Properties

Label 936.2.ed.d.739.8
Level $936$
Weight $2$
Character 936.739
Analytic conductor $7.474$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(19,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 6, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.ed (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 739.8
Character \(\chi\) \(=\) 936.739
Dual form 936.2.ed.d.19.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.376293 + 1.36323i) q^{2} +(-1.71681 + 1.02595i) q^{4} +(-0.0693382 + 0.0693382i) q^{5} +(3.36551 - 0.901786i) q^{7} +(-2.04463 - 1.95435i) q^{8} +(-0.120616 - 0.0684326i) q^{10} +(0.305781 + 0.0819339i) q^{11} +(-3.13155 + 1.78702i) q^{13} +(2.49576 + 4.24864i) q^{14} +(1.89485 - 3.52272i) q^{16} +(5.48889 + 3.16901i) q^{17} +(-0.397336 + 0.106466i) q^{19} +(0.0479027 - 0.190178i) q^{20} +(0.00336858 + 0.447683i) q^{22} +(3.68562 + 6.38369i) q^{23} +4.99038i q^{25} +(-3.61450 - 3.59658i) q^{26} +(-4.85274 + 5.00104i) q^{28} +(3.16915 - 1.82971i) q^{29} +(1.12080 - 1.12080i) q^{31} +(5.51530 + 1.25755i) q^{32} +(-2.25467 + 8.67511i) q^{34} +(-0.170830 + 0.295887i) q^{35} +(0.804964 - 3.00417i) q^{37} +(-0.294652 - 0.501598i) q^{38} +(0.277282 - 0.00626016i) q^{40} +(-1.85187 + 6.91129i) q^{41} +(4.88743 + 2.82176i) q^{43} +(-0.609028 + 0.173052i) q^{44} +(-7.31557 + 7.42650i) q^{46} +(-6.15946 - 6.15946i) q^{47} +(4.45127 - 2.56994i) q^{49} +(-6.80306 + 1.87785i) q^{50} +(3.54287 - 6.28077i) q^{52} -3.89384i q^{53} +(-0.0268835 + 0.0155212i) q^{55} +(-8.64364 - 4.73356i) q^{56} +(3.68685 + 3.63178i) q^{58} +(2.51467 + 9.38488i) q^{59} +(-11.9231 - 6.88378i) q^{61} +(1.94966 + 1.10616i) q^{62} +(0.361046 + 7.99185i) q^{64} +(0.0932273 - 0.341044i) q^{65} +(-3.16917 + 11.8275i) q^{67} +(-12.6746 + 0.190751i) q^{68} +(-0.467645 - 0.121541i) q^{70} +(-1.81764 - 6.78351i) q^{71} +(1.49582 - 1.49582i) q^{73} +(4.39828 - 0.0330948i) q^{74} +(0.572920 - 0.590428i) q^{76} +1.10300 q^{77} +10.3044i q^{79} +(0.112874 + 0.375645i) q^{80} +(-10.1185 + 0.0761368i) q^{82} +(-2.53771 - 2.53771i) q^{83} +(-0.600323 + 0.160856i) q^{85} +(-2.00761 + 7.72451i) q^{86} +(-0.465083 - 0.765128i) q^{88} +(-0.110536 - 0.0296181i) q^{89} +(-8.92775 + 8.83821i) q^{91} +(-12.8768 - 7.17829i) q^{92} +(6.07901 - 10.7145i) q^{94} +(0.0201684 - 0.0349327i) q^{95} +(6.28973 - 1.68533i) q^{97} +(5.17841 + 5.10107i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{2} - 6 q^{4} + 10 q^{8} - 6 q^{10} + 8 q^{11} - 8 q^{14} - 10 q^{16} + 12 q^{17} - 8 q^{19} - 10 q^{20} - 20 q^{22} + 2 q^{26} + 12 q^{28} - 16 q^{32} - 46 q^{34} + 4 q^{35} - 32 q^{40} - 12 q^{43}+ \cdots + 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.376293 + 1.36323i 0.266080 + 0.963951i
\(3\) 0 0
\(4\) −1.71681 + 1.02595i −0.858403 + 0.512975i
\(5\) −0.0693382 + 0.0693382i −0.0310090 + 0.0310090i −0.722441 0.691432i \(-0.756980\pi\)
0.691432 + 0.722441i \(0.256980\pi\)
\(6\) 0 0
\(7\) 3.36551 0.901786i 1.27204 0.340843i 0.441230 0.897394i \(-0.354542\pi\)
0.830814 + 0.556551i \(0.187876\pi\)
\(8\) −2.04463 1.95435i −0.722887 0.690966i
\(9\) 0 0
\(10\) −0.120616 0.0684326i −0.0381420 0.0216403i
\(11\) 0.305781 + 0.0819339i 0.0921966 + 0.0247040i 0.304622 0.952473i \(-0.401470\pi\)
−0.212426 + 0.977177i \(0.568136\pi\)
\(12\) 0 0
\(13\) −3.13155 + 1.78702i −0.868534 + 0.495629i
\(14\) 2.49576 + 4.24864i 0.667021 + 1.13550i
\(15\) 0 0
\(16\) 1.89485 3.52272i 0.473712 0.880680i
\(17\) 5.48889 + 3.16901i 1.33125 + 0.768598i 0.985491 0.169725i \(-0.0542880\pi\)
0.345760 + 0.938323i \(0.387621\pi\)
\(18\) 0 0
\(19\) −0.397336 + 0.106466i −0.0911550 + 0.0244249i −0.304108 0.952637i \(-0.598358\pi\)
0.212953 + 0.977062i \(0.431692\pi\)
\(20\) 0.0479027 0.190178i 0.0107114 0.0425251i
\(21\) 0 0
\(22\) 0.00336858 + 0.447683i 0.000718183 + 0.0954462i
\(23\) 3.68562 + 6.38369i 0.768505 + 1.33109i 0.938373 + 0.345624i \(0.112333\pi\)
−0.169868 + 0.985467i \(0.554334\pi\)
\(24\) 0 0
\(25\) 4.99038i 0.998077i
\(26\) −3.61450 3.59658i −0.708861 0.705348i
\(27\) 0 0
\(28\) −4.85274 + 5.00104i −0.917082 + 0.945108i
\(29\) 3.16915 1.82971i 0.588496 0.339768i −0.176006 0.984389i \(-0.556318\pi\)
0.764503 + 0.644621i \(0.222985\pi\)
\(30\) 0 0
\(31\) 1.12080 1.12080i 0.201301 0.201301i −0.599256 0.800557i \(-0.704537\pi\)
0.800557 + 0.599256i \(0.204537\pi\)
\(32\) 5.51530 + 1.25755i 0.974977 + 0.222305i
\(33\) 0 0
\(34\) −2.25467 + 8.67511i −0.386672 + 1.48777i
\(35\) −0.170830 + 0.295887i −0.0288756 + 0.0500140i
\(36\) 0 0
\(37\) 0.804964 3.00417i 0.132335 0.493882i −0.867659 0.497159i \(-0.834376\pi\)
0.999995 + 0.00327710i \(0.00104314\pi\)
\(38\) −0.294652 0.501598i −0.0477989 0.0813700i
\(39\) 0 0
\(40\) 0.277282 0.00626016i 0.0438422 0.000989819i
\(41\) −1.85187 + 6.91129i −0.289214 + 1.07936i 0.656491 + 0.754334i \(0.272040\pi\)
−0.945705 + 0.325027i \(0.894627\pi\)
\(42\) 0 0
\(43\) 4.88743 + 2.82176i 0.745326 + 0.430314i 0.824003 0.566586i \(-0.191736\pi\)
−0.0786766 + 0.996900i \(0.525069\pi\)
\(44\) −0.609028 + 0.173052i −0.0918144 + 0.0260886i
\(45\) 0 0
\(46\) −7.31557 + 7.42650i −1.07862 + 1.09498i
\(47\) −6.15946 6.15946i −0.898449 0.898449i 0.0968500 0.995299i \(-0.469123\pi\)
