) 13.8785 0.983822 0.491911 0.870646i \(-0.336299\pi\)
0.491911 + 0.870646i \(0.336299\pi\)
\(200\) 0 0
\(201\) 1.02494 0.967948i 0.0722938 0.0682738i
\(202\) 0 0
\(203\) 14.0787 + 24.3850i 0.988129 + 1.71149i
\(204\) 0 0
\(205\) 0.658245 1.14011i 0.0459739 0.0796291i
\(206\) 0 0
\(207\) −12.1805 7.99383i −0.846600 0.555609i
\(208\) 0 0
\(209\) −2.28493 + 3.95762i −0.158052 + 0.273754i
\(210\) 0 0
\(211\) −4.72422 8.18259i −0.325229 0.563313i 0.656330 0.754474i \(-0.272108\pi\)
−0.981559 + 0.191161i \(0.938775\pi\)
\(212\) 0 0
\(213\) 4.12861 + 17.3814i 0.282888 + 1.19095i
\(214\) 0 0
\(215\) 3.31899 0.226353
\(216\) 0 0
\(217\) 33.1618 2.25117
\(218\) 0 0
\(219\) 3.26383 + 13.7407i 0.220549 + 0.928509i
\(220\) 0 0
\(221\) −3.71910 6.44167i −0.250174 0.433314i
\(222\) 0 0
\(223\) −4.44932 + 7.70644i −0.297948 + 0.516062i −0.975666 0.219260i \(-0.929636\pi\)
0.677718 + 0.735322i \(0.262969\pi\)
\(224\) 0 0
\(225\) −0.595027 + 10.3947i −0.0396685 + 0.692979i
\(226\) 0 0
\(227\) 9.10801 15.7755i 0.604520 1.04706i −0.387607 0.921825i \(-0.626698\pi\)
0.992127 0.125235i \(-0.0399684\pi\)
\(228\) 0 0
\(229\) −11.8921 20.5977i −0.785852 1.36113i −0.928489 0.371360i \(-0.878892\pi\)
0.142638 0.989775i \(-0.454442\pi\)
\(230\) 0 0
\(231\) −6.02262 + 5.68772i −0.396259 + 0.374225i
\(232\) 0 0
\(233\) −8.70410 −0.570225 −0.285112 0.958494i \(-0.592031\pi\)
−0.285112 + 0.958494i \(0.592031\pi\)
\(234\) 0 0
\(235\) 9.90857 0.646364
\(236\) 0 0
\(237\) −12.5782 3.75884i −0.817043 0.244163i
\(238\) 0 0
\(239\) −8.28917 14.3573i −0.536182 0.928694i −0.999105 0.0422959i \(-0.986533\pi\)
0.462923 0.886398i \(-0.346801\pi\)
\(240\) 0 0
\(241\) −5.97432 + 10.3478i −0.384839 + 0.666562i −0.991747 0.128211i \(-0.959077\pi\)
0.606907 + 0.794773i \(0.292410\pi\)
\(242\) 0 0
\(243\) 14.3289 + 6.13859i 0.919200 + 0.393791i
\(244\) 0 0
\(245\) 8.88040 15.3813i 0.567348 0.982676i
\(246\) 0 0
\(247\) −2.20809 3.82453i −0.140498 0.243349i
\(248\) 0 0
\(249\) 8.50346 + 2.54115i 0.538885 + 0.161039i
\(250\) 0 0
\(251\) −1.09870 −0.0693495 −0.0346748 0.999399i \(-0.511040\pi\)
−0.0346748 + 0.999399i \(0.511040\pi\)
\(252\) 0 0
\(253\) −5.02544 −0.315946
\(254\) 0 0
\(255\) −11.5837 + 10.9396i −0.725399 + 0.685062i
\(256\) 0 0
\(257\) −5.63626 9.76229i −0.351580 0.608955i 0.634946 0.772556i \(-0.281022\pi\)
−0.986526 + 0.163602i \(0.947689\pi\)
\(258\) 0 0
\(259\) −19.9000 + 34.4679i −1.23653 + 2.14173i
\(260\) 0 0
\(261\) 1.04451 18.2468i 0.0646535 1.12945i
\(262\) 0 0
\(263\) −9.05973 + 15.6919i −0.558647 + 0.967605i 0.438963 + 0.898505i \(0.355346\pi\)
−0.997610 + 0.0690994i \(0.977987\pi\)
\(264\) 0 0
\(265\) −6.45554 11.1813i −0.396561 0.686863i
\(266\) 0 0
\(267\) −1.35062 5.68608i −0.0826566 0.347983i
\(268\) 0 0
\(269\) 8.69587 0.530197 0.265098 0.964221i \(-0.414596\pi\)
0.265098 + 0.964221i \(0.414596\pi\)
\(270\) 0 0
\(271\) −2.47019 −0.150053 −0.0750266 0.997182i \(-0.523904\pi\)
−0.0750266 + 0.997182i \(0.523904\pi\)
\(272\) 0 0
\(273\) −1.85002 7.78856i −0.111968 0.471385i
\(274\) 0 0
\(275\) 1.79567 + 3.11019i 0.108283 + 0.187552i
\(276\) 0 0
\(277\) 16.0775 27.8470i 0.966002 1.67316i 0.259103 0.965850i \(-0.416573\pi\)
0.706899 0.707315i \(-0.250094\pi\)
\(278\) 0 0
\(279\) −17.9957 11.8103i −1.07737 0.707063i
\(280\) 0 0
\(281\) −6.02312 + 10.4323i −0.359309 + 0.622342i −0.987846 0.155438i \(-0.950321\pi\)
0.628536 + 0.777780i \(0.283654\pi\)
\(282\) 0 0
\(283\) −8.39750 14.5449i −0.499180 0.864605i 0.500820 0.865552i \(-0.333032\pi\)
−1.00000 0.000946989i \(0.999699\pi\)
\(284\) 0 0
\(285\) −6.87743 + 6.49500i −0.407384 + 0.384731i
\(286\) 0 0
\(287\) −4.92003 −0.290420
\(288\) 0 0
\(289\) 38.3269 2.25452
\(290\) 0 0
\(291\) 16.4804 + 4.92495i 0.966096 + 0.288706i
\(292\) 0 0
\(293\) 5.95928 + 10.3218i 0.348145 + 0.603004i 0.985920 0.167218i \(-0.0534785\pi\)
−0.637775 + 0.770223i \(0.720145\pi\)
\(294\) 0 0
\(295\) −4.99958 + 8.65952i −0.291087 + 0.504177i
\(296\) 0 0
