Properties

Label 3744.2.j.a.2159.18
Level $3744$
Weight $2$
Character 3744.2159
Analytic conductor $29.896$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3744,2,Mod(2159,3744)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3744, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3744.2159"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3744 = 2^{5} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3744.j (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.8959905168\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: no (minimal twist has level 936)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2159.18
Character \(\chi\) \(=\) 3744.2159
Dual form 3744.2.j.a.2159.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.743520 q^{5} -1.72000i q^{7} -4.66933i q^{11} -1.00000i q^{13} +6.58087i q^{17} +3.02593 q^{19} +7.02856 q^{23} -4.44718 q^{25} +10.3540 q^{29} +0.619913i q^{31} +1.27886i q^{35} -0.689961i q^{37} +5.53068i q^{41} -8.98383 q^{43} -0.183800 q^{47} +4.04160 q^{49} -10.7059 q^{53} +3.47174i q^{55} -13.2860i q^{59} -13.1575i q^{61} +0.743520i q^{65} -0.268454 q^{67} +10.4124 q^{71} +2.74597 q^{73} -8.03125 q^{77} -11.0954i q^{79} -6.15784i q^{83} -4.89301i q^{85} -13.1131i q^{89} -1.72000 q^{91} -2.24984 q^{95} -17.2096 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 32 q^{19} + 48 q^{25} + 32 q^{43} - 48 q^{49} - 32 q^{67} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3744\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(2017\) \(2081\) \(2341\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.743520 −0.332512 −0.166256 0.986083i \(-0.553168\pi\)
−0.166256 + 0.986083i \(0.553168\pi\)
\(6\) 0 0
\(7\) − 1.72000i − 0.650099i −0.945697 0.325050i \(-0.894619\pi\)
0.945697 0.325050i \(-0.105381\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 4.66933i − 1.40786i −0.710271 0.703928i \(-0.751428\pi\)
0.710271 0.703928i \(-0.248572\pi\)
\(12\) 0 0
\(13\) − 1.00000i − 0.277350i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.58087i 1.59609i 0.602595 + 0.798047i \(0.294134\pi\)
−0.602595 + 0.798047i \(0.705866\pi\)
\(18\) 0 0
\(19\) 3.02593 0.694196 0.347098 0.937829i \(-0.387167\pi\)
0.347098 + 0.937829i \(0.387167\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.02856 1.46556 0.732778 0.680468i \(-0.238223\pi\)
0.732778 + 0.680468i \(0.238223\pi\)
\(24\) 0 0
\(25\) −4.44718 −0.889436
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 10.3540 1.92269 0.961346 0.275342i \(-0.0887911\pi\)
0.961346 + 0.275342i \(0.0887911\pi\)
\(30\) 0 0
\(31\) 0.619913i 0.111340i 0.998449 + 0.0556698i \(0.0177294\pi\)
−0.998449 + 0.0556698i \(0.982271\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.27886i 0.216166i
\(36\) 0 0
\(37\) − 0.689961i − 0.113429i −0.998390 0.0567144i \(-0.981938\pi\)
0.998390 0.0567144i \(-0.0180625\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.53068i 0.863747i 0.901934 + 0.431874i \(0.142147\pi\)
−0.901934 + 0.431874i \(0.857853\pi\)
\(42\) 0 0
\(43\) −8.98383 −1.37002 −0.685011 0.728533i \(-0.740203\pi\)
−0.685011 + 0.728533i \(0.740203\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.183800 −0.0268100 −0.0134050 0.999910i \(-0.504267\pi\)
−0.0134050 + 0.999910i \(0.504267\pi\)
\(48\) 0 0
\(49\) 4.04160 0.577371
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −10.7059 −1.47057 −0.735287 0.677755i \(-0.762953\pi\)
−0.735287 + 0.677755i \(0.762953\pi\)
\(54\) 0 0
\(55\) 3.47174i 0.468130i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 13.2860i − 1.72969i −0.502036 0.864847i \(-0.667416\pi\)
0.502036 0.864847i \(-0.332584\pi\)
\(60\) 0 0
\(61\) − 13.1575i − 1.68465i −0.538970 0.842325i \(-0.681186\pi\)
0.538970 0.842325i \(-0.318814\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.743520i 0.0922223i
\(66\) 0 0
\(67\) −0.268454 −0.0327969 −0.0163984 0.999866i \(-0.505220\pi\)
−0.0163984 + 0.999866i \(0.505220\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.4124 1.23572 0.617861 0.786287i \(-0.287999\pi\)
0.617861 + 0.786287i \(0.287999\pi\)
\(72\) 0 0
