Properties

Label 936.2.j.a.755.34
Level $936$
Weight $2$
Character 936.755
Analytic conductor $7.474$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(755,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.755"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.j (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 755.34
Character \(\chi\) \(=\) 936.755
Dual form 936.2.j.a.755.33

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.634171 + 1.26405i) q^{2} +(-1.19565 + 1.60325i) q^{4} -0.743520 q^{5} -1.72000i q^{7} +(-2.78484 - 0.494635i) q^{8} +(-0.471519 - 0.939848i) q^{10} -4.66933i q^{11} +1.00000i q^{13} +(2.17417 - 1.09077i) q^{14} +(-1.14082 - 3.83387i) q^{16} -6.58087i q^{17} -3.02593 q^{19} +(0.888993 - 1.19205i) q^{20} +(5.90228 - 2.96115i) q^{22} -7.02856 q^{23} -4.44718 q^{25} +(-1.26405 + 0.634171i) q^{26} +(2.75759 + 2.05653i) q^{28} +10.3540 q^{29} +0.619913i q^{31} +(4.12273 - 3.87338i) q^{32} +(8.31856 - 4.17339i) q^{34} +1.27886i q^{35} +0.689961i q^{37} +(-1.91896 - 3.82493i) q^{38} +(2.07059 + 0.367771i) q^{40} -5.53068i q^{41} +8.98383 q^{43} +(7.48610 + 5.58291i) q^{44} +(-4.45731 - 8.88447i) q^{46} +0.183800 q^{47} +4.04160 q^{49} +(-2.82027 - 5.62146i) q^{50} +(-1.60325 - 1.19565i) q^{52} -10.7059 q^{53} +3.47174i q^{55} +(-0.850773 + 4.78993i) q^{56} +(6.56622 + 13.0880i) q^{58} -13.2860i q^{59} +13.1575i q^{61} +(-0.783602 + 0.393131i) q^{62} +(7.51067 + 2.75496i) q^{64} -0.743520i q^{65} +0.268454 q^{67} +(10.5508 + 7.86844i) q^{68} +(-1.61654 + 0.811013i) q^{70} -10.4124 q^{71} +2.74597 q^{73} +(-0.872146 + 0.437553i) q^{74} +(3.61797 - 4.85132i) q^{76} -8.03125 q^{77} -11.0954i q^{79} +(0.848223 + 2.85056i) q^{80} +(6.99107 - 3.50740i) q^{82} -6.15784i q^{83} +4.89301i q^{85} +(5.69729 + 11.3560i) q^{86} +(-2.30961 + 13.0033i) q^{88} +13.1131i q^{89} +1.72000 q^{91} +(8.40373 - 11.2685i) q^{92} +(0.116561 + 0.232333i) q^{94} +2.24984 q^{95} -17.2096 q^{97} +(2.56306 + 5.10879i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 8 q^{4} + 16 q^{10} + 8 q^{16} + 32 q^{19} + 48 q^{25} - 24 q^{28} + 32 q^{34} - 32 q^{40} - 32 q^{43} + 24 q^{46} - 48 q^{49} + 8 q^{52} - 40 q^{58} + 40 q^{64} + 32 q^{67} - 40 q^{70} + 40 q^{76}+ \cdots - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.634171 + 1.26405i 0.448427 + 0.893820i
\(3\) 0 0
\(4\) −1.19565 + 1.60325i −0.597827 + 0.801625i
\(5\) −0.743520 −0.332512 −0.166256 0.986083i \(-0.553168\pi\)
−0.166256 + 0.986083i \(0.553168\pi\)
\(6\) 0 0
\(7\) 1.72000i 0.650099i −0.945697 0.325050i \(-0.894619\pi\)
0.945697 0.325050i \(-0.105381\pi\)
\(8\) −2.78484 0.494635i −0.984590 0.174880i
\(9\) 0 0
\(10\) −0.471519 0.939848i −0.149107 0.297206i
\(11\) 4.66933i 1.40786i −0.710271 0.703928i \(-0.751428\pi\)
0.710271 0.703928i \(-0.248572\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 2.17417 1.09077i 0.581072 0.291522i
\(15\) 0 0
\(16\) −1.14082 3.83387i −0.285205 0.958467i
\(17\) 6.58087i 1.59609i −0.602595 0.798047i \(-0.705866\pi\)
0.602595 0.798047i \(-0.294134\pi\)
\(18\) 0 0
\(19\) −3.02593 −0.694196 −0.347098 0.937829i \(-0.612833\pi\)
−0.347098 + 0.937829i \(0.612833\pi\)
\(20\) 0.888993 1.19205i 0.198785 0.266550i
\(21\) 0 0
\(22\) 5.90228 2.96115i 1.25837 0.631320i
\(23\) −7.02856 −1.46556 −0.732778 0.680468i \(-0.761777\pi\)
−0.732778 + 0.680468i \(0.761777\pi\)
\(24\) 0 0
\(25\) −4.44718 −0.889436
\(26\) −1.26405 + 0.634171i −0.247901 + 0.124371i
\(27\) 0 0
\(28\) 2.75759 + 2.05653i 0.521136 + 0.388647i
\(29\) 10.3540 1.92269 0.961346 0.275342i \(-0.0887911\pi\)
0.961346 + 0.275342i \(0.0887911\pi\)
\(30\) 0 0
\(31\) 0.619913i 0.111340i 0.998449 + 0.0556698i \(0.0177294\pi\)
−0.998449 + 0.0556698i \(0.982271\pi\)
\(32\) 4.12273 3.87338i 0.728803 0.684724i
\(33\) 0 0
\(34\) 8.31856 4.17339i 1.42662 0.715731i
\(35\) 1.27886i 0.216166i
\(36\) 0 0
\(37\) 0.689961i 0.113429i 0.998390 + 0.0567144i \(0.0180625\pi\)
−0.998390 + 0.0567144i \(0.981938\pi\)
\(38\) −1.91896 3.82493i −0.311296 0.620486i
\(39\) 0 0
\(40\) 2.07059 + 0.367771i 0.327388 + 0.0581497i
\(41\) 5.53068i 0.863747i −0.901934 0.431874i \(-0.857853\pi\)
0.901934 0.431874i \(-0.142147\pi\)
\(42\) 0 0
\(43\) 8.98383 1.37002 0.685011 0.728533i \(-0.259797\pi\)
0.685011 + 0.728533i \(0.259797\pi\)
\(44\) 7.48610 + 5.58291i 1.12857 + 0.841655i
\(45\) 0 0
\(46\) −4.45731 8.88447i −0.657194 1.30994i
\(47\) 0.183800 0.0268100 0.0134050 0.999910i \(-0.495733\pi\)
0.0134050 + 0.999910i \(0.495733\pi\)
\(48\) 0 0
\(49\) 4.04160 0.577371
\(50\) −2.82027 5.62146i −0.398847 0.794995i
\(51\) 0 0
\(52\) −1.60325 1.19565i −0.222331 0.165807i
\(53\) −10.7059 −1.47057 −0.735287 0.677755i \(-0.762953\pi\)
−0.735287 + 0.677755i \(0.762953\pi\)
\(54\) 0 0
\(55\) 3.47174i 0.468130i
\(56\) −0.850773 + 4.78993i −0.113689 + 0.640081i
\(57\) 0 0
\(58\) 6.56622 + 13.0880i 0.862186 + 1.71854i
\(59\) 13.2860i 1.72969i −0.502036 0.864847i \(-0.667416\pi\)
0.502036 0.864847i \(-0.332584\pi\)
\(60\) 0 0
\(61\) 13.1575i 1.68465i 0.538970 + 0.842325i \(0.318814\pi\)
−0.538970 + 0.842325i \(0.681186\pi\)
\(62\) −0.783602 + 0.393131i −0.0995176 + 0.0499277i
\(63\) 0 0
\(64\) 7.51067 + 2.75496i 0.938834 + 0.344370i
\(65\) 0.743520i 0.0922223i
\(66\) 0 0
\(67\) 0.268454 0.0327969 0.0163984 0.999866i \(-0.494780\pi\)
0.0163984 + 0.999866i \(0.494780\pi\)
\(68\) 10.5508 + 7.86844i 1.27947 + 0.954189i
\(69\) 0 0
\(70\) −1.61654 + 0.811013i −0.193213 + 0.0969346i
\(71\) −10.4124 −1.23572 −0.617861 0.786287i \(-0.712001\pi\)
