Properties

Label 936.2.j.a.755.36
Level $936$
Weight $2$
Character 936.755
Analytic conductor $7.474$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(755,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.755"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.j (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 755.36
Character \(\chi\) \(=\) 936.755
Dual form 936.2.j.a.755.35

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.668898 + 1.24602i) q^{2} +(-1.10515 + 1.66693i) q^{4} +3.68104 q^{5} +5.03597i q^{7} +(-2.81626 - 0.262038i) q^{8} +(2.46224 + 4.58666i) q^{10} +3.64499i q^{11} -1.00000i q^{13} +(-6.27493 + 3.36855i) q^{14} +(-1.55729 - 3.68441i) q^{16} -5.67150i q^{17} -1.84246 q^{19} +(-4.06810 + 6.13602i) q^{20} +(-4.54174 + 2.43813i) q^{22} -2.33832 q^{23} +8.55005 q^{25} +(1.24602 - 0.668898i) q^{26} +(-8.39459 - 5.56550i) q^{28} +4.56030 q^{29} -10.2251i q^{31} +(3.54919 - 4.40491i) q^{32} +(7.06682 - 3.79366i) q^{34} +18.5376i q^{35} +1.61780i q^{37} +(-1.23242 - 2.29575i) q^{38} +(-10.3668 - 0.964574i) q^{40} +11.3322i q^{41} -1.54519 q^{43} +(-6.07592 - 4.02826i) q^{44} +(-1.56410 - 2.91360i) q^{46} +7.17063 q^{47} -18.3610 q^{49} +(5.71912 + 10.6536i) q^{50} +(1.66693 + 1.10515i) q^{52} -2.41759 q^{53} +13.4173i q^{55} +(1.31962 - 14.1826i) q^{56} +(3.05038 + 5.68225i) q^{58} +7.69002i q^{59} -10.7635i q^{61} +(12.7408 - 6.83958i) q^{62} +(7.86267 + 1.47594i) q^{64} -3.68104i q^{65} +1.62542 q^{67} +(9.45397 + 6.26786i) q^{68} +(-23.0983 + 12.3998i) q^{70} +6.50058 q^{71} +7.47814 q^{73} +(-2.01582 + 1.08214i) q^{74} +(2.03620 - 3.07125i) q^{76} -18.3560 q^{77} +5.87670i q^{79} +(-5.73244 - 13.5624i) q^{80} +(-14.1202 + 7.58009i) q^{82} -1.25689i q^{83} -20.8770i q^{85} +(-1.03357 - 1.92534i) q^{86} +(0.955127 - 10.2652i) q^{88} +1.11241i q^{89} +5.03597 q^{91} +(2.58419 - 3.89780i) q^{92} +(4.79642 + 8.93477i) q^{94} -6.78218 q^{95} +6.82755 q^{97} +(-12.2816 - 22.8782i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 8 q^{4} + 16 q^{10} + 8 q^{16} + 32 q^{19} + 48 q^{25} - 24 q^{28} + 32 q^{34} - 32 q^{40} - 32 q^{43} + 24 q^{46} - 48 q^{49} + 8 q^{52} - 40 q^{58} + 40 q^{64} + 32 q^{67} - 40 q^{70} + 40 q^{76}+ \cdots - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.668898 + 1.24602i 0.472983 + 0.881072i
\(3\) 0 0
\(4\) −1.10515 + 1.66693i −0.552575 + 0.833463i
\(5\) 3.68104 1.64621 0.823106 0.567888i \(-0.192240\pi\)
0.823106 + 0.567888i \(0.192240\pi\)
\(6\) 0 0
\(7\) 5.03597i 1.90342i 0.307004 + 0.951708i \(0.400674\pi\)
−0.307004 + 0.951708i \(0.599326\pi\)
\(8\) −2.81626 0.262038i −0.995699 0.0926446i
\(9\) 0 0
\(10\) 2.46224 + 4.58666i 0.778629 + 1.45043i
\(11\) 3.64499i 1.09900i 0.835492 + 0.549502i \(0.185183\pi\)
−0.835492 + 0.549502i \(0.814817\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) −6.27493 + 3.36855i −1.67705 + 0.900283i
\(15\) 0 0
\(16\) −1.55729 3.68441i −0.389322 0.921102i
\(17\) 5.67150i 1.37554i −0.725928 0.687770i \(-0.758590\pi\)
0.725928 0.687770i \(-0.241410\pi\)
\(18\) 0 0
\(19\) −1.84246 −0.422690 −0.211345 0.977412i \(-0.567784\pi\)
−0.211345 + 0.977412i \(0.567784\pi\)
\(20\) −4.06810 + 6.13602i −0.909655 + 1.37206i
\(21\) 0 0
\(22\) −4.54174 + 2.43813i −0.968302 + 0.519810i
\(23\) −2.33832 −0.487573 −0.243786 0.969829i \(-0.578390\pi\)
−0.243786 + 0.969829i \(0.578390\pi\)
\(24\) 0 0
\(25\) 8.55005 1.71001
\(26\) 1.24602 0.668898i 0.244365 0.131182i
\(27\) 0 0
\(28\) −8.39459 5.56550i −1.58643 1.05178i
\(29\) 4.56030 0.846827 0.423414 0.905937i \(-0.360832\pi\)
0.423414 + 0.905937i \(0.360832\pi\)
\(30\) 0 0
\(31\) 10.2251i 1.83649i −0.396013 0.918245i \(-0.629607\pi\)
0.396013 0.918245i \(-0.370393\pi\)
\(32\) 3.54919 4.40491i 0.627414 0.778686i
\(33\) 0 0
\(34\) 7.06682 3.79366i 1.21195 0.650607i
\(35\) 18.5376i 3.13343i
\(36\) 0 0
\(37\) 1.61780i 0.265965i 0.991118 + 0.132982i \(0.0424554\pi\)
−0.991118 + 0.132982i \(0.957545\pi\)
\(38\) −1.23242 2.29575i −0.199925 0.372420i
\(39\) 0 0
\(40\) −10.3668 0.964574i −1.63913 0.152513i
\(41\) 11.3322i 1.76979i 0.465788 + 0.884896i \(0.345771\pi\)
−0.465788 + 0.884896i \(0.654229\pi\)
\(42\) 0 0
\(43\) −1.54519 −0.235639 −0.117820 0.993035i \(-0.537590\pi\)
−0.117820 + 0.993035i \(0.537590\pi\)
\(44\) −6.07592 4.02826i −0.915980 0.607283i
\(45\) 0 0
\(46\) −1.56410 2.91360i −0.230613 0.429587i
\(47\) 7.17063 1.04594 0.522972 0.852350i \(-0.324823\pi\)
0.522972 + 0.852350i \(0.324823\pi\)
\(48\) 0 0
\(49\) −18.3610 −2.62299
\(50\) 5.71912 + 10.6536i 0.808805 + 1.50664i
\(51\) 0 0
\(52\) 1.66693 + 1.10515i 0.231161 + 0.153257i
\(53\) −2.41759 −0.332081 −0.166041 0.986119i \(-0.553098\pi\)
−0.166041 + 0.986119i \(0.553098\pi\)
\(54\) 0 0
\(55\) 13.4173i 1.80919i
\(56\) 1.31962 14.1826i 0.176341 1.89523i
\(57\) 0 0
\(58\) 3.05038 + 5.68225i 0.400534 + 0.746115i
\(59\) 7.69002i 1.00116i 0.865692 + 0.500578i \(0.166879\pi\)
−0.865692 + 0.500578i \(0.833121\pi\)
\(60\) 0 0
\(61\) 10.7635i 1.37813i −0.724699 0.689066i \(-0.758021\pi\)
0.724699 0.689066i \(-0.241979\pi\)
\(62\) 12.7408 6.83958i 1.61808 0.868628i
\(63\) 0 0
\(64\) 7.86267 + 1.47594i 0.982834 + 0.184492i
\(65\) 3.68104i 0.456577i
\(66\) 0 0
\(67\) 1.62542 0.198576 0.0992881 0.995059i \(-0.468343\pi\)
0.0992881 + 0.995059i \(0.468343\pi\)
\(68\) 9.45397 + 6.26786i 1.14646 + 0.760089i
\(69\) 0 0
\(70\) −23.0983 + 12.3998i −2.76077 + 1.48206i
\(71\) 6.50058 0.771477 0.385739 0.922608i \(-0.373947\pi\)
0.385739 + 0.922608i \(0.373947\pi\)