\(73\) 2.74597 0.321391 0.160696 0.987004i \(-0.448626\pi\)
0.160696 + 0.987004i \(0.448626\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −8.03125 −0.915246
\(78\) 0 0
\(79\) − 11.0954i − 1.24833i −0.781291 0.624167i \(-0.785439\pi\)
0.781291 0.624167i \(-0.214561\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 6.15784i − 0.675911i −0.941162 0.337955i \(-0.890265\pi\)
0.941162 0.337955i \(-0.109735\pi\)
\(84\) 0 0
\(85\) − 4.89301i − 0.530721i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 13.1131i − 1.38998i −0.719018 0.694991i \(-0.755408\pi\)
0.719018 0.694991i \(-0.244592\pi\)
\(90\) 0 0
\(91\) −1.72000 −0.180305
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.24984 −0.230829
\(96\) 0 0
\(97\) −17.2096 −1.74737 −0.873685 0.486491i \(-0.838277\pi\)
−0.873685 + 0.486491i \(0.838277\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −0.508663 −0.0506139 −0.0253069 0.999680i \(-0.508056\pi\)
−0.0253069 + 0.999680i \(0.508056\pi\)
\(102\) 0 0
\(103\) − 13.6065i − 1.34069i −0.742051 0.670344i \(-0.766147\pi\)
0.742051 0.670344i \(-0.233853\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.51632i 0.919978i 0.887925 + 0.459989i \(0.152147\pi\)
−0.887925 + 0.459989i \(0.847853\pi\)
\(108\) 0 0
\(109\) − 5.42029i − 0.519169i −0.965720 0.259585i \(-0.916414\pi\)
0.965720 0.259585i \(-0.0835857\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 13.4980i 1.26979i 0.772599 + 0.634894i \(0.218956\pi\)
−0.772599 + 0.634894i \(0.781044\pi\)
\(114\) 0 0
\(115\) −5.22588 −0.487316
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 11.3191 1.03762
\(120\) 0 0
\(121\) −10.8026 −0.982059
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 7.02417 0.628261
\(126\) 0 0
\(127\) 9.79334i 0.869019i 0.900667 + 0.434509i \(0.143078\pi\)
−0.900667 + 0.434509i \(0.856922\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 2.14770i − 0.187645i −0.995589 0.0938225i \(-0.970091\pi\)
0.995589 0.0938225i \(-0.0299086\pi\)
\(132\) 0 0
\(133\) − 5.20460i − 0.451296i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 9.47000i − 0.809077i −0.914521 0.404538i \(-0.867432\pi\)
0.914521 0.404538i \(-0.132568\pi\)
\(138\) 0 0
\(139\) −2.93590 −0.249020 −0.124510 0.992218i \(-0.539736\pi\)
−0.124510 + 0.992218i \(0.539736\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.66933 −0.390469
\(144\) 0 0
\(145\) −7.69842 −0.639319
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.81718 0.558486 0.279243 0.960221i \(-0.409917\pi\)
0.279243 + 0.960221i \(0.409917\pi\)
\(150\) 0 0
\(151\) − 18.6158i − 1.51493i −0.652875 0.757466i \(-0.726437\pi\)
0.652875 0.757466i \(-0.273563\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 0.460918i − 0.0370218i
\(156\) 0 0
\(157\) − 9.01440i − 0.719427i −0.933063 0.359714i \(-0.882874\pi\)
0.933063 0.359714i \(-0.117126\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 12.0891i − 0.952757i
\(162\) 0 0
\(163\) 8.20829 0.642923 0.321462 0.946923i \(-0.395826\pi\)
0.321462 + 0.946923i \(0.395826\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.78711 0.525202 0.262601 0.964904i \(-0.415420\pi\)
0.262601 + 0.964904i \(0.415420\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.74312 0.512670 0.256335 0.966588i \(-0.417485\pi\)
0.256335 + 0.966588i \(0.417485\pi\)
\(174\) 0 0
\(175\) 7.64915i 0.578221i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 7.33246i − 0.548054i −0.961722 0.274027i \(-0.911644\pi\)
0.961722 0.274027i \(-0.0883558\pi\)
\(180\) 0 0
\(181\) 1.57125i 0.116790i 0.998294 + 0.0583949i \(0.0185982\pi\)
−0.998294 + 0.0583949i \(0.981402\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.513000i 0.0377165i
\(186\) 0 0
\(187\) 30.7282 2.24707
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 20.3374 1.47156 0.735781 0.677220i \(-0.236815\pi\)
0.735781 + 0.677220i \(0.236815\pi\)
\(192\) 0 0
\(193\) −2.56171 −0.184396 −0.0921980 0.995741i \(-0.529389\pi\)
−0.0921980 + 0.995741i \(0.529389\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 21.0154 1.49728 0.748641 0.662975i \(-0.230707\pi\)
0.748641 + 0.662975i \(0.230707\pi\)
\(198\) 0 0
