Properties

Label 936.2.q.g.313.1
Level $936$
Weight $2$
Character 936.313
Analytic conductor $7.474$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(313,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.313"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,0,0,0,-3,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 313.1
Character \(\chi\) \(=\) 936.313
Dual form 936.2.q.g.625.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.73199 - 0.0148978i) q^{3} +(0.550001 + 0.952629i) q^{5} +(-2.20940 + 3.82679i) q^{7} +(2.99956 + 0.0516057i) q^{9} +(-0.980092 + 1.69757i) q^{11} +(-0.500000 - 0.866025i) q^{13} +(-0.938402 - 1.65814i) q^{15} -2.75799 q^{17} +0.806396 q^{19} +(3.88366 - 6.59503i) q^{21} +(-1.05424 - 1.82600i) q^{23} +(1.89500 - 3.28223i) q^{25} +(-5.19442 - 0.134067i) q^{27} +(0.430401 - 0.745476i) q^{29} +(-0.322355 - 0.558335i) q^{31} +(1.72280 - 2.92557i) q^{33} -4.86068 q^{35} -3.81155 q^{37} +(0.853091 + 1.50739i) q^{39} +(-1.20773 - 2.09186i) q^{41} +(-4.94434 + 8.56385i) q^{43} +(1.60060 + 2.88585i) q^{45} +(1.72459 - 2.98707i) q^{47} +(-6.26287 - 10.8476i) q^{49} +(4.77679 + 0.0410880i) q^{51} -8.37048 q^{53} -2.15621 q^{55} +(-1.39667 - 0.0120136i) q^{57} +(-7.39832 - 12.8143i) q^{59} +(-6.00712 + 10.4046i) q^{61} +(-6.82470 + 11.3646i) q^{63} +(0.550001 - 0.952629i) q^{65} +(-4.62430 - 8.00953i) q^{67} +(1.79873 + 3.17832i) q^{69} +10.1222 q^{71} -3.88803 q^{73} +(-3.33101 + 5.65655i) q^{75} +(-4.33083 - 7.50121i) q^{77} +(-8.48531 + 14.6970i) q^{79} +(8.99467 + 0.309589i) q^{81} +(3.77234 - 6.53389i) q^{83} +(-1.51689 - 2.62734i) q^{85} +(-0.756555 + 1.28474i) q^{87} +4.54701 q^{89} +4.41879 q^{91} +(0.549997 + 0.971832i) q^{93} +(0.443518 + 0.768196i) q^{95} +(-1.53005 + 2.65012i) q^{97} +(-3.02745 + 5.04138i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 3 q^{5} - 4 q^{7} - 4 q^{9} + 5 q^{11} - 11 q^{13} + 5 q^{15} + 8 q^{17} + 10 q^{19} + 4 q^{21} + 9 q^{23} - 24 q^{25} - 12 q^{27} - 16 q^{29} - q^{31} + 9 q^{33} + 18 q^{37} + 3 q^{39} - 6 q^{41}+ \cdots - 109 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.73199 0.0148978i −0.999963 0.00860127i
\(4\) 0 0
\(5\) 0.550001 + 0.952629i 0.245968 + 0.426029i 0.962403 0.271625i \(-0.0875609\pi\)
−0.716435 + 0.697653i \(0.754228\pi\)
\(6\) 0 0
\(7\) −2.20940 + 3.82679i −0.835074 + 1.44639i 0.0588967 + 0.998264i \(0.481242\pi\)
−0.893970 + 0.448126i \(0.852092\pi\)
\(8\) 0 0
\(9\) 2.99956 + 0.0516057i 0.999852 + 0.0172019i
\(10\) 0 0
\(11\) −0.980092 + 1.69757i −0.295509 + 0.511837i −0.975103 0.221752i \(-0.928823\pi\)
0.679594 + 0.733588i \(0.262156\pi\)
\(12\) 0 0
\(13\) −0.500000 0.866025i −0.138675 0.240192i
\(14\) 0 0
\(15\) −0.938402 1.65814i −0.242294 0.428129i
\(16\) 0 0
\(17\) −2.75799 −0.668910 −0.334455 0.942412i \(-0.608552\pi\)
−0.334455 + 0.942412i \(0.608552\pi\)
\(18\) 0 0
\(19\) 0.806396 0.185000 0.0924999 0.995713i \(-0.470514\pi\)
0.0924999 + 0.995713i \(0.470514\pi\)
\(20\) 0 0
\(21\) 3.88366 6.59503i 0.847484 1.43915i
\(22\) 0 0
\(23\) −1.05424 1.82600i −0.219825 0.380748i 0.734929 0.678144i \(-0.237215\pi\)
−0.954754 + 0.297396i \(0.903882\pi\)
\(24\) 0 0
\(25\) 1.89500 3.28223i 0.379000 0.656447i
\(26\) 0 0
\(27\) −5.19442 0.134067i −0.999667 0.0258013i
\(28\) 0 0
\(29\) 0.430401 0.745476i 0.0799234 0.138431i −0.823293 0.567616i \(-0.807866\pi\)
0.903217 + 0.429185i \(0.141199\pi\)
\(30\) 0 0
\(31\) −0.322355 0.558335i −0.0578967 0.100280i 0.835624 0.549301i \(-0.185106\pi\)
−0.893521 + 0.449021i \(0.851773\pi\)
\(32\) 0 0
\(33\) 1.72280 2.92557i 0.299901 0.509276i
\(34\) 0 0
\(35\) −4.86068 −0.821605
\(36\) 0 0
\(37\) −3.81155 −0.626615 −0.313307 0.949652i \(-0.601437\pi\)
−0.313307 + 0.949652i \(0.601437\pi\)
\(38\) 0 0
\(39\) 0.853091 + 1.50739i 0.136604 + 0.241376i
\(40\) 0 0
\(41\) −1.20773 2.09186i −0.188616 0.326693i 0.756173 0.654372i \(-0.227067\pi\)
−0.944789 + 0.327679i \(0.893734\pi\)
\(42\) 0 0
\(43\) −4.94434 + 8.56385i −0.754005 + 1.30597i 0.191863 + 0.981422i \(0.438547\pi\)
−0.945868 + 0.324553i \(0.894786\pi\)
\(44\) 0 0
\(45\) 1.60060 + 2.88585i 0.238603 + 0.430197i
\(46\) 0 0
\(47\) 1.72459 2.98707i 0.251557 0.435709i −0.712398 0.701776i \(-0.752391\pi\)
0.963955 + 0.266067i \(0.0857242\pi\)
\(48\) 0 0
\(49\) −6.26287 10.8476i −0.894696 1.54966i
\(50\) 0 0
\(51\) 4.77679 + 0.0410880i 0.668885 + 0.00575348i
\(52\) 0 0
\(53\) −8.37048 −1.14977 −0.574887 0.818233i \(-0.694954\pi\)
−0.574887 + 0.818233i \(0.694954\pi\)
\(54\) 0 0
\(55\) −2.15621 −0.290743
\(56\) 0 0
\(57\) −1.39667 0.0120136i −0.184993 0.00159123i
\(58\) 0 0
\(59\) −7.39832 12.8143i −0.963180 1.66828i −0.714428 0.699709i \(-0.753313\pi\)
−0.248751 0.968567i \(-0.580020\pi\)
\(60\) 0 0
\(61\) −6.00712 + 10.4046i −0.769133 + 1.33218i 0.168901 + 0.985633i \(0.445978\pi\)
−0.938034 + 0.346544i \(0.887355\pi\)
\(62\) 0 0
\(63\) −6.82470 + 11.3646i −0.859831 + 1.43181i
\(64\) 0 0
\(65\) 0.550001 0.952629i 0.0682192 0.118159i
\(66\) 0 0
\(67\) −4.62430 8.00953i −0.564949 0.978520i −0.997054 0.0766967i \(-0.975563\pi\)
0.432106 0.901823i \(-0.357771\pi\)
\(68\) 0 0
\(69\) 1.79873 + 3.17832i 0.216542 + 0.382625i
\(70\) 0 0
\(71\) 10.1222 1.20128 0.600639 0.799520i \(-0.294913\pi\)
0.600639 + 0.799520i \(0.294913\pi\)
\(72\) 0 0
\(73\) −3.88803 −0.455059 −0.227529 0.973771i \(-0.573065\pi\)
