Properties

Label 936.2.q.g.313.11
Level $936$
Weight $2$
Character 936.313
Analytic conductor $7.474$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(313,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.313"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,0,0,0,-3,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 313.11
Character \(\chi\) \(=\) 936.313
Dual form 936.2.q.g.625.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.58128 - 0.706796i) q^{3} +(-1.13939 - 1.97349i) q^{5} +(1.72237 - 2.98324i) q^{7} +(2.00088 - 2.23528i) q^{9} +(0.552228 - 0.956487i) q^{11} +(-0.500000 - 0.866025i) q^{13} +(-3.19655 - 2.31531i) q^{15} -5.09201 q^{17} -5.15791 q^{19} +(0.615010 - 5.93470i) q^{21} +(4.70120 + 8.14271i) q^{23} +(-0.0964344 + 0.167029i) q^{25} +(1.58406 - 4.94881i) q^{27} +(-4.35038 + 7.53507i) q^{29} +(-0.104618 - 0.181204i) q^{31} +(0.197185 - 1.90278i) q^{33} -7.84985 q^{35} +5.90653 q^{37} +(-1.40274 - 1.01603i) q^{39} +(-1.90055 - 3.29185i) q^{41} +(3.79003 - 6.56453i) q^{43} +(-6.69109 - 1.40184i) q^{45} +(0.779191 - 1.34960i) q^{47} +(-2.43314 - 4.21433i) q^{49} +(-8.05188 + 3.59901i) q^{51} +9.00476 q^{53} -2.51682 q^{55} +(-8.15609 + 3.64559i) q^{57} +(-5.55152 - 9.61552i) q^{59} +(5.51023 - 9.54400i) q^{61} +(-3.22212 - 9.81909i) q^{63} +(-1.13939 + 1.97349i) q^{65} +(-0.233419 - 0.404294i) q^{67} +(13.1891 + 9.55311i) q^{69} +7.09468 q^{71} +11.0241 q^{73} +(-0.0344340 + 0.332279i) q^{75} +(-1.90229 - 3.29486i) q^{77} +(-8.25731 + 14.3021i) q^{79} +(-0.992966 - 8.94506i) q^{81} +(-4.48100 + 7.76132i) q^{83} +(5.80180 + 10.0490i) q^{85} +(-1.55339 + 14.9899i) q^{87} +17.5020 q^{89} -3.44475 q^{91} +(-0.293505 - 0.212590i) q^{93} +(5.87689 + 10.1791i) q^{95} +(1.33760 - 2.31679i) q^{97} +(-1.03308 - 3.14820i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 3 q^{5} - 4 q^{7} - 4 q^{9} + 5 q^{11} - 11 q^{13} + 5 q^{15} + 8 q^{17} + 10 q^{19} + 4 q^{21} + 9 q^{23} - 24 q^{25} - 12 q^{27} - 16 q^{29} - q^{31} + 9 q^{33} + 18 q^{37} + 3 q^{39} - 6 q^{41}+ \cdots - 109 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.58128 0.706796i 0.912951 0.408069i
\(4\) 0 0
\(5\) −1.13939 1.97349i −0.509552 0.882570i −0.999939 0.0110653i \(-0.996478\pi\)
0.490387 0.871505i \(-0.336856\pi\)
\(6\) 0 0
\(7\) 1.72237 2.98324i 0.650996 1.12756i −0.331885 0.943320i \(-0.607685\pi\)
0.982882 0.184239i \(-0.0589820\pi\)
\(8\) 0 0
\(9\) 2.00088 2.23528i 0.666960 0.745094i
\(10\) 0 0
\(11\) 0.552228 0.956487i 0.166503 0.288392i −0.770685 0.637216i \(-0.780086\pi\)
0.937188 + 0.348825i \(0.113419\pi\)
\(12\) 0 0
\(13\) −0.500000 0.866025i −0.138675 0.240192i
\(14\) 0 0
\(15\) −3.19655 2.31531i −0.825346 0.597811i
\(16\) 0 0
\(17\) −5.09201 −1.23499 −0.617496 0.786574i \(-0.711853\pi\)
−0.617496 + 0.786574i \(0.711853\pi\)
\(18\) 0 0
\(19\) −5.15791 −1.18331 −0.591653 0.806193i \(-0.701524\pi\)
−0.591653 + 0.806193i \(0.701524\pi\)
\(20\) 0 0
\(21\) 0.615010 5.93470i 0.134206 1.29506i
\(22\) 0 0
\(23\) 4.70120 + 8.14271i 0.980268 + 1.69787i 0.661326 + 0.750099i \(0.269994\pi\)
0.318942 + 0.947774i \(0.396672\pi\)
\(24\) 0 0
\(25\) −0.0964344 + 0.167029i −0.0192869 + 0.0334058i
\(26\) 0 0
\(27\) 1.58406 4.94881i 0.304852 0.952400i
\(28\) 0 0
\(29\) −4.35038 + 7.53507i −0.807845 + 1.39923i 0.106509 + 0.994312i \(0.466033\pi\)
−0.914354 + 0.404916i \(0.867301\pi\)
\(30\) 0 0
\(31\) −0.104618 0.181204i −0.0187900 0.0325452i 0.856478 0.516184i \(-0.172648\pi\)
−0.875268 + 0.483639i \(0.839315\pi\)
\(32\) 0 0
\(33\) 0.197185 1.90278i 0.0343255 0.331232i
\(34\) 0 0
\(35\) −7.84985 −1.32687
\(36\) 0 0
\(37\) 5.90653 0.971028 0.485514 0.874229i \(-0.338632\pi\)
0.485514 + 0.874229i \(0.338632\pi\)
\(38\) 0 0
\(39\) −1.40274 1.01603i −0.224619 0.162695i
\(40\) 0 0
\(41\) −1.90055 3.29185i −0.296816 0.514100i 0.678590 0.734517i \(-0.262591\pi\)
−0.975406 + 0.220417i \(0.929258\pi\)
\(42\) 0 0
\(43\) 3.79003 6.56453i 0.577975 1.00108i −0.417737 0.908568i \(-0.637177\pi\)
0.995711 0.0925136i \(-0.0294901\pi\)
\(44\) 0 0
\(45\) −6.69109 1.40184i −0.997448 0.208975i
\(46\) 0 0
\(47\) 0.779191 1.34960i 0.113657 0.196859i −0.803585 0.595190i \(-0.797077\pi\)
0.917242 + 0.398330i \(0.130410\pi\)
\(48\) 0 0
\(49\) −2.43314 4.21433i −0.347592 0.602047i
\(50\) 0 0
\(51\) −8.05188 + 3.59901i −1.12749 + 0.503962i
\(52\) 0 0
\(53\) 9.00476 1.23690 0.618450 0.785824i \(-0.287761\pi\)
0.618450 + 0.785824i \(0.287761\pi\)
\(54\) 0 0
\(55\) −2.51682 −0.339368
\(56\) 0 0
\(57\) −8.15609 + 3.64559i −1.08030 + 0.482870i
\(58\) 0 0
\(59\) −5.55152 9.61552i −0.722747 1.25183i −0.959895 0.280360i \(-0.909546\pi\)
0.237148 0.971473i \(-0.423787\pi\)
\(60\) 0 0
\(61\) 5.51023 9.54400i 0.705513 1.22198i −0.260993 0.965341i \(-0.584050\pi\)
0.966506 0.256643i \(-0.0826166\pi\)
\(62\) 0 0
\(63\) −3.22212 9.81909i −0.405949 1.23709i
\(64\) 0 0
\(65\) −1.13939 + 1.97349i −0.141324 + 0.244781i
\(66\) 0 0
\(67\) −0.233419 0.404294i −0.0285167 0.0493924i 0.851415 0.524493i \(-0.175745\pi\)
−0.879932 + 0.475100i \(0.842412\pi\)
\(68\) 0 0
\(69\) 13.1891 + 9.55311i 1.58779 + 1.15006i
\(70\) 0 0
\(71\) 7.09468 0.841984 0.420992 0.907064i \(-0.361682\pi\)
0.420992 + 0.907064i \(0.361682\pi\)
\(72\) 0 0
\(73\) 11.0241 1.29027 0.645134 0.764069i \(-0.276802\pi\)
0.645134 + 0.764069i \(0.276802\pi\)