\(72\) 0 0
\(73\) 7.47814 0.875250 0.437625 0.899158i \(-0.355820\pi\)
0.437625 + 0.899158i \(0.355820\pi\)
\(74\) −2.01582 + 1.08214i −0.234334 + 0.125797i
\(75\) 0 0
\(76\) 2.03620 3.07125i 0.233568 0.352296i
\(77\) −18.3560 −2.09186
\(78\) 0 0
\(79\) 5.87670i 0.661180i 0.943774 + 0.330590i \(0.107248\pi\)
−0.943774 + 0.330590i \(0.892752\pi\)
\(80\) −5.73244 13.5624i −0.640906 1.51633i
\(81\) 0 0
\(82\) −14.1202 + 7.58009i −1.55931 + 0.837081i
\(83\) 1.25689i 0.137962i −0.997618 0.0689810i \(-0.978025\pi\)
0.997618 0.0689810i \(-0.0219748\pi\)
\(84\) 0 0
\(85\) 20.8770i 2.26443i
\(86\) −1.03357 1.92534i −0.111453 0.207615i
\(87\) 0 0
\(88\) 0.955127 10.2652i 0.101817 1.09428i
\(89\) 1.11241i 0.117915i 0.998260 + 0.0589577i \(0.0187777\pi\)
−0.998260 + 0.0589577i \(0.981222\pi\)
\(90\) 0 0
\(91\) 5.03597 0.527913
\(92\) 2.58419 3.89780i 0.269421 0.406374i
\(93\) 0 0
\(94\) 4.79642 + 8.93477i 0.494713 + 0.921551i
\(95\) −6.78218 −0.695837
\(96\) 0 0
\(97\) 6.82755 0.693232 0.346616 0.938007i \(-0.387331\pi\)
0.346616 + 0.938007i \(0.387331\pi\)
\(98\) −12.2816 22.8782i −1.24063 2.31105i
\(99\) 0 0
\(100\) −9.44909 + 14.2523i −0.944909 + 1.42523i
\(101\) −6.22342 −0.619253 −0.309626 0.950858i \(-0.600204\pi\)
−0.309626 + 0.950858i \(0.600204\pi\)
\(102\) 0 0
\(103\) 10.9213i 1.07611i −0.842910 0.538055i \(-0.819159\pi\)
0.842910 0.538055i \(-0.180841\pi\)
\(104\) −0.262038 + 2.81626i −0.0256950 + 0.276157i
\(105\) 0 0
\(106\) −1.61712 3.01237i −0.157069 0.292587i
\(107\) 5.68490i 0.549580i −0.961504 0.274790i \(-0.911392\pi\)
0.961504 0.274790i \(-0.0886084\pi\)
\(108\) 0 0
\(109\) 4.19341i 0.401656i 0.979627 + 0.200828i \(0.0643633\pi\)
−0.979627 + 0.200828i \(0.935637\pi\)
\(110\) −16.7183 + 8.97484i −1.59403 + 0.855717i
\(111\) 0 0
\(112\) 18.5546 7.84245i 1.75324 0.741042i
\(113\) 5.05332i 0.475376i 0.971342 + 0.237688i \(0.0763896\pi\)
−0.971342 + 0.237688i \(0.923610\pi\)
\(114\) 0 0
\(115\) −8.60744 −0.802648
\(116\) −5.03982 + 7.60169i −0.467935 + 0.705799i
\(117\) 0 0
\(118\) −9.58195 + 5.14384i −0.882090 + 0.473529i
\(119\) 28.5615 2.61823
\(120\) 0 0
\(121\) −2.28593 −0.207812
\(122\) 13.4116 7.19972i 1.21423 0.651832i
\(123\) 0 0
\(124\) 17.0446 + 11.3003i 1.53065 + 1.01480i
\(125\) 13.0679 1.16883
\(126\) 0 0
\(127\) 4.48123i 0.397645i 0.980036 + 0.198822i \(0.0637117\pi\)
−0.980036 + 0.198822i \(0.936288\pi\)
\(128\) 3.42027 + 10.7843i 0.302312 + 0.953209i
\(129\) 0 0
\(130\) 4.58666 2.46224i 0.402277 0.215953i
\(131\) 7.62358i 0.666075i −0.942914 0.333037i \(-0.891926\pi\)
0.942914 0.333037i \(-0.108074\pi\)
\(132\) 0 0
\(133\) 9.27858i 0.804555i
\(134\) 1.08724 + 2.02531i 0.0939231 + 0.174960i
\(135\) 0 0
\(136\) −1.48615 + 15.9724i −0.127436 + 1.36963i
\(137\) 17.3289i 1.48051i 0.672329 + 0.740253i \(0.265294\pi\)
−0.672329 + 0.740253i \(0.734706\pi\)
\(138\) 0 0
\(139\) 7.88936 0.669167 0.334583 0.942366i \(-0.391404\pi\)
0.334583 + 0.942366i \(0.391404\pi\)
\(140\) −30.9008 20.4868i −2.61159 1.73145i
\(141\) 0 0
\(142\) 4.34823 + 8.09988i 0.364895 + 0.679727i
\(143\) 3.64499 0.304809
\(144\) 0 0
\(145\) 16.7867 1.39406
\(146\) 5.00212 + 9.31794i 0.413978 + 0.771158i
\(147\) 0 0
\(148\) −2.69676 1.78791i −0.221672 0.146966i
\(149\) −5.49996 −0.450574 −0.225287 0.974292i \(-0.572332\pi\)
−0.225287 + 0.974292i \(0.572332\pi\)
\(150\) 0 0
\(151\) 1.85944i 0.151319i −0.997134 0.0756596i \(-0.975894\pi\)
0.997134 0.0756596i \(-0.0241062\pi\)
\(152\) 5.18886 + 0.482796i 0.420872 + 0.0391599i
\(153\) 0 0
\(154\) −12.2783 22.8721i −0.989415 1.84308i
\(155\) 37.6392i 3.02325i
\(156\) 0 0
\(157\) 7.49398i 0.598084i −0.954240 0.299042i \(-0.903333\pi\)
0.954240 0.299042i \(-0.0966671\pi\)
\(158\) −7.32250 + 3.93091i −0.582547 + 0.312727i
\(159\) 0 0
\(160\) 13.0647 16.2147i 1.03286 1.28188i
\(161\) 11.7757i 0.928054i
\(162\) 0 0
\(163\) −21.4154 −1.67738 −0.838692 0.544606i \(-0.816679\pi\)
−0.838692 + 0.544606i \(0.816679\pi\)
\(164\) −18.8900 12.5238i −1.47506 0.977943i
\(165\) 0 0
\(166\) 1.56612 0.840734i 0.121554 0.0652536i
\(167\) 13.6647 1.05740 0.528701 0.848808i \(-0.322679\pi\)
0.528701 + 0.848808i \(0.322679\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 26.0133 13.9646i 1.99513 1.07104i
\(171\) 0 0
\(172\) 1.70767 2.57572i 0.130208 0.196397i
\(173\) 16.1562 1.22833 0.614166 0.789177i \(-0.289492\pi\)
0.614166 + 0.789177i \(0.289492\pi\)
\(174\) 0 0
\(175\) 43.0578i 3.25486i
\(176\) 13.4296 5.67629i 1.01230 0.427867i
\(177\) 0 0
\(178\) −1.38609 + 0.744091i −0.103892 + 0.0557720i
\(179\) 0.653655i 0.0488565i 0.999702 + 0.0244282i \(0.00777652\pi\)
−0.999702 + 0.0244282i \(0.992223\pi\)
\(180\) 0 0
\(181\) 22.3117i 1.65842i −0.558939 0.829209i \(-0.688791\pi\)
0.558939 0.829209i \(-0.311209\pi\)
\(182\) 3.36855 + 6.27493i 0.249694 + 0.465129i
\(183\) 0 0
\(184\) 6.58532 + 0.612729i 0.485476 + 0.0451710i
\(185\) 5.95519i 0.437834i
\(186\) 0 0
\(187\) 20.6725 1.51173
\(188\) −7.92462 + 11.9529i −0.577962 + 0.871755i
\(189\) 0 0
\(190\) −4.53659 8.45075i −0.329119 0.613082i
\(191\) 10.9536 0.792574 0.396287 0.918127i \(-0.370298\pi\)
0.396287 + 0.918127i \(0.370298\pi\)
\(192\) 0 0
\(193\) 3.55477 0.255878 0.127939 0.991782i \(-0.459164\pi\)
0.127939 + 0.991782i \(0.459164\pi\)
\(194\) 4.56693 + 8.50728i 0.327887 + 0.610787i
\(195\) 0 0
\(196\) 20.2916 30.6064i 1.44940 2.18617i
\(197\) 3.42987 0.244368 0.122184 0.992507i \(-0.461010\pi\)
0.122184 + 0.992507i \(0.461010\pi\)
\(198\) 0 0