−0.227529 + 0.973771i \(0.573065\pi\)
\(74\) 0 0
\(75\) −3.33101 + 5.65655i −0.384632 + 0.653162i
\(76\) 0 0
\(77\) −4.33083 7.50121i −0.493544 0.854843i
\(78\) 0 0
\(79\) −8.48531 + 14.6970i −0.954672 + 1.65354i −0.219554 + 0.975600i \(0.570460\pi\)
−0.735118 + 0.677939i \(0.762873\pi\)
\(80\) 0 0
\(81\) 8.99467 + 0.309589i 0.999408 + 0.0343987i
\(82\) 0 0
\(83\) 3.77234 6.53389i 0.414068 0.717188i −0.581262 0.813717i \(-0.697441\pi\)
0.995330 + 0.0965291i \(0.0307741\pi\)
\(84\) 0 0
\(85\) −1.51689 2.62734i −0.164530 0.284975i
\(86\) 0 0
\(87\) −0.756555 + 1.28474i −0.0811112 + 0.137739i
\(88\) 0 0
\(89\) 4.54701 0.481982 0.240991 0.970527i \(-0.422528\pi\)
0.240991 + 0.970527i \(0.422528\pi\)
\(90\) 0 0
\(91\) 4.41879 0.463216
\(92\) 0 0
\(93\) 0.549997 + 0.971832i 0.0570320 + 0.100774i
\(94\) 0 0
\(95\) 0.443518 + 0.768196i 0.0455040 + 0.0788153i
\(96\) 0 0
\(97\) −1.53005 + 2.65012i −0.155353 + 0.269079i −0.933187 0.359390i \(-0.882985\pi\)
0.777835 + 0.628469i \(0.216318\pi\)
\(98\) 0 0
\(99\) −3.02745 + 5.04138i −0.304270 + 0.506678i
\(100\) 0 0
\(101\) 6.29565 10.9044i 0.626441 1.08503i −0.361819 0.932248i \(-0.617844\pi\)
0.988260 0.152779i \(-0.0488223\pi\)
\(102\) 0 0
\(103\) −0.324615 0.562249i −0.0319853 0.0554001i 0.849590 0.527444i \(-0.176850\pi\)
−0.881575 + 0.472044i \(0.843516\pi\)
\(104\) 0 0
\(105\) 8.41864 + 0.0724137i 0.821575 + 0.00706685i
\(106\) 0 0
\(107\) −18.6706 −1.80495 −0.902476 0.430740i \(-0.858253\pi\)
−0.902476 + 0.430740i \(0.858253\pi\)
\(108\) 0 0
\(109\) −3.93071 −0.376494 −0.188247 0.982122i \(-0.560281\pi\)
−0.188247 + 0.982122i \(0.560281\pi\)
\(110\) 0 0
\(111\) 6.60155 + 0.0567839i 0.626591 + 0.00538968i
\(112\) 0 0
\(113\) 8.92632 + 15.4608i 0.839718 + 1.45443i 0.890131 + 0.455705i \(0.150613\pi\)
−0.0504128 + 0.998728i \(0.516054\pi\)
\(114\) 0 0
\(115\) 1.15967 2.00861i 0.108140 0.187304i
\(116\) 0 0
\(117\) −1.45509 2.62349i −0.134523 0.242542i
\(118\) 0 0
\(119\) 6.09349 10.5542i 0.558589 0.967505i
\(120\) 0 0
\(121\) 3.57884 + 6.19873i 0.325349 + 0.563521i
\(122\) 0 0
\(123\) 2.06061 + 3.64106i 0.185799 + 0.328303i
\(124\) 0 0
\(125\) 9.66901 0.864823
\(126\) 0 0
\(127\) −6.05982 −0.537722 −0.268861 0.963179i \(-0.586647\pi\)
−0.268861 + 0.963179i \(0.586647\pi\)
\(128\) 0 0
\(129\) 8.69111 14.7588i 0.765210 1.29944i
\(130\) 0 0
\(131\) −8.47113 14.6724i −0.740126 1.28194i −0.952438 0.304734i \(-0.901433\pi\)
0.212312 0.977202i \(-0.431901\pi\)
\(132\) 0 0
\(133\) −1.78165 + 3.08591i −0.154488 + 0.267582i
\(134\) 0 0
\(135\) −2.72922 5.02210i −0.234894 0.432233i
\(136\) 0 0
\(137\) 4.06146 7.03465i 0.346994 0.601011i −0.638720 0.769439i \(-0.720536\pi\)
0.985714 + 0.168428i \(0.0538691\pi\)
\(138\) 0 0
\(139\) −2.18590 3.78610i −0.185406 0.321133i 0.758307 0.651897i \(-0.226027\pi\)
−0.943713 + 0.330765i \(0.892693\pi\)
\(140\) 0 0
\(141\) −3.03146 + 5.14787i −0.255295 + 0.433529i
\(142\) 0 0
\(143\) 1.96018 0.163919
\(144\) 0 0
\(145\) 0.946883 0.0786344
\(146\) 0 0
\(147\) 10.6856 + 18.8812i 0.881334 + 1.55730i
\(148\) 0 0
\(149\) −2.63110 4.55719i −0.215548 0.373340i 0.737894 0.674916i \(-0.235820\pi\)
−0.953442 + 0.301577i \(0.902487\pi\)
\(150\) 0 0
\(151\) −1.96849 + 3.40952i −0.160193 + 0.277463i −0.934938 0.354812i \(-0.884545\pi\)
0.774745 + 0.632274i \(0.217878\pi\)
\(152\) 0 0
\(153\) −8.27273 0.142328i −0.668811 0.0115065i
\(154\) 0 0
\(155\) 0.354591 0.614170i 0.0284814 0.0493313i
\(156\) 0 0
\(157\) 4.53451 + 7.85399i 0.361893 + 0.626817i 0.988272 0.152701i \(-0.0487973\pi\)
−0.626379 + 0.779518i \(0.715464\pi\)
\(158\) 0 0
\(159\) 14.4976 + 0.124702i 1.14973 + 0.00988952i
\(160\) 0 0
\(161\) 9.31698 0.734281
\(162\) 0 0
\(163\) 15.6536 1.22609 0.613043 0.790049i \(-0.289945\pi\)
0.613043 + 0.790049i \(0.289945\pi\)
\(164\) 0 0
\(165\) 3.73452 + 0.0321228i 0.290732 + 0.00250076i
\(166\) 0 0
\(167\) 4.12571 + 7.14593i 0.319257 + 0.552969i 0.980333 0.197350i \(-0.0632334\pi\)
−0.661076 + 0.750319i \(0.729900\pi\)
\(168\) 0 0
\(169\) −0.500000 + 0.866025i −0.0384615 + 0.0666173i
\(170\) 0 0
\(171\) 2.41883 + 0.0416146i 0.184972 + 0.00318235i
\(172\) 0 0
\(173\) −8.87926 + 15.3793i −0.675078 + 1.16927i 0.301368 + 0.953508i \(0.402557\pi\)
−0.976446 + 0.215761i \(0.930777\pi\)
\(174\) 0 0
\(175\) 8.37361 + 14.5035i 0.632985 + 1.09636i
\(176\) 0 0
\(177\) 12.6229 + 22.3044i 0.948795 + 1.67650i
\(178\) 0 0
\(179\) 3.22435 0.241000 0.120500 0.992713i \(-0.461550\pi\)
0.120500 + 0.992713i \(0.461550\pi\)
\(180\) 0 0
\(181\) −3.49209 −0.259565 −0.129783 0.991542i \(-0.541428\pi\)
−0.129783 + 0.991542i \(0.541428\pi\)
\(182\) 0 0
\(183\) 10.5593 17.9312i 0.780563 1.32551i
\(184\) 0 0
\(185\) −2.09635 3.63099i −0.154127 0.266956i
\(186\) 0 0
\(187\) 2.70308 4.68187i 0.197669 0.342373i
\(188\) 0 0
\(189\) 11.9896 19.5817i 0.872114 1.42436i
\(190\) 0 0
\(191\) −0.637521 + 1.10422i −0.0461294 + 0.0798985i −0.888168 0.459518i \(-0.848022\pi\)
0.842039 + 0.539417i \(0.181355\pi\)
\(192\) 0 0
\(193\) −2.38676 4.13399i −0.171803 0.297571i 0.767247 0.641351i \(-0.221626\pi\)
−0.939050 + 0.343780i \(0.888293\pi\)
\(194\) 0 0
\(195\) −0.966786 + 1.64175i −0.0692330 + 0.117568i
\(196\) 0 0
\(197\) 6.39808 0.455844 0.227922 0.973679i \(-0.426807\pi\)
0.227922 + 0.973679i \(0.426807\pi\)
\(198\) 0 0