−0.617861 + 0.786287i \(0.712001\pi\)
\(72\) 0 0
\(73\) 2.74597 0.321391 0.160696 0.987004i \(-0.448626\pi\)
0.160696 + 0.987004i \(0.448626\pi\)
\(74\) −0.872146 + 0.437553i −0.101385 + 0.0508645i
\(75\) 0 0
\(76\) 3.61797 4.85132i 0.415009 0.556485i
\(77\) −8.03125 −0.915246
\(78\) 0 0
\(79\) 11.0954i 1.24833i −0.781291 0.624167i \(-0.785439\pi\)
0.781291 0.624167i \(-0.214561\pi\)
\(80\) 0.848223 + 2.85056i 0.0948342 + 0.318702i
\(81\) 0 0
\(82\) 6.99107 3.50740i 0.772034 0.387327i
\(83\) 6.15784i 0.675911i −0.941162 0.337955i \(-0.890265\pi\)
0.941162 0.337955i \(-0.109735\pi\)
\(84\) 0 0
\(85\) 4.89301i 0.530721i
\(86\) 5.69729 + 11.3560i 0.614354 + 1.22455i
\(87\) 0 0
\(88\) −2.30961 + 13.0033i −0.246206 + 1.38616i
\(89\) 13.1131i 1.38998i 0.719018 + 0.694991i \(0.244592\pi\)
−0.719018 + 0.694991i \(0.755408\pi\)
\(90\) 0 0
\(91\) 1.72000 0.180305
\(92\) 8.40373 11.2685i 0.876149 1.17483i
\(93\) 0 0
\(94\) 0.116561 + 0.232333i 0.0120223 + 0.0239633i
\(95\) 2.24984 0.230829
\(96\) 0 0
\(97\) −17.2096 −1.74737 −0.873685 0.486491i \(-0.838277\pi\)
−0.873685 + 0.486491i \(0.838277\pi\)
\(98\) 2.56306 + 5.10879i 0.258908 + 0.516066i
\(99\) 0 0
\(100\) 5.31729 7.12994i 0.531729 0.712994i
\(101\) −0.508663 −0.0506139 −0.0253069 0.999680i \(-0.508056\pi\)
−0.0253069 + 0.999680i \(0.508056\pi\)
\(102\) 0 0
\(103\) 13.6065i 1.34069i −0.742051 0.670344i \(-0.766147\pi\)
0.742051 0.670344i \(-0.233853\pi\)
\(104\) 0.494635 2.78484i 0.0485030 0.273076i
\(105\) 0 0
\(106\) −6.78940 13.5329i −0.659445 1.31443i
\(107\) 9.51632i 0.919978i 0.887925 + 0.459989i \(0.152147\pi\)
−0.887925 + 0.459989i \(0.847853\pi\)
\(108\) 0 0
\(109\) 5.42029i 0.519169i 0.965720 + 0.259585i \(0.0835857\pi\)
−0.965720 + 0.259585i \(0.916414\pi\)
\(110\) −4.38846 + 2.20168i −0.418423 + 0.209922i
\(111\) 0 0
\(112\) −6.59425 + 1.96221i −0.623098 + 0.185412i
\(113\) 13.4980i 1.26979i −0.772599 0.634894i \(-0.781044\pi\)
0.772599 0.634894i \(-0.218956\pi\)
\(114\) 0 0
\(115\) 5.22588 0.487316
\(116\) −12.3798 + 16.6001i −1.14944 + 1.54128i
\(117\) 0 0
\(118\) 16.7942 8.42561i 1.54603 0.775640i
\(119\) −11.3191 −1.03762
\(120\) 0 0
\(121\) −10.8026 −0.982059
\(122\) −16.6318 + 8.34413i −1.50577 + 0.755442i
\(123\) 0 0
\(124\) −0.993876 0.741202i −0.0892527 0.0665619i
\(125\) 7.02417 0.628261
\(126\) 0 0
\(127\) 9.79334i 0.869019i 0.900667 + 0.434509i \(0.143078\pi\)
−0.900667 + 0.434509i \(0.856922\pi\)
\(128\) 1.28064 + 11.2410i 0.113193 + 0.993573i
\(129\) 0 0
\(130\) 0.939848 0.471519i 0.0824301 0.0413549i
\(131\) 2.14770i 0.187645i −0.995589 0.0938225i \(-0.970091\pi\)
0.995589 0.0938225i \(-0.0299086\pi\)
\(132\) 0 0
\(133\) 5.20460i 0.451296i
\(134\) 0.170246 + 0.339340i 0.0147070 + 0.0293145i
\(135\) 0 0
\(136\) −3.25513 + 18.3267i −0.279125 + 1.57150i
\(137\) 9.47000i 0.809077i 0.914521 + 0.404538i \(0.132568\pi\)
−0.914521 + 0.404538i \(0.867432\pi\)
\(138\) 0 0
\(139\) 2.93590 0.249020 0.124510 0.992218i \(-0.460264\pi\)
0.124510 + 0.992218i \(0.460264\pi\)
\(140\) −2.05032 1.52907i −0.173284 0.129230i
\(141\) 0 0
\(142\) −6.60323 13.1618i −0.554130 1.10451i
\(143\) 4.66933 0.390469
\(144\) 0 0
\(145\) −7.69842 −0.639319
\(146\) 1.74141 + 3.47105i 0.144120 + 0.287266i
\(147\) 0 0
\(148\) −1.10618 0.824955i −0.0909274 0.0678109i
\(149\) 6.81718 0.558486 0.279243 0.960221i \(-0.409917\pi\)
0.279243 + 0.960221i \(0.409917\pi\)
\(150\) 0 0
\(151\) 18.6158i 1.51493i −0.652875 0.757466i \(-0.726437\pi\)
0.652875 0.757466i \(-0.273563\pi\)
\(152\) 8.42673 + 1.49673i 0.683498 + 0.121401i
\(153\) 0 0
\(154\) −5.09319 10.1519i −0.410421 0.818065i
\(155\) 0.460918i 0.0370218i
\(156\) 0 0
\(157\) 9.01440i 0.719427i 0.933063 + 0.359714i \(0.117126\pi\)
−0.933063 + 0.359714i \(0.882874\pi\)
\(158\) 14.0252 7.03640i 1.11579 0.559786i
\(159\) 0 0
\(160\) −3.06533 + 2.87994i −0.242336 + 0.227679i
\(161\) 12.0891i 0.952757i
\(162\) 0 0
\(163\) −8.20829 −0.642923 −0.321462 0.946923i \(-0.604174\pi\)
−0.321462 + 0.946923i \(0.604174\pi\)
\(164\) 8.86706 + 6.61278i 0.692401 + 0.516372i
\(165\) 0 0
\(166\) 7.78383 3.90512i 0.604143 0.303096i
\(167\) −6.78711 −0.525202 −0.262601 0.964904i \(-0.584580\pi\)
−0.262601 + 0.964904i \(0.584580\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) −6.18501 + 3.10300i −0.474369 + 0.237989i
\(171\) 0 0
\(172\) −10.7416 + 14.4033i −0.819037 + 1.09824i
\(173\) 6.74312 0.512670 0.256335 0.966588i \(-0.417485\pi\)
0.256335 + 0.966588i \(0.417485\pi\)
\(174\) 0 0
\(175\) 7.64915i 0.578221i
\(176\) −17.9016 + 5.32687i −1.34938 + 0.401528i
\(177\) 0 0
\(178\) −16.5756 + 8.31592i −1.24239 + 0.623305i
\(179\) 7.33246i 0.548054i −0.961722 0.274027i \(-0.911644\pi\)
0.961722 0.274027i \(-0.0883558\pi\)
\(180\) 0 0
\(181\) 1.57125i 0.116790i −0.998294 0.0583949i \(-0.981402\pi\)
0.998294 0.0583949i \(-0.0185982\pi\)
\(182\) 1.09077 + 2.17417i 0.0808536 + 0.161160i
\(183\) 0 0
\(184\) 19.5734 + 3.47657i 1.44297 + 0.256296i
\(185\) 0.513000i 0.0377165i
\(186\) 0 0
\(187\) −30.7282 −2.24707
\(188\) −0.219761 + 0.294677i −0.0160277 + 0.0214916i
\(189\) 0 0
\(190\) 1.42678 + 2.84391i 0.103510 + 0.206319i
\(191\) −20.3374 −1.47156 −0.735781 0.677220i \(-0.763185\pi\)
−0.735781 + 0.677220i \(0.763185\pi\)
\(192\) 0 0
\(193\) −2.56171 −0.184396 −0.0921980 0.995741i \(-0.529389\pi\)
−0.0921980 + 0.995741i \(0.529389\pi\)
\(194\) −10.9138 21.7538i −0.783568 1.56183i
\(195\) 0 0
\(196\) −4.83235 + 6.47969i −0.345168 + 0.462835i
\(197\) 21.0154 1.49728 0.748641 0.662975i \(-0.230707\pi\)