−0.995299 + 0.0968500i \(0.969123\pi\)
\(48\) 0 0
\(49\) 4.45127 2.56994i 0.635896 0.367135i
\(50\) −6.80306 + 1.87785i −0.962097 + 0.265568i
\(51\) 0 0
\(52\) 3.54287 6.28077i 0.491307 0.870986i
\(53\) 3.89384i 0.534861i −0.963577 0.267430i \(-0.913825\pi\)
0.963577 0.267430i \(-0.0861745\pi\)
\(54\) 0 0
\(55\) −0.0268835 + 0.0155212i −0.00362497 + 0.00209288i
\(56\) −8.64364 4.73356i −1.15505 0.632549i
\(57\) 0 0
\(58\) 3.68685 + 3.63178i 0.484107 + 0.476876i
\(59\) 2.51467 + 9.38488i 0.327382 + 1.22181i 0.911895 + 0.410423i \(0.134619\pi\)
−0.584513 + 0.811385i \(0.698714\pi\)
\(60\) 0 0
\(61\) −11.9231 6.88378i −1.52659 0.881378i −0.999502 0.0315679i \(-0.989950\pi\)
−0.527089 0.849810i \(-0.676717\pi\)
\(62\) 1.94966 + 1.10616i 0.247607 + 0.140482i
\(63\) 0 0
\(64\) 0.361046 + 7.99185i 0.0451307 + 0.998981i
\(65\) 0.0932273 0.341044i 0.0115634 0.0423013i
\(66\) 0 0
\(67\) −3.16917 + 11.8275i −0.387176 + 1.44496i 0.447532 + 0.894268i \(0.352303\pi\)
−0.834708 + 0.550693i \(0.814363\pi\)
\(68\) −12.6746 + 0.190751i −1.53702 + 0.0231319i
\(69\) 0 0
\(70\) −0.467645 0.121541i −0.0558943 0.0145270i
\(71\) −1.81764 6.78351i −0.215714 0.805055i −0.985914 0.167253i \(-0.946510\pi\)
0.770200 0.637802i \(-0.220156\pi\)
\(72\) 0 0
\(73\) 1.49582 1.49582i 0.175072 0.175072i −0.614131 0.789204i \(-0.710494\pi\)
0.789204 + 0.614131i \(0.210494\pi\)
\(74\) 4.39828 0.0330948i 0.511290 0.00384719i
\(75\) 0 0
\(76\) 0.572920 0.590428i 0.0657184 0.0677267i
\(77\) 1.10300 0.125698
\(78\) 0 0
\(79\) 10.3044i 1.15933i 0.814854 + 0.579667i \(0.196817\pi\)
−0.814854 + 0.579667i \(0.803183\pi\)
\(80\) 0.112874 + 0.375645i 0.0126196 + 0.0419983i
\(81\) 0 0
\(82\) −10.1185 + 0.0761368i −1.11741 + 0.00840790i
\(83\) −2.53771 2.53771i −0.278550 0.278550i 0.553980 0.832530i \(-0.313108\pi\)
−0.832530 + 0.553980i \(0.813108\pi\)
\(84\) 0 0
\(85\) −0.600323 + 0.160856i −0.0651142 + 0.0174473i
\(86\) −2.00761 + 7.72451i −0.216486 + 0.832956i
\(87\) 0 0
\(88\) −0.465083 0.765128i −0.0495781 0.0815629i
\(89\) −0.110536 0.0296181i −0.0117168 0.00313951i 0.252956 0.967478i \(-0.418597\pi\)
−0.264673 + 0.964338i \(0.585264\pi\)
\(90\) 0 0
\(91\) −8.92775 + 8.83821i −0.935882 + 0.926496i
\(92\) −12.8768 7.17829i −1.34250 0.748388i
\(93\) 0 0
\(94\) 6.07901 10.7145i 0.627002 1.10512i
\(95\) 0.0201684 0.0349327i 0.00206923 0.00358402i
\(96\) 0 0
\(97\) 6.28973 1.68533i 0.638626 0.171119i 0.0750449 0.997180i \(-0.476090\pi\)
0.563581 + 0.826061i \(0.309423\pi\)
\(98\) 5.17841 + 5.10107i 0.523099 + 0.515286i
\(99\) 0 0
\(100\) −5.11989 8.56752i −0.511989 0.856752i
\(101\) −3.22024 5.57761i −0.320425 0.554993i 0.660150 0.751133i \(-0.270493\pi\)
−0.980576 + 0.196140i \(0.937159\pi\)
\(102\) 0 0
\(103\) 15.5401 1.53121 0.765604 0.643312i \(-0.222440\pi\)
0.765604 + 0.643312i \(0.222440\pi\)
\(104\) 9.89531 + 2.46634i 0.970315 + 0.241844i
\(105\) 0 0
\(106\) 5.30822 1.46523i 0.515579 0.142315i
\(107\) 0.865163 + 1.49851i 0.0836385 + 0.144866i 0.904810 0.425815i \(-0.140013\pi\)
−0.821172 + 0.570681i \(0.806679\pi\)
\(108\) 0 0
\(109\) 13.2174 13.2174i 1.26599 1.26599i 0.317853 0.948140i \(-0.397038\pi\)
0.948140 0.317853i \(-0.102962\pi\)
\(110\) −0.0312751 0.0308079i −0.00298196 0.00293742i
\(111\) 0 0
\(112\) 3.20040 13.5645i 0.302409 1.28172i
\(113\) 6.88323 11.9221i 0.647520 1.12154i −0.336193 0.941793i \(-0.609140\pi\)
0.983713 0.179744i \(-0.0575271\pi\)
\(114\) 0 0
\(115\) −0.698188 0.187079i −0.0651064 0.0174452i
\(116\) −3.56362 + 6.39265i −0.330874 + 0.593542i
\(117\) 0 0
\(118\) −11.8475 + 6.95955i −1.09065 + 0.640679i
\(119\) 21.3307 + 5.71554i 1.95538 + 0.523943i
\(120\) 0 0
\(121\) −9.43949 5.44989i −0.858135 0.495445i
\(122\) 4.89763 18.8442i 0.443410 1.70608i
\(123\) 0 0
\(124\) −0.774310 + 3.07408i −0.0695351 + 0.276060i
\(125\) −0.692716 0.692716i −0.0619584 0.0619584i
\(126\) 0 0
\(127\) 4.23231 + 7.33057i 0.375557 + 0.650483i 0.990410 0.138158i \(-0.0441182\pi\)
−0.614853 + 0.788641i \(0.710785\pi\)
\(128\) −10.7589 + 3.49947i −0.950961 + 0.309312i
\(129\) 0 0
\(130\) 0.500004 0.00124220i 0.0438532 0.000108948i
\(131\) 13.5858 1.18700 0.593499 0.804835i \(-0.297746\pi\)
0.593499 + 0.804835i \(0.297746\pi\)
\(132\) 0 0
\(133\) −1.24123 + 0.716623i −0.107628 + 0.0621391i
\(134\) −17.3162 + 0.130295i −1.49589 + 0.0112558i
\(135\) 0 0
\(136\) −5.02941 17.2067i −0.431268 1.47546i
\(137\) −3.19234 11.9140i −0.272740 1.01788i −0.957341 0.288961i \(-0.906690\pi\)
0.684601 0.728918i \(-0.259976\pi\)
\(138\) 0 0
\(139\) 5.36196 9.28718i 0.454795 0.787729i −0.543881 0.839162i \(-0.683046\pi\)
0.998676 + 0.0514337i \(0.0163791\pi\)
\(140\) −0.0102827 0.683244i −0.000869047 0.0577447i
\(141\) 0 0
\(142\) 8.56354 5.03045i 0.718636 0.422146i
\(143\) −1.10399 + 0.289857i −0.0923199 + 0.0242390i
\(144\) 0 0
\(145\) −0.0928744 + 0.346612i −0.00771280 + 0.0287846i
\(146\) 2.60202 + 1.47628i 0.215344 + 0.122178i
\(147\) 0 0
\(148\) 1.70016 + 5.98343i 0.139752 + 0.491835i
\(149\) −2.96712 11.0734i −0.243076 0.907172i −0.974341 0.225078i \(-0.927736\pi\)
0.731265 0.682094i \(-0.238930\pi\)
\(150\) 0 0
\(151\) −7.63837 7.63837i −0.621602 0.621602i 0.324339 0.945941i \(-0.394858\pi\)
−0.945941 + 0.324339i \(0.894858\pi\)