\(199\) 21.0023 1.48881 0.744405 0.667728i \(-0.232733\pi\)
0.744405 + 0.667728i \(0.232733\pi\)
\(200\) 0 0
\(201\) 7.88991 + 13.9413i 0.556511 + 0.983343i
\(202\) 0 0
\(203\) 1.90185 + 3.29411i 0.133484 + 0.231201i
\(204\) 0 0
\(205\) 1.32851 2.30104i 0.0927870 0.160712i
\(206\) 0 0
\(207\) −3.06803 5.53161i −0.213243 0.384473i
\(208\) 0 0
\(209\) −0.790342 + 1.36891i −0.0546691 + 0.0946897i
\(210\) 0 0
\(211\) 12.9396 + 22.4120i 0.890798 + 1.54291i 0.838921 + 0.544254i \(0.183187\pi\)
0.0518772 + 0.998653i \(0.483480\pi\)
\(212\) 0 0
\(213\) −17.5314 0.150798i −1.20123 0.0103325i
\(214\) 0 0
\(215\) −10.8776 −0.741844
\(216\) 0 0
\(217\) 2.84884 0.193392
\(218\) 0 0
\(219\) 6.73401 + 0.0579232i 0.455042 + 0.00391409i
\(220\) 0 0
\(221\) 1.37899 + 2.38849i 0.0927611 + 0.160667i
\(222\) 0 0
\(223\) 0.109377 0.189446i 0.00732440 0.0126862i −0.862340 0.506330i \(-0.831002\pi\)
0.869664 + 0.493643i \(0.164335\pi\)
\(224\) 0 0
\(225\) 5.85354 9.74745i 0.390236 0.649830i
\(226\) 0 0
\(227\) −2.99831 + 5.19322i −0.199005 + 0.344686i −0.948206 0.317656i \(-0.897104\pi\)
0.749201 + 0.662342i \(0.230438\pi\)
\(228\) 0 0
\(229\) 4.04613 + 7.00809i 0.267375 + 0.463108i 0.968183 0.250242i \(-0.0805103\pi\)
−0.700808 + 0.713350i \(0.747177\pi\)
\(230\) 0 0
\(231\) 7.38918 + 13.0565i 0.486173 + 0.859056i
\(232\) 0 0
\(233\) −11.4650 −0.751095 −0.375547 0.926803i \(-0.622545\pi\)
−0.375547 + 0.926803i \(0.622545\pi\)
\(234\) 0 0
\(235\) 3.79409 0.247499
\(236\) 0 0
\(237\) 14.9154 25.3286i 0.968859 1.64527i
\(238\) 0 0
\(239\) 0.260007 + 0.450345i 0.0168185 + 0.0291304i 0.874312 0.485364i \(-0.161313\pi\)
−0.857494 + 0.514494i \(0.827980\pi\)
\(240\) 0 0
\(241\) −14.6527 + 25.3793i −0.943865 + 1.63482i −0.185857 + 0.982577i \(0.559506\pi\)
−0.758008 + 0.652245i \(0.773827\pi\)
\(242\) 0 0
\(243\) −15.5740 0.670205i −0.999075 0.0429936i
\(244\) 0 0
\(245\) 6.88917 11.9324i 0.440133 0.762333i
\(246\) 0 0
\(247\) −0.403198 0.698359i −0.0256549 0.0444355i
\(248\) 0 0
\(249\) −6.63099 + 11.2604i −0.420222 + 0.713600i
\(250\) 0 0
\(251\) −8.68404 −0.548132 −0.274066 0.961711i \(-0.588369\pi\)
−0.274066 + 0.961711i \(0.588369\pi\)
\(252\) 0 0
\(253\) 4.13303 0.259841
\(254\) 0 0
\(255\) 2.58810 + 4.57311i 0.162073 + 0.286379i
\(256\) 0 0
\(257\) 7.66705 + 13.2797i 0.478257 + 0.828366i 0.999689 0.0249267i \(-0.00793524\pi\)
−0.521432 + 0.853293i \(0.674602\pi\)
\(258\) 0 0
\(259\) 8.42122 14.5860i 0.523269 0.906329i
\(260\) 0 0
\(261\) 1.32948 2.21389i 0.0822929 0.137036i
\(262\) 0 0
\(263\) 2.56063 4.43514i 0.157895 0.273482i −0.776214 0.630469i \(-0.782863\pi\)
0.934109 + 0.356987i \(0.116196\pi\)
\(264\) 0 0
\(265\) −4.60377 7.97396i −0.282807 0.489837i
\(266\) 0 0
\(267\) −7.87535 0.0677406i −0.481964 0.00414566i
\(268\) 0 0
\(269\) 11.3160 0.689947 0.344974 0.938612i \(-0.387888\pi\)
0.344974 + 0.938612i \(0.387888\pi\)
\(270\) 0 0
\(271\) 7.56435 0.459502 0.229751 0.973249i \(-0.426209\pi\)
0.229751 + 0.973249i \(0.426209\pi\)
\(272\) 0 0
\(273\) −7.65329 0.0658305i −0.463198 0.00398424i
\(274\) 0 0
\(275\) 3.71455 + 6.43378i 0.223996 + 0.387972i
\(276\) 0 0
\(277\) −13.4464 + 23.2899i −0.807918 + 1.39936i 0.106385 + 0.994325i \(0.466073\pi\)
−0.914303 + 0.405031i \(0.867261\pi\)
\(278\) 0 0
\(279\) −0.938109 1.69139i −0.0561631 0.101261i
\(280\) 0 0
\(281\) −4.20215 + 7.27834i −0.250679 + 0.434189i −0.963713 0.266940i \(-0.913987\pi\)
0.713034 + 0.701130i \(0.247321\pi\)
\(282\) 0 0
\(283\) −10.1692 17.6136i −0.604498 1.04702i −0.992131 0.125208i \(-0.960040\pi\)
0.387632 0.921814i \(-0.373293\pi\)
\(284\) 0 0
\(285\) −0.756723 1.33711i −0.0448244 0.0792037i
\(286\) 0 0
\(287\) 10.6734 0.630034
\(288\) 0 0
\(289\) −9.39351 −0.552560
\(290\) 0 0
\(291\) 2.68950 4.56718i 0.157661 0.267733i
\(292\) 0 0
\(293\) −10.0050 17.3291i −0.584496 1.01238i −0.994938 0.100490i \(-0.967959\pi\)
0.410442 0.911887i \(-0.365374\pi\)
\(294\) 0 0
\(295\) 8.13817 14.0957i 0.473822 0.820684i
\(296\) 0 0
\(297\) 5.31860 8.68650i 0.308617 0.504042i
\(298\) 0 0
\(299\) −1.05424 + 1.82600i −0.0609685 + 0.105601i
\(300\) 0 0
\(301\) −21.8480 37.8419i −1.25930 2.18117i
\(302\) 0 0
\(303\) −11.0664 + 18.7925i −0.635750 + 1.07960i
\(304\) 0 0
\(305\) −13.2157 −0.756728
\(306\) 0 0
\(307\) −31.3583 −1.78971 −0.894856 0.446355i \(-0.852722\pi\)
−0.894856 + 0.446355i \(0.852722\pi\)
\(308\) 0 0
\(309\) 0.553852 + 0.978645i 0.0315076 + 0.0556732i
\(310\) 0 0
\(311\) −10.4791 18.1504i −0.594218 1.02922i −0.993657 0.112456i \(-0.964128\pi\)
0.399439 0.916760i \(-0.369205\pi\)
\(312\) 0 0
\(313\) 11.2371 19.4632i 0.635156 1.10012i −0.351326 0.936253i \(-0.614269\pi\)
0.986482 0.163869i \(-0.0523976\pi\)
\(314\) 0 0
\(315\) −14.5799 0.250839i −0.821484 0.0141332i
\(316\) 0 0
\(317\) −8.00550 + 13.8659i −0.449634 + 0.778788i −0.998362 0.0572123i \(-0.981779\pi\)
0.548728 + 0.836001i \(0.315112\pi\)
\(318\) 0 0
\(319\) 0.843665 + 1.46127i 0.0472362 + 0.0818155i
\(320\) 0 0
\(321\) 32.3372 + 0.278151i 1.80489 + 0.0155249i
\(322\) 0 0
\(323\) −2.22403 −0.123748
\(324\) 0 0
\(325\) −3.79000 −0.210231
\(326\) 0 0
\(327\) 6.80794 + 0.0585592i 0.376480 + 0.00323833i
\(328\) 0 0
\(329\) 7.62059 + 13.1992i 0.420137 + 0.727698i
\(330\) 0 0
\(331\) −14.4974 + 25.1103i −0.796851 + 1.38019i 0.124806 + 0.992181i \(0.460169\pi\)