0.748641 + 0.662975i \(0.230707\pi\)
\(198\) 0 0
\(199\) 20.1058i 1.42527i 0.701537 + 0.712633i \(0.252497\pi\)
−0.701537 + 0.712633i \(0.747503\pi\)
\(200\) 12.3847 + 2.19973i 0.875729 + 0.155544i
\(201\) 0 0
\(202\) −0.322579 0.642976i −0.0226966 0.0452397i
\(203\) 17.8089i 1.24994i
\(204\) 0 0
\(205\) 4.11217i 0.287207i
\(206\) 17.1993 8.62884i 1.19833 0.601200i
\(207\) 0 0
\(208\) 3.83387 1.14082i 0.265831 0.0791017i
\(209\) 14.1291i 0.977328i
\(210\) 0 0
\(211\) 14.5749 1.00337 0.501687 0.865049i \(-0.332713\pi\)
0.501687 + 0.865049i \(0.332713\pi\)
\(212\) 12.8006 17.1643i 0.879150 1.17885i
\(213\) 0 0
\(214\) −12.0291 + 6.03498i −0.822294 + 0.412542i
\(215\) −6.67966 −0.455549
\(216\) 0 0
\(217\) 1.06625 0.0723818
\(218\) −6.85152 + 3.43739i −0.464044 + 0.232809i
\(219\) 0 0
\(220\) −5.56607 4.15100i −0.375264 0.279861i
\(221\) 6.58087 0.442677
\(222\) 0 0
\(223\) 14.0882i 0.943418i −0.881754 0.471709i \(-0.843637\pi\)
0.881754 0.471709i \(-0.156363\pi\)
\(224\) −6.66222 7.09110i −0.445138 0.473794i
\(225\) 0 0
\(226\) 17.0622 8.56006i 1.13496 0.569407i
\(227\) 10.0126i 0.664558i −0.943181 0.332279i \(-0.892182\pi\)
0.943181 0.332279i \(-0.107818\pi\)
\(228\) 0 0
\(229\) 11.3711i 0.751426i −0.926736 0.375713i \(-0.877398\pi\)
0.926736 0.375713i \(-0.122602\pi\)
\(230\) 3.31410 + 6.60578i 0.218525 + 0.435572i
\(231\) 0 0
\(232\) −28.8343 5.12146i −1.89306 0.336240i
\(233\) 5.49317i 0.359869i −0.983679 0.179935i \(-0.942411\pi\)
0.983679 0.179935i \(-0.0575887\pi\)
\(234\) 0 0
\(235\) −0.136659 −0.00891465
\(236\) 21.3008 + 15.8855i 1.38657 + 1.03406i
\(237\) 0 0
\(238\) −7.17824 14.3079i −0.465296 0.927445i
\(239\) 18.0075 1.16481 0.582404 0.812899i \(-0.302112\pi\)
0.582404 + 0.812899i \(0.302112\pi\)
\(240\) 0 0
\(241\) 7.74211 0.498713 0.249357 0.968412i \(-0.419781\pi\)
0.249357 + 0.968412i \(0.419781\pi\)
\(242\) −6.85073 13.6551i −0.440381 0.877784i
\(243\) 0 0
\(244\) −21.0948 15.7319i −1.35046 1.00713i
\(245\) −3.00501 −0.191983
\(246\) 0 0
\(247\) 3.02593i 0.192535i
\(248\) 0.306631 1.72636i 0.0194711 0.109624i
\(249\) 0 0
\(250\) 4.45452 + 8.87891i 0.281729 + 0.561552i
\(251\) 19.3627i 1.22216i 0.791567 + 0.611082i \(0.209266\pi\)
−0.791567 + 0.611082i \(0.790734\pi\)
\(252\) 0 0
\(253\) 32.8187i 2.06329i
\(254\) −12.3793 + 6.21065i −0.776746 + 0.389691i
\(255\) 0 0
\(256\) −13.3971 + 8.74750i −0.837316 + 0.546719i
\(257\) 4.17899i 0.260678i 0.991469 + 0.130339i \(0.0416066\pi\)
−0.991469 + 0.130339i \(0.958393\pi\)
\(258\) 0 0
\(259\) 1.18673 0.0737400
\(260\) 1.19205 + 0.888993i 0.0739277 + 0.0551330i
\(261\) 0 0
\(262\) 2.71480 1.36201i 0.167721 0.0841450i
\(263\) 24.6071 1.51734 0.758670 0.651475i \(-0.225850\pi\)
0.758670 + 0.651475i \(0.225850\pi\)
\(264\) 0 0
\(265\) 7.96009 0.488984
\(266\) −6.57889 + 3.30061i −0.403377 + 0.202373i
\(267\) 0 0
\(268\) −0.320978 + 0.430399i −0.0196069 + 0.0262908i
\(269\) 8.95889 0.546233 0.273116 0.961981i \(-0.411946\pi\)
0.273116 + 0.961981i \(0.411946\pi\)
\(270\) 0 0
\(271\) 21.8098i 1.32485i −0.749128 0.662426i \(-0.769527\pi\)
0.749128 0.662426i \(-0.230473\pi\)
\(272\) −25.2302 + 7.50759i −1.52980 + 0.455214i
\(273\) 0 0
\(274\) −11.9706 + 6.00560i −0.723169 + 0.362811i
\(275\) 20.7653i 1.25220i
\(276\) 0 0
\(277\) 7.26899i 0.436751i 0.975865 + 0.218376i \(0.0700758\pi\)
−0.975865 + 0.218376i \(0.929924\pi\)
\(278\) 1.86186 + 3.71113i 0.111667 + 0.222579i
\(279\) 0 0
\(280\) 0.632567 3.56141i 0.0378031 0.212835i
\(281\) 0.361353i 0.0215565i 0.999942 + 0.0107783i \(0.00343089\pi\)
−0.999942 + 0.0107783i \(0.996569\pi\)
\(282\) 0 0
\(283\) 11.2756 0.670262 0.335131 0.942172i \(-0.391219\pi\)
0.335131 + 0.942172i \(0.391219\pi\)
\(284\) 12.4496 16.6936i 0.738748 0.990585i
\(285\) 0 0
\(286\) 2.96115 + 5.90228i 0.175097 + 0.349009i
\(287\) −9.51278 −0.561521
\(288\) 0 0
\(289\) −26.3078 −1.54752
\(290\) −4.88211 9.73120i −0.286688 0.571436i
\(291\) 0 0
\(292\) −3.28323 + 4.40247i −0.192137 + 0.257635i
\(293\) −19.6966 −1.15069 −0.575343 0.817913i \(-0.695131\pi\)
−0.575343 + 0.817913i \(0.695131\pi\)
\(294\) 0 0
\(295\) 9.87843i 0.575144i
\(296\) 0.341279 1.92143i 0.0198364 0.111681i
\(297\) 0 0
\(298\) 4.32326 + 8.61728i 0.250440 + 0.499185i
\(299\) 7.02856i 0.406472i
\(300\) 0 0
\(301\) 15.4522i 0.890650i
\(302\) 23.5313 11.8056i 1.35408 0.679336i
\(303\) 0 0
\(304\) 3.45204 + 11.6010i 0.197988 + 0.665363i
\(305\) 9.78290i 0.560167i
\(306\) 0 0
\(307\) −7.93961 −0.453138 −0.226569 0.973995i \(-0.572751\pi\)
−0.226569 + 0.973995i \(0.572751\pi\)
\(308\) 9.60260 12.8761i 0.547159 0.733684i
\(309\) 0 0
\(310\) 0.582624 0.292301i 0.0330908 0.0166016i
\(311\) −23.4955 −1.33231 −0.666153 0.745815i \(-0.732060\pi\)
−0.666153 + 0.745815i \(0.732060\pi\)
\(312\) 0 0
\(313\) 8.59126 0.485607 0.242803 0.970076i \(-0.421933\pi\)
0.242803 + 0.970076i \(0.421933\pi\)
\(314\) −11.3947 + 5.71667i −0.643038 + 0.322610i
\(315\) 0 0
\(316\) 17.7888 + 13.2663i 1.00070 + 0.746288i
\(317\) 3.57136 0.200588 0.100294 0.994958i \(-0.468022\pi\)
0.100294 + 0.994958i \(0.468022\pi\)
\(318\) 0 0
\(319\) 48.3463i 2.70687i
\(320\) −5.58434 2.04837i −0.312174 0.114507i
\(321\) 0 0
\(322\) −15.2813 + 7.66657i −0.851593 + 0.427242i
\(323\) 19.9132i 1.10800i
\(324\) 0 0
\(325\) 4.44718i 0.246685i
\(326\) −5.20546 10.3757i −0.288304 0.574657i
\(327\) 0 0
\(328\) −2.73567 + 15.4021i −0.151052 + 0.850437i
\(329\) 0.316136i 0.0174292i
\(330\) 0 0
\(331\) 22.6506 1.24499 0.622494 0.782625i \(-0.286120\pi\)
0.622494 + 0.782625i \(0.286120\pi\)