\(152\) 1.02048 + 0.558849i 0.0827716 + 0.0453286i
\(153\) 0 0
\(154\) 0.415051 + 1.50364i 0.0334458 + 0.121167i
\(155\) 0.155428i 0.0124843i
\(156\) 0 0
\(157\) 0.295631i 0.0235940i −0.999930 0.0117970i \(-0.996245\pi\)
0.999930 0.0117970i \(-0.00375518\pi\)
\(158\) −14.0473 + 3.87747i −1.11754 + 0.308475i
\(159\) 0 0
\(160\) −0.469617 + 0.295225i −0.0371265 + 0.0233396i
\(161\) 18.1607 + 18.1607i 1.43127 + 1.43127i
\(162\) 0 0
\(163\) −0.643966 2.40331i −0.0504393 0.188242i 0.936110 0.351708i \(-0.114399\pi\)
−0.986549 + 0.163466i \(0.947732\pi\)
\(164\) −3.91133 13.7653i −0.305424 1.07489i
\(165\) 0 0
\(166\) 2.50456 4.41441i 0.194392 0.342625i
\(167\) −2.40443 + 8.97345i −0.186060 + 0.694386i 0.808341 + 0.588715i \(0.200366\pi\)
−0.994401 + 0.105672i \(0.966301\pi\)
\(168\) 0 0
\(169\) 6.61315 11.1922i 0.508704 0.860942i
\(170\) −0.445182 0.757851i −0.0341439 0.0581246i
\(171\) 0 0
\(172\) −11.2858 + 0.169849i −0.860531 + 0.0129508i
\(173\) −1.48266 + 2.56803i −0.112724 + 0.195244i −0.916868 0.399191i \(-0.869291\pi\)
0.804144 + 0.594435i \(0.202624\pi\)
\(174\) 0 0
\(175\) 4.50026 + 16.7952i 0.340188 + 1.26960i
\(176\) 0.868040 0.921930i 0.0654310 0.0694931i
\(177\) 0 0
\(178\) −0.00121770 0.161832i −9.12705e−5 0.0121298i
\(179\) −5.42364 + 3.13134i −0.405382 + 0.234047i −0.688803 0.724948i \(-0.741864\pi\)
0.283422 + 0.958995i \(0.408530\pi\)
\(180\) 0 0
\(181\) −19.6735 −1.46232 −0.731160 0.682206i \(-0.761021\pi\)
−0.731160 + 0.682206i \(0.761021\pi\)
\(182\) −15.4080 8.84484i −1.14212 0.655623i
\(183\) 0 0
\(184\) 4.94020 20.2553i 0.364196 1.49324i
\(185\) 0.152489 + 0.264119i 0.0112112 + 0.0194184i
\(186\) 0 0
\(187\) 1.41875 + 1.41875i 0.103749 + 0.103749i
\(188\) 16.8939 + 4.25530i 1.23211 + 0.310349i
\(189\) 0 0
\(190\) 0.0552106 + 0.0143493i 0.00400540 + 0.00104101i
\(191\) −6.98944 4.03535i −0.505738 0.291988i 0.225342 0.974280i \(-0.427650\pi\)
−0.731080 + 0.682292i \(0.760983\pi\)
\(192\) 0 0
\(193\) 3.79172 + 1.01599i 0.272934 + 0.0731325i 0.392690 0.919671i \(-0.371545\pi\)
−0.119756 + 0.992803i \(0.538211\pi\)
\(194\) 4.66428 + 7.94019i 0.334876 + 0.570073i
\(195\) 0 0
\(196\) −5.00534 + 8.97888i −0.357524 + 0.641349i
\(197\) 17.9395 + 4.80687i 1.27813 + 0.342475i 0.833142 0.553059i \(-0.186540\pi\)
0.444993 + 0.895534i \(0.353206\pi\)
\(198\) 0 0
\(199\) 0.747531 1.29476i 0.0529911 0.0917833i −0.838313 0.545189i \(-0.816458\pi\)
0.891304 + 0.453406i \(0.149791\pi\)
\(200\) 9.75295 10.2035i 0.689638 0.721497i
\(201\) 0 0
\(202\) 6.39183 6.48875i 0.449727 0.456547i
\(203\) 9.01580 9.01580i 0.632785 0.632785i
\(204\) 0 0
\(205\) −0.350811 0.607622i −0.0245017 0.0424382i
\(206\) 5.84762 + 21.1847i 0.407423 + 1.47601i
\(207\) 0 0
\(208\) 0.361345 + 14.4177i 0.0250548 + 0.999686i
\(209\) −0.130221 −0.00900758
\(210\) 0 0
\(211\) −5.13613 8.89604i −0.353586 0.612429i 0.633289 0.773915i \(-0.281704\pi\)
−0.986875 + 0.161487i \(0.948371\pi\)
\(212\) 3.99489 + 6.68498i 0.274370 + 0.459126i
\(213\) 0 0
\(214\) −1.71726 + 1.74330i −0.117389 + 0.119169i
\(215\) −0.534542 + 0.143230i −0.0364554 + 0.00976820i
\(216\) 0 0
\(217\) 2.76134 4.78278i 0.187452 0.324676i
\(218\) 22.9919 + 13.0447i 1.55721 + 0.883500i
\(219\) 0 0
\(220\) 0.0302298 0.0542280i 0.00203809 0.00365605i
\(221\) −22.8518 0.115173i −1.53718 0.00774737i
\(222\) 0 0
\(223\) −4.08977 1.09585i −0.273871 0.0733836i 0.119269 0.992862i \(-0.461945\pi\)
−0.393141 + 0.919478i \(0.628611\pi\)
\(224\) 19.6959 0.741341i 1.31598 0.0495330i
\(225\) 0 0
\(226\) 18.8427 + 4.89724i 1.25340 + 0.325759i
\(227\) −20.5241 + 5.49942i −1.36223 + 0.365009i −0.864636 0.502399i \(-0.832451\pi\)
−0.497598 + 0.867408i \(0.665784\pi\)
\(228\) 0 0
\(229\) −2.65946 2.65946i −0.175742 0.175742i 0.613755 0.789497i \(-0.289658\pi\)
−0.789497 + 0.613755i \(0.789658\pi\)
\(230\) −0.00769145 1.02219i −0.000507159 0.0674012i
\(231\) 0 0
\(232\) −10.0556 2.45254i −0.660185 0.161017i
\(233\) 12.9659i 0.849423i −0.905329 0.424711i \(-0.860376\pi\)
0.905329 0.424711i \(-0.139624\pi\)
\(234\) 0 0
\(235\) 0.854172 0.0557200
\(236\) −13.9456 13.5321i −0.907783 0.880865i
\(237\) 0 0
\(238\) 0.234985 + 31.2294i 0.0152318 + 2.02430i
\(239\) 2.00711 2.00711i 0.129829 0.129829i −0.639206 0.769035i \(-0.720737\pi\)
0.769035 + 0.639206i \(0.220737\pi\)
\(240\) 0 0
\(241\) −2.01768 7.53010i −0.129970 0.485056i 0.869998 0.493056i \(-0.164120\pi\)
−0.999968 + 0.00799977i \(0.997454\pi\)
\(242\) 3.87745 14.9190i 0.249252 0.959028i
\(243\) 0 0
\(244\) 27.5320 0.414352i 1.76256 0.0265261i
\(245\) −0.130448 + 0.486839i −0.00833402 + 0.0311030i
\(246\) 0 0
\(247\) 1.05402 1.04345i 0.0670656 0.0663929i
\(248\) −4.48205 + 0.101191i −0.284610 + 0.00642561i
\(249\) 0 0
\(250\) 0.683668 1.20500i 0.0432390 0.0762107i
\(251\) 8.49344 + 4.90369i 0.536101 + 0.309518i 0.743497 0.668739i \(-0.233166\pi\)
−0.207396 + 0.978257i \(0.566499\pi\)
\(252\) 0 0
\(253\) 0.603955 + 2.25399i 0.0379703 + 0.141707i
\(254\) −8.40069 + 8.52807i −0.527106 + 0.535099i
\(255\) 0 0
\(256\) −8.81909 13.3500i −0.551193 0.834378i
\(257\) −8.22290 + 4.74749i −0.512930 + 0.296140i −0.734037 0.679109i \(-0.762366\pi\)
0.221107 + 0.975250i \(0.429033\pi\)
\(258\) 0 0