\(74\) 0 0
\(75\) −0.0344340 + 0.332279i −0.00397609 + 0.0383683i
\(76\) 0 0
\(77\) −1.90229 3.29486i −0.216786 0.375484i
\(78\) 0 0
\(79\) −8.25731 + 14.3021i −0.929020 + 1.60911i −0.144055 + 0.989570i \(0.546014\pi\)
−0.784965 + 0.619540i \(0.787319\pi\)
\(80\) 0 0
\(81\) −0.992966 8.94506i −0.110330 0.993895i
\(82\) 0 0
\(83\) −4.48100 + 7.76132i −0.491854 + 0.851916i −0.999956 0.00938095i \(-0.997014\pi\)
0.508102 + 0.861297i \(0.330347\pi\)
\(84\) 0 0
\(85\) 5.80180 + 10.0490i 0.629293 + 1.08997i
\(86\) 0 0
\(87\) −1.55339 + 14.9899i −0.166541 + 1.60708i
\(88\) 0 0
\(89\) 17.5020 1.85521 0.927603 0.373567i \(-0.121865\pi\)
0.927603 + 0.373567i \(0.121865\pi\)
\(90\) 0 0
\(91\) −3.44475 −0.361108
\(92\) 0 0
\(93\) −0.293505 0.212590i −0.0304350 0.0220446i
\(94\) 0 0
\(95\) 5.87689 + 10.1791i 0.602956 + 1.04435i
\(96\) 0 0
\(97\) 1.33760 2.31679i 0.135813 0.235234i −0.790095 0.612984i \(-0.789969\pi\)
0.925908 + 0.377750i \(0.123302\pi\)
\(98\) 0 0
\(99\) −1.03308 3.14820i −0.103828 0.316406i
\(100\) 0 0
\(101\) −2.08508 + 3.61146i −0.207473 + 0.359354i −0.950918 0.309443i \(-0.899857\pi\)
0.743445 + 0.668797i \(0.233191\pi\)
\(102\) 0 0
\(103\) −9.38495 16.2552i −0.924727 1.60167i −0.792000 0.610521i \(-0.790960\pi\)
−0.132727 0.991153i \(-0.542373\pi\)
\(104\) 0 0
\(105\) −12.4128 + 5.54824i −1.21136 + 0.541453i
\(106\) 0 0
\(107\) −7.46109 −0.721290 −0.360645 0.932703i \(-0.617443\pi\)
−0.360645 + 0.932703i \(0.617443\pi\)
\(108\) 0 0
\(109\) 11.0212 1.05564 0.527819 0.849357i \(-0.323010\pi\)
0.527819 + 0.849357i \(0.323010\pi\)
\(110\) 0 0
\(111\) 9.33987 4.17471i 0.886501 0.396246i
\(112\) 0 0
\(113\) 2.12957 + 3.68853i 0.200334 + 0.346988i 0.948636 0.316370i \(-0.102464\pi\)
−0.748302 + 0.663358i \(0.769131\pi\)
\(114\) 0 0
\(115\) 10.7130 18.5555i 0.998995 1.73031i
\(116\) 0 0
\(117\) −2.93625 0.615171i −0.271456 0.0568726i
\(118\) 0 0
\(119\) −8.77034 + 15.1907i −0.803976 + 1.39253i
\(120\) 0 0
\(121\) 4.89009 + 8.46988i 0.444554 + 0.769989i
\(122\) 0 0
\(123\) −5.33196 3.86202i −0.480766 0.348227i
\(124\) 0 0
\(125\) −10.9544 −0.979794
\(126\) 0 0
\(127\) 9.36283 0.830817 0.415409 0.909635i \(-0.363639\pi\)
0.415409 + 0.909635i \(0.363639\pi\)
\(128\) 0 0
\(129\) 1.35331 13.0591i 0.119153 1.14979i
\(130\) 0 0
\(131\) −0.384237 0.665519i −0.0335710 0.0581466i 0.848752 0.528791i \(-0.177355\pi\)
−0.882323 + 0.470645i \(0.844021\pi\)
\(132\) 0 0
\(133\) −8.88385 + 15.3873i −0.770328 + 1.33425i
\(134\) 0 0
\(135\) −11.5713 + 2.51253i −0.995898 + 0.216244i
\(136\) 0 0
\(137\) 3.43242 5.94513i 0.293252 0.507927i −0.681325 0.731981i \(-0.738596\pi\)
0.974577 + 0.224054i \(0.0719292\pi\)
\(138\) 0 0
\(139\) −3.84832 6.66548i −0.326410 0.565358i 0.655387 0.755293i \(-0.272506\pi\)
−0.981797 + 0.189935i \(0.939172\pi\)
\(140\) 0 0
\(141\) 0.278227 2.68482i 0.0234309 0.226103i
\(142\) 0 0
\(143\) −1.10446 −0.0923592
\(144\) 0 0
\(145\) 19.8272 1.64656
\(146\) 0 0
\(147\) −6.82615 4.94429i −0.563011 0.407798i
\(148\) 0 0
\(149\) −1.50788 2.61173i −0.123531 0.213961i 0.797627 0.603151i \(-0.206088\pi\)
−0.921158 + 0.389190i \(0.872755\pi\)
\(150\) 0 0
\(151\) −5.85581 + 10.1426i −0.476539 + 0.825390i −0.999639 0.0268818i \(-0.991442\pi\)
0.523100 + 0.852272i \(0.324776\pi\)
\(152\) 0 0
\(153\) −10.1885 + 11.3821i −0.823690 + 0.920185i
\(154\) 0 0
\(155\) −0.238403 + 0.412925i −0.0191490 + 0.0331670i
\(156\) 0 0
\(157\) 7.04160 + 12.1964i 0.561981 + 0.973380i 0.997324 + 0.0731149i \(0.0232940\pi\)
−0.435342 + 0.900265i \(0.643373\pi\)
\(158\) 0 0
\(159\) 14.2390 6.36453i 1.12923 0.504740i
\(160\) 0 0
\(161\) 32.3889 2.55260
\(162\) 0 0
\(163\) 8.86575 0.694419 0.347210 0.937788i \(-0.387129\pi\)
0.347210 + 0.937788i \(0.387129\pi\)
\(164\) 0 0
\(165\) −3.97979 + 1.77888i −0.309826 + 0.138485i
\(166\) 0 0
\(167\) 2.12945 + 3.68831i 0.164781 + 0.285410i 0.936578 0.350460i \(-0.113975\pi\)
−0.771796 + 0.635870i \(0.780641\pi\)
\(168\) 0 0
\(169\) −0.500000 + 0.866025i −0.0384615 + 0.0666173i
\(170\) 0 0
\(171\) −10.3204 + 11.5294i −0.789217 + 0.881674i
\(172\) 0 0
\(173\) 0.602994 1.04442i 0.0458448 0.0794055i −0.842192 0.539177i \(-0.818735\pi\)
0.888037 + 0.459772i \(0.152069\pi\)
\(174\) 0 0
\(175\) 0.332192 + 0.575374i 0.0251114 + 0.0434942i
\(176\) 0 0
\(177\) −15.5747 11.2810i −1.17067 0.847933i
\(178\) 0 0
\(179\) −15.2625 −1.14077 −0.570386 0.821377i \(-0.693206\pi\)
−0.570386 + 0.821377i \(0.693206\pi\)
\(180\) 0 0
\(181\) 10.4188 0.774424 0.387212 0.921991i \(-0.373438\pi\)
0.387212 + 0.921991i \(0.373438\pi\)
\(182\) 0 0
\(183\) 1.96755 18.9863i 0.145445 1.40351i
\(184\) 0 0
\(185\) −6.72987 11.6565i −0.494790 0.857001i
\(186\) 0 0
\(187\) −2.81195 + 4.87043i −0.205630 + 0.356161i
\(188\) 0 0
\(189\) −12.0352 13.2493i −0.875429 0.963747i
\(190\) 0 0
\(191\) 0.281190 0.487035i 0.0203462 0.0352406i −0.855673 0.517517i \(-0.826856\pi\)
0.876019 + 0.482276i \(0.160190\pi\)
\(192\) 0 0
\(193\) 0.403009 + 0.698032i 0.0290092 + 0.0502454i 0.880166 0.474667i \(-0.157431\pi\)
−0.851156 + 0.524912i \(0.824098\pi\)
\(194\) 0 0
\(195\) −0.406845 + 3.92595i −0.0291348 + 0.281143i
\(196\) 0 0
\(197\) −16.6683 −1.18757 −0.593784 0.804624i \(-0.702367\pi\)
−0.593784 + 0.804624i \(0.702367\pi\)
\(198\) 0 0
\(199\) 11.1027 0.787053 0.393527 0.919313i \(-0.371255\pi\)