\(199\) 20.1058i 1.42527i 0.701537 + 0.712633i \(0.252497\pi\)
−0.701537 + 0.712633i \(0.747503\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 17.8089i − 1.24994i
\(204\) 0 0
\(205\) − 4.11217i − 0.287207i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 14.1291i − 0.977328i
\(210\) 0 0
\(211\) −14.5749 −1.00337 −0.501687 0.865049i \(-0.667287\pi\)
−0.501687 + 0.865049i \(0.667287\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.67966 0.455549
\(216\) 0 0
\(217\) 1.06625 0.0723818
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.58087 0.442677
\(222\) 0 0
\(223\) − 14.0882i − 0.943418i −0.881754 0.471709i \(-0.843637\pi\)
0.881754 0.471709i \(-0.156363\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 10.0126i − 0.664558i −0.943181 0.332279i \(-0.892182\pi\)
0.943181 0.332279i \(-0.107818\pi\)
\(228\) 0 0
\(229\) 11.3711i 0.751426i 0.926736 + 0.375713i \(0.122602\pi\)
−0.926736 + 0.375713i \(0.877398\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5.49317i 0.359869i 0.983679 + 0.179935i \(0.0575887\pi\)
−0.983679 + 0.179935i \(0.942411\pi\)
\(234\) 0 0
\(235\) 0.136659 0.00891465
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −18.0075 −1.16481 −0.582404 0.812899i \(-0.697888\pi\)
−0.582404 + 0.812899i \(0.697888\pi\)
\(240\) 0 0
\(241\) 7.74211 0.498713 0.249357 0.968412i \(-0.419781\pi\)
0.249357 + 0.968412i \(0.419781\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3.00501 −0.191983
\(246\) 0 0
\(247\) − 3.02593i − 0.192535i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 19.3627i 1.22216i 0.791567 + 0.611082i \(0.209266\pi\)
−0.791567 + 0.611082i \(0.790734\pi\)
\(252\) 0 0
\(253\) − 32.8187i − 2.06329i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 4.17899i − 0.260678i −0.991469 0.130339i \(-0.958393\pi\)
0.991469 0.130339i \(-0.0416066\pi\)
\(258\) 0 0
\(259\) −1.18673 −0.0737400
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −24.6071 −1.51734 −0.758670 0.651475i \(-0.774150\pi\)
−0.758670 + 0.651475i \(0.774150\pi\)
\(264\) 0 0
\(265\) 7.96009 0.488984
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 8.95889 0.546233 0.273116 0.961981i \(-0.411946\pi\)
0.273116 + 0.961981i \(0.411946\pi\)
\(270\) 0 0
\(271\) − 21.8098i − 1.32485i −0.749128 0.662426i \(-0.769527\pi\)
0.749128 0.662426i \(-0.230473\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 20.7653i 1.25220i
\(276\) 0 0
\(277\) − 7.26899i − 0.436751i −0.975865 0.218376i \(-0.929924\pi\)
0.975865 0.218376i \(-0.0700758\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 0.361353i − 0.0215565i −0.999942 0.0107783i \(-0.996569\pi\)
0.999942 0.0107783i \(-0.00343089\pi\)
\(282\) 0 0
\(283\) −11.2756 −0.670262 −0.335131 0.942172i \(-0.608781\pi\)
−0.335131 + 0.942172i \(0.608781\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9.51278 0.561521
\(288\) 0 0
\(289\) −26.3078 −1.54752
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −19.6966 −1.15069 −0.575343 0.817913i \(-0.695131\pi\)
−0.575343 + 0.817913i \(0.695131\pi\)
\(294\) 0 0
\(295\) 9.87843i 0.575144i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 7.02856i − 0.406472i
\(300\) 0 0
\(301\) 15.4522i 0.890650i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 9.78290i 0.560167i
\(306\) 0 0
\(307\) 7.93961 0.453138 0.226569 0.973995i \(-0.427249\pi\)
0.226569 + 0.973995i \(0.427249\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 23.4955 1.33231 0.666153 0.745815i \(-0.267940\pi\)
0.666153 + 0.745815i \(0.267940\pi\)
\(312\) 0 0
\(313\) 8.59126 0.485607 0.242803 0.970076i \(-0.421933\pi\)
0.242803 + 0.970076i \(0.421933\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.57136 0.200588 0.100294 0.994958i \(-0.468022\pi\)
0.100294 + 0.994958i \(0.468022\pi\)
\(318\) 0 0
\(319\) − 48.3463i − 2.70687i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 19.9132i 1.10800i
\(324\) 0 0
\(325\) 4.44718i 0.246685i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.316136i 0.0174292i
\(330\) 0 0
\(331\) −22.6506 −1.24499 −0.622494 0.782625i \(-0.713880\pi\)