\(199\) 8.30930i 0.589031i −0.955647 0.294515i \(-0.904842\pi\)
0.955647 0.294515i \(-0.0951582\pi\)
\(200\) −24.0792 2.24044i −1.70266 0.158423i
\(201\) 0 0
\(202\) −4.16283 7.75452i −0.292896 0.545606i
\(203\) 22.9655i 1.61186i
\(204\) 0 0
\(205\) 41.7143i 2.91345i
\(206\) 13.6082 7.30526i 0.948131 0.508982i
\(207\) 0 0
\(208\) −3.68441 + 1.55729i −0.255468 + 0.107978i
\(209\) 6.71575i 0.464538i
\(210\) 0 0
\(211\) −14.4537 −0.995035 −0.497518 0.867454i \(-0.665755\pi\)
−0.497518 + 0.867454i \(0.665755\pi\)
\(212\) 2.67180 4.02994i 0.183500 0.276777i
\(213\) 0 0
\(214\) 7.08352 3.80262i 0.484220 0.259942i
\(215\) −5.68790 −0.387912
\(216\) 0 0
\(217\) 51.4935 3.49560
\(218\) −5.22509 + 2.80497i −0.353888 + 0.189976i
\(219\) 0 0
\(220\) −22.3657 14.8282i −1.50790 0.999715i
\(221\) −5.67150 −0.381506
\(222\) 0 0
\(223\) 15.6375i 1.04716i −0.851976 0.523581i \(-0.824596\pi\)
0.851976 0.523581i \(-0.175404\pi\)
\(224\) 22.1830 + 17.8736i 1.48216 + 1.19423i
\(225\) 0 0
\(226\) −6.29655 + 3.38016i −0.418840 + 0.224845i
\(227\) 21.4645i 1.42465i 0.701852 + 0.712323i \(0.252357\pi\)
−0.701852 + 0.712323i \(0.747643\pi\)
\(228\) 0 0
\(229\) 7.07271i 0.467378i −0.972311 0.233689i \(-0.924920\pi\)
0.972311 0.233689i \(-0.0750798\pi\)
\(230\) −5.75750 10.7251i −0.379638 0.707190i
\(231\) 0 0
\(232\) −12.8430 1.19497i −0.843185 0.0784539i
\(233\) 11.3692i 0.744822i −0.928068 0.372411i \(-0.878531\pi\)
0.928068 0.372411i \(-0.121469\pi\)
\(234\) 0 0
\(235\) 26.3954 1.72184
\(236\) −12.8187 8.49863i −0.834426 0.553214i
\(237\) 0 0
\(238\) 19.1047 + 35.5883i 1.23838 + 2.30685i
\(239\) −1.08095 −0.0699210 −0.0349605 0.999389i \(-0.511131\pi\)
−0.0349605 + 0.999389i \(0.511131\pi\)
\(240\) 0 0
\(241\) 19.1818 1.23561 0.617803 0.786333i \(-0.288023\pi\)
0.617803 + 0.786333i \(0.288023\pi\)
\(242\) −1.52905 2.84832i −0.0982913 0.183097i
\(243\) 0 0
\(244\) 17.9420 + 11.8953i 1.14862 + 0.761521i
\(245\) −67.5874 −4.31800
\(246\) 0 0
\(247\) 1.84246i 0.117233i
\(248\) −2.67938 + 28.7967i −0.170141 + 1.82859i
\(249\) 0 0
\(250\) 8.74109 + 16.2829i 0.552835 + 1.02982i
\(251\) 24.2949i 1.53348i −0.641956 0.766741i \(-0.721877\pi\)
0.641956 0.766741i \(-0.278123\pi\)
\(252\) 0 0
\(253\) 8.52314i 0.535845i
\(254\) −5.58372 + 2.99749i −0.350354 + 0.188079i
\(255\) 0 0
\(256\) −11.1497 + 11.4754i −0.696857 + 0.717210i
\(257\) 1.24472i 0.0776433i −0.999246 0.0388217i \(-0.987640\pi\)
0.999246 0.0388217i \(-0.0123604\pi\)
\(258\) 0 0
\(259\) −8.14720 −0.506242
\(260\) 6.13602 + 4.06810i 0.380540 + 0.252293i
\(261\) 0 0
\(262\) 9.49916 5.09940i 0.586860 0.315042i
\(263\) −0.293106 −0.0180737 −0.00903685 0.999959i \(-0.502877\pi\)
−0.00903685 + 0.999959i \(0.502877\pi\)
\(264\) 0 0
\(265\) −8.89924 −0.546676
\(266\) 11.5613 6.20643i 0.708871 0.380540i
\(267\) 0 0
\(268\) −1.79633 + 2.70945i −0.109728 + 0.165506i
\(269\) −24.4807 −1.49261 −0.746307 0.665602i \(-0.768175\pi\)
−0.746307 + 0.665602i \(0.768175\pi\)
\(270\) 0 0
\(271\) 8.63161i 0.524333i 0.965023 + 0.262167i \(0.0844370\pi\)
−0.965023 + 0.262167i \(0.915563\pi\)
\(272\) −20.8961 + 8.83216i −1.26701 + 0.535528i
\(273\) 0 0
\(274\) −21.5922 + 11.5913i −1.30443 + 0.700253i
\(275\) 31.1648i 1.87931i
\(276\) 0 0
\(277\) 27.9090i 1.67689i 0.544985 + 0.838446i \(0.316535\pi\)
−0.544985 + 0.838446i \(0.683465\pi\)
\(278\) 5.27718 + 9.83033i 0.316504 + 0.589584i
\(279\) 0 0
\(280\) 4.85756 52.2067i 0.290295 3.11995i
\(281\) 17.0623i 1.01785i −0.860811 0.508926i \(-0.830043\pi\)
0.860811 0.508926i \(-0.169957\pi\)
\(282\) 0 0
\(283\) −20.4942 −1.21826 −0.609128 0.793072i \(-0.708481\pi\)
−0.609128 + 0.793072i \(0.708481\pi\)
\(284\) −7.18412 + 10.8360i −0.426299 + 0.642998i
\(285\) 0 0
\(286\) 2.43813 + 4.54174i 0.144169 + 0.268559i
\(287\) −57.0686 −3.36865
\(288\) 0 0
\(289\) −15.1659 −0.892113
\(290\) 11.2286 + 20.9166i 0.659364 + 1.22826i
\(291\) 0 0
\(292\) −8.26446 + 12.4655i −0.483641 + 0.729489i
\(293\) 22.6573 1.32366 0.661828 0.749656i \(-0.269781\pi\)
0.661828 + 0.749656i \(0.269781\pi\)
\(294\) 0 0
\(295\) 28.3073i 1.64811i
\(296\) 0.423926 4.55615i 0.0246402 0.264821i
\(297\) 0 0
\(298\) −3.67892 6.85308i −0.213114 0.396988i
\(299\) 2.33832i 0.135228i
\(300\) 0 0
\(301\) 7.78152i 0.448520i
\(302\) 2.31691 1.24378i 0.133323 0.0715714i
\(303\) 0 0
\(304\) 2.86924 + 6.78838i 0.164562 + 0.389340i
\(305\) 39.6210i 2.26869i
\(306\) 0 0
\(307\) −19.7184 −1.12539 −0.562695 0.826664i \(-0.690236\pi\)
−0.562695 + 0.826664i \(0.690236\pi\)
\(308\) 20.2862 30.5982i 1.15591 1.74349i
\(309\) 0 0
\(310\) 46.8993 25.1768i 2.66370 1.42994i
\(311\) −14.8987 −0.844826 −0.422413 0.906404i \(-0.638817\pi\)
−0.422413 + 0.906404i \(0.638817\pi\)
\(312\) 0 0
\(313\) 12.3374 0.697350 0.348675 0.937244i \(-0.386632\pi\)
0.348675 + 0.937244i \(0.386632\pi\)
\(314\) 9.33767 5.01271i 0.526955 0.282884i
\(315\) 0 0
\(316\) −9.79602 6.49463i −0.551069 0.365351i
\(317\) 5.04413 0.283307 0.141653 0.989916i \(-0.454758\pi\)
0.141653 + 0.989916i \(0.454758\pi\)
\(318\) 0 0
\(319\) 16.6222i 0.930667i
\(320\) 28.9428 + 5.43299i 1.61795 + 0.303713i
\(321\) 0 0
\(322\) 14.6728 7.87674i 0.817682 0.438953i
\(323\) 10.4495i 0.581427i
\(324\) 0 0
\(325\) 8.55005i 0.474272i
\(326\) −14.3247 26.6841i −0.793374 1.47790i
\(327\) 0 0
\(328\) 2.96947 31.9145i 0.163962 1.76218i
\(329\) 36.1110i 1.99087i
\(330\) 0 0
\(331\) −13.2874 −0.730344 −0.365172 0.930940i \(-0.618990\pi\)
−0.365172 + 0.930940i \(0.618990\pi\)
\(332\) 2.09515 + 1.38906i 0.114986 + 0.0762344i