\(297\) 5.29389 0.941618i 0.307182 0.0546382i
\(298\) 0 0
\(299\) 2.42822 4.20580i 0.140427 0.243227i
\(300\) 0 0
\(301\) −6.20192 10.7420i −0.357473 0.619161i
\(302\) 0 0
\(303\) 9.89425 + 2.95677i 0.568410 + 0.169862i
\(304\) 0 0
\(305\) −14.6432 −0.838466
\(306\) 0 0
\(307\) 2.39507 0.136694 0.0683469 0.997662i \(-0.478228\pi\)
0.0683469 + 0.997662i \(0.478228\pi\)
\(308\) 0 0
\(309\) 6.68698 6.31515i 0.380409 0.359256i
\(310\) 0 0
\(311\) −12.2622 21.2388i −0.695327 1.20434i −0.970070 0.242824i \(-0.921926\pi\)
0.274743 0.961518i \(-0.411407\pi\)
\(312\) 0 0
\(313\) 4.17269 7.22731i 0.235854 0.408512i −0.723666 0.690150i \(-0.757545\pi\)
0.959521 + 0.281638i \(0.0908779\pi\)
\(314\) 0 0
\(315\) −15.3159 + 7.71106i −0.862954 + 0.434469i
\(316\) 0 0
\(317\) −2.35033 + 4.07089i −0.132008 + 0.228644i −0.924450 0.381302i \(-0.875476\pi\)
0.792443 + 0.609946i \(0.208809\pi\)
\(318\) 0 0
\(319\) −3.15212 5.45963i −0.176485 0.305681i
\(320\) 0 0
\(321\) −1.11784 4.70610i −0.0623919 0.262669i
\(322\) 0 0
\(323\) 32.8485 1.82774
\(324\) 0 0
\(325\) −3.47057 −0.192512
\(326\) 0 0
\(327\) −4.55102 19.1597i −0.251672 1.05953i
\(328\) 0 0
\(329\) −18.5153 32.0695i −1.02078 1.76805i
\(330\) 0 0
\(331\) −7.41963 + 12.8512i −0.407820 + 0.706364i −0.994645 0.103349i \(-0.967044\pi\)
0.586826 + 0.809713i \(0.300377\pi\)
\(332\) 0 0
\(333\) 23.0744 11.6172i 1.26447 0.636621i
\(334\) 0 0
\(335\) 0.503292 0.871727i 0.0274978 0.0476276i
\(336\) 0 0
\(337\) 14.4755 + 25.0722i 0.788529 + 1.36577i 0.926868 + 0.375387i \(0.122490\pi\)
−0.138339 + 0.990385i \(0.544176\pi\)
\(338\) 0 0
\(339\) 22.6469 21.3876i 1.23001 1.16162i
\(340\) 0 0
\(341\) −7.42470 −0.402070
\(342\) 0 0
\(343\) −34.0234 −1.83709
\(344\) 0 0
\(345\) −9.96710 2.97854i −0.536611 0.160359i
\(346\) 0 0
\(347\) −2.47367 4.28452i −0.132793 0.230005i 0.791959 0.610574i \(-0.209061\pi\)
−0.924752 + 0.380569i \(0.875728\pi\)
\(348\) 0 0
\(349\) −13.0836 + 22.6615i −0.700351 + 1.21304i 0.267993 + 0.963421i \(0.413640\pi\)
−0.968343 + 0.249622i \(0.919694\pi\)
\(350\) 0 0
\(351\) −1.76989 + 4.88544i −0.0944696 + 0.260765i
\(352\) 0 0
\(353\) −17.0625 + 29.5531i −0.908143 + 1.57295i −0.0915021 + 0.995805i \(0.529167\pi\)
−0.816641 + 0.577146i \(0.804167\pi\)
\(354\) 0 0
\(355\) 6.37789 + 11.0468i 0.338503 + 0.586305i
\(356\) 0 0
\(357\) 57.0518 + 17.0492i 3.01950 + 0.902340i
\(358\) 0 0
\(359\) −31.0572 −1.63914 −0.819569 0.572980i \(-0.805787\pi\)
−0.819569 + 0.572980i \(0.805787\pi\)
\(360\) 0 0
\(361\) 0.502686 0.0264572
\(362\) 0 0
\(363\) −12.5034 + 11.8081i −0.656258 + 0.619766i
\(364\) 0 0
\(365\) 5.04198 + 8.73296i 0.263909 + 0.457104i
\(366\) 0 0
\(367\) −13.3961 + 23.2027i −0.699271 + 1.21117i 0.269449 + 0.963015i \(0.413158\pi\)
−0.968720 + 0.248158i \(0.920175\pi\)
\(368\) 0 0
\(369\) 2.66992 + 1.75223i 0.138991 + 0.0912172i
\(370\) 0 0
\(371\) −24.1258 + 41.7872i −1.25255 + 2.16948i
\(372\) 0 0
\(373\) −9.69162 16.7864i −0.501813 0.869166i −0.999998 0.00209477i \(-0.999333\pi\)
0.498185 0.867071i \(-0.334000\pi\)
\(374\) 0 0
\(375\) 4.19314 + 17.6531i 0.216533 + 0.911600i
\(376\) 0 0
\(377\) 6.09223 0.313766
\(378\) 0 0
\(379\) 9.40917 0.483317 0.241658 0.970361i \(-0.422309\pi\)
0.241658 + 0.970361i \(0.422309\pi\)
\(380\) 0 0
\(381\) −3.28373 13.8245i −0.168231 0.708248i
\(382\) 0 0
\(383\) −6.66805 11.5494i −0.340721 0.590147i 0.643845 0.765156i \(-0.277338\pi\)
−0.984567 + 0.175009i \(0.944005\pi\)
\(384\) 0 0
\(385\) −2.95737 + 5.12232i −0.150722 + 0.261058i
\(386\) 0 0
\(387\) −0.460126 + 8.03807i −0.0233895 + 0.408598i
\(388\) 0 0
\(389\) −1.51890 + 2.63081i −0.0770112 + 0.133387i −0.901959 0.431821i \(-0.857871\pi\)
0.824948 + 0.565209i \(0.191204\pi\)
\(390\) 0 0
\(391\) 18.0616 + 31.2836i 0.913413 + 1.58208i
\(392\) 0 0
\(393\) −14.4339 + 13.6313i −0.728093 + 0.687606i
\(394\) 0 0
\(395\) −9.37341 −0.471628
\(396\) 0 0
\(397\) 26.4484 1.32741 0.663703 0.747997i \(-0.268984\pi\)