−0.622494 + 0.782625i \(0.713880\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.199601 0.0109054
\(336\) 0 0
\(337\) −13.1565 −0.716679 −0.358340 0.933591i \(-0.616657\pi\)
−0.358340 + 0.933591i \(0.616657\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.89458 0.156750
\(342\) 0 0
\(343\) − 18.9916i − 1.02545i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.91878i 0.425102i 0.977150 + 0.212551i \(0.0681772\pi\)
−0.977150 + 0.212551i \(0.931823\pi\)
\(348\) 0 0
\(349\) 7.78876i 0.416923i 0.978031 + 0.208461i \(0.0668456\pi\)
−0.978031 + 0.208461i \(0.933154\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9.64415i 0.513306i 0.966504 + 0.256653i \(0.0826198\pi\)
−0.966504 + 0.256653i \(0.917380\pi\)
\(354\) 0 0
\(355\) −7.74181 −0.410893
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −13.0246 −0.687410 −0.343705 0.939078i \(-0.611682\pi\)
−0.343705 + 0.939078i \(0.611682\pi\)
\(360\) 0 0
\(361\) −9.84375 −0.518092
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.04168 −0.106867
\(366\) 0 0
\(367\) − 9.32427i − 0.486723i −0.969936 0.243362i \(-0.921750\pi\)
0.969936 0.243362i \(-0.0782502\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 18.4142i 0.956020i
\(372\) 0 0
\(373\) − 33.2225i − 1.72020i −0.510129 0.860098i \(-0.670402\pi\)
0.510129 0.860098i \(-0.329598\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 10.3540i − 0.533259i
\(378\) 0 0
\(379\) −4.21971 −0.216752 −0.108376 0.994110i \(-0.534565\pi\)
−0.108376 + 0.994110i \(0.534565\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −31.8136 −1.62560 −0.812800 0.582542i \(-0.802058\pi\)
−0.812800 + 0.582542i \(0.802058\pi\)
\(384\) 0 0
\(385\) 5.97140 0.304331
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 18.6833 0.947282 0.473641 0.880718i \(-0.342939\pi\)
0.473641 + 0.880718i \(0.342939\pi\)
\(390\) 0 0
\(391\) 46.2540i 2.33917i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 8.24968i 0.415086i
\(396\) 0 0
\(397\) 11.2388i 0.564059i 0.959406 + 0.282029i \(0.0910076\pi\)
−0.959406 + 0.282029i \(0.908992\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 29.1439i − 1.45537i −0.685909 0.727687i \(-0.740595\pi\)
0.685909 0.727687i \(-0.259405\pi\)
\(402\) 0 0
\(403\) 0.619913 0.0308801
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.22165 −0.159691
\(408\) 0 0
\(409\) 32.8717 1.62540 0.812700 0.582682i \(-0.197997\pi\)
0.812700 + 0.582682i \(0.197997\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −22.8520 −1.12447
\(414\) 0 0
\(415\) 4.57848i 0.224749i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 9.13194i − 0.446125i −0.974804 0.223062i \(-0.928395\pi\)
0.974804 0.223062i \(-0.0716053\pi\)
\(420\) 0 0
\(421\) 31.0989i 1.51567i 0.652449 + 0.757833i \(0.273742\pi\)
−0.652449 + 0.757833i \(0.726258\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 29.2663i − 1.41962i
\(426\) 0 0
\(427\) −22.6310 −1.09519
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −19.3891 −0.933941 −0.466970 0.884273i \(-0.654655\pi\)
−0.466970 + 0.884273i \(0.654655\pi\)
\(432\) 0 0
\(433\) 34.0276 1.63526 0.817632 0.575742i \(-0.195287\pi\)
0.817632 + 0.575742i \(0.195287\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 21.2679 1.01738
\(438\) 0 0
\(439\) 16.8226i 0.802899i 0.915881 + 0.401449i \(0.131493\pi\)
−0.915881 + 0.401449i \(0.868507\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8.46566i 0.402216i 0.979569 + 0.201108i \(0.0644542\pi\)
−0.979569 + 0.201108i \(0.935546\pi\)
\(444\) 0 0
\(445\) 9.74983i 0.462186i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 11.6157i 0.548177i 0.961705 + 0.274088i \(0.0883761\pi\)
−0.961705 + 0.274088i \(0.911624\pi\)
\(450\) 0 0
\(451\) 25.8246 1.21603
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.27886 0.0599537
\(456\) 0 0
\(457\) 25.4077 1.18852 0.594262 0.804272i \(-0.297444\pi\)
0.594262 + 0.804272i \(0.297444\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 10.4445 0.486449 0.243224 0.969970i \(-0.421795\pi\)
0.243224 + 0.969970i \(0.421795\pi\)
\(462\) 0 0
\(463\) 4.65934i 0.216538i 0.994122 + 0.108269i \(0.0345308\pi\)