\(332\) 9.87256 + 7.36265i 0.541827 + 0.404078i
\(333\) 0 0
\(334\) −4.30419 8.57926i −0.235515 0.469436i
\(335\) −0.199601 −0.0109054
\(336\) 0 0
\(337\) −13.1565 −0.716679 −0.358340 0.933591i \(-0.616657\pi\)
−0.358340 + 0.933591i \(0.616657\pi\)
\(338\) −0.634171 1.26405i −0.0344943 0.0687554i
\(339\) 0 0
\(340\) −7.84471 5.85035i −0.425439 0.317280i
\(341\) 2.89458 0.156750
\(342\) 0 0
\(343\) 18.9916i 1.02545i
\(344\) −25.0185 4.44372i −1.34891 0.239589i
\(345\) 0 0
\(346\) 4.27629 + 8.52366i 0.229895 + 0.458235i
\(347\) 7.91878i 0.425102i 0.977150 + 0.212551i \(0.0681772\pi\)
−0.977150 + 0.212551i \(0.931823\pi\)
\(348\) 0 0
\(349\) 7.78876i 0.416923i −0.978031 0.208461i \(-0.933154\pi\)
0.978031 0.208461i \(-0.0668456\pi\)
\(350\) −9.66892 + 4.85087i −0.516826 + 0.259290i
\(351\) 0 0
\(352\) −18.0861 19.2504i −0.963993 1.02605i
\(353\) 9.64415i 0.513306i −0.966504 0.256653i \(-0.917380\pi\)
0.966504 0.256653i \(-0.0826198\pi\)
\(354\) 0 0
\(355\) 7.74181 0.410893
\(356\) −21.0235 15.6787i −1.11424 0.830969i
\(357\) 0 0
\(358\) 9.26861 4.65003i 0.489861 0.245762i
\(359\) 13.0246 0.687410 0.343705 0.939078i \(-0.388318\pi\)
0.343705 + 0.939078i \(0.388318\pi\)
\(360\) 0 0
\(361\) −9.84375 −0.518092
\(362\) 1.98614 0.996438i 0.104389 0.0523716i
\(363\) 0 0
\(364\) −2.05653 + 2.75759i −0.107791 + 0.144537i
\(365\) −2.04168 −0.106867
\(366\) 0 0
\(367\) 9.32427i 0.486723i −0.969936 0.243362i \(-0.921750\pi\)
0.969936 0.243362i \(-0.0782502\pi\)
\(368\) 8.01832 + 26.9466i 0.417984 + 1.40469i
\(369\) 0 0
\(370\) 0.648458 0.325329i 0.0337117 0.0169131i
\(371\) 18.4142i 0.956020i
\(372\) 0 0
\(373\) 33.2225i 1.72020i 0.510129 + 0.860098i \(0.329598\pi\)
−0.510129 + 0.860098i \(0.670402\pi\)
\(374\) −19.4870 38.8421i −1.00765 2.00848i
\(375\) 0 0
\(376\) −0.511854 0.0909139i −0.0263968 0.00468853i
\(377\) 10.3540i 0.533259i
\(378\) 0 0
\(379\) 4.21971 0.216752 0.108376 0.994110i \(-0.465435\pi\)
0.108376 + 0.994110i \(0.465435\pi\)
\(380\) −2.69003 + 3.60706i −0.137996 + 0.185038i
\(381\) 0 0
\(382\) −12.8974 25.7075i −0.659887 1.31531i
\(383\) 31.8136 1.62560 0.812800 0.582542i \(-0.197942\pi\)
0.812800 + 0.582542i \(0.197942\pi\)
\(384\) 0 0
\(385\) 5.97140 0.304331
\(386\) −1.62456 3.23814i −0.0826881 0.164817i
\(387\) 0 0
\(388\) 20.5767 27.5913i 1.04463 1.40074i
\(389\) 18.6833 0.947282 0.473641 0.880718i \(-0.342939\pi\)
0.473641 + 0.880718i \(0.342939\pi\)
\(390\) 0 0
\(391\) 46.2540i 2.33917i
\(392\) −11.2552 1.99912i −0.568474 0.100971i
\(393\) 0 0
\(394\) 13.3273 + 26.5645i 0.671421 + 1.33830i
\(395\) 8.24968i 0.415086i
\(396\) 0 0
\(397\) 11.2388i 0.564059i −0.959406 0.282029i \(-0.908992\pi\)
0.959406 0.282029i \(-0.0910076\pi\)
\(398\) −25.4148 + 12.7505i −1.27393 + 0.639127i
\(399\) 0 0
\(400\) 5.07343 + 17.0499i 0.253672 + 0.852494i
\(401\) 29.1439i 1.45537i 0.685909 + 0.727687i \(0.259405\pi\)
−0.685909 + 0.727687i \(0.740595\pi\)
\(402\) 0 0
\(403\) −0.619913 −0.0308801
\(404\) 0.608185 0.815514i 0.0302583 0.0405733i
\(405\) 0 0
\(406\) 22.5114 11.2939i 1.11722 0.560507i
\(407\) 3.22165 0.159691
\(408\) 0 0
\(409\) 32.8717 1.62540 0.812700 0.582682i \(-0.197997\pi\)
0.812700 + 0.582682i \(0.197997\pi\)
\(410\) −5.19800 + 2.60782i −0.256711 + 0.128791i
\(411\) 0 0
\(412\) 21.8146 + 16.2687i 1.07473 + 0.801500i
\(413\) −22.8520 −1.12447
\(414\) 0 0
\(415\) 4.57848i 0.224749i
\(416\) 3.87338 + 4.12273i 0.189908 + 0.202134i
\(417\) 0 0
\(418\) −17.8599 + 8.96024i −0.873555 + 0.438260i
\(419\) 9.13194i 0.446125i −0.974804 0.223062i \(-0.928395\pi\)
0.974804 0.223062i \(-0.0716053\pi\)
\(420\) 0 0
\(421\) 31.0989i 1.51567i −0.652449 0.757833i \(-0.726258\pi\)
0.652449 0.757833i \(-0.273742\pi\)
\(422\) 9.24295 + 18.4234i 0.449940 + 0.896836i
\(423\) 0 0
\(424\) 29.8143 + 5.29554i 1.44791 + 0.257174i
\(425\) 29.2663i 1.41962i
\(426\) 0 0
\(427\) 22.6310 1.09519
\(428\) −15.2570 11.3782i −0.737477 0.549988i
\(429\) 0 0
\(430\) −4.23605 8.44344i −0.204280 0.407179i
\(431\) 19.3891 0.933941 0.466970 0.884273i \(-0.345345\pi\)
0.466970 + 0.884273i \(0.345345\pi\)
\(432\) 0 0
\(433\) 34.0276 1.63526 0.817632 0.575742i \(-0.195287\pi\)
0.817632 + 0.575742i \(0.195287\pi\)
\(434\) 0.676185 + 1.34780i 0.0324579 + 0.0646963i
\(435\) 0 0
\(436\) −8.69008 6.48079i −0.416179 0.310374i
\(437\) 21.2679 1.01738
\(438\) 0 0
\(439\) 16.8226i 0.802899i 0.915881 + 0.401449i \(0.131493\pi\)
−0.915881 + 0.401449i \(0.868507\pi\)
\(440\) 1.71725 9.66825i 0.0818664 0.460916i
\(441\) 0 0
\(442\) 4.17339 + 8.31856i 0.198508 + 0.395673i
\(443\) 8.46566i 0.402216i 0.979569 + 0.201108i \(0.0644542\pi\)
−0.979569 + 0.201108i \(0.935546\pi\)
\(444\) 0 0
\(445\) 9.74983i 0.462186i
\(446\) 17.8083 8.93435i 0.843245 0.423054i
\(447\) 0 0
\(448\) 4.73853 12.9184i 0.223875 0.610335i
\(449\) 11.6157i 0.548177i −0.961705 0.274088i \(-0.911624\pi\)
0.961705 0.274088i \(-0.0883761\pi\)
\(450\) 0 0
\(451\) −25.8246 −1.21603
\(452\) 21.6407 + 16.1390i 1.01789 + 0.759114i
\(453\) 0 0
\(454\) 12.6564 6.34969i 0.593995 0.298006i
\(455\) −1.27886 −0.0599537
\(456\) 0 0
\(457\) 25.4077 1.18852 0.594262 0.804272i \(-0.297444\pi\)
0.594262 + 0.804272i \(0.297444\pi\)
\(458\) 14.3737 7.21124i 0.671639 0.336959i
\(459\) 0 0
\(460\) −6.24834 + 8.37839i −0.291331 + 0.390644i
\(461\) 10.4445 0.486449 0.243224 0.969970i \(-0.421795\pi\)
0.243224 + 0.969970i \(0.421795\pi\)
\(462\) 0 0
\(463\) 4.65934i 0.216538i 0.994122 + 0.108269i \(0.0345308\pi\)
−0.994122 + 0.108269i \(0.965469\pi\)