0.663703 + 0.747997i \(0.268984\pi\)
\(398\) 0 0
\(399\) 33.8726 + 10.1224i 1.69575 + 0.506754i
\(400\) 0 0
\(401\) 5.85782 + 10.1460i 0.292525 + 0.506669i 0.974406 0.224794i \(-0.0721710\pi\)
−0.681881 + 0.731463i \(0.738838\pi\)
\(402\) 0 0
\(403\) 3.58751 6.21374i 0.178706 0.309529i
\(404\) 0 0
\(405\) 11.0576 + 1.27011i 0.549457 + 0.0631124i
\(406\) 0 0
\(407\) 4.45548 7.71712i 0.220850 0.382524i
\(408\) 0 0
\(409\) −1.53325 2.65567i −0.0758144 0.131314i 0.825626 0.564218i \(-0.190822\pi\)
−0.901440 + 0.432904i \(0.857489\pi\)
\(410\) 0 0
\(411\) −34.9561 10.4462i −1.72426 0.515272i
\(412\) 0 0
\(413\) 37.3692 1.83882
\(414\) 0 0
\(415\) 6.33687 0.311065
\(416\) 0 0
\(417\) 29.6691 28.0193i 1.45290 1.37211i
\(418\) 0 0
\(419\) −2.61427 4.52805i −0.127715 0.221209i 0.795076 0.606510i \(-0.207431\pi\)
−0.922791 + 0.385301i \(0.874098\pi\)
\(420\) 0 0
\(421\) −18.4928 + 32.0304i −0.901283 + 1.56107i −0.0754524 + 0.997149i \(0.524040\pi\)
−0.825831 + 0.563918i \(0.809293\pi\)
\(422\) 0 0
\(423\) −1.37367 + 23.9970i −0.0667900 + 1.16677i
\(424\) 0 0
\(425\) 12.9074 22.3563i 0.626101 1.08444i
\(426\) 0 0
\(427\) 27.3625 + 47.3932i 1.32416 + 2.29352i
\(428\) 0 0
\(429\) 0.414208 + 1.74381i 0.0199981 + 0.0841918i
\(430\) 0 0
\(431\) 0.273718 0.0131845 0.00659227 0.999978i \(-0.497902\pi\)
0.00659227 + 0.999978i \(0.497902\pi\)
\(432\) 0 0
\(433\) −14.2228 −0.683504 −0.341752 0.939790i \(-0.611020\pi\)
−0.341752 + 0.939790i \(0.611020\pi\)
\(434\) 0 0
\(435\) −3.01581 12.6965i −0.144597 0.608750i
\(436\) 0 0
\(437\) 10.7235 + 18.5736i 0.512973 + 0.888494i
\(438\) 0 0
\(439\) 1.86696 3.23366i 0.0891049 0.154334i −0.818028 0.575178i \(-0.804933\pi\)
0.907133 + 0.420844i \(0.138266\pi\)
\(440\) 0 0
\(441\) 36.0200 + 23.6393i 1.71524 + 1.12568i
\(442\) 0 0
\(443\) 19.2608 33.3606i 0.915107 1.58501i 0.108363 0.994111i \(-0.465439\pi\)
0.806744 0.590901i \(-0.201228\pi\)
\(444\) 0 0
\(445\) −2.08644 3.61382i −0.0989068 0.171312i
\(446\) 0 0
\(447\) −2.95890 + 2.79437i −0.139951 + 0.132169i
\(448\) 0 0
\(449\) −11.4384 −0.539813 −0.269907 0.962887i \(-0.586993\pi\)
−0.269907 + 0.962887i \(0.586993\pi\)
\(450\) 0 0
\(451\) 1.10156 0.0518705
\(452\) 0 0
\(453\) 3.03518 + 0.907026i 0.142605 + 0.0426158i
\(454\) 0 0
\(455\) −2.85792 4.95006i −0.133981 0.232063i
\(456\) 0 0
\(457\) 11.8697 20.5589i 0.555240 0.961704i −0.442644 0.896697i \(-0.645960\pi\)
0.997885 0.0650072i \(-0.0207070\pi\)
\(458\) 0 0
\(459\) −24.8880 29.5705i −1.16167 1.38023i
\(460\) 0 0
\(461\) −7.04097 + 12.1953i −0.327931 + 0.567993i −0.982101 0.188355i \(-0.939685\pi\)
0.654170 + 0.756347i \(0.273018\pi\)
\(462\) 0 0
\(463\) −5.80139 10.0483i −0.269613 0.466984i 0.699149 0.714976i \(-0.253563\pi\)
−0.968762 + 0.247992i \(0.920229\pi\)
\(464\) 0 0
\(465\) −14.7256 4.40057i −0.682885 0.204072i
\(466\) 0 0
\(467\) −15.2384 −0.705150 −0.352575 0.935784i \(-0.614694\pi\)
−0.352575 + 0.935784i \(0.614694\pi\)
\(468\) 0 0
\(469\) −3.76184 −0.173706
\(470\) 0 0
\(471\) 24.0131 22.6779i 1.10647 1.04494i
\(472\) 0 0
\(473\) 1.38857 + 2.40507i 0.0638465 + 0.110585i
\(474\) 0 0
\(475\) 7.66333 13.2733i 0.351618 0.609020i
\(476\) 0 0
\(477\) 27.9743 14.0842i 1.28086 0.644870i
\(478\) 0 0
\(479\) 3.21975 5.57676i 0.147114 0.254809i −0.783046 0.621964i \(-0.786335\pi\)
0.930160 + 0.367155i \(0.119668\pi\)
\(480\) 0 0
\(481\) 4.30565 + 7.45760i 0.196321 + 0.340037i
\(482\) 0 0
\(483\) 8.98452 + 37.8246i 0.408810 + 1.72108i
\(484\) 0 0
\(485\) 12.2813 0.557667
\(486\) 0 0
\(487\) 11.6913 0.529783 0.264891 0.964278i \(-0.414664\pi\)
0.264891 + 0.964278i \(0.414664\pi\)
\(488\) 0 0
\(489\) 2.16163 + 9.10044i 0.0977525 + 0.411536i
\(490\) 0 0
\(491\) −6.94879 12.0357i −0.313595 0.543162i 0.665543 0.746359i \(-0.268200\pi\)
−0.979138 + 0.203198i \(0.934867\pi\)
\(492\) 0 0
\(493\) −22.6576 + 39.2442i −1.02045 + 1.76747i
\(494\) 0 0
\(495\) 3.42913 1.72646i 0.154128 0.0775984i
\(496\) 0 0
\(497\) 23.8357 41.2846i 1.06918 1.85187i