−0.921657 + 0.388005i \(0.873164\pi\)
\(332\) 0 0
\(333\) −11.4330 0.196698i −0.626522 0.0107790i
\(334\) 0 0
\(335\) 5.08674 8.81049i 0.277918 0.481369i
\(336\) 0 0
\(337\) −13.4112 23.2289i −0.730555 1.26536i −0.956646 0.291252i \(-0.905928\pi\)
0.226092 0.974106i \(-0.427405\pi\)
\(338\) 0 0
\(339\) −15.2299 26.9110i −0.827177 1.46160i
\(340\) 0 0
\(341\) 1.26375 0.0684359
\(342\) 0 0
\(343\) 24.4171 1.31840
\(344\) 0 0
\(345\) −2.03846 + 3.46161i −0.109747 + 0.186367i
\(346\) 0 0
\(347\) −10.4067 18.0249i −0.558658 0.967625i −0.997609 0.0691134i \(-0.977983\pi\)
0.438950 0.898511i \(-0.355350\pi\)
\(348\) 0 0
\(349\) 7.00049 12.1252i 0.374728 0.649047i −0.615559 0.788091i \(-0.711070\pi\)
0.990286 + 0.139044i \(0.0444029\pi\)
\(350\) 0 0
\(351\) 2.48111 + 4.56554i 0.132432 + 0.243690i
\(352\) 0 0
\(353\) −8.72446 + 15.1112i −0.464356 + 0.804288i −0.999172 0.0406801i \(-0.987048\pi\)
0.534816 + 0.844968i \(0.320381\pi\)
\(354\) 0 0
\(355\) 5.56719 + 9.64266i 0.295476 + 0.511779i
\(356\) 0 0
\(357\) −10.7111 + 18.1890i −0.566890 + 0.962664i
\(358\) 0 0
\(359\) 27.6023 1.45679 0.728396 0.685157i \(-0.240266\pi\)
0.728396 + 0.685157i \(0.240266\pi\)
\(360\) 0 0
\(361\) −18.3497 −0.965775
\(362\) 0 0
\(363\) −6.10615 10.7894i −0.320490 0.566298i
\(364\) 0 0
\(365\) −2.13842 3.70385i −0.111930 0.193868i
\(366\) 0 0
\(367\) −8.13404 + 14.0886i −0.424594 + 0.735418i −0.996382 0.0849832i \(-0.972916\pi\)
0.571789 + 0.820401i \(0.306250\pi\)
\(368\) 0 0
\(369\) −3.51471 6.33696i −0.182969 0.329889i
\(370\) 0 0
\(371\) 18.4937 32.0320i 0.960146 1.66302i
\(372\) 0 0
\(373\) 15.5027 + 26.8514i 0.802699 + 1.39031i 0.917834 + 0.396965i \(0.129937\pi\)
−0.115135 + 0.993350i \(0.536730\pi\)
\(374\) 0 0
\(375\) −16.7466 0.144047i −0.864791 0.00743858i
\(376\) 0 0
\(377\) −0.860802 −0.0443335
\(378\) 0 0
\(379\) 10.4947 0.539078 0.269539 0.962989i \(-0.413129\pi\)
0.269539 + 0.962989i \(0.413129\pi\)
\(380\) 0 0
\(381\) 10.4955 + 0.0902782i 0.537702 + 0.00462509i
\(382\) 0 0
\(383\) 18.3226 + 31.7357i 0.936241 + 1.62162i 0.772405 + 0.635130i \(0.219053\pi\)
0.163836 + 0.986488i \(0.447613\pi\)
\(384\) 0 0
\(385\) 4.76392 8.25135i 0.242792 0.420528i
\(386\) 0 0
\(387\) −15.2728 + 25.4326i −0.776358 + 1.29281i
\(388\) 0 0
\(389\) −12.5593 + 21.7534i −0.636783 + 1.10294i 0.349351 + 0.936992i \(0.386402\pi\)
−0.986134 + 0.165949i \(0.946931\pi\)
\(390\) 0 0
\(391\) 2.90759 + 5.03609i 0.147043 + 0.254686i
\(392\) 0 0
\(393\) 14.4533 + 25.5386i 0.729072 + 1.28825i
\(394\) 0 0
\(395\) −18.6677 −0.939274
\(396\) 0 0
\(397\) −14.6095 −0.733232 −0.366616 0.930372i \(-0.619484\pi\)
−0.366616 + 0.930372i \(0.619484\pi\)
\(398\) 0 0
\(399\) 3.13176 5.31820i 0.156784 0.266243i
\(400\) 0 0
\(401\) 4.73963 + 8.20928i 0.236686 + 0.409952i 0.959761 0.280817i \(-0.0906055\pi\)
−0.723075 + 0.690769i \(0.757272\pi\)
\(402\) 0 0
\(403\) −0.322355 + 0.558335i −0.0160576 + 0.0278127i
\(404\) 0 0
\(405\) 4.65215 + 8.73886i 0.231167 + 0.434238i
\(406\) 0 0
\(407\) 3.73567 6.47037i 0.185170 0.320724i
\(408\) 0 0
\(409\) −9.12835 15.8108i −0.451368 0.781792i 0.547104 0.837065i \(-0.315730\pi\)
−0.998471 + 0.0552732i \(0.982397\pi\)
\(410\) 0 0
\(411\) −7.13919 + 12.1234i −0.352150 + 0.598004i
\(412\) 0 0
\(413\) 65.3833 3.21730
\(414\) 0 0
\(415\) 8.29917 0.407390
\(416\) 0 0
\(417\) 3.72955 + 6.59003i 0.182637 + 0.322715i
\(418\) 0 0
\(419\) 1.60961 + 2.78793i 0.0786347 + 0.136199i 0.902661 0.430352i \(-0.141611\pi\)
−0.824026 + 0.566551i \(0.808277\pi\)
\(420\) 0 0
\(421\) −7.54291 + 13.0647i −0.367619 + 0.636735i −0.989193 0.146621i \(-0.953160\pi\)
0.621574 + 0.783356i \(0.286494\pi\)
\(422\) 0 0
\(423\) 5.32714 8.87089i 0.259014 0.431317i
\(424\) 0 0
\(425\) −5.22638 + 9.05235i −0.253517 + 0.439104i
\(426\) 0 0
\(427\) −26.5442 45.9759i −1.28456 2.22493i
\(428\) 0 0
\(429\) −3.39501 0.0292025i −0.163913 0.00140991i
\(430\) 0 0
\(431\) −1.42286 −0.0685367 −0.0342683 0.999413i \(-0.510910\pi\)
−0.0342683 + 0.999413i \(0.510910\pi\)
\(432\) 0 0
\(433\) −3.81061 −0.183126 −0.0915632 0.995799i \(-0.529186\pi\)
−0.0915632 + 0.995799i \(0.529186\pi\)
\(434\) 0 0
\(435\) −1.63999 0.0141065i −0.0786315 0.000676356i
\(436\) 0 0
\(437\) −0.850138 1.47248i −0.0406676 0.0704384i
\(438\) 0 0
\(439\) 4.64857 8.05156i 0.221864 0.384280i −0.733510 0.679679i \(-0.762119\pi\)
0.955374 + 0.295399i \(0.0954525\pi\)
\(440\) 0 0
\(441\) −18.2260 32.8612i −0.867907 1.56482i
\(442\) 0 0
\(443\) 2.16008 3.74137i 0.102628 0.177758i −0.810138 0.586239i \(-0.800608\pi\)
0.912767 + 0.408481i \(0.133941\pi\)
\(444\) 0 0
\(445\) 2.50086 + 4.33161i 0.118552 + 0.205338i
\(446\) 0 0
\(447\) 4.48913 + 7.93219i 0.212329 + 0.375180i
\(448\) 0 0
\(449\) −12.2966 −0.580312 −0.290156 0.956979i \(-0.593707\pi\)
−0.290156 + 0.956979i \(0.593707\pi\)
\(450\) 0 0
\(451\) 4.73476 0.222951
\(452\) 0 0
\(453\) 3.46019 5.87591i 0.162574 0.276075i
\(454\) 0 0
\(455\) 2.43034 + 4.20947i 0.113936 + 0.197343i
\(456\) 0 0
\(457\) −1.91442 + 3.31587i −0.0895527 + 0.155110i −0.907322 0.420436i \(-0.861877\pi\)
0.817769 + 0.575546i \(0.195210\pi\)
\(458\) 0 0
\(459\) 14.3261 + 0.369756i 0.668687 + 0.0172587i
\(460\) 0 0
\(461\) −19.0643 + 33.0203i −0.887913 + 1.53791i −0.0455743 + 0.998961i \(0.514512\pi\)
−0.842338 + 0.538949i \(0.818822\pi\)
\(462\) 0 0