\(464\) −11.8121 39.6959i −0.548362 1.84284i
\(465\) 0 0
\(466\) 6.94365 3.48361i 0.321658 0.161375i
\(467\) 23.2887i 1.07767i −0.842410 0.538837i \(-0.818864\pi\)
0.842410 0.538837i \(-0.181136\pi\)
\(468\) 0 0
\(469\) 0.461741i 0.0213212i
\(470\) −0.0866652 0.172744i −0.00399757 0.00796809i
\(471\) 0 0
\(472\) −6.57173 + 36.9995i −0.302489 + 1.70304i
\(473\) 41.9485i 1.92879i
\(474\) 0 0
\(475\) 13.4568 0.617442
\(476\) 13.5337 18.1473i 0.620317 0.831782i
\(477\) 0 0
\(478\) 11.4198 + 22.7624i 0.522331 + 1.04113i
\(479\) −35.1469 −1.60590 −0.802952 0.596044i \(-0.796738\pi\)
−0.802952 + 0.596044i \(0.796738\pi\)
\(480\) 0 0
\(481\) −0.689961 −0.0314595
\(482\) 4.90982 + 9.78643i 0.223636 + 0.445760i
\(483\) 0 0
\(484\) 12.9162 17.3193i 0.587102 0.787243i
\(485\) 12.7957 0.581022
\(486\) 0 0
\(487\) 3.43122i 0.155483i 0.996974 + 0.0777417i \(0.0247710\pi\)
−0.996974 + 0.0777417i \(0.975229\pi\)
\(488\) 6.50818 36.6417i 0.294612 1.65869i
\(489\) 0 0
\(490\) −1.90569 3.79849i −0.0860903 0.171598i
\(491\) 6.49646i 0.293181i 0.989197 + 0.146591i \(0.0468300\pi\)
−0.989197 + 0.146591i \(0.953170\pi\)
\(492\) 0 0
\(493\) 68.1384i 3.06880i
\(494\) 3.82493 1.91896i 0.172092 0.0863379i
\(495\) 0 0
\(496\) 2.37666 0.707209i 0.106715 0.0317546i
\(497\) 17.9093i 0.803342i
\(498\) 0 0
\(499\) 22.7906 1.02025 0.510123 0.860101i \(-0.329600\pi\)
0.510123 + 0.860101i \(0.329600\pi\)
\(500\) −8.39848 + 11.2615i −0.375591 + 0.503629i
\(501\) 0 0
\(502\) −24.4755 + 12.2793i −1.09239 + 0.548051i
\(503\) −6.22278 −0.277460 −0.138730 0.990330i \(-0.544302\pi\)
−0.138730 + 0.990330i \(0.544302\pi\)
\(504\) 0 0
\(505\) 0.378201 0.0168297
\(506\) −41.4845 + 20.8126i −1.84421 + 0.925235i
\(507\) 0 0
\(508\) −15.7012 11.7095i −0.696627 0.519523i
\(509\) −0.0362228 −0.00160555 −0.000802774 1.00000i \(-0.500256\pi\)
−0.000802774 1.00000i \(0.500256\pi\)
\(510\) 0 0
\(511\) 4.72307i 0.208936i
\(512\) −19.5533 11.3872i −0.864143 0.503246i
\(513\) 0 0
\(514\) −5.28246 + 2.65019i −0.232999 + 0.116895i
\(515\) 10.1167i 0.445795i
\(516\) 0 0
\(517\) 0.858223i 0.0377446i
\(518\) 0.752592 + 1.50009i 0.0330670 + 0.0659103i
\(519\) 0 0
\(520\) −0.367771 + 2.07059i −0.0161278 + 0.0908012i
\(521\) 18.2499i 0.799542i 0.916615 + 0.399771i \(0.130910\pi\)
−0.916615 + 0.399771i \(0.869090\pi\)
\(522\) 0 0
\(523\) 19.9310 0.871521 0.435761 0.900063i \(-0.356479\pi\)
0.435761 + 0.900063i \(0.356479\pi\)
\(524\) 3.44329 + 2.56790i 0.150421 + 0.112179i
\(525\) 0 0
\(526\) 15.6051 + 31.1047i 0.680415 + 1.35623i
\(527\) 4.07957 0.177709
\(528\) 0 0
\(529\) 26.4007 1.14786
\(530\) 5.04806 + 10.0620i 0.219274 + 0.437064i
\(531\) 0 0
\(532\) −8.34428 6.22291i −0.361770 0.269797i
\(533\) 5.53068 0.239560
\(534\) 0 0
\(535\) 7.07558i 0.305904i
\(536\) −0.747602 0.132787i −0.0322915 0.00573552i
\(537\) 0 0
\(538\) 5.68146 + 11.3245i 0.244945 + 0.488234i
\(539\) 18.8716i 0.812855i
\(540\) 0 0
\(541\) 7.30595i 0.314107i 0.987590 + 0.157054i \(0.0501995\pi\)
−0.987590 + 0.157054i \(0.949800\pi\)
\(542\) 27.5687 13.8311i 1.18418 0.594098i
\(543\) 0 0
\(544\) −25.4902 27.1311i −1.09288 1.16324i
\(545\) 4.03009i 0.172630i
\(546\) 0 0
\(547\) 21.5397 0.920970 0.460485 0.887667i \(-0.347676\pi\)
0.460485 + 0.887667i \(0.347676\pi\)
\(548\) −15.1828 11.3228i −0.648576 0.483688i
\(549\) 0 0
\(550\) −26.2485 + 13.1688i −1.11924 + 0.561519i
\(551\) −31.3305 −1.33473
\(552\) 0 0
\(553\) −19.0842 −0.811541
\(554\) −9.18838 + 4.60978i −0.390377 + 0.195851i
\(555\) 0 0
\(556\) −3.51032 + 4.70698i −0.148871 + 0.199620i
\(557\) −31.4672 −1.33331 −0.666653 0.745368i \(-0.732274\pi\)
−0.666653 + 0.745368i \(0.732274\pi\)
\(558\) 0 0
\(559\) 8.98383i 0.379976i
\(560\) 4.90296 1.45894i 0.207188 0.0616516i
\(561\) 0 0
\(562\) −0.456769 + 0.229160i −0.0192676 + 0.00966652i
\(563\) 23.3682i 0.984853i −0.870354 0.492427i \(-0.836110\pi\)
0.870354 0.492427i \(-0.163890\pi\)
\(564\) 0 0
\(565\) 10.0361i 0.422220i
\(566\) 7.15063 + 14.2529i 0.300563 + 0.599093i
\(567\) 0 0
\(568\) 28.9968 + 5.15033i 1.21668 + 0.216103i
\(569\) 9.05265i 0.379507i 0.981832 + 0.189753i \(0.0607688\pi\)
−0.981832 + 0.189753i \(0.939231\pi\)
\(570\) 0 0
\(571\) 11.1599 0.467025 0.233513 0.972354i \(-0.424978\pi\)
0.233513 + 0.972354i \(0.424978\pi\)
\(572\) −5.58291 + 7.48610i −0.233433 + 0.313010i
\(573\) 0 0
\(574\) −6.03273 12.0246i −0.251801 0.501899i
\(575\) 31.2573 1.30352
\(576\) 0 0
\(577\) 16.9468 0.705506 0.352753 0.935716i \(-0.385246\pi\)
0.352753 + 0.935716i \(0.385246\pi\)
\(578\) −16.6836 33.2544i −0.693948 1.38320i
\(579\) 0 0
\(580\) 9.20465 12.3425i 0.382202 0.512494i
\(581\) −10.5915 −0.439409
\(582\) 0 0
\(583\) 49.9896i 2.07036i
\(584\) −7.64709 1.35825i −0.316439 0.0562049i
\(585\) 0 0
\(586\) −12.4910 24.8975i −0.515998 1.02851i
\(587\) 1.11604i 0.0460640i −0.999735 0.0230320i \(-0.992668\pi\)
0.999735 0.0230320i \(-0.00733196\pi\)
\(588\) 0 0
\(589\) 1.87581i 0.0772915i
\(590\) −12.4868 + 6.26461i −0.514075 + 0.257910i
\(591\) 0 0
\(592\) 2.64522 0.787121i 0.108718 0.0323505i
\(593\) 26.3257i 1.08107i −0.841323 0.540533i \(-0.818223\pi\)
0.841323 0.540533i \(-0.181777\pi\)
\(594\) 0 0
\(595\) 8.41598 0.345021
\(596\) −8.15100 + 10.9297i −0.333878 + 0.447696i
\(597\) 0 0
\(598\) 8.88447 4.45731i 0.363313 0.182273i
\(599\) 6.69893 0.273711 0.136855 0.990591i \(-0.456300\pi\)
0.136855 + 0.990591i \(0.456300\pi\)
\(600\) 0 0
\(601\) 24.9360 1.01716 0.508580 0.861015i \(-0.330170\pi\)
0.508580 + 0.861015i \(0.330170\pi\)