\(498\) 0 0
\(499\) −2.21828 3.84217i −0.0993036 0.171999i 0.812093 0.583528i \(-0.198328\pi\)
−0.911397 + 0.411529i \(0.864995\pi\)
\(500\) 0 0
\(501\) −12.1118 + 11.4383i −0.541115 + 0.511026i
\(502\) 0 0
\(503\) −18.6182 −0.830144 −0.415072 0.909788i \(-0.636244\pi\)
−0.415072 + 0.909788i \(0.636244\pi\)
\(504\) 0 0
\(505\) 7.37330 0.328107
\(506\) 0 0
\(507\) −1.65953 0.495931i −0.0737025 0.0220251i
\(508\) 0 0
\(509\) 6.60765 + 11.4448i 0.292879 + 0.507281i 0.974489 0.224434i \(-0.0720534\pi\)
−0.681610 + 0.731715i \(0.738720\pi\)
\(510\) 0 0
\(511\) 18.8430 32.6371i 0.833567 1.44378i
\(512\) 0 0
\(513\) −14.7764 17.5565i −0.652395 0.775137i
\(514\) 0 0
\(515\) 3.28361 5.68738i 0.144693 0.250616i
\(516\) 0 0
\(517\) 4.14545 + 7.18014i 0.182317 + 0.315782i
\(518\) 0 0
\(519\) −0.606500 0.181245i −0.0266224 0.00795577i
\(520\) 0 0
\(521\) −24.3997 −1.06897 −0.534486 0.845177i \(-0.679495\pi\)
−0.534486 + 0.845177i \(0.679495\pi\)
\(522\) 0 0
\(523\) 29.2553 1.27924 0.639622 0.768690i \(-0.279091\pi\)
0.639622 + 0.768690i \(0.279091\pi\)
\(524\) 0 0
\(525\) 20.1990 19.0758i 0.881556 0.832536i
\(526\) 0 0
\(527\) 26.6846 + 46.2191i 1.16240 + 2.01334i
\(528\) 0 0
\(529\) −0.292482 + 0.506593i −0.0127166 + 0.0220258i
\(530\) 0 0
\(531\) −20.2789 13.3087i −0.880028 0.577548i
\(532\) 0 0
\(533\) −0.532259 + 0.921899i −0.0230547 + 0.0399319i
\(534\) 0 0
\(535\) −1.72685 2.99099i −0.0746581 0.129312i
\(536\) 0 0
\(537\) 1.57842 + 6.64510i 0.0681137 + 0.286757i
\(538\) 0 0
\(539\) 14.8612 0.640117
\(540\) 0 0
\(541\) 29.9138 1.28609 0.643047 0.765827i \(-0.277670\pi\)
0.643047 + 0.765827i \(0.277670\pi\)
\(542\) 0 0
\(543\) 2.04730 + 8.61910i 0.0878581 + 0.369881i
\(544\) 0 0
\(545\) −7.03043 12.1771i −0.301150 0.521608i
\(546\) 0 0
\(547\) −10.4275 + 18.0610i −0.445848 + 0.772231i −0.998111 0.0614391i \(-0.980431\pi\)
0.552263 + 0.833670i \(0.313764\pi\)
\(548\) 0 0
\(549\) 2.03005 35.4635i 0.0866403 1.51354i
\(550\) 0 0
\(551\) −13.4522 + 23.2999i −0.573084 + 0.992610i
\(552\) 0 0
\(553\) 17.5153 + 30.3374i 0.744827 + 1.29008i
\(554\) 0 0
\(555\) 13.4106 12.6649i 0.569247 0.537594i
\(556\) 0 0
\(557\) −21.9289 −0.929158 −0.464579 0.885532i \(-0.653794\pi\)
−0.464579 + 0.885532i \(0.653794\pi\)
\(558\) 0 0
\(559\) −2.68374 −0.113510
\(560\) 0 0
\(561\) −12.7735 3.81720i −0.539298 0.161162i
\(562\) 0 0
\(563\) 9.14597 + 15.8413i 0.385457 + 0.667631i 0.991832 0.127548i \(-0.0407105\pi\)
−0.606376 + 0.795178i \(0.707377\pi\)
\(564\) 0 0
\(565\) 11.1207 19.2615i 0.467850 0.810339i
\(566\) 0 0
\(567\) −16.5517 38.1617i −0.695105 1.60264i
\(568\) 0 0
\(569\) −16.9632 + 29.3811i −0.711135 + 1.23172i 0.253297 + 0.967389i \(0.418485\pi\)
−0.964432 + 0.264333i \(0.914848\pi\)
\(570\) 0 0
\(571\) −2.01975 3.49830i −0.0845237 0.146399i 0.820664 0.571410i \(-0.193604\pi\)
−0.905188 + 0.425011i \(0.860270\pi\)
\(572\) 0 0
\(573\) −0.722754 0.215986i −0.0301935 0.00902294i
\(574\) 0 0
\(575\) 16.8546 0.702885
\(576\) 0 0
\(577\) 25.7179 1.07065 0.535325 0.844646i \(-0.320189\pi\)
0.535325 + 0.844646i \(0.320189\pi\)
\(578\) 0 0
\(579\) 20.5073 19.3669i 0.852253 0.804862i
\(580\) 0 0
\(581\) −11.8412 20.5095i −0.491255 0.850878i
\(582\) 0 0
\(583\) 5.40161 9.35587i 0.223712 0.387481i
\(584\) 0 0
\(585\) −0.212032 + 3.70404i −0.00876644 + 0.153143i
\(586\) 0 0
\(587\) −4.65906 + 8.06972i −0.192300 + 0.333073i −0.946012 0.324132i \(-0.894928\pi\)
0.753712 + 0.657205i \(0.228261\pi\)
\(588\) 0 0
\(589\) 15.8431 + 27.4410i 0.652803 + 1.13069i
\(590\) 0 0
\(591\) −6.36946 26.8153i −0.262005 1.10304i
\(592\) 0 0
\(593\) 21.3998 0.878786 0.439393 0.898295i \(-0.355194\pi\)
0.439393 + 0.898295i \(0.355194\pi\)
\(594\) 0 0
\(595\) 42.5156 1.74297
\(596\) 0 0
\(597\) 5.55527 + 23.3876i 0.227362 + 0.957189i
\(598\) 0 0
\(599\) 10.5949 + 18.3510i 0.432898 + 0.749801i 0.997121 0.0758212i \(-0.0241578\pi\)
−0.564224 + 0.825622i \(0.690825\pi\)
\(600\) 0 0