0.393527 + 0.919313i \(0.371255\pi\)
\(200\) 0 0
\(201\) −0.654854 0.474322i −0.0461899 0.0334561i
\(202\) 0 0
\(203\) 14.9860 + 25.9564i 1.05181 + 1.82178i
\(204\) 0 0
\(205\) −4.33094 + 7.50141i −0.302486 + 0.523921i
\(206\) 0 0
\(207\) 27.6078 + 5.78409i 1.91887 + 0.402022i
\(208\) 0 0
\(209\) −2.84834 + 4.93347i −0.197024 + 0.341255i
\(210\) 0 0
\(211\) 2.56612 + 4.44464i 0.176659 + 0.305982i 0.940734 0.339145i \(-0.110138\pi\)
−0.764075 + 0.645127i \(0.776804\pi\)
\(212\) 0 0
\(213\) 11.2187 5.01449i 0.768690 0.343587i
\(214\) 0 0
\(215\) −17.2734 −1.17803
\(216\) 0 0
\(217\) −0.720767 −0.0489288
\(218\) 0 0
\(219\) 17.4321 7.79176i 1.17795 0.526518i
\(220\) 0 0
\(221\) 2.54600 + 4.40981i 0.171263 + 0.296636i
\(222\) 0 0
\(223\) 9.17448 15.8907i 0.614368 1.06412i −0.376127 0.926568i \(-0.622744\pi\)
0.990495 0.137549i \(-0.0439224\pi\)
\(224\) 0 0
\(225\) 0.180404 + 0.549763i 0.0120269 + 0.0366509i
\(226\) 0 0
\(227\) −4.12921 + 7.15201i −0.274066 + 0.474696i −0.969899 0.243508i \(-0.921702\pi\)
0.695833 + 0.718203i \(0.255035\pi\)
\(228\) 0 0
\(229\) −4.78771 8.29256i −0.316381 0.547988i 0.663349 0.748310i \(-0.269134\pi\)
−0.979730 + 0.200322i \(0.935801\pi\)
\(230\) 0 0
\(231\) −5.33683 3.86555i −0.351138 0.254335i
\(232\) 0 0
\(233\) 4.69934 0.307864 0.153932 0.988081i \(-0.450806\pi\)
0.153932 + 0.988081i \(0.450806\pi\)
\(234\) 0 0
\(235\) −3.55122 −0.231656
\(236\) 0 0
\(237\) −2.94845 + 28.4518i −0.191522 + 1.84814i
\(238\) 0 0
\(239\) 3.74325 + 6.48350i 0.242131 + 0.419383i 0.961321 0.275431i \(-0.0888204\pi\)
−0.719190 + 0.694813i \(0.755487\pi\)
\(240\) 0 0
\(241\) −7.20619 + 12.4815i −0.464191 + 0.804003i −0.999165 0.0408661i \(-0.986988\pi\)
0.534973 + 0.844869i \(0.320322\pi\)
\(242\) 0 0
\(243\) −7.89248 13.4428i −0.506303 0.862356i
\(244\) 0 0
\(245\) −5.54462 + 9.60356i −0.354233 + 0.613549i
\(246\) 0 0
\(247\) 2.57896 + 4.46688i 0.164095 + 0.284221i
\(248\) 0 0
\(249\) −1.60004 + 15.4400i −0.101398 + 0.978468i
\(250\) 0 0
\(251\) −14.8847 −0.939514 −0.469757 0.882796i \(-0.655658\pi\)
−0.469757 + 0.882796i \(0.655658\pi\)
\(252\) 0 0
\(253\) 10.3845 0.652870
\(254\) 0 0
\(255\) 16.2769 + 11.7896i 1.01930 + 0.738293i
\(256\) 0 0
\(257\) 12.6799 + 21.9622i 0.790949 + 1.36996i 0.925380 + 0.379041i \(0.123746\pi\)
−0.134431 + 0.990923i \(0.542921\pi\)
\(258\) 0 0
\(259\) 10.1733 17.6206i 0.632136 1.09489i
\(260\) 0 0
\(261\) 8.13843 + 24.8011i 0.503756 + 1.53515i
\(262\) 0 0
\(263\) −12.9835 + 22.4882i −0.800600 + 1.38668i 0.118622 + 0.992939i \(0.462152\pi\)
−0.919222 + 0.393740i \(0.871181\pi\)
\(264\) 0 0
\(265\) −10.2600 17.7708i −0.630265 1.09165i
\(266\) 0 0
\(267\) 27.6755 12.3703i 1.69371 0.757052i
\(268\) 0 0
\(269\) 11.3618 0.692743 0.346371 0.938098i \(-0.387414\pi\)
0.346371 + 0.938098i \(0.387414\pi\)
\(270\) 0 0
\(271\) −3.25150 −0.197515 −0.0987574 0.995112i \(-0.531487\pi\)
−0.0987574 + 0.995112i \(0.531487\pi\)
\(272\) 0 0
\(273\) −5.44710 + 2.43473i −0.329674 + 0.147357i
\(274\) 0 0
\(275\) 0.106507 + 0.184476i 0.00642264 + 0.0111243i
\(276\) 0 0
\(277\) −14.7945 + 25.6248i −0.888914 + 1.53964i −0.0477531 + 0.998859i \(0.515206\pi\)
−0.841161 + 0.540785i \(0.818127\pi\)
\(278\) 0 0
\(279\) −0.614371 0.128716i −0.0367814 0.00770604i
\(280\) 0 0
\(281\) 7.33314 12.7014i 0.437458 0.757700i −0.560034 0.828469i \(-0.689212\pi\)
0.997493 + 0.0707692i \(0.0225454\pi\)
\(282\) 0 0
\(283\) 3.57014 + 6.18367i 0.212223 + 0.367581i 0.952410 0.304820i \(-0.0985963\pi\)
−0.740187 + 0.672401i \(0.765263\pi\)
\(284\) 0 0
\(285\) 16.4875 + 11.9422i 0.976637 + 0.707394i
\(286\) 0 0
\(287\) −13.0938 −0.772903
\(288\) 0 0
\(289\) 8.92852 0.525207
\(290\) 0 0
\(291\) 0.477618 4.60889i 0.0279985 0.270178i
\(292\) 0 0
\(293\) 2.20679 + 3.82227i 0.128922 + 0.223299i 0.923259 0.384178i \(-0.125515\pi\)
−0.794337 + 0.607477i \(0.792182\pi\)
\(294\) 0 0
\(295\) −12.6507 + 21.9117i −0.736554 + 1.27575i
\(296\) 0 0
\(297\) −3.85871 4.24800i −0.223905 0.246494i
\(298\) 0 0
\(299\) 4.70120 8.14271i 0.271877 0.470905i
\(300\) 0 0
\(301\) −13.0557 22.6132i −0.752519 1.30340i
\(302\) 0 0
\(303\) −0.744522 + 7.18445i −0.0427717 + 0.412736i
\(304\) 0 0
\(305\) −25.1133 −1.43798
\(306\) 0 0
\(307\) 18.7691 1.07121 0.535604 0.844469i \(-0.320084\pi\)
0.535604 + 0.844469i \(0.320084\pi\)
\(308\) 0 0
\(309\) −26.3293 19.0708i −1.49782 1.08490i
\(310\) 0 0
\(311\) 8.89600 + 15.4083i 0.504446 + 0.873726i 0.999987 + 0.00514128i \(0.00163653\pi\)
−0.495541 + 0.868585i \(0.665030\pi\)
\(312\) 0 0
\(313\) −2.82974 + 4.90126i −0.159947 + 0.277036i −0.934849 0.355045i \(-0.884466\pi\)
0.774903 + 0.632081i \(0.217799\pi\)
\(314\) 0 0
\(315\) −15.7066 + 17.5466i −0.884966 + 0.988640i
\(316\) 0 0
\(317\) 8.70687 15.0807i 0.489027 0.847019i −0.510894 0.859644i \(-0.670685\pi\)
0.999920 + 0.0126249i \(0.00401874\pi\)
\(318\) 0 0
\(319\) 4.80480 + 8.32215i 0.269017 + 0.465951i
\(320\) 0 0
\(321\) −11.7980 + 5.27347i −0.658503 + 0.294336i
\(322\) 0 0
\(323\) 26.2641 1.46137
\(324\) 0 0
\(325\) 0.192869 0.0106984
\(326\) 0 0
\(327\) 17.4276 7.78973i 0.963747 0.430773i
\(328\) 0 0
\(329\) −2.68412 4.64903i −0.147980 0.256309i
\(330\) 0 0
\(331\) −8.49858 + 14.7200i −0.467124 + 0.809083i −0.999295 0.0375544i \(-0.988043\pi\)
0.532170 + 0.846637i \(0.321377\pi\)