\(333\) 0 0
\(334\) 9.14027 + 17.0265i 0.500133 + 0.931648i
\(335\) 5.98322 0.326898
\(336\) 0 0
\(337\) −13.9595 −0.760424 −0.380212 0.924899i \(-0.624149\pi\)
−0.380212 + 0.924899i \(0.624149\pi\)
\(338\) −0.668898 1.24602i −0.0363833 0.0677748i
\(339\) 0 0
\(340\) 34.8005 + 23.0722i 1.88732 + 1.25127i
\(341\) 37.2705 2.01831
\(342\) 0 0
\(343\) 57.2134i 3.08923i
\(344\) 4.35166 + 0.404899i 0.234626 + 0.0218307i
\(345\) 0 0
\(346\) 10.8069 + 20.1310i 0.580980 + 1.08225i
\(347\) 18.7966i 1.00905i −0.863396 0.504526i \(-0.831667\pi\)
0.863396 0.504526i \(-0.168333\pi\)
\(348\) 0 0
\(349\) 29.1945i 1.56275i −0.624065 0.781373i \(-0.714520\pi\)
0.624065 0.781373i \(-0.285480\pi\)
\(350\) −53.6510 + 28.8013i −2.86777 + 1.53949i
\(351\) 0 0
\(352\) 16.0558 + 12.9368i 0.855779 + 0.689531i
\(353\) 18.4044i 0.979566i −0.871844 0.489783i \(-0.837076\pi\)
0.871844 0.489783i \(-0.162924\pi\)
\(354\) 0 0
\(355\) 23.9289 1.27001
\(356\) −1.85431 1.22938i −0.0982782 0.0651571i
\(357\) 0 0
\(358\) −0.814470 + 0.437229i −0.0430461 + 0.0231083i
\(359\) 20.7408 1.09466 0.547328 0.836918i \(-0.315645\pi\)
0.547328 + 0.836918i \(0.315645\pi\)
\(360\) 0 0
\(361\) −15.6053 −0.821333
\(362\) 27.8009 14.9243i 1.46118 0.784403i
\(363\) 0 0
\(364\) −5.56550 + 8.39459i −0.291711 + 0.439996i
\(365\) 27.5273 1.44085
\(366\) 0 0
\(367\) 2.93048i 0.152970i 0.997071 + 0.0764848i \(0.0243697\pi\)
−0.997071 + 0.0764848i \(0.975630\pi\)
\(368\) 3.64143 + 8.61531i 0.189823 + 0.449104i
\(369\) 0 0
\(370\) −7.42031 + 3.98342i −0.385764 + 0.207088i
\(371\) 12.1749i 0.632089i
\(372\) 0 0
\(373\) 15.3057i 0.792497i 0.918143 + 0.396248i \(0.129688\pi\)
−0.918143 + 0.396248i \(0.870312\pi\)
\(374\) 13.8278 + 25.7585i 0.715020 + 1.33194i
\(375\) 0 0
\(376\) −20.1944 1.87898i −1.04145 0.0969010i
\(377\) 4.56030i 0.234868i
\(378\) 0 0
\(379\) −26.5979 −1.36624 −0.683121 0.730305i \(-0.739378\pi\)
−0.683121 + 0.730305i \(0.739378\pi\)
\(380\) 7.49532 11.3054i 0.384502 0.579954i
\(381\) 0 0
\(382\) 7.32684 + 13.6484i 0.374874 + 0.698315i
\(383\) 20.1991 1.03213 0.516063 0.856551i \(-0.327397\pi\)
0.516063 + 0.856551i \(0.327397\pi\)
\(384\) 0 0
\(385\) −67.5693 −3.44365
\(386\) 2.37778 + 4.42933i 0.121026 + 0.225447i
\(387\) 0 0
\(388\) −7.54546 + 11.3810i −0.383063 + 0.577784i
\(389\) −6.68598 −0.338992 −0.169496 0.985531i \(-0.554214\pi\)
−0.169496 + 0.985531i \(0.554214\pi\)
\(390\) 0 0
\(391\) 13.2618i 0.670676i
\(392\) 51.7093 + 4.81128i 2.61171 + 0.243006i
\(393\) 0 0
\(394\) 2.29424 + 4.27370i 0.115582 + 0.215306i
\(395\) 21.6323i 1.08844i
\(396\) 0 0
\(397\) 21.4797i 1.07803i −0.842295 0.539016i \(-0.818796\pi\)
0.842295 0.539016i \(-0.181204\pi\)
\(398\) 10.3536 5.55808i 0.518978 0.278601i
\(399\) 0 0
\(400\) −13.3149 31.5019i −0.665745 1.57509i
\(401\) 9.82187i 0.490481i −0.969462 0.245240i \(-0.921133\pi\)
0.969462 0.245240i \(-0.0788669\pi\)
\(402\) 0 0
\(403\) −10.2251 −0.509351
\(404\) 6.87781 10.3740i 0.342184 0.516125i
\(405\) 0 0
\(406\) −28.6156 + 15.3616i −1.42017 + 0.762384i
\(407\) −5.89687 −0.292297
\(408\) 0 0
\(409\) −36.5607 −1.80781 −0.903905 0.427734i \(-0.859312\pi\)
−0.903905 + 0.427734i \(0.859312\pi\)
\(410\) −51.9770 + 27.9026i −2.56696 + 1.37801i
\(411\) 0 0
\(412\) 18.2051 + 12.0697i 0.896898 + 0.594632i
\(413\) −38.7267 −1.90562
\(414\) 0 0
\(415\) 4.62668i 0.227115i
\(416\) −4.40491 3.54919i −0.215969 0.174013i
\(417\) 0 0
\(418\) 8.36799 4.49216i 0.409292 0.219718i
\(419\) 35.9043i 1.75404i −0.480453 0.877021i \(-0.659528\pi\)
0.480453 0.877021i \(-0.340472\pi\)
\(420\) 0 0
\(421\) 14.5773i 0.710453i 0.934780 + 0.355227i \(0.115596\pi\)
−0.934780 + 0.355227i \(0.884404\pi\)
\(422\) −9.66807 18.0097i −0.470634 0.876697i
\(423\) 0 0
\(424\) 6.80856 + 0.633501i 0.330653 + 0.0307655i
\(425\) 48.4916i 2.35219i
\(426\) 0 0
\(427\) 54.2049 2.62316
\(428\) 9.47631 + 6.28267i 0.458055 + 0.303684i
\(429\) 0 0
\(430\) −3.80463 7.08726i −0.183476 0.341778i
\(431\) −10.4588 −0.503783 −0.251891 0.967756i \(-0.581053\pi\)
−0.251891 + 0.967756i \(0.581053\pi\)
\(432\) 0 0
\(433\) 10.4427 0.501844 0.250922 0.968007i \(-0.419266\pi\)
0.250922 + 0.968007i \(0.419266\pi\)
\(434\) 34.4439 + 64.1621i 1.65336 + 3.07988i
\(435\) 0 0
\(436\) −6.99011 4.63435i −0.334766 0.221945i
\(437\) 4.30826 0.206092
\(438\) 0 0
\(439\) 0.817762i 0.0390296i 0.999810 + 0.0195148i \(0.00621216\pi\)
−0.999810 + 0.0195148i \(0.993788\pi\)
\(440\) 3.51586 37.7868i 0.167612 1.80141i
\(441\) 0 0
\(442\) −3.79366 7.06682i −0.180446 0.336135i
\(443\) 11.2120i 0.532700i 0.963876 + 0.266350i \(0.0858177\pi\)
−0.963876 + 0.266350i \(0.914182\pi\)
\(444\) 0 0
\(445\) 4.09483i 0.194114i
\(446\) 19.4847 10.4599i 0.922626 0.495290i
\(447\) 0 0
\(448\) −7.43278 + 39.5962i −0.351166 + 1.87074i
\(449\) 12.4892i 0.589404i −0.955589 0.294702i \(-0.904780\pi\)
0.955589 0.294702i \(-0.0952204\pi\)
\(450\) 0 0
\(451\) −41.3057 −1.94501
\(452\) −8.42351 5.58467i −0.396208 0.262681i
\(453\) 0 0
\(454\) −26.7452 + 14.3575i −1.25522 + 0.673833i
\(455\) 18.5376 0.869056
\(456\) 0 0
\(457\) −7.14195 −0.334086 −0.167043 0.985950i \(-0.553422\pi\)
−0.167043 + 0.985950i \(0.553422\pi\)
\(458\) 8.81277 4.73093i 0.411794 0.221062i
\(459\) 0 0
\(460\) 9.51251 14.3480i 0.443523 0.668977i
\(461\) −0.248079 −0.0115542 −0.00577710 0.999983i \(-0.501839\pi\)
−0.00577710 + 0.999983i \(0.501839\pi\)
\(462\) 0 0
\(463\) 13.7435i 0.638716i 0.947634 + 0.319358i \(0.103467\pi\)