\(463\) 3.51635 + 6.09050i 0.163419 + 0.283050i 0.936093 0.351754i \(-0.114414\pi\)
−0.772674 + 0.634803i \(0.781081\pi\)
\(464\) 0 0
\(465\) −0.623297 + 1.05845i −0.0289047 + 0.0490845i
\(466\) 0 0
\(467\) −3.05112 −0.141189 −0.0705945 0.997505i \(-0.522490\pi\)
−0.0705945 + 0.997505i \(0.522490\pi\)
\(468\) 0 0
\(469\) 40.8677 1.88709
\(470\) 0 0
\(471\) −7.73670 13.6706i −0.356488 0.629906i
\(472\) 0 0
\(473\) −9.69182 16.7867i −0.445630 0.771854i
\(474\) 0 0
\(475\) 1.52812 2.64678i 0.0701149 0.121443i
\(476\) 0 0
\(477\) −25.1077 0.431965i −1.14960 0.0197783i
\(478\) 0 0
\(479\) 15.6440 27.0962i 0.714792 1.23806i −0.248247 0.968697i \(-0.579854\pi\)
0.963040 0.269360i \(-0.0868122\pi\)
\(480\) 0 0
\(481\) 1.90577 + 3.30090i 0.0868958 + 0.150508i
\(482\) 0 0
\(483\) −16.1369 0.138803i −0.734253 0.00631575i
\(484\) 0 0
\(485\) −3.36611 −0.152847
\(486\) 0 0
\(487\) 25.0695 1.13601 0.568005 0.823025i \(-0.307716\pi\)
0.568005 + 0.823025i \(0.307716\pi\)
\(488\) 0 0
\(489\) −27.1119 0.233205i −1.22604 0.0105459i
\(490\) 0 0
\(491\) −9.19647 15.9288i −0.415031 0.718855i 0.580401 0.814331i \(-0.302896\pi\)
−0.995432 + 0.0954762i \(0.969563\pi\)
\(492\) 0 0
\(493\) −1.18704 + 2.05601i −0.0534616 + 0.0925982i
\(494\) 0 0
\(495\) −6.46766 0.111273i −0.290700 0.00500133i
\(496\) 0 0
\(497\) −22.3639 + 38.7354i −1.00316 + 1.73752i
\(498\) 0 0
\(499\) 2.85519 + 4.94534i 0.127816 + 0.221384i 0.922830 0.385207i \(-0.125870\pi\)
−0.795014 + 0.606591i \(0.792537\pi\)
\(500\) 0 0
\(501\) −7.03921 12.4381i −0.314489 0.555695i
\(502\) 0 0
\(503\) −42.5872 −1.89887 −0.949435 0.313963i \(-0.898343\pi\)
−0.949435 + 0.313963i \(0.898343\pi\)
\(504\) 0 0
\(505\) 13.8505 0.616337
\(506\) 0 0
\(507\) 0.878895 1.49250i 0.0390331 0.0662841i
\(508\) 0 0
\(509\) −14.4391 25.0093i −0.640003 1.10852i −0.985432 0.170072i \(-0.945600\pi\)
0.345429 0.938445i \(-0.387733\pi\)
\(510\) 0 0
\(511\) 8.59019 14.8787i 0.380008 0.658193i
\(512\) 0 0
\(513\) −4.18876 0.108111i −0.184938 0.00477323i
\(514\) 0 0
\(515\) 0.357077 0.618475i 0.0157347 0.0272533i
\(516\) 0 0
\(517\) 3.38051 + 5.85521i 0.148675 + 0.257512i
\(518\) 0 0
\(519\) 15.6079 26.5045i 0.685110 1.16342i
\(520\) 0 0
\(521\) −24.9344 −1.09239 −0.546197 0.837657i \(-0.683925\pi\)
−0.546197 + 0.837657i \(0.683925\pi\)
\(522\) 0 0
\(523\) 20.1668 0.881834 0.440917 0.897548i \(-0.354653\pi\)
0.440917 + 0.897548i \(0.354653\pi\)
\(524\) 0 0
\(525\) −14.2869 25.2446i −0.623532 1.10177i
\(526\) 0 0
\(527\) 0.889051 + 1.53988i 0.0387276 + 0.0670783i
\(528\) 0 0
\(529\) 9.27714 16.0685i 0.403354 0.698629i
\(530\) 0 0
\(531\) −21.5304 38.8189i −0.934340 1.68460i
\(532\) 0 0
\(533\) −1.20773 + 2.09186i −0.0523127 + 0.0906083i
\(534\) 0 0
\(535\) −10.2688 17.7861i −0.443960 0.768962i
\(536\) 0 0
\(537\) −5.58454 0.0480359i −0.240991 0.00207290i
\(538\) 0 0
\(539\) 24.5528 1.05756
\(540\) 0 0
\(541\) −26.9422 −1.15834 −0.579169 0.815208i \(-0.696623\pi\)
−0.579169 + 0.815208i \(0.696623\pi\)
\(542\) 0 0
\(543\) 6.04826 + 0.0520246i 0.259556 + 0.00223259i
\(544\) 0 0
\(545\) −2.16190 3.74451i −0.0926054 0.160397i
\(546\) 0 0
\(547\) −16.0765 + 27.8454i −0.687383 + 1.19058i 0.285298 + 0.958439i \(0.407907\pi\)
−0.972681 + 0.232144i \(0.925426\pi\)
\(548\) 0 0
\(549\) −18.5556 + 30.8993i −0.791935 + 1.31875i
\(550\) 0 0
\(551\) 0.347073 0.601149i 0.0147858 0.0256098i
\(552\) 0 0
\(553\) −37.4948 64.9429i −1.59444 2.76166i
\(554\) 0 0
\(555\) 3.57676 + 6.32006i 0.151825 + 0.268272i
\(556\) 0 0
\(557\) 19.0374 0.806639 0.403320 0.915059i \(-0.367856\pi\)
0.403320 + 0.915059i \(0.367856\pi\)
\(558\) 0 0
\(559\) 9.88868 0.418247
\(560\) 0 0
\(561\) −4.75145 + 8.06867i −0.200606 + 0.340660i
\(562\) 0 0
\(563\) 21.2659 + 36.8337i 0.896252 + 1.55235i 0.832248 + 0.554404i \(0.187054\pi\)
0.0640044 + 0.997950i \(0.479613\pi\)
\(564\) 0 0
\(565\) −9.81897 + 17.0070i −0.413087 + 0.715488i
\(566\) 0 0
\(567\) −21.0575 + 33.7367i −0.884334 + 1.41681i
\(568\) 0 0
\(569\) −0.782584 + 1.35548i −0.0328076 + 0.0568245i −0.881963 0.471319i \(-0.843778\pi\)
0.849155 + 0.528143i \(0.177112\pi\)
\(570\) 0 0
\(571\) 5.63541 + 9.76082i 0.235835 + 0.408478i 0.959515 0.281658i \(-0.0908843\pi\)
−0.723680 + 0.690135i \(0.757551\pi\)
\(572\) 0 0
\(573\) 1.12063 1.90300i 0.0468149 0.0794988i
\(574\) 0 0
\(575\) −7.99116 −0.333255
\(576\) 0 0
\(577\) 27.1341 1.12961 0.564803 0.825225i \(-0.308952\pi\)
0.564803 + 0.825225i \(0.308952\pi\)
\(578\) 0 0
\(579\) 4.07225 + 7.19558i 0.169237 + 0.299038i
\(580\) 0 0
\(581\) 16.6692 + 28.8719i 0.691555 + 1.19781i
\(582\) 0 0
\(583\) 8.20384 14.2095i 0.339768 0.588496i
\(584\) 0 0
\(585\) 1.69892 2.82908i 0.0702417 0.116968i
\(586\) 0 0
\(587\) −0.709382 + 1.22869i −0.0292793 + 0.0507133i −0.880294 0.474429i \(-0.842655\pi\)
0.851014 + 0.525142i \(0.175988\pi\)
\(588\) 0 0
\(589\) −0.259946 0.450239i −0.0107109 0.0185518i
\(590\) 0 0
\(591\) −11.0814 0.0953176i −0.455827 0.00392084i
\(592\) 0 0
\(593\) −25.2220 −1.03574 −0.517871 0.855459i \(-0.673275\pi\)
−0.517871 + 0.855459i \(0.673275\pi\)
\(594\) 0 0
\(595\) 13.4057 0.549580
\(596\) 0 0
\(597\) −36.3756 0.312888i −1.48876 0.0128057i
\(598\) 0 0
\(599\) 15.4427 + 26.7475i 0.630971 + 1.09287i 0.987354 + 0.158533i \(0.0506765\pi\)
−0.356383 + 0.934340i \(0.615990\pi\)
\(600\) 0 0