−0.994122 + 0.108269i \(0.965469\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 23.2887i − 1.07767i −0.842410 0.538837i \(-0.818864\pi\)
0.842410 0.538837i \(-0.181136\pi\)
\(468\) 0 0
\(469\) 0.461741i 0.0213212i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 41.9485i 1.92879i
\(474\) 0 0
\(475\) −13.4568 −0.617442
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 35.1469 1.60590 0.802952 0.596044i \(-0.203262\pi\)
0.802952 + 0.596044i \(0.203262\pi\)
\(480\) 0 0
\(481\) −0.689961 −0.0314595
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 12.7957 0.581022
\(486\) 0 0
\(487\) 3.43122i 0.155483i 0.996974 + 0.0777417i \(0.0247710\pi\)
−0.996974 + 0.0777417i \(0.975229\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 6.49646i 0.293181i 0.989197 + 0.146591i \(0.0468300\pi\)
−0.989197 + 0.146591i \(0.953170\pi\)
\(492\) 0 0
\(493\) 68.1384i 3.06880i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 17.9093i − 0.803342i
\(498\) 0 0
\(499\) −22.7906 −1.02025 −0.510123 0.860101i \(-0.670400\pi\)
−0.510123 + 0.860101i \(0.670400\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6.22278 0.277460 0.138730 0.990330i \(-0.455698\pi\)
0.138730 + 0.990330i \(0.455698\pi\)
\(504\) 0 0
\(505\) 0.378201 0.0168297
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −0.0362228 −0.00160555 −0.000802774 1.00000i \(-0.500256\pi\)
−0.000802774 1.00000i \(0.500256\pi\)
\(510\) 0 0
\(511\) − 4.72307i − 0.208936i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 10.1167i 0.445795i
\(516\) 0 0
\(517\) 0.858223i 0.0377446i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 18.2499i − 0.799542i −0.916615 0.399771i \(-0.869090\pi\)
0.916615 0.399771i \(-0.130910\pi\)
\(522\) 0 0
\(523\) −19.9310 −0.871521 −0.435761 0.900063i \(-0.643521\pi\)
−0.435761 + 0.900063i \(0.643521\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4.07957 −0.177709
\(528\) 0 0
\(529\) 26.4007 1.14786
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 5.53068 0.239560
\(534\) 0 0
\(535\) − 7.07558i − 0.305904i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 18.8716i − 0.812855i
\(540\) 0 0
\(541\) − 7.30595i − 0.314107i −0.987590 0.157054i \(-0.949800\pi\)
0.987590 0.157054i \(-0.0501995\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 4.03009i 0.172630i
\(546\) 0 0
\(547\) −21.5397 −0.920970 −0.460485 0.887667i \(-0.652324\pi\)
−0.460485 + 0.887667i \(0.652324\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 31.3305 1.33473
\(552\) 0 0
\(553\) −19.0842 −0.811541
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −31.4672 −1.33331 −0.666653 0.745368i \(-0.732274\pi\)
−0.666653 + 0.745368i \(0.732274\pi\)
\(558\) 0 0
\(559\) 8.98383i 0.379976i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 23.3682i − 0.984853i −0.870354 0.492427i \(-0.836110\pi\)
0.870354 0.492427i \(-0.163890\pi\)
\(564\) 0 0
\(565\) − 10.0361i − 0.422220i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 9.05265i − 0.379507i −0.981832 0.189753i \(-0.939231\pi\)
0.981832 0.189753i \(-0.0607688\pi\)
\(570\) 0 0
\(571\) −11.1599 −0.467025 −0.233513 0.972354i \(-0.575022\pi\)
−0.233513 + 0.972354i \(0.575022\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −31.2573 −1.30352
\(576\) 0 0
\(577\) 16.9468 0.705506 0.352753 0.935716i \(-0.385246\pi\)
0.352753 + 0.935716i \(0.385246\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −10.5915 −0.439409
\(582\) 0 0
\(583\) 49.9896i 2.07036i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 1.11604i − 0.0460640i −0.999735 0.0230320i \(-0.992668\pi\)
0.999735 0.0230320i \(-0.00733196\pi\)
\(588\) 0 0
\(589\) 1.87581i 0.0772915i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 26.3257i 1.08107i 0.841323 + 0.540533i \(0.181777\pi\)
−0.841323 + 0.540533i \(0.818223\pi\)
\(594\) 0 0
\(595\) −8.41598 −0.345021
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −6.69893 −0.273711 −0.136855 0.990591i \(-0.543700\pi\)
−0.136855 + 0.990591i \(0.543700\pi\)
\(600\) 0 0
\(601\) 24.9360 1.01716 0.508580 0.861015i \(-0.330170\pi\)