\(601\) −11.7940 + 20.4278i −0.481088 + 0.833268i −0.999764 0.0217021i \(-0.993091\pi\)
0.518677 + 0.854970i \(0.326425\pi\)
\(602\) 0 0
\(603\) 2.04141 + 1.33975i 0.0831327 + 0.0545586i
\(604\) 0 0
\(605\) −6.13972 + 10.6343i −0.249615 + 0.432346i
\(606\) 0 0
\(607\) 7.90602 + 13.6936i 0.320895 + 0.555807i 0.980673 0.195654i \(-0.0626829\pi\)
−0.659778 + 0.751461i \(0.729350\pi\)
\(608\) 0 0
\(609\) −35.4573 + 33.4856i −1.43680 + 1.35691i
\(610\) 0 0
\(611\) −8.01209 −0.324134
\(612\) 0 0
\(613\) −1.30853 −0.0528510 −0.0264255 0.999651i \(-0.508412\pi\)
−0.0264255 + 0.999651i \(0.508412\pi\)
\(614\) 0 0
\(615\) 2.18476 + 0.652888i 0.0880981 + 0.0263270i
\(616\) 0 0
\(617\) −0.543935 0.942123i −0.0218980 0.0379285i 0.854869 0.518844i \(-0.173638\pi\)
−0.876767 + 0.480916i \(0.840304\pi\)
\(618\) 0 0
\(619\) −7.24611 + 12.5506i −0.291246 + 0.504453i −0.974105 0.226098i \(-0.927403\pi\)
0.682859 + 0.730550i \(0.260736\pi\)
\(620\) 0 0
\(621\) 8.59534 23.7258i 0.344919 0.952084i
\(622\) 0 0
\(623\) −7.79751 + 13.5057i −0.312401 + 0.541094i
\(624\) 0 0
\(625\) −2.19884 3.80851i −0.0879537 0.152340i
\(626\) 0 0
\(627\) −7.58385 2.26634i −0.302870 0.0905088i
\(628\) 0 0
\(629\) −64.0526 −2.55394
\(630\) 0 0
\(631\) −41.4115 −1.64856 −0.824282 0.566179i \(-0.808421\pi\)
−0.824282 + 0.566179i \(0.808421\pi\)
\(632\) 0 0
\(633\) 11.8980 11.2364i 0.472903 0.446607i
\(634\) 0 0
\(635\) −5.07272 8.78621i −0.201305 0.348670i
\(636\) 0 0
\(637\) −7.18071 + 12.4374i −0.284510 + 0.492786i
\(638\) 0 0
\(639\) −27.6379 + 13.9148i −1.09334 + 0.550460i
\(640\) 0 0
\(641\) 12.0907 20.9416i 0.477553 0.827145i −0.522116 0.852874i \(-0.674857\pi\)
0.999669 + 0.0257289i \(0.00819068\pi\)
\(642\) 0 0
\(643\) 18.6005 + 32.2169i 0.733530 + 1.27051i 0.955365 + 0.295428i \(0.0954621\pi\)
−0.221835 + 0.975084i \(0.571205\pi\)
\(644\) 0 0
\(645\) 1.32852 + 5.59305i 0.0523104 + 0.220226i
\(646\) 0 0
\(647\) 9.31675 0.366279 0.183140 0.983087i \(-0.441374\pi\)
0.183140 + 0.983087i \(0.441374\pi\)
\(648\) 0 0
\(649\) −8.36670 −0.328422
\(650\) 0 0
\(651\) 13.2739 + 55.8830i 0.520247 + 2.19023i
\(652\) 0 0
\(653\) 9.51790 + 16.4855i 0.372464 + 0.645127i 0.989944 0.141460i \(-0.0451796\pi\)
−0.617480 + 0.786587i \(0.711846\pi\)
\(654\) 0 0
\(655\) −7.08768 + 12.2762i −0.276939 + 0.479672i
\(656\) 0 0
\(657\) −21.8488 + 11.0002i −0.852405 + 0.429158i
\(658\) 0 0
\(659\) −20.1576 + 34.9140i −0.785228 + 1.36006i 0.143634 + 0.989631i \(0.454121\pi\)
−0.928863 + 0.370424i \(0.879212\pi\)
\(660\) 0 0
\(661\) −2.06589 3.57822i −0.0803537 0.139177i 0.823048 0.567972i \(-0.192272\pi\)
−0.903402 + 0.428795i \(0.858938\pi\)
\(662\) 0 0
\(663\) 9.36660 8.84576i 0.363769 0.343541i
\(664\) 0 0
\(665\) 25.2422 0.978851
\(666\) 0 0
\(667\) −29.5865 −1.14560
\(668\) 0 0
\(669\) −14.7676 4.41311i −0.570948 0.170621i
\(670\) 0 0
\(671\) −6.12627 10.6110i −0.236502 0.409634i
\(672\) 0 0
\(673\) 6.07150 10.5162i 0.234039 0.405368i −0.724954 0.688798i \(-0.758139\pi\)
0.958993 + 0.283430i \(0.0914722\pi\)
\(674\) 0 0
\(675\) −17.7549 + 3.15805i −0.683388 + 0.121553i
\(676\) 0 0
\(677\) −20.5796 + 35.6449i −0.790937 + 1.36994i 0.134450 + 0.990920i \(0.457073\pi\)
−0.925387 + 0.379023i \(0.876260\pi\)
\(678\) 0 0
\(679\) −22.9491 39.7490i −0.880706 1.52543i
\(680\) 0 0
\(681\) 30.2301 + 9.03389i 1.15842 + 0.346179i
\(682\) 0 0
\(683\) 1.71255 0.0655290 0.0327645 0.999463i \(-0.489569\pi\)
0.0327645 + 0.999463i \(0.489569\pi\)
\(684\) 0 0
\(685\) −26.0496 −0.995305
\(686\) 0 0
\(687\) 29.9504 28.2849i 1.14268 1.07914i
\(688\) 0 0
\(689\) 5.21996 + 9.04124i 0.198865 + 0.344444i
\(690\) 0 0
\(691\) 15.6971 27.1881i 0.597145 1.03429i −0.396095 0.918209i \(-0.629635\pi\)
0.993240 0.116076i \(-0.0370317\pi\)
\(692\) 0 0
\(693\) −11.9955 7.87242i −0.455670 0.299049i
\(694\) 0 0
\(695\) 14.5688 25.2340i 0.552628 0.957179i
\(696\) 0 0
\(697\) −3.95905 6.85727i −0.149960 0.259738i
\(698\) 0 0
\(699\) −3.48406 14.6678i −0.131779 0.554788i
\(700\) 0 0