\(332\) 0 0
\(333\) 11.8183 13.2028i 0.647637 0.723507i
\(334\) 0 0
\(335\) −0.531913 + 0.921300i −0.0290615 + 0.0503360i
\(336\) 0 0
\(337\) −11.0891 19.2069i −0.604061 1.04627i −0.992199 0.124664i \(-0.960215\pi\)
0.388138 0.921601i \(-0.373119\pi\)
\(338\) 0 0
\(339\) 5.97449 + 4.32742i 0.324490 + 0.235033i
\(340\) 0 0
\(341\) −0.231092 −0.0125144
\(342\) 0 0
\(343\) 7.35010 0.396868
\(344\) 0 0
\(345\) 3.82532 36.9133i 0.205948 1.98735i
\(346\) 0 0
\(347\) 4.62755 + 8.01515i 0.248420 + 0.430276i 0.963088 0.269188i \(-0.0867554\pi\)
−0.714668 + 0.699464i \(0.753422\pi\)
\(348\) 0 0
\(349\) 8.63342 14.9535i 0.462136 0.800444i −0.536931 0.843626i \(-0.680416\pi\)
0.999067 + 0.0431827i \(0.0137498\pi\)
\(350\) 0 0
\(351\) −5.07783 + 1.10257i −0.271034 + 0.0588510i
\(352\) 0 0
\(353\) −10.2917 + 17.8257i −0.547772 + 0.948768i 0.450655 + 0.892698i \(0.351190\pi\)
−0.998427 + 0.0560702i \(0.982143\pi\)
\(354\) 0 0
\(355\) −8.08363 14.0013i −0.429035 0.743110i
\(356\) 0 0
\(357\) −3.13164 + 30.2195i −0.165744 + 1.59939i
\(358\) 0 0
\(359\) 11.9060 0.628375 0.314187 0.949361i \(-0.398268\pi\)
0.314187 + 0.949361i \(0.398268\pi\)
\(360\) 0 0
\(361\) 7.60405 0.400213
\(362\) 0 0
\(363\) 13.7191 + 9.93694i 0.720064 + 0.521554i
\(364\) 0 0
\(365\) −12.5607 21.7558i −0.657459 1.13875i
\(366\) 0 0
\(367\) −12.1318 + 21.0130i −0.633277 + 1.09687i 0.353600 + 0.935397i \(0.384957\pi\)
−0.986877 + 0.161472i \(0.948376\pi\)
\(368\) 0 0
\(369\) −11.1610 2.33833i −0.581017 0.121728i
\(370\) 0 0
\(371\) 15.5096 26.8634i 0.805217 1.39468i
\(372\) 0 0
\(373\) −1.46418 2.53603i −0.0758123 0.131311i 0.825627 0.564216i \(-0.190822\pi\)
−0.901439 + 0.432906i \(0.857488\pi\)
\(374\) 0 0
\(375\) −17.3220 + 7.74254i −0.894504 + 0.399823i
\(376\) 0 0
\(377\) 8.70075 0.448112
\(378\) 0 0
\(379\) −36.6606 −1.88313 −0.941565 0.336831i \(-0.890645\pi\)
−0.941565 + 0.336831i \(0.890645\pi\)
\(380\) 0 0
\(381\) 14.8052 6.61761i 0.758496 0.339031i
\(382\) 0 0
\(383\) 10.4441 + 18.0897i 0.533668 + 0.924341i 0.999227 + 0.0393234i \(0.0125202\pi\)
−0.465558 + 0.885017i \(0.654146\pi\)
\(384\) 0 0
\(385\) −4.33490 + 7.50827i −0.220927 + 0.382657i
\(386\) 0 0
\(387\) −7.09018 21.6066i −0.360414 1.09833i
\(388\) 0 0
\(389\) 18.0246 31.2196i 0.913884 1.58289i 0.105358 0.994434i \(-0.466401\pi\)
0.808527 0.588460i \(-0.200265\pi\)
\(390\) 0 0
\(391\) −23.9385 41.4627i −1.21062 2.09686i
\(392\) 0 0
\(393\) −1.07797 0.780793i −0.0543765 0.0393858i
\(394\) 0 0
\(395\) 37.6333 1.89354
\(396\) 0 0
\(397\) −23.2179 −1.16527 −0.582636 0.812733i \(-0.697979\pi\)
−0.582636 + 0.812733i \(0.697979\pi\)
\(398\) 0 0
\(399\) −3.17217 + 30.6106i −0.158807 + 1.53245i
\(400\) 0 0
\(401\) −10.1749 17.6234i −0.508110 0.880072i −0.999956 0.00938987i \(-0.997011\pi\)
0.491846 0.870682i \(-0.336322\pi\)
\(402\) 0 0
\(403\) −0.104618 + 0.181204i −0.00521141 + 0.00902642i
\(404\) 0 0
\(405\) −16.5216 + 12.1515i −0.820964 + 0.603815i
\(406\) 0 0
\(407\) 3.26175 5.64952i 0.161679 0.280036i
\(408\) 0 0
\(409\) 15.5378 + 26.9122i 0.768294 + 1.33072i 0.938487 + 0.345314i \(0.112228\pi\)
−0.170193 + 0.985411i \(0.554439\pi\)
\(410\) 0 0
\(411\) 1.22562 11.8269i 0.0604554 0.583380i
\(412\) 0 0
\(413\) −38.2472 −1.88202
\(414\) 0 0
\(415\) 20.4225 1.00250
\(416\) 0 0
\(417\) −10.7964 7.82000i −0.528701 0.382947i
\(418\) 0 0
\(419\) −14.1136 24.4455i −0.689496 1.19424i −0.972001 0.234977i \(-0.924499\pi\)
0.282505 0.959266i \(-0.408835\pi\)
\(420\) 0 0
\(421\) −0.491557 + 0.851402i −0.0239570 + 0.0414948i −0.877755 0.479109i \(-0.840960\pi\)
0.853798 + 0.520604i \(0.174293\pi\)
\(422\) 0 0
\(423\) −1.45767 4.44209i −0.0708741 0.215982i
\(424\) 0 0
\(425\) 0.491044 0.850514i 0.0238192 0.0412560i
\(426\) 0 0
\(427\) −18.9814 32.8767i −0.918572 1.59101i
\(428\) 0 0
\(429\) −1.74645 + 0.780625i −0.0843195 + 0.0376889i
\(430\) 0 0
\(431\) 1.82752 0.0880286 0.0440143 0.999031i \(-0.485985\pi\)
0.0440143 + 0.999031i \(0.485985\pi\)
\(432\) 0 0
\(433\) −11.7526 −0.564792 −0.282396 0.959298i \(-0.591129\pi\)
−0.282396 + 0.959298i \(0.591129\pi\)
\(434\) 0 0
\(435\) 31.3522 14.0138i 1.50323 0.671908i
\(436\) 0 0
\(437\) −24.2484 41.9994i −1.15996 2.00910i
\(438\) 0 0
\(439\) −11.5652 + 20.0315i −0.551976 + 0.956050i 0.446156 + 0.894955i \(0.352793\pi\)
−0.998132 + 0.0610947i \(0.980541\pi\)
\(440\) 0 0
\(441\) −14.2886 2.99360i −0.680412 0.142552i
\(442\) 0 0
\(443\) 11.8792 20.5754i 0.564398 0.977565i −0.432708 0.901534i \(-0.642442\pi\)
0.997105 0.0760312i \(-0.0242249\pi\)
\(444\) 0 0
\(445\) −19.9416 34.5399i −0.945325 1.63735i
\(446\) 0 0
\(447\) −4.23034 3.06411i −0.200088 0.144927i
\(448\) 0 0
\(449\) 17.1672 0.810169 0.405084 0.914279i \(-0.367242\pi\)
0.405084 + 0.914279i \(0.367242\pi\)
\(450\) 0 0
\(451\) −4.19814 −0.197683
\(452\) 0 0
\(453\) −2.09094 + 20.1771i −0.0982410 + 0.948001i
\(454\) 0 0
\(455\) 3.92492 + 6.79817i 0.184003 + 0.318703i
\(456\) 0 0
\(457\) 6.39970 11.0846i 0.299366 0.518516i −0.676625 0.736327i \(-0.736558\pi\)
0.975991 + 0.217811i \(0.0698917\pi\)
\(458\) 0 0
\(459\) −8.06603 + 25.1994i −0.376490 + 1.17621i
\(460\) 0 0
\(461\) −6.44702 + 11.1666i −0.300268 + 0.520079i −0.976197 0.216888i \(-0.930409\pi\)
0.675929 + 0.736967i \(0.263743\pi\)
\(462\) 0 0