0.508580 + 0.861015i \(0.330170\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 8.03199 0.326547
\(606\) 0 0
\(607\) − 12.1079i − 0.491443i −0.969341 0.245721i \(-0.920975\pi\)
0.969341 0.245721i \(-0.0790248\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.183800i 0.00743575i
\(612\) 0 0
\(613\) − 35.3445i − 1.42755i −0.700375 0.713775i \(-0.746984\pi\)
0.700375 0.713775i \(-0.253016\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4.27008i 0.171907i 0.996299 + 0.0859534i \(0.0273936\pi\)
−0.996299 + 0.0859534i \(0.972606\pi\)
\(618\) 0 0
\(619\) −0.994984 −0.0399918 −0.0199959 0.999800i \(-0.506365\pi\)
−0.0199959 + 0.999800i \(0.506365\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −22.5545 −0.903626
\(624\) 0 0
\(625\) 17.0133 0.680531
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 4.54054 0.181043
\(630\) 0 0
\(631\) − 7.71126i − 0.306981i −0.988150 0.153490i \(-0.950949\pi\)
0.988150 0.153490i \(-0.0490514\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 7.28155i − 0.288959i
\(636\) 0 0
\(637\) − 4.04160i − 0.160134i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 1.31766i − 0.0520443i −0.999661 0.0260221i \(-0.991716\pi\)
0.999661 0.0260221i \(-0.00828404\pi\)
\(642\) 0 0
\(643\) 46.5222 1.83466 0.917328 0.398133i \(-0.130342\pi\)
0.917328 + 0.398133i \(0.130342\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 9.96272 0.391675 0.195837 0.980636i \(-0.437257\pi\)
0.195837 + 0.980636i \(0.437257\pi\)
\(648\) 0 0
\(649\) −62.0368 −2.43516
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −28.7123 −1.12360 −0.561800 0.827273i \(-0.689891\pi\)
−0.561800 + 0.827273i \(0.689891\pi\)
\(654\) 0 0
\(655\) 1.59685i 0.0623943i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 40.3362i 1.57128i 0.618686 + 0.785638i \(0.287665\pi\)
−0.618686 + 0.785638i \(0.712335\pi\)
\(660\) 0 0
\(661\) 14.9302i 0.580717i 0.956918 + 0.290358i \(0.0937745\pi\)
−0.956918 + 0.290358i \(0.906225\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.86973i 0.150062i
\(666\) 0 0
\(667\) 72.7738 2.81781
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −61.4369 −2.37175
\(672\) 0 0
\(673\) −1.18247 −0.0455809 −0.0227905 0.999740i \(-0.507255\pi\)
−0.0227905 + 0.999740i \(0.507255\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −14.2359 −0.547129 −0.273564 0.961854i \(-0.588203\pi\)
−0.273564 + 0.961854i \(0.588203\pi\)
\(678\) 0 0
\(679\) 29.6005i 1.13596i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 45.4893i 1.74060i 0.492521 + 0.870300i \(0.336075\pi\)
−0.492521 + 0.870300i \(0.663925\pi\)
\(684\) 0 0
\(685\) 7.04114i 0.269028i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 10.7059i 0.407864i
\(690\) 0 0
\(691\) 30.8877 1.17502 0.587511 0.809216i \(-0.300108\pi\)
0.587511 + 0.809216i \(0.300108\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.18290 0.0828022
\(696\) 0 0
\(697\) −36.3967 −1.37862
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −24.6794 −0.932128 −0.466064 0.884751i \(-0.654328\pi\)
−0.466064 + 0.884751i \(0.654328\pi\)
\(702\) 0 0
\(703\) − 2.08777i − 0.0787418i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0.874901i 0.0329040i
\(708\) 0 0
\(709\) 41.0911i 1.54321i 0.636103 + 0.771605i \(0.280546\pi\)
−0.636103 + 0.771605i \(0.719454\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 4.35710i 0.163175i
\(714\) 0 0
\(715\) 3.47174 0.129836
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −48.3260 −1.80225 −0.901127 0.433554i \(-0.857259\pi\)
−0.901127 + 0.433554i \(0.857259\pi\)
\(720\) 0 0
\(721\) −23.4032 −0.871580
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −46.0462 −1.71011
\(726\) 0 0
\(727\) − 26.1871i − 0.971225i −0.874174 0.485612i \(-0.838597\pi\)
0.874174 0.485612i \(-0.161403\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 59.1214i − 2.18668i
\(732\) 0 0
\(733\) 25.1869i 0.930300i 0.885232 + 0.465150i \(0.154000\pi\)
−0.885232 + 0.465150i \(0.846000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.25350i 0.0461733i
\(738\) 0 0
\(739\) −21.7993 −0.801900 −0.400950 0.916100i \(-0.631320\pi\)