−0.947634 + 0.319358i \(0.896533\pi\)
\(464\) −7.10170 16.8020i −0.329688 0.780014i
\(465\) 0 0
\(466\) 14.1663 7.60485i 0.656242 0.352288i
\(467\) 27.3218i 1.26430i 0.774845 + 0.632151i \(0.217828\pi\)
−0.774845 + 0.632151i \(0.782172\pi\)
\(468\) 0 0
\(469\) 8.18554i 0.377973i
\(470\) 17.6558 + 32.8893i 0.814402 + 1.51707i
\(471\) 0 0
\(472\) 2.01508 21.6571i 0.0927516 0.996850i
\(473\) 5.63220i 0.258969i
\(474\) 0 0
\(475\) −15.7532 −0.722804
\(476\) −31.5647 + 47.6099i −1.44677 + 2.18220i
\(477\) 0 0
\(478\) −0.723047 1.34689i −0.0330714 0.0616054i
\(479\) 1.34816 0.0615992 0.0307996 0.999526i \(-0.490195\pi\)
0.0307996 + 0.999526i \(0.490195\pi\)
\(480\) 0 0
\(481\) 1.61780 0.0737654
\(482\) 12.8307 + 23.9009i 0.584420 + 1.08866i
\(483\) 0 0
\(484\) 2.52629 3.81048i 0.114832 0.173203i
\(485\) 25.1325 1.14121
\(486\) 0 0
\(487\) 4.50149i 0.203982i −0.994785 0.101991i \(-0.967479\pi\)
0.994785 0.101991i \(-0.0325213\pi\)
\(488\) −2.82046 + 30.3130i −0.127676 + 1.37220i
\(489\) 0 0
\(490\) −45.2091 84.2155i −2.04234 3.80447i
\(491\) 10.2836i 0.464094i 0.972705 + 0.232047i \(0.0745424\pi\)
−0.972705 + 0.232047i \(0.925458\pi\)
\(492\) 0 0
\(493\) 25.8638i 1.16485i
\(494\) −2.29575 + 1.23242i −0.103291 + 0.0554492i
\(495\) 0 0
\(496\) −37.6736 + 15.9235i −1.69159 + 0.714986i
\(497\) 32.7367i 1.46844i
\(498\) 0 0
\(499\) −4.23698 −0.189673 −0.0948367 0.995493i \(-0.530233\pi\)
−0.0948367 + 0.995493i \(0.530233\pi\)
\(500\) −14.4420 + 21.7832i −0.645865 + 0.974175i
\(501\) 0 0
\(502\) 30.2721 16.2508i 1.35111 0.725311i
\(503\) −8.09287 −0.360843 −0.180422 0.983589i \(-0.557746\pi\)
−0.180422 + 0.983589i \(0.557746\pi\)
\(504\) 0 0
\(505\) −22.9086 −1.01942
\(506\) 10.6200 5.70111i 0.472118 0.253445i
\(507\) 0 0
\(508\) −7.46988 4.95243i −0.331422 0.219729i
\(509\) −23.8614 −1.05764 −0.528818 0.848735i \(-0.677365\pi\)
−0.528818 + 0.848735i \(0.677365\pi\)
\(510\) 0 0
\(511\) 37.6597i 1.66597i
\(512\) −21.7566 6.21695i −0.961515 0.274753i
\(513\) 0 0
\(514\) 1.55095 0.832589i 0.0684093 0.0367239i
\(515\) 40.2018i 1.77150i
\(516\) 0 0
\(517\) 26.1368i 1.14950i
\(518\) −5.44965 10.1516i −0.239444 0.446036i
\(519\) 0 0
\(520\) −0.964574 + 10.3668i −0.0422994 + 0.454613i
\(521\) 29.3962i 1.28787i 0.765080 + 0.643936i \(0.222700\pi\)
−0.765080 + 0.643936i \(0.777300\pi\)
\(522\) 0 0
\(523\) 33.2174 1.45250 0.726249 0.687432i \(-0.241262\pi\)
0.726249 + 0.687432i \(0.241262\pi\)
\(524\) 12.7079 + 8.42519i 0.555149 + 0.368056i
\(525\) 0 0
\(526\) −0.196058 0.365217i −0.00854854 0.0159242i
\(527\) −57.9919 −2.52617
\(528\) 0 0
\(529\) −17.5323 −0.762273
\(530\) −5.95268 11.0887i −0.258568 0.481661i
\(531\) 0 0
\(532\) 15.4667 + 10.2542i 0.670567 + 0.444577i
\(533\) 11.3322 0.490852
\(534\) 0 0
\(535\) 20.9263i 0.904725i
\(536\) −4.57760 0.425922i −0.197722 0.0183970i
\(537\) 0 0
\(538\) −16.3751 30.5035i −0.705981 1.31510i
\(539\) 66.9255i 2.88268i
\(540\) 0 0
\(541\) 17.4819i 0.751606i −0.926700 0.375803i \(-0.877367\pi\)
0.926700 0.375803i \(-0.122633\pi\)
\(542\) −10.7552 + 5.77367i −0.461975 + 0.248000i
\(543\) 0 0
\(544\) −24.9825 20.1292i −1.07111 0.863034i
\(545\) 15.4361i 0.661211i
\(546\) 0 0
\(547\) −24.8804 −1.06381 −0.531904 0.846805i \(-0.678523\pi\)
−0.531904 + 0.846805i \(0.678523\pi\)
\(548\) −28.8860 19.1510i −1.23395 0.818090i
\(549\) 0 0
\(550\) −38.8321 + 20.8461i −1.65581 + 0.888881i
\(551\) −8.40219 −0.357945
\(552\) 0 0
\(553\) −29.5948 −1.25850
\(554\) −34.7753 + 18.6683i −1.47746 + 0.793141i
\(555\) 0 0
\(556\) −8.71893 + 13.1510i −0.369765 + 0.557726i
\(557\) −6.63815 −0.281268 −0.140634 0.990062i \(-0.544914\pi\)
−0.140634 + 0.990062i \(0.544914\pi\)
\(558\) 0 0
\(559\) 1.54519i 0.0653546i
\(560\) 68.3000 28.8684i 2.88620 1.21991i
\(561\) 0 0
\(562\) 21.2600 11.4129i 0.896800 0.481426i
\(563\) 5.50030i 0.231810i −0.993260 0.115905i \(-0.963023\pi\)
0.993260 0.115905i \(-0.0369768\pi\)
\(564\) 0 0
\(565\) 18.6015i 0.782569i
\(566\) −13.7086 25.5363i −0.576214 1.07337i
\(567\) 0 0
\(568\) −18.3074 1.70340i −0.768160 0.0714732i
\(569\) 9.67742i 0.405699i 0.979210 + 0.202849i \(0.0650202\pi\)
−0.979210 + 0.202849i \(0.934980\pi\)
\(570\) 0 0
\(571\) 0.128939 0.00539593 0.00269796 0.999996i \(-0.499141\pi\)
0.00269796 + 0.999996i \(0.499141\pi\)
\(572\) −4.02826 + 6.07592i −0.168430 + 0.254047i
\(573\) 0 0
\(574\) −38.1731 71.1088i −1.59331 2.96803i
\(575\) −19.9927 −0.833755
\(576\) 0 0
\(577\) 12.6458 0.526450 0.263225 0.964734i \(-0.415214\pi\)
0.263225 + 0.964734i \(0.415214\pi\)
\(578\) −10.1445 18.8971i −0.421954 0.786015i
\(579\) 0 0
\(580\) −18.5518 + 27.9821i −0.770320 + 1.16189i
\(581\) 6.32968 0.262599
\(582\) 0 0
\(583\) 8.81207i 0.364959i
\(584\) −21.0604 1.95956i −0.871486 0.0810872i
\(585\) 0 0
\(586\) 15.1554 + 28.2316i 0.626066 + 1.16624i
\(587\) 3.64701i 0.150528i 0.997164 + 0.0752640i \(0.0239800\pi\)
−0.997164 + 0.0752640i \(0.976020\pi\)
\(588\) 0 0
\(589\) 18.8394i 0.776266i
\(590\) −35.2715 + 18.9347i −1.45211 + 0.779529i
\(591\) 0 0
\(592\) 5.96064 2.51938i 0.244981 0.103546i
\(593\) 43.0021i 1.76588i 0.469483 + 0.882941i \(0.344440\pi\)
−0.469483 + 0.882941i \(0.655560\pi\)
\(594\) 0 0
\(595\) 105.136 4.31015
\(596\) 6.07828 9.16803i 0.248976 0.375537i
\(597\) 0 0
\(598\) −2.91360 + 1.56410i −0.119146 + 0.0639607i
\(599\) −10.2243 −0.417752 −0.208876 0.977942i \(-0.566981\pi\)
−0.208876 + 0.977942i \(0.566981\pi\)
\(600\) 0 0
\(601\) 35.2405 1.43749 0.718744 0.695275i \(-0.244717\pi\)