\(601\) 3.44059 5.95927i 0.140344 0.243084i −0.787282 0.616593i \(-0.788512\pi\)
0.927626 + 0.373510i \(0.121846\pi\)
\(602\) 0 0
\(603\) −13.4575 24.2637i −0.548033 0.988093i
\(604\) 0 0
\(605\) −3.93673 + 6.81861i −0.160051 + 0.277216i
\(606\) 0 0
\(607\) 15.1515 + 26.2431i 0.614979 + 1.06518i 0.990388 + 0.138316i \(0.0441690\pi\)
−0.375409 + 0.926859i \(0.622498\pi\)
\(608\) 0 0
\(609\) −3.24491 5.73368i −0.131490 0.232341i
\(610\) 0 0
\(611\) −3.44917 −0.139539
\(612\) 0 0
\(613\) 39.8512 1.60958 0.804788 0.593562i \(-0.202279\pi\)
0.804788 + 0.593562i \(0.202279\pi\)
\(614\) 0 0
\(615\) −2.33524 + 3.96559i −0.0941659 + 0.159908i
\(616\) 0 0
\(617\) −20.9715 36.3237i −0.844280 1.46234i −0.886245 0.463217i \(-0.846695\pi\)
0.0419651 0.999119i \(-0.486638\pi\)
\(618\) 0 0
\(619\) 12.9455 22.4223i 0.520325 0.901229i −0.479396 0.877599i \(-0.659144\pi\)
0.999721 0.0236299i \(-0.00752235\pi\)
\(620\) 0 0
\(621\) 5.23138 + 9.62638i 0.209928 + 0.386293i
\(622\) 0 0
\(623\) −10.0461 + 17.4004i −0.402490 + 0.697133i
\(624\) 0 0
\(625\) −4.15703 7.20018i −0.166281 0.288007i
\(626\) 0 0
\(627\) 1.38926 2.35916i 0.0554815 0.0942160i
\(628\) 0 0
\(629\) 10.5122 0.419149
\(630\) 0 0
\(631\) 15.5719 0.619909 0.309955 0.950751i \(-0.399686\pi\)
0.309955 + 0.950751i \(0.399686\pi\)
\(632\) 0 0
\(633\) −22.0773 39.0101i −0.877494 1.55051i
\(634\) 0 0
\(635\) −3.33291 5.77276i −0.132262 0.229085i
\(636\) 0 0
\(637\) −6.26287 + 10.8476i −0.248144 + 0.429798i
\(638\) 0 0
\(639\) 30.3620 + 0.522361i 1.20110 + 0.0206643i
\(640\) 0 0
\(641\) −9.53448 + 16.5142i −0.376589 + 0.652272i −0.990564 0.137054i \(-0.956237\pi\)
0.613974 + 0.789326i \(0.289570\pi\)
\(642\) 0 0
\(643\) −13.6289 23.6059i −0.537471 0.930927i −0.999039 0.0438224i \(-0.986046\pi\)
0.461568 0.887105i \(-0.347287\pi\)
\(644\) 0 0
\(645\) 18.8398 + 0.162052i 0.741816 + 0.00638080i
\(646\) 0 0
\(647\) −32.4199 −1.27456 −0.637278 0.770634i \(-0.719940\pi\)
−0.637278 + 0.770634i \(0.719940\pi\)
\(648\) 0 0
\(649\) 29.0042 1.13851
\(650\) 0 0
\(651\) −4.93416 0.0424416i −0.193385 0.00166342i
\(652\) 0 0
\(653\) 13.1405 + 22.7600i 0.514227 + 0.890667i 0.999864 + 0.0165061i \(0.00525428\pi\)
−0.485637 + 0.874160i \(0.661412\pi\)
\(654\) 0 0
\(655\) 9.31825 16.1397i 0.364094 0.630630i
\(656\) 0 0
\(657\) −11.6624 0.200644i −0.454992 0.00782789i
\(658\) 0 0
\(659\) −19.8714 + 34.4183i −0.774081 + 1.34075i 0.161229 + 0.986917i \(0.448454\pi\)
−0.935310 + 0.353830i \(0.884879\pi\)
\(660\) 0 0
\(661\) 18.2288 + 31.5732i 0.709017 + 1.22805i 0.965222 + 0.261432i \(0.0841946\pi\)
−0.256205 + 0.966623i \(0.582472\pi\)
\(662\) 0 0
\(663\) −2.35281 4.15737i −0.0913757 0.161459i
\(664\) 0 0
\(665\) −3.91963 −0.151997
\(666\) 0 0
\(667\) −1.81499 −0.0702767
\(668\) 0 0
\(669\) −0.192261 + 0.326488i −0.00743325 + 0.0126228i
\(670\) 0 0
\(671\) −11.7751 20.3950i −0.454571 0.787340i
\(672\) 0 0
\(673\) −16.1830 + 28.0298i −0.623809 + 1.08047i 0.364961 + 0.931023i \(0.381082\pi\)
−0.988770 + 0.149446i \(0.952251\pi\)
\(674\) 0 0
\(675\) −10.2835 + 16.7952i −0.395811 + 0.646449i
\(676\) 0 0
\(677\) −14.0626 + 24.3571i −0.540469 + 0.936120i 0.458408 + 0.888742i \(0.348420\pi\)
−0.998877 + 0.0473781i \(0.984913\pi\)
\(678\) 0 0
\(679\) −6.76096 11.7103i −0.259462 0.449401i
\(680\) 0 0
\(681\) 5.27040 8.94992i 0.201962 0.342962i
\(682\) 0 0
\(683\) 11.6908 0.447336 0.223668 0.974665i \(-0.428197\pi\)
0.223668 + 0.974665i \(0.428197\pi\)
\(684\) 0 0
\(685\) 8.93522 0.341397
\(686\) 0 0
\(687\) −6.90343 12.1982i −0.263382 0.465391i
\(688\) 0 0
\(689\) 4.18524 + 7.24905i 0.159445 + 0.276167i
\(690\) 0 0
\(691\) −18.7023 + 32.3934i −0.711470 + 1.23230i 0.252835 + 0.967509i \(0.418637\pi\)
−0.964305 + 0.264793i \(0.914696\pi\)
\(692\) 0 0
\(693\) −12.6035 22.7238i −0.478766 0.863206i
\(694\) 0 0
\(695\) 2.40450 4.16471i 0.0912078 0.157977i
\(696\) 0 0
\(697\) 3.33091 + 5.76931i 0.126167 + 0.218528i
\(698\) 0 0
\(699\) 19.8572 + 0.170803i 0.751067 + 0.00646037i
\(700\) 0 0
\(701\) −18.7049 −0.706473 −0.353236 0.935534i \(-0.614919\pi\)
−0.353236 + 0.935534i \(0.614919\pi\)
\(702\) 0 0
\(703\) −3.07362 −0.115924
\(704\) 0 0
\(705\) −6.57132 0.0565238i −0.247490 0.00212881i
\(706\) 0 0
\(707\) 27.8192 + 48.1843i 1.04625 + 1.81216i
\(708\) 0 0
\(709\) 10.3589 17.9421i 0.389035 0.673829i −0.603285 0.797526i \(-0.706142\pi\)
0.992320 + 0.123697i \(0.0394750\pi\)
\(710\) 0 0
\(711\) −26.2106 + 43.6465i −0.982974 + 1.63687i
\(712\) 0 0
\(713\) −0.679682 + 1.17724i −0.0254543 + 0.0440881i
\(714\) 0 0
\(715\) 1.07810 + 1.86733i 0.0403188 + 0.0698342i
\(716\) 0 0
\(717\) −0.443619 0.783865i −0.0165673 0.0292740i
\(718\) 0 0
\(719\) 11.2072 0.417956 0.208978 0.977920i \(-0.432986\pi\)
0.208978 + 0.977920i \(0.432986\pi\)
\(720\) 0 0
\(721\) 2.86881 0.106840
\(722\) 0 0
\(723\) 25.7564 43.7383i 0.957892 1.62664i
\(724\) 0 0
\(725\) −1.63122 2.82535i −0.0605819 0.104931i
\(726\) 0 0
\(727\) 16.1533 27.9783i 0.599092 1.03766i −0.393864 0.919169i \(-0.628862\pi\)
0.992955 0.118488i \(-0.0378048\pi\)
\(728\) 0 0
\(729\) 26.9641 + 1.39281i 0.998669 + 0.0515854i
\(730\) 0 0
\(731\) 13.6364 23.6190i 0.504361 0.873579i
\(732\) 0 0
\(733\) 4.68022 + 8.10638i 0.172868 + 0.299416i 0.939421 0.342764i \(-0.111363\pi\)
−0.766553 + 0.642181i \(0.778030\pi\)
\(734\) 0 0
\(735\) −12.1097 + 20.5641i −0.446674 + 0.758519i