\(463\) 11.7813 + 20.4059i 0.547525 + 0.948340i 0.998443 + 0.0557754i \(0.0177631\pi\)
−0.450919 + 0.892565i \(0.648904\pi\)
\(464\) 0 0
\(465\) −0.0851268 + 0.821452i −0.00394766 + 0.0380939i
\(466\) 0 0
\(467\) −17.3285 −0.801866 −0.400933 0.916107i \(-0.631314\pi\)
−0.400933 + 0.916107i \(0.631314\pi\)
\(468\) 0 0
\(469\) −1.60814 −0.0742571
\(470\) 0 0
\(471\) 19.7551 + 14.3089i 0.910267 + 0.659321i
\(472\) 0 0
\(473\) −4.18592 7.25023i −0.192469 0.333366i
\(474\) 0 0
\(475\) 0.497400 0.861522i 0.0228223 0.0395293i
\(476\) 0 0
\(477\) 18.0174 20.1282i 0.824962 0.921606i
\(478\) 0 0
\(479\) 14.0749 24.3785i 0.643101 1.11388i −0.341636 0.939832i \(-0.610981\pi\)
0.984737 0.174051i \(-0.0556856\pi\)
\(480\) 0 0
\(481\) −2.95327 5.11521i −0.134657 0.233233i
\(482\) 0 0
\(483\) 51.2158 22.8923i 2.33040 1.04164i
\(484\) 0 0
\(485\) −6.09620 −0.276814
\(486\) 0 0
\(487\) −16.1064 −0.729851 −0.364926 0.931037i \(-0.618906\pi\)
−0.364926 + 0.931037i \(0.618906\pi\)
\(488\) 0 0
\(489\) 14.0192 6.26628i 0.633971 0.283371i
\(490\) 0 0
\(491\) −14.6144 25.3129i −0.659540 1.14236i −0.980735 0.195343i \(-0.937418\pi\)
0.321195 0.947013i \(-0.395915\pi\)
\(492\) 0 0
\(493\) 22.1521 38.3686i 0.997682 1.72804i
\(494\) 0 0
\(495\) −5.03585 + 5.62580i −0.226345 + 0.252861i
\(496\) 0 0
\(497\) 12.2197 21.1651i 0.548128 0.949386i
\(498\) 0 0
\(499\) −10.5576 18.2863i −0.472623 0.818607i 0.526886 0.849936i \(-0.323359\pi\)
−0.999509 + 0.0313290i \(0.990026\pi\)
\(500\) 0 0
\(501\) 5.97412 + 4.32716i 0.266904 + 0.193323i
\(502\) 0 0
\(503\) −8.40497 −0.374759 −0.187380 0.982288i \(-0.559999\pi\)
−0.187380 + 0.982288i \(0.559999\pi\)
\(504\) 0 0
\(505\) 9.50290 0.422873
\(506\) 0 0
\(507\) −0.178536 + 1.72282i −0.00792905 + 0.0765133i
\(508\) 0 0
\(509\) −1.11836 1.93706i −0.0495706 0.0858588i 0.840175 0.542315i \(-0.182452\pi\)
−0.889746 + 0.456456i \(0.849119\pi\)
\(510\) 0 0
\(511\) 18.9875 32.8874i 0.839960 1.45485i
\(512\) 0 0
\(513\) −8.17043 + 25.5255i −0.360733 + 1.12698i
\(514\) 0 0
\(515\) −21.3863 + 37.0422i −0.942393 + 1.63227i
\(516\) 0 0
\(517\) −0.860582 1.49057i −0.0378483 0.0655553i
\(518\) 0 0
\(519\) 0.215312 2.07771i 0.00945115 0.0912012i
\(520\) 0 0
\(521\) 23.5422 1.03140 0.515701 0.856768i \(-0.327531\pi\)
0.515701 + 0.856768i \(0.327531\pi\)
\(522\) 0 0
\(523\) 11.6853 0.510961 0.255481 0.966814i \(-0.417766\pi\)
0.255481 + 0.966814i \(0.417766\pi\)
\(524\) 0 0
\(525\) 0.931960 + 0.675034i 0.0406741 + 0.0294609i
\(526\) 0 0
\(527\) 0.532717 + 0.922692i 0.0232055 + 0.0401931i
\(528\) 0 0
\(529\) −32.7025 + 56.6424i −1.42185 + 2.46271i
\(530\) 0 0
\(531\) −32.6013 6.83027i −1.41478 0.296409i
\(532\) 0 0
\(533\) −1.90055 + 3.29185i −0.0823219 + 0.142586i
\(534\) 0 0
\(535\) 8.50111 + 14.7244i 0.367535 + 0.636589i
\(536\) 0 0
\(537\) −24.1342 + 10.7875i −1.04147 + 0.465514i
\(538\) 0 0
\(539\) −5.37460 −0.231500
\(540\) 0 0
\(541\) 3.88340 0.166961 0.0834803 0.996509i \(-0.473396\pi\)
0.0834803 + 0.996509i \(0.473396\pi\)
\(542\) 0 0
\(543\) 16.4750 7.36397i 0.707011 0.316018i
\(544\) 0 0
\(545\) −12.5575 21.7502i −0.537903 0.931675i
\(546\) 0 0
\(547\) −12.1273 + 21.0051i −0.518527 + 0.898114i 0.481242 + 0.876588i \(0.340186\pi\)
−0.999768 + 0.0215263i \(0.993147\pi\)
\(548\) 0 0
\(549\) −10.3082 31.4133i −0.439944 1.34069i
\(550\) 0 0
\(551\) 22.4389 38.8652i 0.955927 1.65571i
\(552\) 0 0
\(553\) 28.4444 + 49.2671i 1.20958 + 2.09505i
\(554\) 0 0
\(555\) −18.8805 13.6755i −0.801434 0.580492i
\(556\) 0 0
\(557\) −21.5076 −0.911307 −0.455653 0.890157i \(-0.650594\pi\)
−0.455653 + 0.890157i \(0.650594\pi\)
\(558\) 0 0
\(559\) −7.58007 −0.320603
\(560\) 0 0
\(561\) −1.00407 + 9.68898i −0.0423917 + 0.409069i
\(562\) 0 0
\(563\) −6.01103 10.4114i −0.253335 0.438788i 0.711107 0.703084i \(-0.248194\pi\)
−0.964442 + 0.264295i \(0.914861\pi\)
\(564\) 0 0
\(565\) 4.85285 8.40538i 0.204161 0.353617i
\(566\) 0 0
\(567\) −28.3955 12.4445i −1.19250 0.522619i
\(568\) 0 0
\(569\) −0.914667 + 1.58425i −0.0383448 + 0.0664152i −0.884561 0.466425i \(-0.845542\pi\)
0.846216 + 0.532840i \(0.178875\pi\)
\(570\) 0 0
\(571\) 2.43222 + 4.21273i 0.101785 + 0.176297i 0.912420 0.409254i \(-0.134211\pi\)
−0.810635 + 0.585552i \(0.800878\pi\)
\(572\) 0 0
\(573\) 0.100405 0.968882i 0.00419447 0.0404756i
\(574\) 0 0
\(575\) −1.81343 −0.0756252
\(576\) 0 0
\(577\) −47.8301 −1.99120 −0.995598 0.0937311i \(-0.970121\pi\)
−0.995598 + 0.0937311i \(0.970121\pi\)
\(578\) 0 0
\(579\) 1.13063 + 0.818937i 0.0469876 + 0.0340339i
\(580\) 0 0
\(581\) 15.4359 + 26.7358i 0.640390 + 1.10919i
\(582\) 0 0
\(583\) 4.97268 8.61294i 0.205947 0.356711i
\(584\) 0 0
\(585\) 2.13151 + 6.49557i 0.0881271 + 0.268559i
\(586\) 0 0
\(587\) 10.3736 17.9677i 0.428166 0.741605i −0.568544 0.822653i \(-0.692493\pi\)
0.996710 + 0.0810476i \(0.0258266\pi\)
\(588\) 0 0
\(589\) 0.539612 + 0.934635i 0.0222343 + 0.0385110i
\(590\) 0 0
\(591\) −26.3572 + 11.7811i −1.08419 + 0.484609i
\(592\) 0 0
\(593\) −0.480072 −0.0197142 −0.00985709 0.999951i \(-0.503138\pi\)
−0.00985709 + 0.999951i \(0.503138\pi\)
\(594\) 0 0
\(595\) 39.9715 1.63867
\(596\) 0 0
\(597\) 17.5565 7.84738i 0.718541 0.321172i
\(598\) 0 0
\(599\) 10.0297 + 17.3720i 0.409803 + 0.709800i 0.994867 0.101187i \(-0.0322641\pi\)
−0.585064 + 0.810987i \(0.698931\pi\)
\(600\) 0 0