0.718744 + 0.695275i \(0.244717\pi\)
\(602\) 9.69596 5.20505i 0.395178 0.212142i
\(603\) 0 0
\(604\) 3.09955 + 2.05496i 0.126119 + 0.0836152i
\(605\) −8.41460 −0.342102
\(606\) 0 0
\(607\) 25.5242i 1.03600i 0.855382 + 0.517998i \(0.173322\pi\)
−0.855382 + 0.517998i \(0.826678\pi\)
\(608\) −6.53925 + 8.11588i −0.265202 + 0.329143i
\(609\) 0 0
\(610\) 49.3688 26.5025i 1.99888 1.07305i
\(611\) 7.17063i 0.290093i
\(612\) 0 0
\(613\) 44.9278i 1.81462i 0.420467 + 0.907308i \(0.361866\pi\)
−0.420467 + 0.907308i \(0.638134\pi\)
\(614\) −13.1896 24.5696i −0.532290 0.991550i
\(615\) 0 0
\(616\) 51.6954 + 4.80999i 2.08287 + 0.193800i
\(617\) 33.7645i 1.35931i 0.733532 + 0.679655i \(0.237870\pi\)
−0.733532 + 0.679655i \(0.762130\pi\)
\(618\) 0 0
\(619\) −3.68450 −0.148093 −0.0740463 0.997255i \(-0.523591\pi\)
−0.0740463 + 0.997255i \(0.523591\pi\)
\(620\) 62.7417 + 41.5969i 2.51977 + 1.67057i
\(621\) 0 0
\(622\) −9.96569 18.5641i −0.399588 0.744352i
\(623\) −5.60207 −0.224442
\(624\) 0 0
\(625\) 5.35316 0.214126
\(626\) 8.25246 + 15.3727i 0.329835 + 0.614416i
\(627\) 0 0
\(628\) 12.4919 + 8.28197i 0.498481 + 0.330486i
\(629\) 9.17536 0.365846
\(630\) 0 0
\(631\) 10.1326i 0.403373i −0.979450 0.201687i \(-0.935358\pi\)
0.979450 0.201687i \(-0.0646423\pi\)
\(632\) 1.53992 16.5503i 0.0612547 0.658336i
\(633\) 0 0
\(634\) 3.37401 + 6.28511i 0.133999 + 0.249614i
\(635\) 16.4956i 0.654608i
\(636\) 0 0
\(637\) 18.3610i 0.727488i
\(638\) −20.7117 + 11.1186i −0.819984 + 0.440189i
\(639\) 0 0
\(640\) 12.5902 + 39.6975i 0.497670 + 1.56918i
\(641\) 11.5800i 0.457383i 0.973499 + 0.228692i \(0.0734447\pi\)
−0.973499 + 0.228692i \(0.926555\pi\)
\(642\) 0 0
\(643\) −37.5537 −1.48097 −0.740486 0.672072i \(-0.765405\pi\)
−0.740486 + 0.672072i \(0.765405\pi\)
\(644\) 19.6292 + 13.0139i 0.773499 + 0.512819i
\(645\) 0 0
\(646\) −13.0204 + 6.98967i −0.512279 + 0.275005i
\(647\) 34.7651 1.36676 0.683378 0.730065i \(-0.260510\pi\)
0.683378 + 0.730065i \(0.260510\pi\)
\(648\) 0 0
\(649\) −28.0300 −1.10027
\(650\) 10.6536 5.71912i 0.417867 0.224322i
\(651\) 0 0
\(652\) 23.6672 35.6979i 0.926881 1.39804i
\(653\) 5.37682 0.210411 0.105206 0.994450i \(-0.466450\pi\)
0.105206 + 0.994450i \(0.466450\pi\)
\(654\) 0 0
\(655\) 28.0627i 1.09650i
\(656\) 41.7525 17.6475i 1.63016 0.689019i
\(657\) 0 0
\(658\) −44.9952 + 24.1546i −1.75410 + 0.941645i
\(659\) 36.1020i 1.40633i 0.711024 + 0.703167i \(0.248232\pi\)
−0.711024 + 0.703167i \(0.751768\pi\)
\(660\) 0 0
\(661\) 20.2346i 0.787033i 0.919317 + 0.393517i \(0.128742\pi\)
−0.919317 + 0.393517i \(0.871258\pi\)
\(662\) −8.88795 16.5565i −0.345440 0.643486i
\(663\) 0 0
\(664\) −0.329355 + 3.53974i −0.0127814 + 0.137369i
\(665\) 34.1548i 1.32447i
\(666\) 0 0
\(667\) −10.6634 −0.412890
\(668\) −15.1015 + 22.7780i −0.584294 + 0.881306i
\(669\) 0 0
\(670\) 4.00217 + 7.45524i 0.154617 + 0.288021i
\(671\) 39.2330 1.51457
\(672\) 0 0
\(673\) 6.18244 0.238316 0.119158 0.992875i \(-0.461981\pi\)
0.119158 + 0.992875i \(0.461981\pi\)
\(674\) −9.33750 17.3939i −0.359667 0.669988i
\(675\) 0 0
\(676\) 1.10515 1.66693i 0.0425058 0.0641126i
\(677\) −43.2294 −1.66144 −0.830720 0.556691i \(-0.812071\pi\)
−0.830720 + 0.556691i \(0.812071\pi\)
\(678\) 0 0
\(679\) 34.3833i 1.31951i
\(680\) −5.47058 + 58.7952i −0.209787 + 2.25469i
\(681\) 0 0
\(682\) 24.9302 + 46.4399i 0.954626 + 1.77828i
\(683\) 1.60920i 0.0615745i 0.999526 + 0.0307872i \(0.00980143\pi\)
−0.999526 + 0.0307872i \(0.990199\pi\)
\(684\) 0 0
\(685\) 63.7883i 2.43722i
\(686\) 71.2893 38.2700i 2.72184 1.46115i
\(687\) 0 0
\(688\) 2.40630 + 5.69311i 0.0917395 + 0.217048i
\(689\) 2.41759i 0.0921028i
\(690\) 0 0
\(691\) −30.7774 −1.17083 −0.585413 0.810735i \(-0.699068\pi\)
−0.585413 + 0.810735i \(0.699068\pi\)
\(692\) −17.8550 + 26.9312i −0.678746 + 1.02377i
\(693\) 0 0
\(694\) 23.4210 12.5730i 0.889048 0.477264i
\(695\) 29.0411 1.10159
\(696\) 0 0
\(697\) 64.2706 2.43442
\(698\) 36.3770 19.5282i 1.37689 0.739151i
\(699\) 0 0
\(700\) −71.7742 47.5853i −2.71281 1.79856i
\(701\) 34.1094 1.28829 0.644147 0.764902i \(-0.277213\pi\)
0.644147 + 0.764902i \(0.277213\pi\)
\(702\) 0 0
\(703\) 2.98074i 0.112421i
\(704\) −5.37978 + 28.6593i −0.202758 + 1.08014i
\(705\) 0 0
\(706\) 22.9323 12.3107i 0.863068 0.463318i
\(707\) 31.3409i 1.17870i
\(708\) 0 0
\(709\) 40.8849i 1.53546i −0.640772 0.767731i \(-0.721386\pi\)
0.640772 0.767731i \(-0.278614\pi\)
\(710\) 16.0060 + 29.8160i 0.600695 + 1.11897i
\(711\) 0 0
\(712\) 0.291495 3.13284i 0.0109242 0.117408i
\(713\) 23.9096i 0.895422i
\(714\) 0 0
\(715\) 13.4173 0.501780
\(716\) −1.08959 0.722387i −0.0407201 0.0269969i
\(717\) 0 0
\(718\) 13.8735 + 25.8435i 0.517753 + 0.964471i
\(719\) 4.94266 0.184330 0.0921651 0.995744i \(-0.470621\pi\)
0.0921651 + 0.995744i \(0.470621\pi\)
\(720\) 0 0
\(721\) 54.9994 2.04829
\(722\) −10.4384 19.4446i −0.388476 0.723654i
\(723\) 0 0
\(724\) 37.1920 + 24.6578i 1.38223 + 0.916400i
\(725\) 38.9908 1.44808
\(726\) 0 0
\(727\) 38.8777i 1.44189i −0.692991 0.720946i \(-0.743707\pi\)
0.692991 0.720946i \(-0.256293\pi\)
\(728\) −14.1826 1.31962i −0.525642 0.0489083i
\(729\) 0 0
\(730\) 18.4130 + 34.2997i 0.681495 + 1.26949i
\(731\) 8.76354i 0.324131i
\(732\) 0 0
\(733\) 26.9534i 0.995548i 0.867307 + 0.497774i \(0.165849\pi\)
−0.867307 + 0.497774i \(0.834151\pi\)
\(734\) −3.65144 + 1.96019i −0.134777 + 0.0723520i
\(735\) 0 0
\(736\) −8.29913 + 10.3001i −0.305910 + 0.379666i
\(737\) 5.92462i 0.218236i
\(738\) 0 0