\(736\) 0 0
\(737\) 18.1290 0.667790
\(738\) 0 0
\(739\) −48.3158 −1.77733 −0.888663 0.458562i \(-0.848365\pi\)
−0.888663 + 0.458562i \(0.848365\pi\)
\(740\) 0 0
\(741\) 0.687929 + 1.21556i 0.0252717 + 0.0446545i
\(742\) 0 0
\(743\) 25.8113 + 44.7065i 0.946924 + 1.64012i 0.751852 + 0.659332i \(0.229161\pi\)
0.195072 + 0.980789i \(0.437506\pi\)
\(744\) 0 0
\(745\) 2.89421 5.01292i 0.106036 0.183659i
\(746\) 0 0
\(747\) 11.6525 19.4041i 0.426344 0.709959i
\(748\) 0 0
\(749\) 41.2507 71.4483i 1.50727 2.61067i
\(750\) 0 0
\(751\) −22.1753 38.4087i −0.809188 1.40155i −0.913427 0.407002i \(-0.866574\pi\)
0.104239 0.994552i \(-0.466759\pi\)
\(752\) 0 0
\(753\) 15.0406 + 0.129373i 0.548111 + 0.00471463i
\(754\) 0 0
\(755\) −4.33068 −0.157609
\(756\) 0 0
\(757\) 10.0920 0.366802 0.183401 0.983038i \(-0.441289\pi\)
0.183401 + 0.983038i \(0.441289\pi\)
\(758\) 0 0
\(759\) −7.15835 0.0615732i −0.259832 0.00223497i
\(760\) 0 0
\(761\) 3.41216 + 5.91003i 0.123691 + 0.214238i 0.921220 0.389041i \(-0.127194\pi\)
−0.797530 + 0.603280i \(0.793860\pi\)
\(762\) 0 0
\(763\) 8.68451 15.0420i 0.314400 0.544557i
\(764\) 0 0
\(765\) −4.41442 7.95913i −0.159604 0.287763i
\(766\) 0 0
\(767\) −7.39832 + 12.8143i −0.267138 + 0.462696i
\(768\) 0 0
\(769\) −7.29531 12.6358i −0.263075 0.455660i 0.703982 0.710218i \(-0.251403\pi\)
−0.967058 + 0.254558i \(0.918070\pi\)
\(770\) 0 0
\(771\) −13.0814 23.1145i −0.471115 0.832449i
\(772\) 0 0
\(773\) 38.2046 1.37412 0.687062 0.726599i \(-0.258900\pi\)
0.687062 + 0.726599i \(0.258900\pi\)
\(774\) 0 0
\(775\) −2.44345 −0.0877713
\(776\) 0 0
\(777\) −14.8027 + 25.1373i −0.531046 + 0.901795i
\(778\) 0 0
\(779\) −0.973911 1.68686i −0.0348940 0.0604381i
\(780\) 0 0
\(781\) −9.92065 + 17.1831i −0.354989 + 0.614859i
\(782\) 0 0
\(783\) −2.33563 + 3.81462i −0.0834685 + 0.136323i
\(784\) 0 0
\(785\) −4.98796 + 8.63941i −0.178028 + 0.308354i
\(786\) 0 0
\(787\) −20.4343 35.3932i −0.728404 1.26163i −0.957557 0.288243i \(-0.906929\pi\)
0.229153 0.973390i \(-0.426404\pi\)
\(788\) 0 0
\(789\) −4.50105 + 7.64345i −0.160241 + 0.272114i
\(790\) 0 0
\(791\) −78.8872 −2.80491
\(792\) 0 0
\(793\) 12.0142 0.426638
\(794\) 0 0
\(795\) 7.85487 + 13.8794i 0.278584 + 0.492251i
\(796\) 0 0
\(797\) −4.74839 8.22445i −0.168197 0.291325i 0.769589 0.638539i \(-0.220461\pi\)
−0.937786 + 0.347214i \(0.887128\pi\)
\(798\) 0 0
\(799\) −4.75638 + 8.23830i −0.168269 + 0.291450i
\(800\) 0 0
\(801\) 13.6390 + 0.234652i 0.481910 + 0.00829101i
\(802\) 0 0
\(803\) 3.81062 6.60020i 0.134474 0.232916i
\(804\) 0 0
\(805\) 5.12434 + 8.87563i 0.180609 + 0.312825i
\(806\) 0 0
\(807\) −19.5991 0.168584i −0.689922 0.00593442i
\(808\) 0 0
\(809\) 38.1280 1.34051 0.670255 0.742131i \(-0.266185\pi\)
0.670255 + 0.742131i \(0.266185\pi\)
\(810\) 0 0
\(811\) 21.3881 0.751038 0.375519 0.926815i \(-0.377464\pi\)
0.375519 + 0.926815i \(0.377464\pi\)
\(812\) 0 0
\(813\) −13.1014 0.112693i −0.459485 0.00395230i
\(814\) 0 0
\(815\) 8.60951 + 14.9121i 0.301578 + 0.522348i
\(816\) 0 0
\(817\) −3.98709 + 6.90585i −0.139491 + 0.241605i
\(818\) 0 0
\(819\) 13.2544 + 0.228035i 0.463147 + 0.00796819i
\(820\) 0 0
\(821\) 22.6777 39.2789i 0.791457 1.37084i −0.133608 0.991034i \(-0.542656\pi\)
0.925065 0.379809i \(-0.124010\pi\)
\(822\) 0 0
\(823\) −3.96158 6.86166i −0.138092 0.239183i 0.788682 0.614801i \(-0.210764\pi\)
−0.926774 + 0.375618i \(0.877430\pi\)
\(824\) 0 0
\(825\) −6.33770 11.1986i −0.220650 0.389884i
\(826\) 0 0
\(827\) 49.3623 1.71650 0.858248 0.513234i \(-0.171553\pi\)
0.858248 + 0.513234i \(0.171553\pi\)
\(828\) 0 0
\(829\) 1.97247 0.0685066 0.0342533 0.999413i \(-0.489095\pi\)
0.0342533 + 0.999413i \(0.489095\pi\)
\(830\) 0 0
\(831\) 23.6360 40.1375i 0.819925 1.39235i
\(832\) 0 0
\(833\) 17.2729 + 29.9176i 0.598471 + 1.03658i
\(834\) 0 0
\(835\) −4.53828 + 7.86054i −0.157054 + 0.272025i
\(836\) 0 0
\(837\) 1.59959 + 2.94345i 0.0552900 + 0.101740i
\(838\) 0 0
\(839\) 23.0859 39.9859i 0.797013 1.38047i −0.124540 0.992215i \(-0.539745\pi\)
0.921553 0.388253i \(-0.126921\pi\)
\(840\) 0 0
\(841\) 14.1295 + 24.4730i 0.487224 + 0.843898i
\(842\) 0 0
\(843\) 7.38650 12.5434i 0.254405 0.432017i
\(844\) 0 0
\(845\) −1.10000 −0.0378412
\(846\) 0 0
\(847\) −31.6283 −1.08676
\(848\) 0 0
\(849\) 17.3506 + 30.6581i 0.595470 + 1.05218i
\(850\) 0 0
\(851\) 4.01830 + 6.95990i 0.137746 + 0.238582i
\(852\) 0 0
\(853\) 17.8325 30.8867i 0.610572 1.05754i −0.380572 0.924751i \(-0.624273\pi\)
0.991144 0.132791i \(-0.0423938\pi\)
\(854\) 0 0
\(855\) 1.29071 + 2.32714i 0.0441415 + 0.0795863i
\(856\) 0 0
\(857\) 15.0095 25.9972i 0.512715 0.888048i −0.487177 0.873303i \(-0.661973\pi\)
0.999891 0.0147444i \(-0.00469345\pi\)
\(858\) 0 0
\(859\) 6.61554 + 11.4585i 0.225719 + 0.390958i 0.956535 0.291617i \(-0.0941934\pi\)
−0.730816 + 0.682575i \(0.760860\pi\)
\(860\) 0 0
\(861\) −18.4863 0.159011i −0.630010 0.00541909i
\(862\) 0 0
\(863\) −27.9198 −0.950400 −0.475200 0.879878i \(-0.657624\pi\)
−0.475200 + 0.879878i \(0.657624\pi\)
\(864\) 0 0
\(865\) −19.5344 −0.664190
\(866\) 0 0
\(867\) 16.2694 + 0.139943i 0.552539 + 0.00475272i
\(868\) 0 0
\(869\) −16.6328 28.8088i −0.564228 0.977272i
\(870\) 0 0
\(871\) −4.62430 + 8.00953i −0.156689 + 0.271393i
\(872\) 0 0
\(873\) −4.72622 + 7.87022i −0.159958 + 0.266367i
\(874\) 0 0