−0.400950 + 0.916100i \(0.631320\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 12.0393 0.441680 0.220840 0.975310i \(-0.429120\pi\)
0.220840 + 0.975310i \(0.429120\pi\)
\(744\) 0 0
\(745\) −5.06871 −0.185703
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 16.3681 0.598077
\(750\) 0 0
\(751\) 7.16475i 0.261446i 0.991419 + 0.130723i \(0.0417298\pi\)
−0.991419 + 0.130723i \(0.958270\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 13.8412i 0.503734i
\(756\) 0 0
\(757\) 2.57105i 0.0934464i 0.998908 + 0.0467232i \(0.0148779\pi\)
−0.998908 + 0.0467232i \(0.985122\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 47.1405i 1.70884i 0.519581 + 0.854421i \(0.326088\pi\)
−0.519581 + 0.854421i \(0.673912\pi\)
\(762\) 0 0
\(763\) −9.32290 −0.337512
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −13.2860 −0.479731
\(768\) 0 0
\(769\) 54.3586 1.96022 0.980110 0.198456i \(-0.0635927\pi\)
0.980110 + 0.198456i \(0.0635927\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 22.6180 0.813512 0.406756 0.913537i \(-0.366660\pi\)
0.406756 + 0.913537i \(0.366660\pi\)
\(774\) 0 0
\(775\) − 2.75686i − 0.0990295i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 16.7355i 0.599610i
\(780\) 0 0
\(781\) − 48.6188i − 1.73972i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 6.70238i 0.239218i
\(786\) 0 0
\(787\) 38.6165 1.37653 0.688264 0.725460i \(-0.258373\pi\)
0.688264 + 0.725460i \(0.258373\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 23.2166 0.825488
\(792\) 0 0
\(793\) −13.1575 −0.467238
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −32.2392 −1.14197 −0.570986 0.820960i \(-0.693439\pi\)
−0.570986 + 0.820960i \(0.693439\pi\)
\(798\) 0 0
\(799\) − 1.20956i − 0.0427913i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 12.8218i − 0.452473i
\(804\) 0 0
\(805\) 8.98851i 0.316803i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 8.34642i 0.293445i 0.989178 + 0.146722i \(0.0468724\pi\)
−0.989178 + 0.146722i \(0.953128\pi\)
\(810\) 0 0
\(811\) 53.8372 1.89048 0.945241 0.326374i \(-0.105827\pi\)
0.945241 + 0.326374i \(0.105827\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −6.10303 −0.213780
\(816\) 0 0
\(817\) −27.1845 −0.951064
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 14.3765 0.501742 0.250871 0.968021i \(-0.419283\pi\)
0.250871 + 0.968021i \(0.419283\pi\)
\(822\) 0 0
\(823\) 36.1630i 1.26056i 0.776366 + 0.630282i \(0.217061\pi\)
−0.776366 + 0.630282i \(0.782939\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 6.07633i − 0.211295i −0.994404 0.105647i \(-0.966309\pi\)
0.994404 0.105647i \(-0.0336915\pi\)
\(828\) 0 0
\(829\) 21.2242i 0.737146i 0.929599 + 0.368573i \(0.120154\pi\)
−0.929599 + 0.368573i \(0.879846\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 26.5972i 0.921539i
\(834\) 0 0
\(835\) −5.04635 −0.174636
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 34.8560 1.20336 0.601681 0.798736i \(-0.294498\pi\)
0.601681 + 0.798736i \(0.294498\pi\)
\(840\) 0 0
\(841\) 78.2057 2.69675
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.743520 0.0255779
\(846\) 0 0
\(847\) 18.5806i 0.638436i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 4.84943i − 0.166236i
\(852\) 0 0
\(853\) 29.9766i 1.02638i 0.858275 + 0.513190i \(0.171536\pi\)
−0.858275 + 0.513190i \(0.828464\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 1.09615i − 0.0374439i −0.999825 0.0187220i \(-0.994040\pi\)
0.999825 0.0187220i \(-0.00595974\pi\)
\(858\) 0 0
\(859\) 1.19251 0.0406879 0.0203440 0.999793i \(-0.493524\pi\)
0.0203440 + 0.999793i \(0.493524\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −8.53819 −0.290643 −0.145322 0.989384i \(-0.546422\pi\)
−0.145322 + 0.989384i \(0.546422\pi\)
\(864\) 0 0
\(865\) −5.01365 −0.170469
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −51.8082 −1.75747
\(870\) 0 0
\(871\) 0.268454i 0.00909622i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 12.0816i − 0.408432i
\(876\) 0 0
\(877\) 54.5232i 1.84112i 0.390606 + 0.920558i \(0.372266\pi\)
−0.390606 + 0.920558i \(0.627734\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 24.2338i − 0.816458i −0.912879 0.408229i \(-0.866146\pi\)