\(601\) −10.4204 + 18.0486i −0.425055 + 0.736217i −0.996426 0.0844749i \(-0.973079\pi\)
0.571370 + 0.820692i \(0.306412\pi\)
\(602\) 0 0
\(603\) −1.37076 0.287186i −0.0558215 0.0116951i
\(604\) 0 0
\(605\) 11.1435 19.3011i 0.453046 0.784699i
\(606\) 0 0
\(607\) −16.7752 29.0554i −0.680883 1.17932i −0.974712 0.223466i \(-0.928263\pi\)
0.293828 0.955858i \(-0.405071\pi\)
\(608\) 0 0
\(609\) 42.0429 + 30.4523i 1.70366 + 1.23399i
\(610\) 0 0
\(611\) −1.55838 −0.0630454
\(612\) 0 0
\(613\) 21.9238 0.885493 0.442747 0.896647i \(-0.354004\pi\)
0.442747 + 0.896647i \(0.354004\pi\)
\(614\) 0 0
\(615\) −1.54646 + 14.9229i −0.0623591 + 0.601750i
\(616\) 0 0
\(617\) −6.49714 11.2534i −0.261565 0.453044i 0.705093 0.709115i \(-0.250905\pi\)
−0.966658 + 0.256071i \(0.917572\pi\)
\(618\) 0 0
\(619\) −5.91241 + 10.2406i −0.237640 + 0.411604i −0.960037 0.279875i \(-0.909707\pi\)
0.722397 + 0.691479i \(0.243040\pi\)
\(620\) 0 0
\(621\) 47.7437 10.3668i 1.91589 0.416006i
\(622\) 0 0
\(623\) 30.1450 52.2126i 1.20773 2.09185i
\(624\) 0 0
\(625\) 12.9636 + 22.4536i 0.518543 + 0.898143i
\(626\) 0 0
\(627\) −1.01706 + 9.81439i −0.0406175 + 0.391949i
\(628\) 0 0
\(629\) −30.0761 −1.19921
\(630\) 0 0
\(631\) 43.1311 1.71702 0.858512 0.512794i \(-0.171389\pi\)
0.858512 + 0.512794i \(0.171389\pi\)
\(632\) 0 0
\(633\) 7.19920 + 5.21450i 0.286142 + 0.207258i
\(634\) 0 0
\(635\) −10.6680 18.4774i −0.423345 0.733255i
\(636\) 0 0
\(637\) −2.43314 + 4.21433i −0.0964047 + 0.166978i
\(638\) 0 0
\(639\) 14.1956 15.8586i 0.561569 0.627357i
\(640\) 0 0
\(641\) −23.1592 + 40.1130i −0.914735 + 1.58437i −0.107446 + 0.994211i \(0.534267\pi\)
−0.807289 + 0.590156i \(0.799066\pi\)
\(642\) 0 0
\(643\) 10.3472 + 17.9219i 0.408055 + 0.706772i 0.994672 0.103092i \(-0.0328738\pi\)
−0.586617 + 0.809865i \(0.699540\pi\)
\(644\) 0 0
\(645\) −27.3140 + 12.2087i −1.07549 + 0.480719i
\(646\) 0 0
\(647\) −16.5211 −0.649510 −0.324755 0.945798i \(-0.605282\pi\)
−0.324755 + 0.945798i \(0.605282\pi\)
\(648\) 0 0
\(649\) −12.2628 −0.481358
\(650\) 0 0
\(651\) −1.13973 + 0.509435i −0.0446696 + 0.0199663i
\(652\) 0 0
\(653\) 11.3934 + 19.7339i 0.445858 + 0.772249i 0.998112 0.0614274i \(-0.0195653\pi\)
−0.552254 + 0.833676i \(0.686232\pi\)
\(654\) 0 0
\(655\) −0.875595 + 1.51658i −0.0342123 + 0.0592575i
\(656\) 0 0
\(657\) 22.0578 24.6419i 0.860557 0.961371i
\(658\) 0 0
\(659\) 5.46454 9.46486i 0.212868 0.368699i −0.739743 0.672890i \(-0.765053\pi\)
0.952611 + 0.304191i \(0.0983862\pi\)
\(660\) 0 0
\(661\) 23.2107 + 40.2021i 0.902792 + 1.56368i 0.823854 + 0.566802i \(0.191819\pi\)
0.0789377 + 0.996880i \(0.474847\pi\)
\(662\) 0 0
\(663\) 7.14277 + 5.17362i 0.277402 + 0.200927i
\(664\) 0 0
\(665\) 40.4888 1.57009
\(666\) 0 0
\(667\) −81.8079 −3.16762
\(668\) 0 0
\(669\) 3.27594 31.6120i 0.126655 1.22219i
\(670\) 0 0
\(671\) −6.08581 10.5409i −0.234940 0.406928i
\(672\) 0 0
\(673\) 2.08347 3.60867i 0.0803117 0.139104i −0.823072 0.567937i \(-0.807742\pi\)
0.903384 + 0.428833i \(0.141075\pi\)
\(674\) 0 0
\(675\) 0.673839 + 0.741820i 0.0259361 + 0.0285527i
\(676\) 0 0
\(677\) 2.96343 5.13281i 0.113894 0.197270i −0.803443 0.595381i \(-0.797001\pi\)
0.917337 + 0.398111i \(0.130334\pi\)
\(678\) 0 0
\(679\) −4.60769 7.98075i −0.176827 0.306273i
\(680\) 0 0
\(681\) −1.47442 + 14.2278i −0.0565001 + 0.545211i
\(682\) 0 0
\(683\) −7.50929 −0.287335 −0.143668 0.989626i \(-0.545890\pi\)
−0.143668 + 0.989626i \(0.545890\pi\)
\(684\) 0 0
\(685\) −15.6435 −0.597708
\(686\) 0 0
\(687\) −13.4318 9.72890i −0.512457 0.371181i
\(688\) 0 0
\(689\) −4.50238 7.79836i −0.171527 0.297094i
\(690\) 0 0
\(691\) −12.1768 + 21.0908i −0.463227 + 0.802333i −0.999120 0.0419532i \(-0.986642\pi\)
0.535892 + 0.844286i \(0.319975\pi\)
\(692\) 0 0
\(693\) −11.1712 2.34046i −0.424358 0.0889069i
\(694\) 0 0
\(695\) −8.76949 + 15.1892i −0.332646 + 0.576159i
\(696\) 0 0
\(697\) 9.67760 + 16.7621i 0.366565 + 0.634910i
\(698\) 0 0
\(699\) 7.43096 3.32147i 0.281065 0.125630i
\(700\) 0 0
\(701\) 37.1604 1.40353 0.701765 0.712408i \(-0.252396\pi\)
0.701765 + 0.712408i \(0.252396\pi\)
\(702\) 0 0
\(703\) −30.4654 −1.14902
\(704\) 0 0
\(705\) −5.61547 + 2.50999i −0.211491 + 0.0945316i
\(706\) 0 0
\(707\) 7.18257 + 12.4406i 0.270128 + 0.467876i
\(708\) 0 0
\(709\) 22.7833 39.4619i 0.855646 1.48202i −0.0203982 0.999792i \(-0.506493\pi\)
0.876044 0.482231i \(-0.160173\pi\)
\(710\) 0 0
\(711\) 15.4473 + 47.0741i 0.579319 + 1.76542i
\(712\) 0 0
\(713\) 0.983662 1.70375i 0.0368384 0.0638060i
\(714\) 0 0
\(715\) 1.25841 + 2.17963i 0.0470618 + 0.0815135i
\(716\) 0 0
\(717\) 10.5016 + 7.60650i 0.392190 + 0.284070i
\(718\) 0 0
\(719\) −24.6329 −0.918653 −0.459327 0.888267i \(-0.651909\pi\)
−0.459327 + 0.888267i \(0.651909\pi\)
\(720\) 0 0
\(721\) −64.6576 −2.40797
\(722\) 0 0
\(723\) −2.57312 + 24.8300i −0.0956955 + 0.923437i
\(724\) 0 0
\(725\) −0.839052 1.45328i −0.0311616 0.0539735i
\(726\) 0 0
\(727\) −25.6581 + 44.4411i −0.951605 + 1.64823i −0.209651 + 0.977776i \(0.567233\pi\)
−0.741953 + 0.670451i \(0.766100\pi\)
\(728\) 0 0
\(729\) −21.9815 15.6784i −0.814130 0.580682i
\(730\) 0 0
\(731\) −19.2989 + 33.4266i −0.713795 + 1.23633i
\(732\) 0 0
\(733\) −5.43929 9.42112i −0.200905 0.347977i 0.747915 0.663794i \(-0.231055\pi\)
−0.948820 + 0.315817i \(0.897721\pi\)
\(734\) 0 0