\(739\) 31.3793 1.15431 0.577153 0.816636i \(-0.304163\pi\)
0.577153 + 0.816636i \(0.304163\pi\)
\(740\) −9.92687 6.58138i −0.364919 0.241936i
\(741\) 0 0
\(742\) 15.1702 8.14376i 0.556916 0.298967i
\(743\) −11.9414 −0.438087 −0.219043 0.975715i \(-0.570294\pi\)
−0.219043 + 0.975715i \(0.570294\pi\)
\(744\) 0 0
\(745\) −20.2456 −0.741741
\(746\) −19.0712 + 10.2379i −0.698247 + 0.374837i
\(747\) 0 0
\(748\) −22.8463 + 34.4596i −0.835342 + 1.25997i
\(749\) 28.6290 1.04608
\(750\) 0 0
\(751\) 54.1741i 1.97684i −0.151742 0.988420i \(-0.548488\pi\)
0.151742 0.988420i \(-0.451512\pi\)
\(752\) −11.1667 26.4195i −0.407209 0.963420i
\(753\) 0 0
\(754\) 5.68225 3.05038i 0.206935 0.111088i
\(755\) 6.84468i 0.249103i
\(756\) 0 0
\(757\) 42.7529i 1.55388i −0.629573 0.776941i \(-0.716770\pi\)
0.629573 0.776941i \(-0.283230\pi\)
\(758\) −17.7913 33.1416i −0.646209 1.20376i
\(759\) 0 0
\(760\) 19.1004 + 1.77719i 0.692844 + 0.0644655i
\(761\) 43.7611i 1.58634i −0.609002 0.793169i \(-0.708430\pi\)
0.609002 0.793169i \(-0.291570\pi\)
\(762\) 0 0
\(763\) −21.1179 −0.764519
\(764\) −12.1054 + 18.2588i −0.437957 + 0.660582i
\(765\) 0 0
\(766\) 13.5111 + 25.1685i 0.488177 + 0.909376i
\(767\) 7.69002 0.277671
\(768\) 0 0
\(769\) 15.5085 0.559251 0.279625 0.960109i \(-0.409790\pi\)
0.279625 + 0.960109i \(0.409790\pi\)
\(770\) −45.1970 84.1929i −1.62879 3.03410i
\(771\) 0 0
\(772\) −3.92856 + 5.92554i −0.141392 + 0.213265i
\(773\) −27.7466 −0.997976 −0.498988 0.866609i \(-0.666295\pi\)
−0.498988 + 0.866609i \(0.666295\pi\)
\(774\) 0 0
\(775\) 87.4255i 3.14042i
\(776\) −19.2282 1.78908i −0.690251 0.0642242i
\(777\) 0 0
\(778\) −4.47224 8.33088i −0.160338 0.298677i
\(779\) 20.8792i 0.748074i
\(780\) 0 0
\(781\) 23.6945i 0.847858i
\(782\) −16.5245 + 8.87078i −0.590914 + 0.317218i
\(783\) 0 0
\(784\) 28.5933 + 67.6493i 1.02119 + 2.41604i
\(785\) 27.5856i 0.984573i
\(786\) 0 0
\(787\) −15.5184 −0.553170 −0.276585 0.960989i \(-0.589203\pi\)
−0.276585 + 0.960989i \(0.589203\pi\)
\(788\) −3.79053 + 5.71735i −0.135032 + 0.203672i
\(789\) 0 0
\(790\) −26.9544 + 14.4698i −0.958995 + 0.514814i
\(791\) −25.4483 −0.904839
\(792\) 0 0
\(793\) −10.7635 −0.382225
\(794\) 26.7642 14.3677i 0.949824 0.509891i
\(795\) 0 0
\(796\) 13.8510 + 9.18302i 0.490935 + 0.325483i
\(797\) 25.0216 0.886312 0.443156 0.896445i \(-0.353859\pi\)
0.443156 + 0.896445i \(0.353859\pi\)
\(798\) 0 0
\(799\) 40.6682i 1.43874i
\(800\) 30.3458 37.6622i 1.07289 1.33156i
\(801\) 0 0
\(802\) 12.2383 6.56983i 0.432149 0.231989i
\(803\) 27.2577i 0.961904i
\(804\) 0 0
\(805\) 43.3468i 1.52777i
\(806\) −6.83958 12.7408i −0.240914 0.448774i
\(807\) 0 0
\(808\) 17.5268 + 1.63077i 0.616590 + 0.0573704i
\(809\) 31.6832i 1.11392i 0.830539 + 0.556960i \(0.188032\pi\)
−0.830539 + 0.556960i \(0.811968\pi\)
\(810\) 0 0
\(811\) −47.7481 −1.67666 −0.838331 0.545161i \(-0.816468\pi\)
−0.838331 + 0.545161i \(0.816468\pi\)
\(812\) −38.2819 25.3804i −1.34343 0.890676i
\(813\) 0 0
\(814\) −3.94440 7.34763i −0.138251 0.257534i
\(815\) −78.8310 −2.76133
\(816\) 0 0
\(817\) 2.84695 0.0996023
\(818\) −24.4554 45.5555i −0.855062 1.59281i
\(819\) 0 0
\(820\) −69.5347 46.1005i −2.42826 1.60990i
\(821\) 13.8464 0.483242 0.241621 0.970371i \(-0.422321\pi\)
0.241621 + 0.970371i \(0.422321\pi\)
\(822\) 0 0
\(823\) 30.2978i 1.05611i −0.849209 0.528057i \(-0.822921\pi\)
0.849209 0.528057i \(-0.177079\pi\)
\(824\) −2.86181 + 30.7573i −0.0996958 + 1.07148i
\(825\) 0 0
\(826\) −25.9042 48.2544i −0.901323 1.67898i
\(827\) 15.4604i 0.537611i −0.963195 0.268805i \(-0.913371\pi\)
0.963195 0.268805i \(-0.0866288\pi\)
\(828\) 0 0
\(829\) 17.3407i 0.602266i −0.953582 0.301133i \(-0.902635\pi\)
0.953582 0.301133i \(-0.0973649\pi\)
\(830\) 5.76495 3.09478i 0.200104 0.107421i
\(831\) 0 0
\(832\) 1.47594 7.86267i 0.0511689 0.272589i
\(833\) 104.134i 3.60804i
\(834\) 0 0
\(835\) 50.3001 1.74071
\(836\) 11.1947 + 7.42191i 0.387176 + 0.256692i
\(837\) 0 0
\(838\) 44.7376 24.0164i 1.54544 0.829631i
\(839\) −15.1899 −0.524414 −0.262207 0.965012i \(-0.584450\pi\)
−0.262207 + 0.965012i \(0.584450\pi\)
\(840\) 0 0
\(841\) −8.20364 −0.282884
\(842\) −18.1636 + 9.75072i −0.625960 + 0.336032i
\(843\) 0 0
\(844\) 15.9735 24.0933i 0.549831 0.829325i
\(845\) −3.68104 −0.126632
\(846\) 0 0
\(847\) 11.5119i 0.395552i
\(848\) 3.76488 + 8.90738i 0.129286 + 0.305881i
\(849\) 0 0
\(850\) 60.4217 32.4360i 2.07245 1.11254i
\(851\) 3.78293i 0.129677i
\(852\) 0 0
\(853\) 47.8191i 1.63730i 0.574295 + 0.818648i \(0.305276\pi\)
−0.574295 + 0.818648i \(0.694724\pi\)
\(854\) 36.2575 + 67.5405i 1.24071 + 2.31119i
\(855\) 0 0
\(856\) −1.48966 + 16.0102i −0.0509156 + 0.547217i
\(857\) 31.9686i 1.09203i −0.837776 0.546013i \(-0.816145\pi\)
0.837776 0.546013i \(-0.183855\pi\)
\(858\) 0 0
\(859\) −16.9344 −0.577794 −0.288897 0.957360i \(-0.593289\pi\)
−0.288897 + 0.957360i \(0.593289\pi\)
\(860\) 6.28599 9.48132i 0.214350 0.323310i
\(861\) 0 0
\(862\) −6.99587 13.0319i −0.238280 0.443869i
\(863\) −6.87079 −0.233885 −0.116942 0.993139i \(-0.537309\pi\)
−0.116942 + 0.993139i \(0.537309\pi\)
\(864\) 0 0
\(865\) 59.4716 2.02209
\(866\) 6.98510 + 13.0118i 0.237363 + 0.442161i
\(867\) 0 0
\(868\) −56.9080 + 85.8358i −1.93158 + 2.91346i
\(869\) −21.4205 −0.726640
\(870\) 0 0
\(871\) 1.62542i 0.0550751i
\(872\) 1.09884 11.8098i 0.0372113 0.399929i
\(873\) 0 0
\(874\) 2.88179 + 5.36820i 0.0974780 + 0.181582i
\(875\) 65.8095i 2.22477i
\(876\) 0 0
\(877\) 30.8633i 1.04218i −0.853502 0.521090i \(-0.825525\pi\)