\(259\) 10.8365i 0.673345i
\(260\) 0.189841 + 0.681154i 0.0117735 + 0.0422434i
\(261\) 0 0
\(262\) 5.11225 + 18.5206i 0.315836 + 1.14421i
\(263\) −0.383169 + 0.221223i −0.0236272 + 0.0136412i −0.511767 0.859124i \(-0.671009\pi\)
0.488140 + 0.872765i \(0.337676\pi\)
\(264\) 0 0
\(265\) 0.269992 + 0.269992i 0.0165855 + 0.0165855i
\(266\) −1.44399 1.42242i −0.0885367 0.0872143i
\(267\) 0 0
\(268\) −6.69359 23.5570i −0.408876 1.43897i
\(269\) −12.2972 7.09981i −0.749776 0.432883i 0.0758371 0.997120i \(-0.475837\pi\)
−0.825613 + 0.564237i \(0.809170\pi\)
\(270\) 0 0
\(271\) 1.28851 4.80880i 0.0782717 0.292114i −0.915684 0.401900i \(-0.868350\pi\)
0.993955 + 0.109786i \(0.0350166\pi\)
\(272\) 21.5642 13.3310i 1.30752 0.808311i
\(273\) 0 0
\(274\) 15.0402 8.83504i 0.908614 0.533744i
\(275\) −0.408882 + 1.52597i −0.0246565 + 0.0920193i
\(276\) 0 0
\(277\) −5.99110 + 10.3769i −0.359970 + 0.623487i −0.987955 0.154739i \(-0.950546\pi\)
0.627985 + 0.778225i \(0.283880\pi\)
\(278\) 14.6783 + 3.81489i 0.880344 + 0.228802i
\(279\) 0 0
\(280\) 0.927551 0.271118i 0.0554318 0.0162024i
\(281\) 5.12419 5.12419i 0.305684 0.305684i −0.537549 0.843233i \(-0.680650\pi\)
0.843233 + 0.537549i \(0.180650\pi\)
\(282\) 0 0
\(283\) −10.7351 + 6.19789i −0.638133 + 0.368426i −0.783895 0.620893i \(-0.786770\pi\)
0.145762 + 0.989320i \(0.453437\pi\)
\(284\) 10.0801 + 9.78117i 0.598143 + 0.580406i
\(285\) 0 0
\(286\) −0.810564 1.39592i −0.0479297 0.0825424i
\(287\) 24.9300i 1.47157i
\(288\) 0 0
\(289\) 11.5853 + 20.0663i 0.681486 + 1.18037i
\(290\) −0.507461 + 0.00381838i −0.0297991 + 0.000224223i
\(291\) 0 0
\(292\) −1.03340 + 4.10267i −0.0604749 + 0.240091i
\(293\) −2.75972 + 0.739465i −0.161225 + 0.0432000i −0.338528 0.940956i \(-0.609929\pi\)
0.177304 + 0.984156i \(0.443262\pi\)
\(294\) 0 0
\(295\) −0.825094 0.476368i −0.0480388 0.0277352i
\(296\) −7.51705 + 4.56924i −0.436919 + 0.265582i
\(297\) 0 0
\(298\) 13.9792 8.21174i 0.809792 0.475693i
\(299\) −22.9494 13.4045i −1.32720 0.775204i
\(300\) 0 0
\(301\) 18.9933 + 5.08925i 1.09476 + 0.293339i
\(302\) 7.53861 13.2871i 0.433798 0.764589i
\(303\) 0 0
\(304\) −0.377842 + 1.60144i −0.0216707 + 0.0918488i
\(305\) 1.30403 0.349415i 0.0746687 0.0200074i
\(306\) 0 0
\(307\) 1.31454 1.31454i 0.0750248 0.0750248i −0.668599 0.743623i \(-0.733106\pi\)
0.743623 + 0.668599i \(0.233106\pi\)
\(308\) −1.89363 + 1.13162i −0.107900 + 0.0644801i
\(309\) 0 0
\(310\) −0.211885 + 0.0584867i −0.0120343 + 0.00332182i
\(311\) 26.3976 1.49687 0.748436 0.663207i \(-0.230805\pi\)
0.748436 + 0.663207i \(0.230805\pi\)
\(312\) 0 0
\(313\) 23.0930 1.30529 0.652647 0.757662i \(-0.273658\pi\)
0.652647 + 0.757662i \(0.273658\pi\)
\(314\) 0.403014 0.111244i 0.0227434 0.00627787i
\(315\) 0 0
\(316\) −10.5718 17.6906i −0.594710 0.995176i
\(317\) −13.9691 + 13.9691i −0.784583 + 0.784583i −0.980600 0.196018i \(-0.937199\pi\)
0.196018 + 0.980600i \(0.437199\pi\)
\(318\) 0 0
\(319\) 1.11898 0.299830i 0.0626510 0.0167873i
\(320\) −0.579175 0.529106i −0.0323769 0.0295779i
\(321\) 0 0
\(322\) −17.9235 + 31.5911i −0.998839 + 1.76050i
\(323\) −2.51832 0.674782i −0.140123 0.0375459i
\(324\) 0 0
\(325\) −8.91789 15.6276i −0.494676 0.866864i
\(326\) 3.03395 1.78223i 0.168035 0.0987084i
\(327\) 0 0
\(328\) 17.2935 10.5118i 0.954872 0.580419i
\(329\) −26.2842 15.1752i −1.44910 0.836636i
\(330\) 0 0
\(331\) 8.82798 2.36545i 0.485229 0.130017i −0.00790714 0.999969i \(-0.502517\pi\)
0.493137 + 0.869952i \(0.335850\pi\)
\(332\) 6.96032 + 1.75319i 0.381997 + 0.0962188i
\(333\) 0 0
\(334\) −13.1377 + 0.0988542i −0.718861 + 0.00540906i
\(335\) −0.600354 1.03984i −0.0328009 0.0568127i
\(336\) 0 0
\(337\) 8.38992i 0.457028i −0.973541 0.228514i \(-0.926613\pi\)
0.973541 0.228514i \(-0.0733867\pi\)
\(338\) 17.7461 + 4.80370i 0.965261 + 0.261287i
\(339\) 0 0
\(340\) 0.865609 0.892061i 0.0469442 0.0483788i
\(341\) 0.434551 0.250888i 0.0235322 0.0135863i
\(342\) 0 0
\(343\) −4.58281 + 4.58281i −0.247448 + 0.247448i
\(344\) −4.47830 15.3212i −0.241454 0.826064i
\(345\) 0 0
\(346\) −4.05874 1.05487i −0.218199 0.0567102i
\(347\) −1.54479 + 2.67566i −0.0829287 + 0.143637i −0.904507 0.426459i \(-0.859761\pi\)
0.821578 + 0.570096i \(0.193094\pi\)
\(348\) 0 0
\(349\) 7.75487 28.9416i 0.415109 1.54921i −0.369509 0.929227i \(-0.620474\pi\)
0.784618 0.619980i \(-0.212859\pi\)
\(350\) −21.2023 + 12.4548i −1.13331 + 0.665738i
\(351\) 0 0
\(352\) 1.58344 + 0.836424i 0.0843978 + 0.0445816i
\(353\) 6.52845 24.3645i 0.347474 1.29679i −0.542220 0.840236i \(-0.682416\pi\)
0.889695 0.456556i \(-0.150917\pi\)
\(354\) 0 0
\(355\) 0.596389 + 0.344325i 0.0316530 + 0.0182749i
\(356\) 0.220156 0.0625562i 0.0116682 0.00331547i
\(357\) 0 0
\(358\) −6.30962 6.21538i −0.333474 0.328493i
\(359\) 9.78353 + 9.78353i 0.516355 + 0.516355i 0.916467 0.400111i \(-0.131029\pi\)
−0.400111 + 0.916467i \(0.631029\pi\)
\(360\) 0 0
\(361\) −16.3079 + 9.41539i −0.858313 + 0.495547i
\(362\) −7.40301 26.8196i −0.389093 1.40960i
\(363\) 0 0
\(364\) 6.25965 24.3329i 0.328095 1.27539i
\(365\) 0.207435i 0.0108576i
\(366\) 0 0
\(367\) 7.32432 4.22870i 0.382327 0.220736i −0.296504 0.955032i \(-0.595821\pi\)
0.678830 + 0.734295i \(0.262487\pi\)
\(368\) 29.4716 0.887286i 1.53631 0.0462530i