\(735\) −1.97982 + 19.1048i −0.0730269 + 0.704692i
\(736\) 0 0
\(737\) −0.515603 −0.0189925
\(738\) 0 0
\(739\) −6.17287 −0.227073 −0.113536 0.993534i \(-0.536218\pi\)
−0.113536 + 0.993534i \(0.536218\pi\)
\(740\) 0 0
\(741\) 7.23522 + 5.24059i 0.265792 + 0.192518i
\(742\) 0 0
\(743\) −18.0897 31.3323i −0.663648 1.14947i −0.979650 0.200713i \(-0.935674\pi\)
0.316002 0.948758i \(-0.397659\pi\)
\(744\) 0 0
\(745\) −3.43615 + 5.95158i −0.125891 + 0.218049i
\(746\) 0 0
\(747\) 8.38280 + 25.5458i 0.306711 + 0.934671i
\(748\) 0 0
\(749\) −12.8508 + 22.2582i −0.469557 + 0.813297i
\(750\) 0 0
\(751\) −1.15064 1.99296i −0.0419874 0.0727243i 0.844268 0.535921i \(-0.180036\pi\)
−0.886255 + 0.463197i \(0.846702\pi\)
\(752\) 0 0
\(753\) −23.5368 + 10.5204i −0.857730 + 0.383386i
\(754\) 0 0
\(755\) 26.6883 0.971286
\(756\) 0 0
\(757\) 24.7029 0.897841 0.448921 0.893572i \(-0.351809\pi\)
0.448921 + 0.893572i \(0.351809\pi\)
\(758\) 0 0
\(759\) 16.4208 7.33974i 0.596038 0.266416i
\(760\) 0 0
\(761\) −1.57192 2.72264i −0.0569820 0.0986957i 0.836127 0.548535i \(-0.184814\pi\)
−0.893109 + 0.449840i \(0.851481\pi\)
\(762\) 0 0
\(763\) 18.9826 32.8789i 0.687217 1.19029i
\(764\) 0 0
\(765\) 34.0711 + 7.13820i 1.23184 + 0.258082i
\(766\) 0 0
\(767\) −5.55152 + 9.61552i −0.200454 + 0.347196i
\(768\) 0 0
\(769\) −2.86577 4.96366i −0.103342 0.178994i 0.809717 0.586820i \(-0.199620\pi\)
−0.913060 + 0.407826i \(0.866287\pi\)
\(770\) 0 0
\(771\) 35.5732 + 25.7662i 1.28114 + 0.927949i
\(772\) 0 0
\(773\) 0.931681 0.0335102 0.0167551 0.999860i \(-0.494666\pi\)
0.0167551 + 0.999860i \(0.494666\pi\)
\(774\) 0 0
\(775\) 0.0403552 0.00144960
\(776\) 0 0
\(777\) 3.63258 35.0535i 0.130318 1.25754i
\(778\) 0 0
\(779\) 9.80286 + 16.9790i 0.351224 + 0.608337i
\(780\) 0 0
\(781\) 3.91788 6.78597i 0.140193 0.242821i
\(782\) 0 0
\(783\) 30.3984 + 33.4652i 1.08635 + 1.19595i
\(784\) 0 0
\(785\) 16.0463 27.7930i 0.572717 0.991976i
\(786\) 0 0
\(787\) −25.1168 43.5036i −0.895318 1.55074i −0.833411 0.552653i \(-0.813615\pi\)
−0.0619064 0.998082i \(-0.519718\pi\)
\(788\) 0 0
\(789\) −4.63605 + 44.7368i −0.165048 + 1.59267i
\(790\) 0 0
\(791\) 14.6717 0.521665
\(792\) 0 0
\(793\) −11.0205 −0.391348
\(794\) 0 0
\(795\) −28.7842 20.8488i −1.02087 0.739432i
\(796\) 0 0
\(797\) −5.50545 9.53571i −0.195013 0.337772i 0.751892 0.659286i \(-0.229142\pi\)
−0.946905 + 0.321514i \(0.895808\pi\)
\(798\) 0 0
\(799\) −3.96764 + 6.87216i −0.140365 + 0.243120i
\(800\) 0 0
\(801\) 35.0194 39.1219i 1.23735 1.38230i
\(802\) 0 0
\(803\) 6.08779 10.5444i 0.214833 0.372102i
\(804\) 0 0
\(805\) −36.9037 63.9191i −1.30068 2.25285i
\(806\) 0 0
\(807\) 17.9662 8.03049i 0.632440 0.282687i
\(808\) 0 0
\(809\) 30.5651 1.07461 0.537306 0.843388i \(-0.319442\pi\)
0.537306 + 0.843388i \(0.319442\pi\)
\(810\) 0 0
\(811\) −16.1151 −0.565879 −0.282939 0.959138i \(-0.591310\pi\)
−0.282939 + 0.959138i \(0.591310\pi\)
\(812\) 0 0
\(813\) −5.14153 + 2.29815i −0.180321 + 0.0805996i
\(814\) 0 0
\(815\) −10.1016 17.4964i −0.353843 0.612874i
\(816\) 0 0
\(817\) −19.5487 + 33.8593i −0.683921 + 1.18459i
\(818\) 0 0
\(819\) −6.89252 + 7.69998i −0.240844 + 0.269059i
\(820\) 0 0
\(821\) −27.7518 + 48.0675i −0.968545 + 1.67757i −0.268771 + 0.963204i \(0.586617\pi\)
−0.699774 + 0.714364i \(0.746716\pi\)
\(822\) 0 0
\(823\) 18.6812 + 32.3567i 0.651185 + 1.12789i 0.982836 + 0.184483i \(0.0590611\pi\)
−0.331651 + 0.943402i \(0.607606\pi\)
\(824\) 0 0
\(825\) 0.298805 + 0.216429i 0.0104031 + 0.00753510i
\(826\) 0 0
\(827\) −4.03021 −0.140144 −0.0700721 0.997542i \(-0.522323\pi\)
−0.0700721 + 0.997542i \(0.522323\pi\)
\(828\) 0 0
\(829\) 52.8968 1.83718 0.918590 0.395212i \(-0.129329\pi\)
0.918590 + 0.395212i \(0.129329\pi\)
\(830\) 0 0
\(831\) −5.28268 + 50.9766i −0.183254 + 1.76836i
\(832\) 0 0
\(833\) 12.3896 + 21.4594i 0.429274 + 0.743524i
\(834\) 0 0
\(835\) 4.85255 8.40487i 0.167929 0.290862i
\(836\) 0 0
\(837\) −1.06247 + 0.230698i −0.0367242 + 0.00797410i
\(838\) 0 0
\(839\) −25.6992 + 44.5123i −0.887235 + 1.53674i −0.0441047 + 0.999027i \(0.514044\pi\)
−0.843130 + 0.537709i \(0.819290\pi\)
\(840\) 0 0
\(841\) −23.3516 40.4461i −0.805226 1.39469i
\(842\) 0 0
\(843\) 2.61845 25.2674i 0.0901844 0.870256i
\(844\) 0 0
\(845\) 2.27879 0.0783926
\(846\) 0 0
\(847\) 33.6902 1.15761
\(848\) 0 0
\(849\) 10.0160 + 7.25474i 0.343748 + 0.248982i
\(850\) 0 0
\(851\) 27.7678 + 48.0952i 0.951867 + 1.64868i
\(852\) 0 0
\(853\) −20.3508 + 35.2486i −0.696798 + 1.20689i 0.272772 + 0.962079i \(0.412059\pi\)
−0.969571 + 0.244812i \(0.921274\pi\)
\(854\) 0 0
\(855\) 34.5120 + 7.23059i 1.18029 + 0.247281i
\(856\) 0 0
\(857\) 5.41833 9.38482i 0.185087 0.320579i −0.758519 0.651651i \(-0.774077\pi\)
0.943606 + 0.331071i \(0.107410\pi\)
\(858\) 0 0
\(859\) −4.83041 8.36651i −0.164811 0.285462i 0.771777 0.635893i \(-0.219368\pi\)
−0.936588 + 0.350432i \(0.886035\pi\)
\(860\) 0 0
\(861\) −20.7050 + 9.25466i −0.705623 + 0.315398i
\(862\) 0 0
\(863\) 8.43739 0.287212 0.143606 0.989635i \(-0.454130\pi\)
0.143606 + 0.989635i \(0.454130\pi\)
\(864\) 0 0
\(865\) −2.74819 −0.0934413
\(866\) 0 0
\(867\) 14.1185 6.31064i 0.479488 0.214321i
\(868\) 0 0
\(869\) 9.11983 + 15.7960i 0.309369 + 0.535843i
\(870\) 0 0
\(871\) −0.233419 + 0.404294i −0.00790911 + 0.0136990i
\(872\) 0 0