0.853502 0.521090i \(-0.174475\pi\)
\(878\) −1.01895 + 0.547000i −0.0343879 + 0.0184603i
\(879\) 0 0
\(880\) 49.4349 20.8947i 1.66645 0.704359i
\(881\) 34.4698i 1.16132i 0.814147 + 0.580659i \(0.197205\pi\)
−0.814147 + 0.580659i \(0.802795\pi\)
\(882\) 0 0
\(883\) 57.4034 1.93178 0.965889 0.258958i \(-0.0833790\pi\)
0.965889 + 0.258958i \(0.0833790\pi\)
\(884\) 6.26786 9.45397i 0.210811 0.317972i
\(885\) 0 0
\(886\) −13.9705 + 7.49971i −0.469347 + 0.251958i
\(887\) 53.5228 1.79712 0.898561 0.438849i \(-0.144614\pi\)
0.898561 + 0.438849i \(0.144614\pi\)
\(888\) 0 0
\(889\) −22.5673 −0.756884
\(890\) −5.10226 + 2.73903i −0.171028 + 0.0918124i
\(891\) 0 0
\(892\) 26.0665 + 17.2818i 0.872772 + 0.578636i
\(893\) −13.2116 −0.442110
\(894\) 0 0
\(895\) 2.40613i 0.0804281i
\(896\) −54.3095 + 17.2244i −1.81435 + 0.575426i
\(897\) 0 0
\(898\) 15.5619 8.35404i 0.519307 0.278778i
\(899\) 46.6297i 1.55519i
\(900\) 0 0
\(901\) 13.7113i 0.456791i
\(902\) −27.6293 51.4679i −0.919956 1.71369i
\(903\) 0 0
\(904\) 1.32416 14.2315i 0.0440410 0.473332i
\(905\) 82.1303i 2.73011i
\(906\) 0 0
\(907\) −10.1576 −0.337279 −0.168639 0.985678i \(-0.553937\pi\)
−0.168639 + 0.985678i \(0.553937\pi\)
\(908\) −35.7797 23.7214i −1.18739 0.787224i
\(909\) 0 0
\(910\) 12.3998 + 23.0983i 0.411048 + 0.765701i
\(911\) 17.4313 0.577525 0.288762 0.957401i \(-0.406756\pi\)
0.288762 + 0.957401i \(0.406756\pi\)
\(912\) 0 0
\(913\) 4.58136 0.151621
\(914\) −4.77724 8.89904i −0.158017 0.294354i
\(915\) 0 0
\(916\) 11.7897 + 7.81641i 0.389542 + 0.258261i
\(917\) 38.3921 1.26782
\(918\) 0 0
\(919\) 36.5971i 1.20723i −0.797277 0.603613i \(-0.793727\pi\)
0.797277 0.603613i \(-0.206273\pi\)
\(920\) 24.2408 + 2.25548i 0.799196 + 0.0743610i
\(921\) 0 0
\(922\) −0.165940 0.309113i −0.00546494 0.0101801i
\(923\) 6.50058i 0.213969i
\(924\) 0 0
\(925\) 13.8323i 0.454803i
\(926\) −17.1248 + 9.19303i −0.562755 + 0.302102i
\(927\) 0 0
\(928\) 16.1854 20.0877i 0.531311 0.659412i
\(929\) 3.06906i 0.100693i 0.998732 + 0.0503463i \(0.0160325\pi\)
−0.998732 + 0.0503463i \(0.983968\pi\)
\(930\) 0 0
\(931\) 33.8294 1.10871
\(932\) 18.9517 + 12.5647i 0.620782 + 0.411570i
\(933\) 0 0
\(934\) −34.0436 + 18.2755i −1.11394 + 0.597993i
\(935\) 76.0965 2.48862
\(936\) 0 0
\(937\) −1.04578 −0.0341642 −0.0170821 0.999854i \(-0.505438\pi\)
−0.0170821 + 0.999854i \(0.505438\pi\)
\(938\) −10.1994 + 5.47530i −0.333022 + 0.178775i
\(939\) 0 0
\(940\) −29.1708 + 43.9991i −0.951448 + 1.43509i
\(941\) −6.33655 −0.206566 −0.103283 0.994652i \(-0.532935\pi\)
−0.103283 + 0.994652i \(0.532935\pi\)
\(942\) 0 0
\(943\) 26.4983i 0.862903i
\(944\) 28.3332 11.9756i 0.922166 0.389772i
\(945\) 0 0
\(946\) 7.01785 3.76737i 0.228170 0.122488i
\(947\) 38.8914i 1.26380i 0.775049 + 0.631901i \(0.217725\pi\)
−0.775049 + 0.631901i \(0.782275\pi\)
\(948\) 0 0
\(949\) 7.47814i 0.242751i
\(950\) −10.5373 19.6288i −0.341874 0.636842i
\(951\) 0 0
\(952\) −80.4367 7.48421i −2.60697 0.242565i
\(953\) 42.9963i 1.39279i −0.717660 0.696394i \(-0.754787\pi\)
0.717660 0.696394i \(-0.245213\pi\)
\(954\) 0 0
\(955\) 40.3206 1.30474
\(956\) 1.19461 1.80187i 0.0386366 0.0582766i
\(957\) 0 0
\(958\) 0.901785 + 1.67984i 0.0291354 + 0.0542733i
\(959\) −87.2676 −2.81802
\(960\) 0 0
\(961\) −73.5535 −2.37269
\(962\) 1.08214 + 2.01582i 0.0348898 + 0.0649926i
\(963\) 0 0
\(964\) −21.1987 + 31.9746i −0.682765 + 1.02983i
\(965\) 13.0853 0.421229
\(966\) 0 0
\(967\) 13.6970i 0.440467i 0.975447 + 0.220234i \(0.0706819\pi\)
−0.975447 + 0.220234i \(0.929318\pi\)
\(968\) 6.43778 + 0.599001i 0.206918 + 0.0192526i
\(969\) 0 0
\(970\) 16.8111 + 31.3156i 0.539771 + 1.00548i
\(971\) 30.7654i 0.987309i 0.869658 + 0.493654i \(0.164339\pi\)
−0.869658 + 0.493654i \(0.835661\pi\)
\(972\) 0 0
\(973\) 39.7306i 1.27370i
\(974\) 5.60896 3.01104i 0.179723 0.0964799i
\(975\) 0 0
\(976\) −39.6573 + 16.7619i −1.26940 + 0.536537i
\(977\) 53.1078i 1.69907i −0.527534 0.849534i \(-0.676883\pi\)
0.527534 0.849534i \(-0.323117\pi\)
\(978\) 0 0
\(979\) −4.05473 −0.129590
\(980\) 74.6942 112.663i 2.38602 3.59890i
\(981\) 0 0
\(982\) −12.8137 + 6.87871i −0.408900 + 0.219509i
\(983\) −34.7616 −1.10872 −0.554361 0.832276i \(-0.687037\pi\)
−0.554361 + 0.832276i \(0.687037\pi\)
\(984\) 0 0
\(985\) 12.6255 0.402282
\(986\) 32.2269 17.3002i 1.02631 0.550952i
\(987\) 0 0
\(988\) −3.07125 2.03620i −0.0977095 0.0647801i
\(989\) 3.61314 0.114891
\(990\) 0 0
\(991\) 30.6042i 0.972176i 0.873910 + 0.486088i \(0.161577\pi\)
−0.873910 + 0.486088i \(0.838423\pi\)
\(992\) −45.0408 36.2910i −1.43005 1.15224i
\(993\) 0 0
\(994\) −40.7907 + 21.8975i −1.29380 + 0.694548i
\(995\) 30.5869i 0.969669i
\(996\) 0 0
\(997\) 19.0359i 0.602872i 0.953486 + 0.301436i \(0.0974659\pi\)
−0.953486 + 0.301436i \(0.902534\pi\)
\(998\) −2.83411 5.27938i −0.0897123 0.167116i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.j.a.755.36 yes 48
3.2 odd 2 inner 936.2.j.a.755.13 48
4.3 odd 2 3744.2.j.a.2159.46 48
8.3 odd 2 inner 936.2.j.a.755.14 yes 48
8.5 even 2 3744.2.j.a.2159.3 48
12.11 even 2 3744.2.j.a.2159.4 48
24.5 odd 2 3744.2.j.a.2159.45 48
24.11 even 2 inner 936.2.j.a.755.35 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.j.a.755.13 48 3.2 odd 2 inner
936.2.j.a.755.14 yes 48 8.3 odd 2 inner
936.2.j.a.755.35 yes 48 24.11 even 2 inner
936.2.j.a.755.36 yes 48 1.1 even 1 trivial
3744.2.j.a.2159.3 48 8.5 even 2
3744.2.j.a.2159.4 48 12.11 even 2
3744.2.j.a.2159.45 48 24.5 odd 2
3744.2.j.a.2159.46 48 4.3 odd 2