\(701\) 5.17150 0.195325 0.0976625 0.995220i \(-0.468863\pi\)
0.0976625 + 0.995220i \(0.468863\pi\)
\(702\) 0 0
\(703\) −38.0291 −1.43429
\(704\) 0 0
\(705\) 3.96618 + 16.6976i 0.149375 + 0.628867i
\(706\) 0 0
\(707\) −13.7779 23.8640i −0.518170 0.897497i
\(708\) 0 0
\(709\) 12.3700 21.4255i 0.464565 0.804650i −0.534617 0.845095i \(-0.679544\pi\)
0.999182 + 0.0404443i \(0.0128773\pi\)
\(710\) 0 0
\(711\) 1.29948 22.7009i 0.0487342 0.851351i
\(712\) 0 0
\(713\) −17.4225 + 30.1766i −0.652478 + 1.13012i
\(714\) 0 0
\(715\) 0.639869 + 1.10829i 0.0239298 + 0.0414475i
\(716\) 0 0
\(717\) 20.8764 19.7155i 0.779642 0.736289i
\(718\) 0 0
\(719\) −48.5746 −1.81153 −0.905764 0.423783i \(-0.860702\pi\)
−0.905764 + 0.423783i \(0.860702\pi\)
\(720\) 0 0
\(721\) −24.5432 −0.914037
\(722\) 0 0
\(723\) −19.8292 5.92569i −0.737454 0.220379i
\(724\) 0 0
\(725\) 10.5718 + 18.3108i 0.392625 + 0.680047i
\(726\) 0 0
\(727\) −15.1119 + 26.1745i −0.560469 + 0.970760i 0.436987 + 0.899468i \(0.356046\pi\)
−0.997455 + 0.0712923i \(0.977288\pi\)
\(728\) 0 0
\(729\) −4.60897 + 26.6037i −0.170703 + 0.985323i
\(730\) 0 0
\(731\) 9.98112 17.2878i 0.369165 0.639413i
\(732\) 0 0
\(733\) 6.25615 + 10.8360i 0.231076 + 0.400236i 0.958125 0.286350i \(-0.0924420\pi\)
−0.727049 + 0.686586i \(0.759109\pi\)
\(734\) 0 0
\(735\) 29.4747 + 8.80813i 1.08719 + 0.324893i
\(736\) 0 0
\(737\) 0.842250 0.0310247
\(738\) 0 0
\(739\) 1.67848 0.0617439 0.0308720 0.999523i \(-0.490172\pi\)
0.0308720 + 0.999523i \(0.490172\pi\)
\(740\) 0 0
\(741\) 5.56111 5.25187i 0.204292 0.192932i
\(742\) 0 0
\(743\) 5.53968 + 9.59501i 0.203231 + 0.352007i 0.949568 0.313562i \(-0.101522\pi\)
−0.746337 + 0.665569i \(0.768189\pi\)
\(744\) 0 0
\(745\) −1.45296 + 2.51659i −0.0532322 + 0.0922008i
\(746\) 0 0
\(747\) −0.878508 + 15.3469i −0.0321429 + 0.561513i
\(748\) 0 0
\(749\) −6.45363 + 11.1780i −0.235810 + 0.408435i
\(750\) 0 0
\(751\) −4.76341 8.25046i −0.173819 0.301064i 0.765933 0.642921i \(-0.222277\pi\)
−0.939752 + 0.341857i \(0.888944\pi\)
\(752\) 0 0
\(753\) −0.439787 1.85150i −0.0160267 0.0674722i
\(754\) 0 0
\(755\) 2.26185 0.0823172
\(756\) 0 0
\(757\) 20.1215 0.731329 0.365664 0.930747i \(-0.380842\pi\)
0.365664 + 0.930747i \(0.380842\pi\)
\(758\) 0 0
\(759\) −2.01157 8.46868i −0.0730155 0.307394i
\(760\) 0 0
\(761\) −25.5920 44.3267i −0.927711 1.60684i −0.787142 0.616772i \(-0.788440\pi\)
−0.140569 0.990071i \(-0.544893\pi\)
\(762\) 0 0
\(763\) −26.2743 + 45.5085i −0.951195 + 1.64752i
\(764\) 0 0
\(765\) −23.0717 15.1415i −0.834158 0.547444i
\(766\) 0 0
\(767\) 4.04267 7.00211i 0.145972 0.252831i
\(768\) 0 0
\(769\) 4.27904 + 7.41152i 0.154306 + 0.267266i 0.932806 0.360378i \(-0.117352\pi\)
−0.778500 + 0.627645i \(0.784019\pi\)
\(770\) 0 0
\(771\) 14.1950 13.4056i 0.511220 0.482793i
\(772\) 0 0
\(773\) 19.6620 0.707194 0.353597 0.935398i \(-0.384959\pi\)
0.353597 + 0.935398i \(0.384959\pi\)
\(774\) 0 0
\(775\) 24.9014 0.894484
\(776\) 0 0
\(777\) −66.0496 19.7381i −2.36951 0.708100i
\(778\) 0 0
\(779\) −2.35055 4.07128i −0.0842173 0.145869i
\(780\) 0 0
\(781\) −5.33664 + 9.24333i −0.190960 + 0.330753i
\(782\) 0 0
\(783\) 31.1670 5.54364i 1.11382 0.198113i
\(784\) 0 0
\(785\) 11.7915 20.4235i 0.420858 0.728947i
\(786\) 0 0
\(787\) 6.31421 + 10.9365i 0.225077 + 0.389845i 0.956343 0.292248i \(-0.0944032\pi\)
−0.731265 + 0.682093i \(0.761070\pi\)
\(788\) 0 0
\(789\) −30.0699 8.98600i −1.07052 0.319910i
\(790\) 0 0
\(791\) −83.1210 −2.95544
\(792\) 0 0
\(793\) 11.8405 0.420469
\(794\) 0 0
\(795\) 16.2583 15.3543i 0.576624 0.544560i
\(796\) 0 0
\(797\) −21.8643 37.8700i −0.774472 1.34142i −0.935091 0.354408i \(-0.884682\pi\)
0.160619 0.987016i \(-0.448651\pi\)
\(798\) 0 0
\(799\) 29.7978 51.6113i 1.05417 1.82588i
\(800\) 0 0
\(801\) 9.04136 4.55203i 0.319461 0.160838i
\(802\) 0 0
\(803\) −4.21883 + 7.30723i −0.148879 + 0.257866i
\(804\) 0 0
\(805\) 13.8793 + 24.0397i 0.489181 + 0.847287i
\(806\) 0 0