\(873\) −2.50230 7.62552i −0.0846901 0.258085i
\(874\) 0 0
\(875\) −18.8676 + 32.6797i −0.637842 + 1.10477i
\(876\) 0 0
\(877\) −7.01330 12.1474i −0.236822 0.410188i 0.722978 0.690871i \(-0.242773\pi\)
−0.959801 + 0.280682i \(0.909439\pi\)
\(878\) 0 0
\(879\) 6.19110 + 4.48432i 0.208821 + 0.151252i
\(880\) 0 0
\(881\) 16.5046 0.556056 0.278028 0.960573i \(-0.410319\pi\)
0.278028 + 0.960573i \(0.410319\pi\)
\(882\) 0 0
\(883\) −9.22173 −0.310336 −0.155168 0.987888i \(-0.549592\pi\)
−0.155168 + 0.987888i \(0.549592\pi\)
\(884\) 0 0
\(885\) −4.51721 + 43.5900i −0.151845 + 1.46526i
\(886\) 0 0
\(887\) −3.12497 5.41260i −0.104926 0.181737i 0.808782 0.588109i \(-0.200127\pi\)
−0.913708 + 0.406371i \(0.866794\pi\)
\(888\) 0 0
\(889\) 16.1263 27.9316i 0.540859 0.936795i
\(890\) 0 0
\(891\) −9.10417 3.98995i −0.305001 0.133668i
\(892\) 0 0
\(893\) −4.01900 + 6.96111i −0.134491 + 0.232945i
\(894\) 0 0
\(895\) 17.3900 + 30.1203i 0.581283 + 1.00681i
\(896\) 0 0
\(897\) 1.67866 16.1987i 0.0560489 0.540858i
\(898\) 0 0
\(899\) 1.82051 0.0607176
\(900\) 0 0
\(901\) −45.8523 −1.52756
\(902\) 0 0
\(903\) −36.6276 26.5300i −1.21889 0.882862i
\(904\) 0 0
\(905\) −11.8711 20.5614i −0.394610 0.683484i
\(906\) 0 0
\(907\) −26.9601 + 46.6963i −0.895195 + 1.55052i −0.0616325 + 0.998099i \(0.519631\pi\)
−0.833563 + 0.552425i \(0.813703\pi\)
\(908\) 0 0
\(909\) 3.90064 + 11.8868i 0.129376 + 0.394261i
\(910\) 0 0
\(911\) 22.3493 38.7101i 0.740465 1.28252i −0.211819 0.977309i \(-0.567939\pi\)
0.952284 0.305214i \(-0.0987279\pi\)
\(912\) 0 0
\(913\) 4.94907 + 8.57204i 0.163790 + 0.283693i
\(914\) 0 0
\(915\) −39.7111 + 17.7500i −1.31281 + 0.586796i
\(916\) 0 0
\(917\) −2.64720 −0.0874183
\(918\) 0 0
\(919\) 46.3896 1.53025 0.765127 0.643880i \(-0.222676\pi\)
0.765127 + 0.643880i \(0.222676\pi\)
\(920\) 0 0
\(921\) 29.6791 13.2659i 0.977960 0.437126i
\(922\) 0 0
\(923\) −3.54734 6.14417i −0.116762 0.202238i
\(924\) 0 0
\(925\) −0.569593 + 0.986564i −0.0187281 + 0.0324380i
\(926\) 0 0
\(927\) −55.1131 11.5467i −1.81015 0.379244i
\(928\) 0 0
\(929\) 25.2432 43.7226i 0.828204 1.43449i −0.0712419 0.997459i \(-0.522696\pi\)
0.899446 0.437032i \(-0.143970\pi\)
\(930\) 0 0
\(931\) 12.5499 + 21.7371i 0.411308 + 0.712406i
\(932\) 0 0
\(933\) 24.9576 + 18.0772i 0.817075 + 0.591820i
\(934\) 0 0
\(935\) 12.8157 0.419117
\(936\) 0 0
\(937\) 32.6375 1.06622 0.533110 0.846046i \(-0.321023\pi\)
0.533110 + 0.846046i \(0.321023\pi\)
\(938\) 0 0
\(939\) −1.01042 + 9.75031i −0.0329738 + 0.318189i
\(940\) 0 0
\(941\) 4.87030 + 8.43560i 0.158767 + 0.274993i 0.934424 0.356162i \(-0.115915\pi\)
−0.775657 + 0.631154i \(0.782581\pi\)
\(942\) 0 0
\(943\) 17.8697 30.9512i 0.581918 1.00791i
\(944\) 0 0
\(945\) −12.4346 + 38.8474i −0.404498 + 1.26371i
\(946\) 0 0
\(947\) −4.08992 + 7.08395i −0.132905 + 0.230198i −0.924795 0.380466i \(-0.875764\pi\)
0.791890 + 0.610663i \(0.209097\pi\)
\(948\) 0 0
\(949\) −5.51203 9.54711i −0.178928 0.309912i
\(950\) 0 0
\(951\) 3.10897 30.0008i 0.100815 0.972844i
\(952\) 0 0
\(953\) 50.8127 1.64598 0.822992 0.568053i \(-0.192303\pi\)
0.822992 + 0.568053i \(0.192303\pi\)
\(954\) 0 0
\(955\) −1.28154 −0.0414698
\(956\) 0 0
\(957\) 13.4798 + 9.76363i 0.435740 + 0.315613i
\(958\) 0 0
\(959\) −11.8238 20.4795i −0.381812 0.661317i
\(960\) 0 0
\(961\) 15.4781 26.8089i 0.499294 0.864802i
\(962\) 0 0
\(963\) −14.9287 + 16.6776i −0.481072 + 0.537429i
\(964\) 0 0
\(965\) 0.918371 1.59067i 0.0295634 0.0512053i
\(966\) 0 0
\(967\) −3.46030 5.99342i −0.111276 0.192736i 0.805009 0.593263i \(-0.202160\pi\)
−0.916285 + 0.400527i \(0.868827\pi\)
\(968\) 0 0
\(969\) 41.5309 18.5634i 1.33416 0.596341i
\(970\) 0 0
\(971\) 22.4122 0.719243 0.359621 0.933098i \(-0.382906\pi\)
0.359621 + 0.933098i \(0.382906\pi\)
\(972\) 0 0
\(973\) −26.5130 −0.849966
\(974\) 0 0
\(975\) 0.304979 0.136319i 0.00976715 0.00436570i
\(976\) 0 0
\(977\) −16.7545 29.0196i −0.536024 0.928421i −0.999113 0.0421090i \(-0.986592\pi\)
0.463089 0.886312i \(-0.346741\pi\)
\(978\) 0 0
\(979\) 9.66508 16.7404i 0.308897 0.535026i
\(980\) 0 0
\(981\) 22.0521 24.6355i 0.704068 0.786550i
\(982\) 0 0
\(983\) −8.28590 + 14.3516i −0.264279 + 0.457745i −0.967374 0.253351i \(-0.918467\pi\)
0.703095 + 0.711096i \(0.251801\pi\)
\(984\) 0 0
\(985\) 18.9918 + 32.8947i 0.605128 + 1.04811i
\(986\) 0 0
\(987\) −7.53025 5.45428i −0.239690 0.173612i
\(988\) 0 0
\(989\) 71.2708 2.26628
\(990\) 0 0
\(991\) −23.7303 −0.753819 −0.376909 0.926250i \(-0.623013\pi\)
−0.376909 + 0.926250i \(0.623013\pi\)
\(992\) 0 0
\(993\) −3.03460 + 29.2831i −0.0963001 + 0.929272i
\(994\) 0 0
\(995\) −12.6504 21.9111i −0.401045 0.694630i
\(996\) 0 0
\(997\) 3.71651 6.43718i 0.117703 0.203867i −0.801154 0.598458i \(-0.795780\pi\)
0.918857 + 0.394591i \(0.129114\pi\)
\(998\) 0 0
\(999\) 9.35629 29.2303i 0.296020 0.924807i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.q.g.313.11 22
3.2 odd 2 2808.2.q.g.937.8 22
9.2 odd 6 8424.2.a.be.1.4 11
9.4 even 3 inner 936.2.q.g.625.11 yes 22
9.5 odd 6 2808.2.q.g.1873.8 22
9.7 even 3 8424.2.a.bf.1.8 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.q.g.313.11 22 1.1 even 1 trivial
936.2.q.g.625.11 yes 22 9.4 even 3 inner
2808.2.q.g.937.8 22 3.2 odd 2
2808.2.q.g.1873.8 22 9.5 odd 6
8424.2.a.be.1.4 11 9.2 odd 6
8424.2.a.bf.1.8 11 9.7 even 3