\(369\) 0 0
\(370\) −0.302674 + 0.307264i −0.0157353 + 0.0159739i
\(371\) −3.51141 13.1048i −0.182304 0.680366i
\(372\) 0 0
\(373\) 8.98736 + 5.18886i 0.465348 + 0.268669i 0.714290 0.699850i \(-0.246750\pi\)
−0.248942 + 0.968518i \(0.580083\pi\)
\(374\) −1.40022 + 2.46795i −0.0724037 + 0.127615i
\(375\) 0 0
\(376\) 0.556103 + 24.6315i 0.0286788 + 1.27028i
\(377\) −6.65461 + 11.3931i −0.342730 + 0.586776i
\(378\) 0 0
\(379\) 1.21827 4.54665i 0.0625784 0.233546i −0.927552 0.373694i \(-0.878091\pi\)
0.990131 + 0.140148i \(0.0447578\pi\)
\(380\) 0.00121399 + 0.0806645i 6.22761e−5 + 0.00413800i
\(381\) 0 0
\(382\) 2.87105 11.0467i 0.146895 0.565198i
\(383\) −5.80376 21.6599i −0.296558 1.10677i −0.939972 0.341252i \(-0.889149\pi\)
0.643414 0.765519i \(-0.277518\pi\)
\(384\) 0 0
\(385\) −0.0764799 + 0.0764799i −0.00389778 + 0.00389778i
\(386\) 0.0417707 + 5.55131i 0.00212607 + 0.282554i
\(387\) 0 0
\(388\) −9.06919 + 9.34634i −0.460418 + 0.474489i
\(389\) −0.255974 −0.0129784 −0.00648920 0.999979i \(-0.502066\pi\)
−0.00648920 + 0.999979i \(0.502066\pi\)
\(390\) 0 0
\(391\) 46.7191i 2.36269i
\(392\) −14.1238 3.44475i −0.713359 0.173986i
\(393\) 0 0
\(394\) 0.197627 + 26.2645i 0.00995628 + 1.32319i
\(395\) −0.714488 0.714488i −0.0359498 0.0359498i
\(396\) 0 0
\(397\) −29.9538 + 8.02610i −1.50334 + 0.402818i −0.914217 0.405226i \(-0.867193\pi\)
−0.589122 + 0.808044i \(0.700526\pi\)
\(398\) 2.04635 + 0.531849i 0.102574 + 0.0266592i
\(399\) 0 0
\(400\) 17.5797 + 9.45603i 0.878986 + 0.472801i
\(401\) −20.6707 5.53870i −1.03225 0.276590i −0.297350 0.954769i \(-0.596103\pi\)
−0.734897 + 0.678179i \(0.762769\pi\)
\(402\) 0 0
\(403\) −1.50695 + 5.51271i −0.0750663 + 0.274608i
\(404\) 11.2509 + 6.27188i 0.559752 + 0.312038i
\(405\) 0 0
\(406\) 15.6832 + 8.89805i 0.778345 + 0.441603i
\(407\) 0.492286 0.852665i 0.0244017 0.0422650i
\(408\) 0 0
\(409\) −31.2652 + 8.37750i −1.54597 + 0.414241i −0.928188 0.372112i \(-0.878634\pi\)
−0.617779 + 0.786352i \(0.711967\pi\)
\(410\) 0.696322 0.706881i 0.0343889 0.0349104i
\(411\) 0 0
\(412\) −26.6793 + 15.9433i −1.31439 + 0.785472i
\(413\) 16.9263 + 29.3172i 0.832889 + 1.44261i
\(414\) 0 0
\(415\) 0.351920 0.0172751
\(416\) −19.5187 + 5.91787i −0.956982 + 0.290148i
\(417\) 0 0
\(418\) −0.0490013 0.177522i −0.00239673 0.00868286i
\(419\) 10.4525 + 18.1043i 0.510640 + 0.884454i 0.999924 + 0.0123300i \(0.00392485\pi\)
−0.489284 + 0.872125i \(0.662742\pi\)
\(420\) 0 0
\(421\) 8.42426 8.42426i 0.410573 0.410573i −0.471365 0.881938i \(-0.656239\pi\)
0.881938 + 0.471365i \(0.156239\pi\)
\(422\) 10.1947 10.3493i 0.496269 0.503794i
\(423\) 0 0
\(424\) −7.60993 + 7.96148i −0.369571 + 0.386644i
\(425\) −15.8146 + 27.3917i −0.767120 + 1.32869i
\(426\) 0 0
\(427\) −46.3349 12.4154i −2.24230 0.600823i
\(428\) −3.02271 1.68503i −0.146108 0.0814491i
\(429\) 0 0
\(430\) −0.396400 0.674808i −0.0191161 0.0325421i
\(431\) −21.5916 5.78544i −1.04003 0.278675i −0.301904 0.953338i \(-0.597622\pi\)
−0.738125 + 0.674663i \(0.764289\pi\)
\(432\) 0 0
\(433\) −12.3592 7.13560i −0.593946 0.342915i 0.172710 0.984973i \(-0.444748\pi\)
−0.766656 + 0.642058i \(0.778081\pi\)
\(434\) 7.55911 + 1.96462i 0.362849 + 0.0943047i
\(435\) 0 0
\(436\) −9.13129 + 36.2520i −0.437309 + 1.73616i
\(437\) −2.14407 2.14407i −0.102565 0.102565i
\(438\) 0 0
\(439\) 1.78605 + 3.09353i 0.0852434 + 0.147646i 0.905495 0.424357i \(-0.139500\pi\)
−0.820251 + 0.572003i \(0.806167\pi\)
\(440\) 0.0853007 + 0.0208046i 0.00406655 + 0.000991819i
\(441\) 0 0
\(442\) −8.44196 31.1956i −0.401543 1.48382i
\(443\) −8.73925 −0.415214 −0.207607 0.978212i \(-0.566568\pi\)
−0.207607 + 0.978212i \(0.566568\pi\)
\(444\) 0 0
\(445\) 0.00971805 0.00561072i 0.000460680 0.000265974i
\(446\) −0.0450541 5.98767i −0.00213337 0.283524i
\(447\) 0 0
\(448\) 8.42204 + 26.5711i 0.397904 + 1.25537i
\(449\) 6.78232 + 25.3120i 0.320077 + 1.19455i 0.919169 + 0.393864i \(0.128862\pi\)
−0.599091 + 0.800681i \(0.704471\pi\)
\(450\) 0 0
\(451\) −1.13254 + 1.96161i −0.0533291 + 0.0923687i
\(452\) 0.414319 + 27.5298i 0.0194879 + 1.29489i
\(453\) 0 0
\(454\) −15.2201 25.9098i −0.714314 1.21601i
\(455\) 0.00620857 1.23186i 0.000291062 0.0577505i
\(456\) 0 0
\(457\) 8.37320 31.2492i 0.391682 1.46178i −0.435677 0.900103i \(-0.643491\pi\)
0.827359 0.561674i \(-0.189842\pi\)
\(458\) 2.62473 4.62620i 0.122645 0.216168i
\(459\) 0 0
\(460\) 1.39059 0.395128i 0.0648365 0.0184230i
\(461\) 4.21669 + 15.7369i 0.196391 + 0.732941i 0.991902 + 0.127003i \(0.0405356\pi\)
−0.795511 + 0.605939i \(0.792798\pi\)
\(462\) 0 0
\(463\) −24.8178 24.8178i −1.15338 1.15338i −0.985871 0.167509i \(-0.946428\pi\)
−0.167509 0.985871i \(-0.553572\pi\)
\(464\) −0.440489 14.6310i −0.0204492 0.679229i
\(465\) 0 0
\(466\) 17.6755 4.87897i 0.818802 0.226014i
\(467\) 10.5453i 0.487976i −0.969778 0.243988i \(-0.921544\pi\)
0.969778 0.243988i \(-0.0784558\pi\)
\(468\) 0 0
\(469\) 42.6636i 1.97002i
\(470\) 0.321419 + 1.16443i 0.0148260 + 0.0537114i
\(471\) 0 0
\(472\) 13.1997 24.1032i 0.607568 1.10944i
\(473\) 1.26329 + 1.26329i 0.0580860 + 0.0580860i
\(474\) 0 0
\(475\) −0.531305 1.98286i −0.0243779 0.0909797i
\(476\) −42.4845 + 12.0718i −1.94728 + 0.553308i