\(807\) 3.48077 + 14.6540i 0.122529 + 0.515844i
\(808\) 0 0
\(809\) −30.7778 −1.08209 −0.541044 0.840994i \(-0.681971\pi\)
−0.541044 + 0.840994i \(0.681971\pi\)
\(810\) 0 0
\(811\) 0.698137 0.0245149 0.0122575 0.999925i \(-0.496098\pi\)
0.0122575 + 0.999925i \(0.496098\pi\)
\(812\) 0 0
\(813\) −0.988762 4.16267i −0.0346774 0.145991i
\(814\) 0 0
\(815\) 3.33930 + 5.78384i 0.116971 + 0.202599i
\(816\) 0 0
\(817\) 5.92596 10.2641i 0.207323 0.359094i
\(818\) 0 0
\(819\) 12.3845 6.23518i 0.432749 0.217875i
\(820\) 0 0
\(821\) 9.75886 16.9028i 0.340586 0.589913i −0.643955 0.765063i \(-0.722708\pi\)
0.984542 + 0.175150i \(0.0560411\pi\)
\(822\) 0 0
\(823\) −21.2528 36.8109i −0.740825 1.28315i −0.952120 0.305725i \(-0.901101\pi\)
0.211295 0.977422i \(-0.432232\pi\)
\(824\) 0 0
\(825\) −4.52242 + 4.27094i −0.157450 + 0.148695i
\(826\) 0 0
\(827\) 32.1362 1.11749 0.558743 0.829341i \(-0.311284\pi\)
0.558743 + 0.829341i \(0.311284\pi\)
\(828\) 0 0
\(829\) 35.4543 1.23138 0.615690 0.787989i \(-0.288878\pi\)
0.615690 + 0.787989i \(0.288878\pi\)
\(830\) 0 0
\(831\) 53.3622 + 15.9466i 1.85112 + 0.553183i
\(832\) 0 0
\(833\) −53.4116 92.5116i −1.85060 3.20534i
\(834\) 0 0
\(835\) −5.94744 + 10.3013i −0.205820 + 0.356490i
\(836\) 0 0
\(837\) 12.6990 35.0531i 0.438940 1.21161i
\(838\) 0 0
\(839\) −2.46587 + 4.27100i −0.0851311 + 0.147451i −0.905447 0.424459i \(-0.860464\pi\)
0.820316 + 0.571911i \(0.193798\pi\)
\(840\) 0 0
\(841\) −4.05765 7.02806i −0.139919 0.242347i
\(842\) 0 0
\(843\) −19.9911 5.97410i −0.688532 0.205759i
\(844\) 0 0
\(845\) −1.23670 −0.0425438
\(846\) 0 0
\(847\) 45.8912 1.57684
\(848\) 0 0
\(849\) 21.1492 19.9732i 0.725839 0.685478i
\(850\) 0 0
\(851\) −20.9101 36.2174i −0.716789 1.24152i
\(852\) 0 0
\(853\) 7.44717 12.8989i 0.254986 0.441649i −0.709906 0.704297i \(-0.751262\pi\)
0.964892 + 0.262648i \(0.0845957\pi\)
\(854\) 0 0
\(855\) −13.6980 8.98979i −0.468463 0.307444i
\(856\) 0 0
\(857\) −10.0396 + 17.3891i −0.342946 + 0.593999i −0.984978 0.172678i \(-0.944758\pi\)
0.642033 + 0.766677i \(0.278091\pi\)
\(858\) 0 0
\(859\) 6.62665 + 11.4777i 0.226098 + 0.391614i 0.956648 0.291245i \(-0.0940696\pi\)
−0.730550 + 0.682859i \(0.760736\pi\)
\(860\) 0 0
\(861\) −1.96938 8.29106i −0.0671164 0.282559i
\(862\) 0 0
\(863\) 10.8734 0.370135 0.185068 0.982726i \(-0.440750\pi\)
0.185068 + 0.982726i \(0.440750\pi\)
\(864\) 0 0
\(865\) −0.451971 −0.0153675
\(866\) 0 0
\(867\) 15.3414 + 64.5871i 0.521022 + 2.19349i
\(868\) 0 0
\(869\) −3.92156 6.79234i −0.133030 0.230414i
\(870\) 0 0
\(871\) −0.406963 + 0.704881i −0.0137894 + 0.0238840i
\(872\) 0 0
\(873\) −1.70262 + 29.7435i −0.0576248 + 1.00666i
\(874\) 0 0
\(875\) 24.2082 41.9299i 0.818387 1.41749i
\(876\) 0 0
\(877\) −6.24563 10.8178i −0.210900 0.365289i 0.741096 0.671399i \(-0.234306\pi\)
−0.951996 + 0.306109i \(0.900973\pi\)
\(878\) 0 0
\(879\) −15.0085 + 14.1739i −0.506224 + 0.478075i
\(880\) 0 0
\(881\) −1.28015 −0.0431293 −0.0215646 0.999767i \(-0.506865\pi\)
−0.0215646 + 0.999767i \(0.506865\pi\)
\(882\) 0 0
\(883\) −7.14883 −0.240577 −0.120289 0.992739i \(-0.538382\pi\)
−0.120289 + 0.992739i \(0.538382\pi\)
\(884\) 0 0
\(885\) −16.5939 4.95889i −0.557799 0.166691i
\(886\) 0 0
\(887\) −6.25551 10.8349i −0.210039 0.363799i 0.741687 0.670746i \(-0.234026\pi\)
−0.951727 + 0.306947i \(0.900693\pi\)
\(888\) 0 0
\(889\) −18.9579 + 32.8361i −0.635829 + 1.10129i
\(890\) 0 0
\(891\) 3.70581 + 8.54416i 0.124149 + 0.286240i
\(892\) 0 0
\(893\) 17.6914 30.6425i 0.592021 1.02541i
\(894\) 0 0
\(895\) 2.43834 + 4.22333i 0.0815047 + 0.141170i
\(896\) 0 0
\(897\) 8.05942 + 2.40846i 0.269096 + 0.0804160i
\(898\) 0 0
\(899\) −43.7119 −1.45787
\(900\) 0 0
\(901\) −77.6543 −2.58704
\(902\) 0 0
\(903\) 15.6196 14.7511i 0.519788 0.490885i
\(904\) 0 0
\(905\) 3.16268 + 5.47792i 0.105131 + 0.182092i
\(906\) 0 0
\(907\) 26.0188 45.0659i 0.863940 1.49639i −0.00415607 0.999991i \(-0.501323\pi\)
0.868096 0.496396i \(-0.165344\pi\)
\(908\) 0 0