\(602\) 19.5324 9.79934i 0.796081 0.399391i
\(603\) 0 0
\(604\) 29.8458 + 22.2581i 1.21441 + 0.905668i
\(605\) 8.03199 0.326547
\(606\) 0 0
\(607\) 12.1079i 0.491443i −0.969341 0.245721i \(-0.920975\pi\)
0.969341 0.245721i \(-0.0790248\pi\)
\(608\) −12.4751 + 11.7206i −0.505932 + 0.475332i
\(609\) 0 0
\(610\) 12.3661 6.20403i 0.500688 0.251194i
\(611\) 0.183800i 0.00743575i
\(612\) 0 0
\(613\) 35.3445i 1.42755i 0.700375 + 0.713775i \(0.253016\pi\)
−0.700375 + 0.713775i \(0.746984\pi\)
\(614\) −5.03507 10.0361i −0.203199 0.405023i
\(615\) 0 0
\(616\) 22.3658 + 3.97254i 0.901142 + 0.160058i
\(617\) 4.27008i 0.171907i −0.996299 0.0859534i \(-0.972606\pi\)
0.996299 0.0859534i \(-0.0273936\pi\)
\(618\) 0 0
\(619\) 0.994984 0.0399918 0.0199959 0.999800i \(-0.493635\pi\)
0.0199959 + 0.999800i \(0.493635\pi\)
\(620\) 0.738967 + 0.551099i 0.0296776 + 0.0221327i
\(621\) 0 0
\(622\) −14.9001 29.6995i −0.597441 1.19084i
\(623\) 22.5545 0.903626
\(624\) 0 0
\(625\) 17.0133 0.680531
\(626\) 5.44833 + 10.8598i 0.217759 + 0.434045i
\(627\) 0 0
\(628\) −14.4523 10.7781i −0.576711 0.430093i
\(629\) 4.54054 0.181043
\(630\) 0 0
\(631\) 7.71126i 0.306981i −0.988150 0.153490i \(-0.950949\pi\)
0.988150 0.153490i \(-0.0490514\pi\)
\(632\) −5.48819 + 30.8990i −0.218308 + 1.22910i
\(633\) 0 0
\(634\) 2.26485 + 4.51439i 0.0899489 + 0.179289i
\(635\) 7.28155i 0.288959i
\(636\) 0 0
\(637\) 4.04160i 0.160134i
\(638\) 61.1123 30.6598i 2.41946 1.21383i
\(639\) 0 0
\(640\) −0.952180 8.35791i −0.0376382 0.330375i
\(641\) 1.31766i 0.0520443i 0.999661 + 0.0260221i \(0.00828404\pi\)
−0.999661 + 0.0260221i \(0.991716\pi\)
\(642\) 0 0
\(643\) −46.5222 −1.83466 −0.917328 0.398133i \(-0.869658\pi\)
−0.917328 + 0.398133i \(0.869658\pi\)
\(644\) −19.3819 14.4544i −0.763754 0.569584i
\(645\) 0 0
\(646\) −25.1714 + 12.6284i −0.990354 + 0.496858i
\(647\) −9.96272 −0.391675 −0.195837 0.980636i \(-0.562743\pi\)
−0.195837 + 0.980636i \(0.562743\pi\)
\(648\) 0 0
\(649\) −62.0368 −2.43516
\(650\) 5.62146 2.82027i 0.220492 0.110620i
\(651\) 0 0
\(652\) 9.81428 13.1599i 0.384357 0.515383i
\(653\) −28.7123 −1.12360 −0.561800 0.827273i \(-0.689891\pi\)
−0.561800 + 0.827273i \(0.689891\pi\)
\(654\) 0 0
\(655\) 1.59685i 0.0623943i
\(656\) −21.2039 + 6.30951i −0.827873 + 0.246345i
\(657\) 0 0
\(658\) 0.399613 0.200484i 0.0155785 0.00781569i
\(659\) 40.3362i 1.57128i 0.618686 + 0.785638i \(0.287665\pi\)
−0.618686 + 0.785638i \(0.712335\pi\)
\(660\) 0 0
\(661\) 14.9302i 0.580717i −0.956918 0.290358i \(-0.906225\pi\)
0.956918 0.290358i \(-0.0937745\pi\)
\(662\) 14.3643 + 28.6315i 0.558285 + 1.11279i
\(663\) 0 0
\(664\) −3.04588 + 17.1486i −0.118203 + 0.665495i
\(665\) 3.86973i 0.150062i
\(666\) 0 0
\(667\) −72.7738 −2.81781
\(668\) 8.11504 10.8814i 0.313980 0.421015i
\(669\) 0 0
\(670\) −0.126581 0.252306i −0.00489026 0.00974744i
\(671\) 61.4369 2.37175
\(672\) 0 0
\(673\) −1.18247 −0.0455809 −0.0227905 0.999740i \(-0.507255\pi\)
−0.0227905 + 0.999740i \(0.507255\pi\)
\(674\) −8.34346 16.6305i −0.321378 0.640582i
\(675\) 0 0
\(676\) 1.19565 1.60325i 0.0459867 0.0616635i
\(677\) −14.2359 −0.547129 −0.273564 0.961854i \(-0.588203\pi\)
−0.273564 + 0.961854i \(0.588203\pi\)
\(678\) 0 0
\(679\) 29.6005i 1.13596i
\(680\) 2.42025 13.6262i 0.0928125 0.522543i
\(681\) 0 0
\(682\) 1.83566 + 3.65890i 0.0702910 + 0.140106i
\(683\) 45.4893i 1.74060i 0.492521 + 0.870300i \(0.336075\pi\)
−0.492521 + 0.870300i \(0.663925\pi\)
\(684\) 0 0
\(685\) 7.04114i 0.269028i
\(686\) 24.0063 12.0439i 0.916565 0.459838i
\(687\) 0 0
\(688\) −10.2489 34.4428i −0.390737 1.31312i
\(689\) 10.7059i 0.407864i
\(690\) 0 0
\(691\) −30.8877 −1.17502 −0.587511 0.809216i \(-0.699892\pi\)
−0.587511 + 0.809216i \(0.699892\pi\)
\(692\) −8.06245 + 10.8109i −0.306488 + 0.410969i
\(693\) 0 0
\(694\) −10.0097 + 5.02186i −0.379965 + 0.190627i
\(695\) −2.18290 −0.0828022
\(696\) 0 0
\(697\) −36.3967 −1.37862
\(698\) 9.84540 4.93941i 0.372654 0.186959i
\(699\) 0 0
\(700\) −12.2635 9.14574i −0.463517 0.345677i
\(701\) −24.6794 −0.932128 −0.466064 0.884751i \(-0.654328\pi\)
−0.466064 + 0.884751i \(0.654328\pi\)
\(702\) 0 0
\(703\) 2.08777i 0.0787418i
\(704\) 12.8638 35.0698i 0.484823 1.32174i
\(705\) 0 0
\(706\) 12.1907 6.11604i 0.458803 0.230180i
\(707\) 0.874901i 0.0329040i
\(708\) 0 0
\(709\) 41.0911i 1.54321i −0.636103 0.771605i \(-0.719454\pi\)
0.636103 0.771605i \(-0.280546\pi\)
\(710\) 4.90963 + 9.78605i 0.184255 + 0.367264i
\(711\) 0 0
\(712\) 6.48618 36.5178i 0.243080 1.36856i
\(713\) 4.35710i 0.163175i
\(714\) 0 0
\(715\) −3.47174 −0.129836
\(716\) 11.7558 + 8.76709i 0.439334 + 0.327642i
\(717\) 0 0
\(718\) 8.25980 + 16.4637i 0.308253 + 0.614421i
\(719\) 48.3260 1.80225 0.901127 0.433554i \(-0.142741\pi\)
0.901127 + 0.433554i \(0.142741\pi\)
\(720\) 0 0
\(721\) −23.4032 −0.871580
\(722\) −6.24262 12.4430i −0.232326 0.463081i
\(723\) 0 0
\(724\) 2.51910 + 1.87867i 0.0936216 + 0.0698201i
\(725\) −46.0462 −1.71011
\(726\) 0 0
\(727\) 26.1871i 0.971225i −0.874174 0.485612i \(-0.838597\pi\)
0.874174 0.485612i \(-0.161403\pi\)
\(728\) −4.78993 0.850773i −0.177527 0.0315317i
\(729\) 0 0
\(730\) −1.29478 2.58079i −0.0479218 0.0955195i
\(731\) 59.1214i 2.18668i
\(732\) 0 0
\(733\) 25.1869i 0.930300i −0.885232 0.465150i \(-0.846000\pi\)
0.885232 0.465150i \(-0.154000\pi\)
\(734\) 11.7864 5.91318i 0.435043 0.218260i
\(735\) 0 0
\(736\) −28.9769 + 27.2243i −1.06810 + 1.00350i
\(737\) 1.25350i 0.0461733i
\(738\) 0 0
\(739\) 21.7993 0.801900 0.400950 0.916100i \(-0.368680\pi\)