\(477\) 0 0
\(478\) 3.49143 + 1.98090i 0.159694 + 0.0906042i
\(479\) −2.68034 + 10.0032i −0.122468 + 0.457057i −0.999737 0.0229425i \(-0.992697\pi\)
0.877269 + 0.480000i \(0.159363\pi\)
\(480\) 0 0
\(481\) 2.84771 + 10.8462i 0.129845 + 0.494543i
\(482\) 9.50603 5.58410i 0.432988 0.254349i
\(483\) 0 0
\(484\) 21.7971 0.328042i 0.990777 0.0149110i
\(485\) −0.319261 + 0.552977i −0.0144969 + 0.0251094i
\(486\) 0 0
\(487\) −6.29726 23.5017i −0.285356 1.06496i −0.948579 0.316541i \(-0.897478\pi\)
0.663222 0.748422i \(-0.269188\pi\)
\(488\) 10.9250 + 37.3766i 0.494550 + 1.69196i
\(489\) 0 0
\(490\) −0.712761 + 0.00536316i −0.0321993 + 0.000242283i
\(491\) −28.1909 + 16.2760i −1.27224 + 0.734525i −0.975408 0.220406i \(-0.929262\pi\)
−0.296827 + 0.954931i \(0.595928\pi\)
\(492\) 0 0
\(493\) 23.1935 1.04458
\(494\) 1.81908 + 1.04423i 0.0818443 + 0.0469821i
\(495\) 0 0
\(496\) −1.82451 6.07200i −0.0819230 0.272641i
\(497\) −12.2346 21.1909i −0.548795 0.950541i
\(498\) 0 0
\(499\) 20.4541 + 20.4541i 0.915653 + 0.915653i 0.996710 0.0810563i \(-0.0258294\pi\)
−0.0810563 + 0.996710i \(0.525829\pi\)
\(500\) 1.89995 + 0.478567i 0.0849684 + 0.0214021i
\(501\) 0 0
\(502\) −3.48885 + 13.4238i −0.155715 + 0.599132i
\(503\) −22.7444 13.1315i −1.01412 0.585504i −0.101726 0.994812i \(-0.532437\pi\)
−0.912396 + 0.409309i \(0.865770\pi\)
\(504\) 0 0
\(505\) 0.610027 + 0.163456i 0.0271459 + 0.00727371i
\(506\) −2.84545 + 1.67149i −0.126496 + 0.0743069i
\(507\) 0 0
\(508\) −14.7869 8.24304i −0.656061 0.365726i
\(509\) 13.3661 + 3.58144i 0.592443 + 0.158745i 0.542569 0.840011i \(-0.317452\pi\)
0.0498735 + 0.998756i \(0.484118\pi\)
\(510\) 0 0
\(511\) 3.68529 6.38311i 0.163028 0.282372i
\(512\) 14.8806 17.0460i 0.657638 0.753334i
\(513\) 0 0
\(514\) −9.56616 9.42327i −0.421945 0.415643i
\(515\) −1.07752 + 1.07752i −0.0474812 + 0.0474812i
\(516\) 0 0
\(517\) −1.37878 2.38812i −0.0606386 0.105029i
\(518\) 14.7726 4.07769i 0.649072 0.179163i
\(519\) 0 0
\(520\) −0.857135 + 0.515112i −0.0375879 + 0.0225891i
\(521\) −0.605870 −0.0265437 −0.0132718 0.999912i \(-0.504225\pi\)
−0.0132718 + 0.999912i \(0.504225\pi\)
\(522\) 0 0
\(523\) 6.97171 + 12.0753i 0.304851 + 0.528018i 0.977228 0.212191i \(-0.0680599\pi\)
−0.672377 + 0.740209i \(0.734727\pi\)
\(524\) −23.3242 + 13.9384i −1.01892 + 0.608900i
\(525\) 0 0
\(526\) −0.445762 0.439104i −0.0194362 0.0191458i
\(527\) 9.70376 2.60011i 0.422702 0.113263i
\(528\) 0 0
\(529\) −15.6676 + 27.1371i −0.681201 + 1.17987i
\(530\) −0.266466 + 0.469659i −0.0115745 + 0.0204007i
\(531\) 0 0
\(532\) 1.39573 2.50374i 0.0605125 0.108551i
\(533\) −6.55135 24.9523i −0.283770 1.08081i
\(534\) 0 0
\(535\) −0.163893 0.0439149i −0.00708570 0.00189861i
\(536\) 29.5949 17.9893i 1.27830 0.777018i
\(537\) 0 0
\(538\) 5.05133 19.4356i 0.217778 0.837929i
\(539\) 1.57168 0.421131i 0.0676971 0.0181394i
\(540\) 0 0
\(541\) −8.59605 8.59605i −0.369573 0.369573i 0.497748 0.867321i \(-0.334160\pi\)
−0.867321 + 0.497748i \(0.834160\pi\)
\(542\) 7.04037 0.0529752i 0.302410 0.00227548i
\(543\) 0 0
\(544\) 26.2877 + 24.3806i 1.12708 + 1.04531i
\(545\) 1.83294i 0.0785144i
\(546\) 0 0
\(547\) 8.02828 0.343264 0.171632 0.985161i \(-0.445096\pi\)
0.171632 + 0.985161i \(0.445096\pi\)
\(548\) 17.7038 + 17.1788i 0.756267 + 0.733841i
\(549\) 0 0
\(550\) −2.23411 + 0.0168105i −0.0952627 + 0.000716802i
\(551\) −1.06441 + 1.06441i −0.0453456 + 0.0453456i
\(552\) 0 0
\(553\) 9.29235 + 34.6795i 0.395151 + 1.47472i
\(554\) −16.4005 4.26251i −0.696791 0.181097i
\(555\) 0 0
\(556\) 0.322749 + 21.4454i 0.0136876 + 0.909488i
\(557\) 9.27198 34.6035i 0.392866 1.46620i −0.432517 0.901626i \(-0.642375\pi\)
0.825384 0.564572i \(-0.190959\pi\)
\(558\) 0 0
\(559\) −20.3477 0.102553i −0.860617 0.00433751i
\(560\) 0.718628 + 1.16245i 0.0303676 + 0.0491224i
\(561\) 0 0
\(562\) 8.91366 + 5.05726i 0.376000 + 0.213328i
\(563\) 5.28880 + 3.05349i 0.222897 + 0.128689i 0.607291 0.794480i \(-0.292256\pi\)
−0.384394 + 0.923169i \(0.625590\pi\)
\(564\) 0 0
\(565\) 0.349387 + 1.30393i 0.0146988 + 0.0548567i
\(566\) −12.4887 12.3022i −0.524939 0.517098i
\(567\) 0 0
\(568\) −9.54095 + 17.4221i −0.400329 + 0.731015i
\(569\) 16.0840 9.28610i 0.674276 0.389293i −0.123419 0.992355i \(-0.539386\pi\)
0.797695 + 0.603061i \(0.206053\pi\)
\(570\) 0 0
\(571\) 30.2053i 1.26405i 0.774947 + 0.632026i \(0.217777\pi\)
−0.774947 + 0.632026i \(0.782223\pi\)
\(572\) 1.59795 1.63026i 0.0668137 0.0681647i
\(573\) 0 0
\(574\) −33.9854 + 9.38100i −1.41852 + 0.391555i
\(575\) −31.8570 + 18.3927i −1.32853 + 0.767027i
\(576\) 0 0
\(577\) −26.5827 26.5827i −1.10665 1.10665i −0.993588 0.113063i \(-0.963934\pi\)
−0.113063 0.993588i \(-0.536066\pi\)
\(578\) −22.9955 + 23.3442i −0.956488 + 0.970991i
\(579\) 0 0
\(580\) −0.196159 0.690350i −0.00814508 0.0286652i
\(581\) −10.8292 6.25222i −0.449269 0.259386i
\(582\) 0 0
\(583\) 0.319038 1.19067i 0.0132132 0.0493123i
\(584\) −5.98175 + 0.135049i −0.247527 + 0.00558838i
\(585\) 0 0
\(586\) −2.04653 3.48388i −0.0845412 0.143918i
\(587\) 9.64475 35.9947i 0.398081 1.48566i −0.418387 0.908269i \(-0.637404\pi\)
0.816468 0.577391i \(-0.195929\pi\)
\(588\) 0 0
\(589\) −0.326006 + 0.564659i −0.0134329 + 0.0232664i