0.912879 0.408229i \(-0.133854\pi\)
\(882\) 0 0
\(883\) 27.7907 0.935232 0.467616 0.883932i \(-0.345113\pi\)
0.467616 + 0.883932i \(0.345113\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 37.5606 1.26116 0.630581 0.776123i \(-0.282817\pi\)
0.630581 + 0.776123i \(0.282817\pi\)
\(888\) 0 0
\(889\) 16.8446 0.564948
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.556166 −0.0186114
\(894\) 0 0
\(895\) 5.45183i 0.182235i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 6.41859i 0.214072i
\(900\) 0 0
\(901\) − 70.4544i − 2.34718i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 1.16825i − 0.0388340i
\(906\) 0 0
\(907\) 26.8748 0.892362 0.446181 0.894943i \(-0.352784\pi\)
0.446181 + 0.894943i \(0.352784\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 22.3775 0.741400 0.370700 0.928753i \(-0.379118\pi\)
0.370700 + 0.928753i \(0.379118\pi\)
\(912\) 0 0
\(913\) −28.7530 −0.951585
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −3.69404 −0.121988
\(918\) 0 0
\(919\) 38.2831i 1.26284i 0.775439 + 0.631422i \(0.217528\pi\)
−0.775439 + 0.631422i \(0.782472\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 10.4124i − 0.342728i
\(924\) 0 0
\(925\) 3.06838i 0.100888i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 0.192447i − 0.00631398i −0.999995 0.00315699i \(-0.998995\pi\)
0.999995 0.00315699i \(-0.00100490\pi\)
\(930\) 0 0
\(931\) 12.2296 0.400809
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −22.8471 −0.747179
\(936\) 0 0
\(937\) −54.7439 −1.78841 −0.894203 0.447662i \(-0.852257\pi\)
−0.894203 + 0.447662i \(0.852257\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 54.6373 1.78113 0.890563 0.454859i \(-0.150310\pi\)
0.890563 + 0.454859i \(0.150310\pi\)
\(942\) 0 0
\(943\) 38.8727i 1.26587i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 6.29630i 0.204602i 0.994753 + 0.102301i \(0.0326205\pi\)
−0.994753 + 0.102301i \(0.967379\pi\)
\(948\) 0 0
\(949\) − 2.74597i − 0.0891379i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 37.1157i − 1.20229i −0.799138 0.601147i \(-0.794710\pi\)
0.799138 0.601147i \(-0.205290\pi\)
\(954\) 0 0
\(955\) −15.1213 −0.489312
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −16.2884 −0.525980
\(960\) 0 0
\(961\) 30.6157 0.987603
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.90468 0.0613139
\(966\) 0 0
\(967\) − 10.8250i − 0.348109i −0.984736 0.174054i \(-0.944313\pi\)
0.984736 0.174054i \(-0.0556869\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 16.8746i 0.541531i 0.962645 + 0.270765i \(0.0872768\pi\)
−0.962645 + 0.270765i \(0.912723\pi\)
\(972\) 0 0
\(973\) 5.04975i 0.161888i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 4.05555i − 0.129749i −0.997893 0.0648743i \(-0.979335\pi\)
0.997893 0.0648743i \(-0.0206646\pi\)
\(978\) 0 0
\(979\) −61.2292 −1.95689
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 39.7911 1.26914 0.634569 0.772866i \(-0.281178\pi\)
0.634569 + 0.772866i \(0.281178\pi\)
\(984\) 0 0
\(985\) −15.6253 −0.497865
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −63.1434 −2.00784
\(990\) 0 0
\(991\) 48.1323i 1.52897i 0.644640 + 0.764486i \(0.277007\pi\)
−0.644640 + 0.764486i \(0.722993\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 14.9491i − 0.473918i
\(996\) 0 0
\(997\) − 30.0514i − 0.951738i −0.879516 0.475869i \(-0.842134\pi\)
0.879516 0.475869i \(-0.157866\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3744.2.j.a.2159.18 48
3.2 odd 2 inner 3744.2.j.a.2159.32 48
4.3 odd 2 936.2.j.a.755.33 yes 48
8.3 odd 2 inner 3744.2.j.a.2159.31 48
8.5 even 2 936.2.j.a.755.15 48
12.11 even 2 936.2.j.a.755.16 yes 48
24.5 odd 2 936.2.j.a.755.34 yes 48
24.11 even 2 inner 3744.2.j.a.2159.17 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.j.a.755.15 48 8.5 even 2
936.2.j.a.755.16 yes 48 12.11 even 2
936.2.j.a.755.33 yes 48 4.3 odd 2
936.2.j.a.755.34 yes 48 24.5 odd 2
3744.2.j.a.2159.17 48 24.11 even 2 inner
3744.2.j.a.2159.18 48 1.1 even 1 trivial
3744.2.j.a.2159.31 48 8.3 odd 2 inner
3744.2.j.a.2159.32 48 3.2 odd 2 inner