\(875\) −21.3627 + 37.0013i −0.722191 + 1.25087i
\(876\) 0 0
\(877\) 8.58595 + 14.8713i 0.289927 + 0.502168i 0.973792 0.227440i \(-0.0730357\pi\)
−0.683865 + 0.729608i \(0.739702\pi\)
\(878\) 0 0
\(879\) 17.0703 + 30.1628i 0.575766 + 1.01737i
\(880\) 0 0
\(881\) 16.4467 0.554104 0.277052 0.960855i \(-0.410643\pi\)
0.277052 + 0.960855i \(0.410643\pi\)
\(882\) 0 0
\(883\) 21.3082 0.717079 0.358540 0.933515i \(-0.383275\pi\)
0.358540 + 0.933515i \(0.383275\pi\)
\(884\) 0 0
\(885\) −14.3052 + 24.2924i −0.480864 + 0.816579i
\(886\) 0 0
\(887\) 23.2374 + 40.2484i 0.780236 + 1.35141i 0.931804 + 0.362962i \(0.118234\pi\)
−0.151568 + 0.988447i \(0.548432\pi\)
\(888\) 0 0
\(889\) 13.3885 23.1896i 0.449038 0.777756i
\(890\) 0 0
\(891\) −9.34116 + 14.9657i −0.312941 + 0.501369i
\(892\) 0 0
\(893\) 1.39070 2.40876i 0.0465379 0.0806061i
\(894\) 0 0
\(895\) 1.77340 + 3.07161i 0.0592781 + 0.102673i
\(896\) 0 0
\(897\) 1.85314 3.14691i 0.0618746 0.105072i
\(898\) 0 0
\(899\) −0.554967 −0.0185092
\(900\) 0 0
\(901\) 23.0857 0.769095
\(902\) 0 0
\(903\) 37.2767 + 65.8671i 1.24049 + 2.19192i
\(904\) 0 0
\(905\) −1.92065 3.32667i −0.0638447 0.110582i
\(906\) 0 0
\(907\) −14.6731 + 25.4146i −0.487214 + 0.843879i −0.999892 0.0147018i \(-0.995320\pi\)
0.512678 + 0.858581i \(0.328653\pi\)
\(908\) 0 0
\(909\) 19.4469 32.3834i 0.645013 1.07409i
\(910\) 0 0
\(911\) −6.15197 + 10.6555i −0.203824 + 0.353033i −0.949757 0.312987i \(-0.898670\pi\)
0.745934 + 0.666020i \(0.232004\pi\)
\(912\) 0 0
\(913\) 7.39449 + 12.8076i 0.244722 + 0.423871i
\(914\) 0 0
\(915\) 22.8894 + 0.196885i 0.756700 + 0.00650882i
\(916\) 0 0
\(917\) 74.8643 2.47224
\(918\) 0 0
\(919\) −30.1425 −0.994309 −0.497155 0.867662i \(-0.665622\pi\)
−0.497155 + 0.867662i \(0.665622\pi\)
\(920\) 0 0
\(921\) 54.3121 + 0.467171i 1.78965 + 0.0153938i
\(922\) 0 0
\(923\) −5.06108 8.76604i −0.166587 0.288538i
\(924\) 0 0
\(925\) −7.22288 + 12.5104i −0.237487 + 0.411339i
\(926\) 0 0
\(927\) −0.944685 1.70325i −0.0310275 0.0559421i
\(928\) 0 0
\(929\) −11.4567 + 19.8436i −0.375883 + 0.651048i −0.990459 0.137809i \(-0.955994\pi\)
0.614576 + 0.788858i \(0.289327\pi\)
\(930\) 0 0
\(931\) −5.05035 8.74747i −0.165519 0.286687i
\(932\) 0 0
\(933\) 17.8793 + 31.5924i 0.585343 + 1.03429i
\(934\) 0 0
\(935\) 5.94679 0.194481
\(936\) 0 0
\(937\) 37.3809 1.22118 0.610590 0.791947i \(-0.290932\pi\)
0.610590 + 0.791947i \(0.290932\pi\)
\(938\) 0 0
\(939\) −19.7524 + 33.5425i −0.644595 + 1.09462i
\(940\) 0 0
\(941\) −24.0182 41.6007i −0.782970 1.35614i −0.930204 0.367042i \(-0.880370\pi\)
0.147234 0.989102i \(-0.452963\pi\)
\(942\) 0 0
\(943\) −2.54649 + 4.41065i −0.0829252 + 0.143631i
\(944\) 0 0
\(945\) 25.2484 + 0.651659i 0.821332 + 0.0211985i
\(946\) 0 0
\(947\) −19.0587 + 33.0106i −0.619324 + 1.07270i 0.370286 + 0.928918i \(0.379260\pi\)
−0.989609 + 0.143782i \(0.954074\pi\)
\(948\) 0 0
\(949\) 1.94401 + 3.36713i 0.0631053 + 0.109302i
\(950\) 0 0
\(951\) 14.0720 23.8963i 0.456316 0.774892i
\(952\) 0 0
\(953\) −0.158875 −0.00514647 −0.00257323 0.999997i \(-0.500819\pi\)
−0.00257323 + 0.999997i \(0.500819\pi\)
\(954\) 0 0
\(955\) −1.40255 −0.0453854
\(956\) 0 0
\(957\) −1.43945 2.54347i −0.0465307 0.0822187i
\(958\) 0 0
\(959\) 17.9468 + 31.0847i 0.579531 + 1.00378i
\(960\) 0 0
\(961\) 15.2922 26.4868i 0.493296 0.854414i
\(962\) 0 0
\(963\) −56.0034 0.963509i −1.80469 0.0310486i
\(964\) 0 0
\(965\) 2.62544 4.54740i 0.0845160 0.146386i
\(966\) 0 0
\(967\) 10.4407 + 18.0838i 0.335749 + 0.581535i 0.983628 0.180208i \(-0.0576772\pi\)
−0.647879 + 0.761743i \(0.724344\pi\)
\(968\) 0 0
\(969\) 3.85199 + 0.0331332i 0.123744 + 0.00106439i
\(970\) 0 0
\(971\) −2.57055 −0.0824929 −0.0412464 0.999149i \(-0.513133\pi\)
−0.0412464 + 0.999149i \(0.513133\pi\)
\(972\) 0 0
\(973\) 19.3181 0.619311
\(974\) 0 0
\(975\) 6.56422 + 0.0564628i 0.210223 + 0.00180826i
\(976\) 0 0
\(977\) 19.5663 + 33.8899i 0.625982 + 1.08423i 0.988350 + 0.152198i \(0.0486350\pi\)
−0.362368 + 0.932035i \(0.618032\pi\)
\(978\) 0 0
\(979\) −4.45649 + 7.71886i −0.142430 + 0.246696i
\(980\) 0 0
\(981\) −11.7904 0.202847i −0.376438 0.00647642i
\(982\) 0 0
\(983\) 16.2941 28.2223i 0.519702 0.900151i −0.480035 0.877249i \(-0.659376\pi\)
0.999738 0.0229018i \(-0.00729052\pi\)
\(984\) 0 0
\(985\) 3.51895 + 6.09500i 0.112123 + 0.194203i
\(986\) 0 0
\(987\) −13.0021 22.9745i −0.413862 0.731285i
\(988\) 0 0
\(989\) 20.8502 0.662997
\(990\) 0 0
\(991\) 3.40126 0.108045 0.0540223 0.998540i \(-0.482796\pi\)
0.0540223 + 0.998540i \(0.482796\pi\)
\(992\) 0 0
\(993\) 25.4834 43.2747i 0.808693 1.37328i
\(994\) 0 0
\(995\) 11.5513 + 20.0074i 0.366200 + 0.634276i
\(996\) 0 0
\(997\) −3.02485 + 5.23920i −0.0957981 + 0.165927i −0.909941 0.414737i \(-0.863874\pi\)
0.814143 + 0.580664i \(0.197207\pi\)
\(998\) 0 0
\(999\) 19.7988 + 0.511004i 0.626406 + 0.0161675i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.q.g.313.1 22
3.2 odd 2 2808.2.q.g.937.5 22
9.2 odd 6 8424.2.a.be.1.7 11
9.4 even 3 inner 936.2.q.g.625.1 yes 22
9.5 odd 6 2808.2.q.g.1873.5 22
9.7 even 3 8424.2.a.bf.1.5 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.q.g.313.1 22 1.1 even 1 trivial
936.2.q.g.625.1 yes 22 9.4 even 3 inner
2808.2.q.g.937.5 22 3.2 odd 2
2808.2.q.g.1873.5 22 9.5 odd 6
8424.2.a.be.1.7 11 9.2 odd 6
8424.2.a.bf.1.5 11 9.7 even 3