\(590\) 0.338923 1.30405i 0.0139533 0.0536869i
\(591\) 0 0
\(592\) −9.05755 8.52811i −0.372263 0.350503i
\(593\) −11.5292 + 11.5292i −0.473447 + 0.473447i −0.903028 0.429581i \(-0.858661\pi\)
0.429581 + 0.903028i \(0.358661\pi\)
\(594\) 0 0
\(595\) −1.87534 + 1.08273i −0.0768814 + 0.0443875i
\(596\) 16.4548 + 15.9668i 0.674014 + 0.654027i
\(597\) 0 0
\(598\) 9.63778 36.3295i 0.394118 1.48562i
\(599\) 16.7701i 0.685208i 0.939480 + 0.342604i \(0.111309\pi\)
−0.939480 + 0.342604i \(0.888691\pi\)
\(600\) 0 0
\(601\) −8.91511 15.4414i −0.363655 0.629869i 0.624904 0.780701i \(-0.285138\pi\)
−0.988559 + 0.150832i \(0.951805\pi\)
\(602\) 0.209236 + 27.8074i 0.00852782 + 1.13334i
\(603\) 0 0
\(604\) 20.9502 + 5.27701i 0.852451 + 0.214719i
\(605\) 1.03240 0.276632i 0.0419732 0.0112467i
\(606\) 0 0
\(607\) −7.27664 4.20117i −0.295350 0.170520i 0.345002 0.938602i \(-0.387878\pi\)
−0.640352 + 0.768082i \(0.721211\pi\)
\(608\) −2.32531 + 0.0875235i −0.0943038 + 0.00354955i
\(609\) 0 0
\(610\) 0.967032 + 1.64622i 0.0391540 + 0.0666534i
\(611\) 30.2957 + 8.28157i 1.22563 + 0.335037i
\(612\) 0 0
\(613\) 28.9567 + 7.75893i 1.16955 + 0.313380i 0.790774 0.612108i \(-0.209678\pi\)
0.378776 + 0.925488i \(0.376345\pi\)
\(614\) 2.28668 + 1.29737i 0.0922828 + 0.0523577i
\(615\) 0 0
\(616\) −2.25523 2.15564i −0.0908656 0.0868533i
\(617\) 29.7623 7.97479i 1.19819 0.321053i 0.396069 0.918221i \(-0.370374\pi\)
0.802116 + 0.597168i \(0.203707\pi\)
\(618\) 0 0
\(619\) 16.2444 16.2444i 0.652916 0.652916i −0.300778 0.953694i \(-0.597246\pi\)
0.953694 + 0.300778i \(0.0972463\pi\)
\(620\) −0.159462 0.266840i −0.00640414 0.0107166i
\(621\) 0 0
\(622\) 9.93326 + 35.9861i 0.398287 + 1.44291i
\(623\) −0.398720 −0.0159744
\(624\) 0 0
\(625\) −24.8559 −0.994234
\(626\) 8.68975 + 31.4812i 0.347312 + 1.25824i
\(627\) 0 0
\(628\) 0.303303 + 0.507542i 0.0121031 + 0.0202531i
\(629\) 13.9386 13.9386i 0.555768 0.555768i
\(630\) 0 0
\(631\) 18.9019 5.06474i 0.752472 0.201624i 0.137858 0.990452i \(-0.455978\pi\)
0.614614 + 0.788828i \(0.289312\pi\)
\(632\) 20.1384 21.0687i 0.801061 0.838067i
\(633\) 0 0
\(634\) −24.2996 13.7866i −0.965061 0.547538i
\(635\) −0.801750 0.214828i −0.0318165 0.00852520i
\(636\) 0 0
\(637\) −9.34683 + 16.0024i −0.370335 + 0.634038i
\(638\) 0.829804 + 1.41261i 0.0328523 + 0.0559257i
\(639\) 0 0
\(640\) 0.503355 0.988649i 0.0198969 0.0390798i
\(641\) −15.3793 8.87927i −0.607448 0.350710i 0.164518 0.986374i \(-0.447393\pi\)
−0.771966 + 0.635664i \(0.780726\pi\)
\(642\) 0 0
\(643\) −32.3334 + 8.66372i −1.27511 + 0.341664i −0.831985 0.554798i \(-0.812796\pi\)
−0.443121 + 0.896462i \(0.646129\pi\)
\(644\) −49.8105 12.5464i −1.96281 0.494399i
\(645\) 0 0
\(646\) −0.0277426 3.68697i −0.00109152 0.145062i
\(647\) −13.7124 23.7505i −0.539089 0.933730i −0.998953 0.0457408i \(-0.985435\pi\)
0.459864 0.887989i \(-0.347898\pi\)
\(648\) 0 0
\(649\) 3.07576i 0.120734i
\(650\) 17.9483 18.0377i 0.703991 0.707498i
\(651\) 0 0
\(652\) 3.57125 + 3.46535i 0.139861 + 0.135713i
\(653\) −15.1849 + 8.76701i −0.594232 + 0.343080i −0.766769 0.641923i \(-0.778137\pi\)
0.172537 + 0.985003i \(0.444803\pi\)
\(654\) 0 0
\(655\) −0.942016 + 0.942016i −0.0368076 + 0.0368076i
\(656\) 20.8375 + 19.6195i 0.813567 + 0.766012i
\(657\) 0 0
\(658\) 10.7968 41.5419i 0.420901 1.61947i
\(659\) 1.44190 2.49744i 0.0561684 0.0972865i −0.836574 0.547854i \(-0.815445\pi\)
0.892742 + 0.450567i \(0.148778\pi\)
\(660\) 0 0
\(661\) −10.3684 + 38.6953i −0.403283 + 1.50507i 0.403917 + 0.914796i \(0.367649\pi\)
−0.807200 + 0.590278i \(0.799018\pi\)
\(662\) 6.54657 + 11.1445i 0.254440 + 0.433143i
\(663\) 0 0
\(664\) 0.229115 + 10.1482i 0.00889141 + 0.393828i
\(665\) 0.0363752 0.135754i 0.00141057 0.00526431i
\(666\) 0 0
\(667\) 23.3606 + 13.4872i 0.904525 + 0.522228i
\(668\) −5.07838 17.8725i −0.196488 0.691508i
\(669\) 0 0
\(670\) 1.19164 1.20971i 0.0460371 0.0467351i
\(671\) −3.08184 3.08184i −0.118973 0.118973i
\(672\) 0 0
\(673\) 6.34609 3.66391i 0.244624 0.141234i −0.372676 0.927961i \(-0.621560\pi\)
0.617300 + 0.786728i \(0.288226\pi\)
\(674\) 11.4374 3.15707i 0.440553 0.121606i
\(675\) 0 0
\(676\) 0.129187 + 25.9997i 0.00496875 + 0.999988i
\(677\) 45.6313i 1.75376i 0.480714 + 0.876878i \(0.340378\pi\)
−0.480714 + 0.876878i \(0.659622\pi\)
\(678\) 0 0
\(679\) 19.6484 11.3440i 0.754035 0.435342i
\(680\) 1.54181 + 0.844349i 0.0591257 + 0.0323793i
\(681\) 0 0
\(682\) 0.505537 + 0.497986i 0.0193580 + 0.0190689i
\(683\) −5.80580 21.6676i −0.222153 0.829086i −0.983525 0.180771i \(-0.942141\pi\)
0.761372 0.648315i \(-0.224526\pi\)
\(684\) 0 0
\(685\) 1.04744 + 0.604742i 0.0400208 + 0.0231060i
\(686\) −7.97192 4.52295i −0.304369 0.172687i
\(687\) 0 0
\(688\) 19.2012 11.8702i 0.732039 0.452548i
\(689\) 6.95836 + 12.1937i 0.265092 + 0.464545i
\(690\) 0 0
\(691\) −1.10893 + 4.13859i −0.0421857 + 0.157439i −0.983806 0.179238i \(-0.942637\pi\)
0.941620 + 0.336678i \(0.109303\pi\)
\(692\) −0.0892447 5.92995i −0.00339257 0.225423i
\(693\) 0 0
\(694\) −4.22884 1.09908i −0.160524 0.0417204i
\(695\) 0.272168 + 1.01575i 0.0103239 + 0.0385294i
\(696\) 0 0
\(697\) −32.0667 + 32.0667i −1.21461 + 1.21461i
\(698\) 42.3722 0.318829i 1.60381 0.0120679i
\(699\) 0 0