0.400950 + 0.916100i \(0.368680\pi\)
\(740\) 0.822467 + 0.613370i 0.0302345 + 0.0225479i
\(741\) 0 0
\(742\) −23.2766 + 11.6778i −0.854509 + 0.428705i
\(743\) −12.0393 −0.441680 −0.220840 0.975310i \(-0.570880\pi\)
−0.220840 + 0.975310i \(0.570880\pi\)
\(744\) 0 0
\(745\) −5.06871 −0.185703
\(746\) −41.9950 + 21.0687i −1.53755 + 0.771382i
\(747\) 0 0
\(748\) 36.7404 49.2650i 1.34336 1.80131i
\(749\) 16.3681 0.598077
\(750\) 0 0
\(751\) 7.16475i 0.261446i 0.991419 + 0.130723i \(0.0417298\pi\)
−0.991419 + 0.130723i \(0.958270\pi\)
\(752\) −0.209683 0.704665i −0.00764634 0.0256965i
\(753\) 0 0
\(754\) −13.0880 + 6.56622i −0.476637 + 0.239127i
\(755\) 13.8412i 0.503734i
\(756\) 0 0
\(757\) 2.57105i 0.0934464i −0.998908 0.0467232i \(-0.985122\pi\)
0.998908 0.0467232i \(-0.0148779\pi\)
\(758\) 2.67602 + 5.33393i 0.0971973 + 0.193737i
\(759\) 0 0
\(760\) −6.26544 1.11285i −0.227272 0.0403673i
\(761\) 47.1405i 1.70884i −0.519581 0.854421i \(-0.673912\pi\)
0.519581 0.854421i \(-0.326088\pi\)
\(762\) 0 0
\(763\) 9.32290 0.337512
\(764\) 24.3165 32.6059i 0.879740 1.17964i
\(765\) 0 0
\(766\) 20.1753 + 40.2141i 0.728963 + 1.45299i
\(767\) 13.2860 0.479731
\(768\) 0 0
\(769\) 54.3586 1.96022 0.980110 0.198456i \(-0.0635927\pi\)
0.980110 + 0.198456i \(0.0635927\pi\)
\(770\) 3.78689 + 7.54816i 0.136470 + 0.272017i
\(771\) 0 0
\(772\) 3.06292 4.10706i 0.110237 0.147816i
\(773\) 22.6180 0.813512 0.406756 0.913537i \(-0.366660\pi\)
0.406756 + 0.913537i \(0.366660\pi\)
\(774\) 0 0
\(775\) 2.75686i 0.0990295i
\(776\) 47.9260 + 8.51248i 1.72044 + 0.305580i
\(777\) 0 0
\(778\) 11.8484 + 23.6167i 0.424786 + 0.846699i
\(779\) 16.7355i 0.599610i
\(780\) 0 0
\(781\) 48.6188i 1.73972i
\(782\) −58.4675 + 29.3330i −2.09079 + 1.04894i
\(783\) 0 0
\(784\) −4.61074 15.4949i −0.164669 0.553391i
\(785\) 6.70238i 0.239218i
\(786\) 0 0
\(787\) −38.6165 −1.37653 −0.688264 0.725460i \(-0.741627\pi\)
−0.688264 + 0.725460i \(0.741627\pi\)
\(788\) −25.1271 + 33.6929i −0.895116 + 1.20026i
\(789\) 0 0
\(790\) −10.4280 + 5.23171i −0.371012 + 0.186136i
\(791\) −23.2166 −0.825488
\(792\) 0 0
\(793\) −13.1575 −0.467238
\(794\) 14.2064 7.12731i 0.504167 0.252939i
\(795\) 0 0
\(796\) −32.2347 24.0397i −1.14253 0.852063i
\(797\) −32.2392 −1.14197 −0.570986 0.820960i \(-0.693439\pi\)
−0.570986 + 0.820960i \(0.693439\pi\)
\(798\) 0 0
\(799\) 1.20956i 0.0427913i
\(800\) −18.3345 + 17.2256i −0.648223 + 0.609018i
\(801\) 0 0
\(802\) −36.8393 + 18.4822i −1.30084 + 0.652629i
\(803\) 12.8218i 0.452473i
\(804\) 0 0
\(805\) 8.98851i 0.316803i
\(806\) −0.393131 0.783602i −0.0138474 0.0276012i
\(807\) 0 0
\(808\) 1.41655 + 0.251603i 0.0498339 + 0.00885135i
\(809\) 8.34642i 0.293445i −0.989178 0.146722i \(-0.953128\pi\)
0.989178 0.146722i \(-0.0468724\pi\)
\(810\) 0 0
\(811\) −53.8372 −1.89048 −0.945241 0.326374i \(-0.894173\pi\)
−0.945241 + 0.326374i \(0.894173\pi\)
\(812\) 28.5521 + 21.2933i 1.00198 + 0.747249i
\(813\) 0 0
\(814\) 2.04308 + 4.07234i 0.0716099 + 0.142735i
\(815\) 6.10303 0.213780
\(816\) 0 0
\(817\) −27.1845 −0.951064
\(818\) 20.8463 + 41.5515i 0.728873 + 1.45282i
\(819\) 0 0
\(820\) −6.59284 4.91674i −0.230232 0.171700i
\(821\) 14.3765 0.501742 0.250871 0.968021i \(-0.419283\pi\)
0.250871 + 0.968021i \(0.419283\pi\)
\(822\) 0 0
\(823\) 36.1630i 1.26056i 0.776366 + 0.630282i \(0.217061\pi\)
−0.776366 + 0.630282i \(0.782939\pi\)
\(824\) −6.73025 + 37.8919i −0.234459 + 1.32003i
\(825\) 0 0
\(826\) −14.4921 28.8861i −0.504243 1.00508i
\(827\) 6.07633i 0.211295i −0.994404 0.105647i \(-0.966309\pi\)
0.994404 0.105647i \(-0.0336915\pi\)
\(828\) 0 0
\(829\) 21.2242i 0.737146i −0.929599 0.368573i \(-0.879846\pi\)
0.929599 0.368573i \(-0.120154\pi\)
\(830\) −5.78744 + 2.90354i −0.200885 + 0.100783i
\(831\) 0 0
\(832\) −2.75496 + 7.51067i −0.0955110 + 0.260386i
\(833\) 26.5972i 0.921539i
\(834\) 0 0
\(835\) 5.04635 0.174636
\(836\) −22.6524 16.8935i −0.783450 0.584273i
\(837\) 0 0
\(838\) 11.5433 5.79121i 0.398755 0.200054i
\(839\) −34.8560 −1.20336 −0.601681 0.798736i \(-0.705502\pi\)
−0.601681 + 0.798736i \(0.705502\pi\)
\(840\) 0 0
\(841\) 78.2057 2.69675
\(842\) 39.3106 19.7220i 1.35473 0.679665i
\(843\) 0 0
\(844\) −17.4265 + 23.3671i −0.599845 + 0.804330i
\(845\) 0.743520 0.0255779
\(846\) 0 0
\(847\) 18.5806i 0.638436i
\(848\) 12.2136 + 41.0452i 0.419415 + 1.40950i
\(849\) 0 0
\(850\) −36.9941 + 18.5598i −1.26889 + 0.636597i
\(851\) 4.84943i 0.166236i
\(852\) 0 0
\(853\) 29.9766i 1.02638i −0.858275 0.513190i \(-0.828464\pi\)
0.858275 0.513190i \(-0.171536\pi\)
\(854\) 14.3519 + 28.6067i 0.491112 + 0.978902i
\(855\) 0 0
\(856\) 4.70711 26.5014i 0.160886 0.905801i
\(857\) 1.09615i 0.0374439i 0.999825 + 0.0187220i \(0.00595974\pi\)
−0.999825 + 0.0187220i \(0.994040\pi\)
\(858\) 0 0
\(859\) −1.19251 −0.0406879 −0.0203440 0.999793i \(-0.506476\pi\)
−0.0203440 + 0.999793i \(0.506476\pi\)
\(860\) 7.98657 10.7092i 0.272340 0.365180i
\(861\) 0 0
\(862\) 12.2960 + 24.5088i 0.418804 + 0.834775i
\(863\) 8.53819 0.290643 0.145322 0.989384i \(-0.453578\pi\)
0.145322 + 0.989384i \(0.453578\pi\)
\(864\) 0 0
\(865\) −5.01365 −0.170469
\(866\) 21.5793 + 43.0127i 0.733295 + 1.46163i
\(867\) 0 0
\(868\) −1.27487 + 1.70947i −0.0432718 + 0.0580231i
\(869\) −51.8082 −1.75747
\(870\) 0 0
\(871\) 0.268454i 0.00909622i
\(872\) 2.68106 15.0946i 0.0907923 0.511169i
\(873\) 0 0
\(874\) 13.4875 + 26.8838i 0.456222 + 0.909357i
\(875\) 12.0816i 0.408432i
\(876\) 0 0
\(877\) 54.5232i 1.84112i −0.390606 0.920558i \(-0.627734\pi\)