\(909\) −1.02219 + 17.8570i −0.0339040 + 0.592278i
\(910\) 0 0
\(911\) 25.0479 43.3842i 0.829873 1.43738i −0.0682636 0.997667i \(-0.521746\pi\)
0.898137 0.439716i \(-0.144921\pi\)
\(912\) 0 0
\(913\) 2.65116 + 4.59194i 0.0877406 + 0.151971i
\(914\) 0 0
\(915\) −5.86135 24.6762i −0.193770 0.815768i
\(916\) 0 0
\(917\) 52.9766 1.74944
\(918\) 0 0
\(919\) 31.9154 1.05279 0.526396 0.850240i \(-0.323543\pi\)
0.526396 + 0.850240i \(0.323543\pi\)
\(920\) 0 0
\(921\) 0.958693 + 4.03608i 0.0315900 + 0.132993i
\(922\) 0 0
\(923\) −5.15718 8.93249i −0.169750 0.294016i
\(924\) 0 0
\(925\) −14.9430 + 25.8821i −0.491324 + 0.850999i
\(926\) 0 0
\(927\) 13.3187 + 8.74085i 0.437444 + 0.287087i
\(928\) 0 0
\(929\) −0.968674 + 1.67779i −0.0317812 + 0.0550466i −0.881479 0.472224i \(-0.843451\pi\)
0.849697 + 0.527271i \(0.176785\pi\)
\(930\) 0 0
\(931\) −31.7114 54.9257i −1.03930 1.80012i
\(932\) 0 0
\(933\) 30.8825 29.1653i 1.01105 0.954829i
\(934\) 0 0
\(935\) −9.51896 −0.311303
\(936\) 0 0
\(937\) 12.4448 0.406553 0.203277 0.979121i \(-0.434841\pi\)
0.203277 + 0.979121i \(0.434841\pi\)
\(938\) 0 0
\(939\) 13.8494 + 4.13873i 0.451959 + 0.135062i
\(940\) 0 0
\(941\) 14.0002 + 24.2490i 0.456393 + 0.790496i 0.998767 0.0496411i \(-0.0158078\pi\)
−0.542374 + 0.840137i \(0.682474\pi\)
\(942\) 0 0
\(943\) 2.58488 4.47714i 0.0841753 0.145796i
\(944\) 0 0
\(945\) −19.1250 22.7232i −0.622137 0.739187i
\(946\) 0 0
\(947\) −24.2126 + 41.9375i −0.786804 + 1.36278i 0.141111 + 0.989994i \(0.454932\pi\)
−0.927915 + 0.372791i \(0.878401\pi\)
\(948\) 0 0
\(949\) −4.07695 7.06149i −0.132344 0.229226i
\(950\) 0 0
\(951\) −7.80089 2.33120i −0.252961 0.0755943i
\(952\) 0 0
\(953\) −19.9083 −0.644894 −0.322447 0.946588i \(-0.604505\pi\)
−0.322447 + 0.946588i \(0.604505\pi\)
\(954\) 0 0
\(955\) −0.538604 −0.0174288
\(956\) 0 0
\(957\) 7.93865 7.49721i 0.256620 0.242350i
\(958\) 0 0
\(959\) 48.6768 + 84.3106i 1.57185 + 2.72253i
\(960\) 0 0
\(961\) −10.2404 + 17.7369i −0.330336 + 0.572159i
\(962\) 0 0
\(963\) 7.48309 3.76750i 0.241139 0.121406i
\(964\) 0 0
\(965\) 10.0700 17.4417i 0.324164 0.561469i
\(966\) 0 0
\(967\) 24.5219 + 42.4732i 0.788572 + 1.36585i 0.926842 + 0.375452i \(0.122512\pi\)
−0.138270 + 0.990395i \(0.544154\pi\)
\(968\) 0 0
\(969\) 13.1485 + 55.3551i 0.422392 + 1.77826i
\(970\) 0 0
\(971\) −8.47587 −0.272004 −0.136002 0.990709i \(-0.543425\pi\)
−0.136002 + 0.990709i \(0.543425\pi\)
\(972\) 0 0
\(973\) −108.894 −3.49099
\(974\) 0 0
\(975\) −1.38919 5.84848i −0.0444898 0.187301i
\(976\) 0 0
\(977\) 8.15362 + 14.1225i 0.260857 + 0.451818i 0.966470 0.256780i \(-0.0826615\pi\)
−0.705613 + 0.708598i \(0.749328\pi\)
\(978\) 0 0
\(979\) 1.74581 3.02383i 0.0557964 0.0966421i
\(980\) 0 0
\(981\) 30.4656 15.3384i 0.972691 0.489718i
\(982\) 0 0
\(983\) −16.8494 + 29.1840i −0.537411 + 0.930824i 0.461631 + 0.887072i \(0.347264\pi\)
−0.999042 + 0.0437519i \(0.986069\pi\)
\(984\) 0 0
\(985\) −9.83957 17.0426i −0.313515 0.543023i
\(986\) 0 0
\(987\) 46.6310 44.0380i 1.48428 1.40175i
\(988\) 0 0
\(989\) 13.0334 0.414439
\(990\) 0 0
\(991\) −15.0990 −0.479634 −0.239817 0.970818i \(-0.577087\pi\)
−0.239817 + 0.970818i \(0.577087\pi\)
\(992\) 0 0
\(993\) −24.6262 7.35924i −0.781490 0.233538i
\(994\) 0 0
\(995\) 8.58179 + 14.8641i 0.272061 + 0.471224i
\(996\) 0 0
\(997\) −7.49064 + 12.9742i −0.237231 + 0.410896i −0.959919 0.280279i \(-0.909573\pi\)
0.722688 + 0.691175i \(0.242906\pi\)
\(998\) 0 0
\(999\) 28.8131 + 34.2341i 0.911608 + 1.08312i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.q.g.313.7 22
3.2 odd 2 2808.2.q.g.937.4 22
9.2 odd 6 8424.2.a.be.1.8 11
9.4 even 3 inner 936.2.q.g.625.7 yes 22
9.5 odd 6 2808.2.q.g.1873.4 22
9.7 even 3 8424.2.a.bf.1.4 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.q.g.313.7 22 1.1 even 1 trivial
936.2.q.g.625.7 yes 22 9.4 even 3 inner
2808.2.q.g.937.4 22 3.2 odd 2
2808.2.q.g.1873.4 22 9.5 odd 6
8424.2.a.be.1.8 11 9.2 odd 6
8424.2.a.bf.1.4 11 9.7 even 3