L(s) = 1 | + (0.668 + 1.24i)2-s + (−1.10 + 1.66i)4-s + 3.68·5-s + 5.03i·7-s + (−2.81 − 0.262i)8-s + (2.46 + 4.58i)10-s + 3.64i·11-s − i·13-s + (−6.27 + 3.36i)14-s + (−1.55 − 3.68i)16-s − 5.67i·17-s − 1.84·19-s + (−4.06 + 6.13i)20-s + (−4.54 + 2.43i)22-s − 2.33·23-s + ⋯ |
L(s) = 1 | + (0.472 + 0.881i)2-s + (−0.552 + 0.833i)4-s + 1.64·5-s + 1.90i·7-s + (−0.995 − 0.0926i)8-s + (0.778 + 1.45i)10-s + 1.09i·11-s − 0.277i·13-s + (−1.67 + 0.900i)14-s + (−0.389 − 0.921i)16-s − 1.37i·17-s − 0.422·19-s + (−0.909 + 1.37i)20-s + (−0.968 + 0.519i)22-s − 0.487·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.759 - 0.650i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.759 - 0.650i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.818319 + 2.21338i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.818319 + 2.21338i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.668 - 1.24i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + iT \) |
good | 5 | \( 1 - 3.68T + 5T^{2} \) |
| 7 | \( 1 - 5.03iT - 7T^{2} \) |
| 11 | \( 1 - 3.64iT - 11T^{2} \) |
| 17 | \( 1 + 5.67iT - 17T^{2} \) |
| 19 | \( 1 + 1.84T + 19T^{2} \) |
| 23 | \( 1 + 2.33T + 23T^{2} \) |
| 29 | \( 1 - 4.56T + 29T^{2} \) |
| 31 | \( 1 + 10.2iT - 31T^{2} \) |
| 37 | \( 1 - 1.61iT - 37T^{2} \) |
| 41 | \( 1 - 11.3iT - 41T^{2} \) |
| 43 | \( 1 + 1.54T + 43T^{2} \) |
| 47 | \( 1 - 7.17T + 47T^{2} \) |
| 53 | \( 1 + 2.41T + 53T^{2} \) |
| 59 | \( 1 - 7.69iT - 59T^{2} \) |
| 61 | \( 1 + 10.7iT - 61T^{2} \) |
| 67 | \( 1 - 1.62T + 67T^{2} \) |
| 71 | \( 1 - 6.50T + 71T^{2} \) |
| 73 | \( 1 - 7.47T + 73T^{2} \) |
| 79 | \( 1 - 5.87iT - 79T^{2} \) |
| 83 | \( 1 + 1.25iT - 83T^{2} \) |
| 89 | \( 1 - 1.11iT - 89T^{2} \) |
| 97 | \( 1 - 6.82T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.710397610954650018824957599560, −9.647767798230282737516924760452, −8.763178168067499770585994863893, −7.84288492975471544978735943149, −6.61315757502567499416310951874, −6.04298675913057226484146886313, −5.32056064662850327802550860912, −4.66576909807215481557137887377, −2.77010746477962349127399798384, −2.20274323219973595210433837612,
0.992447207235248392991021905465, 1.95912519501155560617495818681, 3.35799863673552615968075410920, 4.18218718819157376077997229007, 5.29091666272690868648088562520, 6.18392081718372197832608630534, 6.81659058035934307873119381657, 8.340542499153188038307167042360, 9.144479157376696367260252544779, 10.22022228264904708602208555464