0.390606 0.920558i \(-0.372266\pi\)
\(878\) −21.2646 + 10.6684i −0.717647 + 0.360041i
\(879\) 0 0
\(880\) 13.3102 3.96063i 0.448686 0.133513i
\(881\) 24.2338i 0.816458i 0.912879 + 0.408229i \(0.133854\pi\)
−0.912879 + 0.408229i \(0.866146\pi\)
\(882\) 0 0
\(883\) −27.7907 −0.935232 −0.467616 0.883932i \(-0.654887\pi\)
−0.467616 + 0.883932i \(0.654887\pi\)
\(884\) −7.86844 + 10.5508i −0.264644 + 0.354861i
\(885\) 0 0
\(886\) −10.7010 + 5.36868i −0.359508 + 0.180364i
\(887\) −37.5606 −1.26116 −0.630581 0.776123i \(-0.717183\pi\)
−0.630581 + 0.776123i \(0.717183\pi\)
\(888\) 0 0
\(889\) 16.8446 0.564948
\(890\) 12.3243 6.18306i 0.413111 0.207257i
\(891\) 0 0
\(892\) 22.5870 + 16.8447i 0.756267 + 0.564001i
\(893\) −0.556166 −0.0186114
\(894\) 0 0
\(895\) 5.45183i 0.182235i
\(896\) 19.3345 2.20270i 0.645921 0.0735870i
\(897\) 0 0
\(898\) 14.6828 7.36631i 0.489971 0.245817i
\(899\) 6.41859i 0.214072i
\(900\) 0 0
\(901\) 70.4544i 2.34718i
\(902\) −16.3772 32.6436i −0.545301 1.08691i
\(903\) 0 0
\(904\) −6.67660 + 37.5899i −0.222060 + 1.25022i
\(905\) 1.16825i 0.0388340i
\(906\) 0 0
\(907\) −26.8748 −0.892362 −0.446181 0.894943i \(-0.647216\pi\)
−0.446181 + 0.894943i \(0.647216\pi\)
\(908\) 16.0527 + 11.9716i 0.532727 + 0.397291i
\(909\) 0 0
\(910\) −0.811013 1.61654i −0.0268848 0.0535878i
\(911\) −22.3775 −0.741400 −0.370700 0.928753i \(-0.620882\pi\)
−0.370700 + 0.928753i \(0.620882\pi\)
\(912\) 0 0
\(913\) −28.7530 −0.951585
\(914\) 16.1128 + 32.1167i 0.532965 + 1.06233i
\(915\) 0 0
\(916\) 18.2308 + 13.5960i 0.602362 + 0.449223i
\(917\) −3.69404 −0.121988
\(918\) 0 0
\(919\) 38.2831i 1.26284i 0.775439 + 0.631422i \(0.217528\pi\)
−0.775439 + 0.631422i \(0.782472\pi\)
\(920\) −14.5532 2.58490i −0.479806 0.0852217i
\(921\) 0 0
\(922\) 6.62359 + 13.2024i 0.218136 + 0.434797i
\(923\) 10.4124i 0.342728i
\(924\) 0 0
\(925\) 3.06838i 0.100888i
\(926\) −5.88965 + 2.95482i −0.193546 + 0.0971013i
\(927\) 0 0
\(928\) 42.6868 40.1051i 1.40126 1.31651i
\(929\) 0.192447i 0.00631398i 0.999995 + 0.00315699i \(0.00100490\pi\)
−0.999995 + 0.00315699i \(0.998995\pi\)
\(930\) 0 0
\(931\) −12.2296 −0.400809
\(932\) 8.80692 + 6.56793i 0.288480 + 0.215140i
\(933\) 0 0
\(934\) 29.4382 14.7690i 0.963246 0.483258i
\(935\) 22.8471 0.747179
\(936\) 0 0
\(937\) −54.7439 −1.78841 −0.894203 0.447662i \(-0.852257\pi\)
−0.894203 + 0.447662i \(0.852257\pi\)
\(938\) 0.583665 0.292823i 0.0190573 0.00956101i
\(939\) 0 0
\(940\) 0.163397 0.219099i 0.00532942 0.00714621i
\(941\) 54.6373 1.78113 0.890563 0.454859i \(-0.150310\pi\)
0.890563 + 0.454859i \(0.150310\pi\)
\(942\) 0 0
\(943\) 38.8727i 1.26587i
\(944\) −50.9368 + 15.1570i −1.65785 + 0.493317i
\(945\) 0 0
\(946\) 53.0251 26.6025i 1.72399 0.864922i
\(947\) 6.29630i 0.204602i 0.994753 + 0.102301i \(0.0326205\pi\)
−0.994753 + 0.102301i \(0.967379\pi\)
\(948\) 0 0
\(949\) 2.74597i 0.0891379i
\(950\) 8.53394 + 17.0102i 0.276878 + 0.551882i
\(951\) 0 0
\(952\) 31.5219 + 5.59882i 1.02163 + 0.181459i
\(953\) 37.1157i 1.20229i 0.799138 + 0.601147i \(0.205290\pi\)
−0.799138 + 0.601147i \(0.794710\pi\)
\(954\) 0 0
\(955\) 15.1213 0.489312
\(956\) −21.5308 + 28.8705i −0.696355 + 0.933740i
\(957\) 0 0
\(958\) −22.2891 44.4275i −0.720130 1.43539i
\(959\) 16.2884 0.525980
\(960\) 0 0
\(961\) 30.6157 0.987603
\(962\) −0.437553 0.872146i −0.0141073 0.0281191i
\(963\) 0 0
\(964\) −9.25689 + 12.4125i −0.298144 + 0.399781i
\(965\) 1.90468 0.0613139
\(966\) 0 0
\(967\) 10.8250i 0.348109i −0.984736 0.174054i \(-0.944313\pi\)
0.984736 0.174054i \(-0.0556869\pi\)
\(968\) 30.0837 + 5.34337i 0.966925 + 0.171742i
\(969\) 0 0
\(970\) 8.11465 + 16.1744i 0.260546 + 0.519329i
\(971\) 16.8746i 0.541531i 0.962645 + 0.270765i \(0.0872768\pi\)
−0.962645 + 0.270765i \(0.912723\pi\)
\(972\) 0 0
\(973\) 5.04975i 0.161888i
\(974\) −4.33724 + 2.17598i −0.138974 + 0.0697229i
\(975\) 0 0
\(976\) 50.4442 15.0104i 1.61468 0.480471i
\(977\) 4.05555i 0.129749i 0.997893 + 0.0648743i \(0.0206646\pi\)
−0.997893 + 0.0648743i \(0.979335\pi\)
\(978\) 0 0
\(979\) 61.2292 1.95689
\(980\) 3.59295 4.81778i 0.114773 0.153898i
\(981\) 0 0
\(982\) −8.21186 + 4.11986i −0.262051 + 0.131470i
\(983\) −39.7911 −1.26914 −0.634569 0.772866i \(-0.718822\pi\)
−0.634569 + 0.772866i \(0.718822\pi\)
\(984\) 0 0
\(985\) −15.6253 −0.497865
\(986\) 86.1305 43.2114i 2.74295 1.37613i
\(987\) 0 0
\(988\) 4.85132 + 3.61797i 0.154341 + 0.115103i
\(989\) −63.1434 −2.00784
\(990\) 0 0
\(991\) 48.1323i 1.52897i 0.644640 + 0.764486i \(0.277007\pi\)
−0.644640 + 0.764486i \(0.722993\pi\)
\(992\) 2.40116 + 2.55573i 0.0762369 + 0.0811447i
\(993\) 0 0
\(994\) −22.6383 + 11.3576i −0.718043 + 0.360240i
\(995\) 14.9491i 0.473918i
\(996\) 0 0
\(997\) 30.0514i 0.951738i 0.879516 + 0.475869i \(0.157866\pi\)
−0.879516 + 0.475869i \(0.842134\pi\)
\(998\) 14.4531 + 28.8085i 0.457505 + 0.911916i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.j.a.755.34 yes 48
3.2 odd 2 inner 936.2.j.a.755.15 48
4.3 odd 2 3744.2.j.a.2159.17 48
8.3 odd 2 inner 936.2.j.a.755.16 yes 48
8.5 even 2 3744.2.j.a.2159.32 48
12.11 even 2 3744.2.j.a.2159.31 48
24.5 odd 2 3744.2.j.a.2159.18 48
24.11 even 2 inner 936.2.j.a.755.33 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.j.a.755.15 48 3.2 odd 2 inner
936.2.j.a.755.16 yes 48 8.3 odd 2 inner
936.2.j.a.755.33 yes 48 24.11 even 2 inner
936.2.j.a.755.34 yes 48 1.1 even 1 trivial
3744.2.j.a.2159.17 48 4.3 odd 2
3744.2.j.a.2159.18 48 24.5 odd 2
3744.2.j.a.2159.31 48 12.11 even 2
3744.2.j.a.2159.32 48 8.5 even 2