\(700\) −24.9571 24.2171i −0.943291 0.915319i
\(701\) 36.4870 1.37810 0.689048 0.724716i \(-0.258029\pi\)
0.689048 + 0.724716i \(0.258029\pi\)
\(702\) 0 0
\(703\) 1.27936i 0.0482521i
\(704\) −0.544402 + 2.47334i −0.0205179 + 0.0932176i
\(705\) 0 0
\(706\) 35.6711 0.268407i 1.34250 0.0101016i
\(707\) −15.8676 15.8676i −0.596761 0.596761i
\(708\) 0 0
\(709\) −14.8664 + 3.98345i −0.558321 + 0.149602i −0.526935 0.849906i \(-0.676659\pi\)
−0.0313862 + 0.999507i \(0.509992\pi\)
\(710\) −0.244978 + 0.942584i −0.00919387 + 0.0353745i
\(711\) 0 0
\(712\) 0.168122 + 0.276584i 0.00630064 + 0.0103654i
\(713\) 11.2857 + 3.02398i 0.422651 + 0.113249i
\(714\) 0 0
\(715\) 0.0564503 0.0966466i 0.00211112 0.00361438i
\(716\) 6.09873 10.9403i 0.227920 0.408858i
\(717\) 0 0
\(718\) −9.65575 + 17.0187i −0.360350 + 0.635133i
\(719\) −11.9512 + 20.7000i −0.445703 + 0.771980i −0.998101 0.0616005i \(-0.980380\pi\)
0.552398 + 0.833580i \(0.313713\pi\)
\(720\) 0 0
\(721\) 52.3002 14.0138i 1.94776 0.521902i
\(722\) −18.9719 18.6886i −0.706063 0.695517i
\(723\) 0 0
\(724\) 33.7756 20.1840i 1.25526 0.750134i
\(725\) 9.13095 + 15.8153i 0.339115 + 0.587364i
\(726\) 0 0
\(727\) 21.0545 0.780868 0.390434 0.920631i \(-0.372325\pi\)
0.390434 + 0.920631i \(0.372325\pi\)
\(728\) 35.5269 0.622959i 1.31671 0.0230884i
\(729\) 0 0
\(730\) −0.282782 + 0.0780564i −0.0104662 + 0.00288900i
\(731\) 17.8844 + 30.9766i 0.661477 + 1.14571i
\(732\) 0 0
\(733\) 2.18046 2.18046i 0.0805370 0.0805370i −0.665691 0.746228i \(-0.731863\pi\)
0.746228 + 0.665691i \(0.231863\pi\)
\(734\) 8.52080 + 8.39352i 0.314508 + 0.309811i
\(735\) 0 0
\(736\) 12.2996 + 39.8428i 0.453368 + 1.46863i
\(737\) −1.93815 + 3.35697i −0.0713926 + 0.123656i
\(738\) 0 0
\(739\) 45.3273 + 12.1454i 1.66739 + 0.446776i 0.964405 0.264429i \(-0.0851833\pi\)
0.702985 + 0.711204i \(0.251850\pi\)
\(740\) −0.532767 0.296994i −0.0195849 0.0109177i
\(741\) 0 0
\(742\) 16.5435 9.71812i 0.607332 0.356763i
\(743\) 41.4704 + 11.1120i 1.52140 + 0.407658i 0.920203 0.391442i \(-0.128024\pi\)
0.601198 + 0.799100i \(0.294690\pi\)
\(744\) 0 0
\(745\) 0.973548 + 0.562078i 0.0356680 + 0.0205929i
\(746\) −3.69173 + 14.2044i −0.135164 + 0.520060i
\(747\) 0 0
\(748\) −3.89129 0.980152i −0.142280 0.0358379i
\(749\) 4.26305 + 4.26305i 0.155768 + 0.155768i
\(750\) 0 0
\(751\) −3.78589 6.55735i −0.138149 0.239281i 0.788647 0.614846i \(-0.210782\pi\)
−0.926796 + 0.375565i \(0.877449\pi\)
\(752\) −33.3693 + 10.0268i −1.21685 + 0.365639i
\(753\) 0 0
\(754\) −18.0356 4.78463i −0.656817 0.174246i
\(755\) 1.05926 0.0385505
\(756\) 0 0
\(757\) 18.5122 10.6880i 0.672836 0.388462i −0.124314 0.992243i \(-0.539673\pi\)
0.797151 + 0.603781i \(0.206340\pi\)
\(758\) 6.65657 0.0500872i 0.241777 0.00181925i
\(759\) 0 0
\(760\) −0.109508 + 0.0320084i −0.00397226 + 0.00116107i
\(761\) −0.991139 3.69898i −0.0359288 0.134088i 0.945632 0.325239i \(-0.105445\pi\)
−0.981561 + 0.191151i \(0.938778\pi\)
\(762\) 0 0
\(763\) 32.5639 56.4024i 1.17889 2.04190i
\(764\) 16.1396 0.242898i 0.583910 0.00878773i
\(765\) 0 0
\(766\) 27.3436 16.0624i 0.987965 0.580357i
\(767\) −24.6457 24.8954i −0.889906 0.898922i
\(768\) 0 0
\(769\) 4.33512 16.1789i 0.156329 0.583426i −0.842659 0.538447i \(-0.819011\pi\)
0.998988 0.0449792i \(-0.0143221\pi\)
\(770\) −0.133039 0.0754811i −0.00479439 0.00272015i
\(771\) 0 0
\(772\) −7.55201 + 2.14586i −0.271803 + 0.0772313i
\(773\) −6.29416 23.4901i −0.226385 0.844882i −0.981845 0.189686i \(-0.939253\pi\)
0.755459 0.655195i \(-0.227414\pi\)
\(774\) 0 0
\(775\) 5.59321 + 5.59321i 0.200914 + 0.200914i
\(776\) −16.1539 8.84645i −0.579892 0.317569i
\(777\) 0 0
\(778\) −0.0963214 0.348952i −0.00345329 0.0125105i
\(779\) 2.94326i 0.105453i
\(780\) 0 0
\(781\) 2.22320i 0.0795523i
\(782\) −63.6890 + 17.5801i −2.27751 + 0.628663i
\(783\) 0 0
\(784\) −0.618695 20.5502i −0.0220962 0.733937i
\(785\) 0.0204986 + 0.0204986i 0.000731625 + 0.000731625i
\(786\) 0 0
\(787\) −9.30815 34.7385i −0.331800 1.23829i −0.907297 0.420490i \(-0.861858\pi\)
0.575498 0.817803i \(-0.304808\pi\)
\(788\) −35.7302 + 10.1526i −1.27284 + 0.361670i
\(789\) 0 0
\(790\) 0.705156 1.24287i 0.0250883 0.0442193i
\(791\) 12.4144 46.3312i 0.441405 1.64735i
\(792\) 0 0
\(793\) 49.6390 + 0.250181i 1.76273 + 0.00888417i
\(794\) −22.2129 37.8138i −0.788305 1.34196i
\(795\) 0 0
\(796\) 0.0449957 + 2.98979i 0.00159483 + 0.105970i
\(797\) −5.36008 + 9.28393i −0.189864 + 0.328854i −0.945205 0.326478i \(-0.894138\pi\)
0.755341 + 0.655332i \(0.227471\pi\)
\(798\) 0 0
\(799\) −14.2892 53.3280i −0.505515 1.88661i
\(800\) −6.27563 + 27.5235i −0.221877 + 0.973102i
\(801\) 0 0
\(802\) −0.227715 30.2632i −0.00804089 1.06863i
\(803\) 0.579952 0.334836i 0.0204661 0.0118161i
\(804\) 0 0
\(805\) −2.51847 −0.0887642
\(806\) −8.08216 + 0.0200792i −0.284682 + 0.000707261i
\(807\) 0 0
\(808\) −4.31640 + 17.6976i −0.151850 + 0.622600i
\(809\) 19.6641 + 34.0593i 0.691355 + 1.19746i 0.971394 + 0.237473i \(0.0763191\pi\)
−0.280040 + 0.959988i \(0.590348\pi\)
\(810\) 0 0
\(811\) −38.2641 38.2641i −1.34364 1.34364i −0.892410 0.451226i \(-0.850987\pi\)
−0.451226 0.892410i \(-0.649013\pi\)
\(812\) −6.22862 + 24.7282i −0.218582 + 0.867788i
\(813\) 0 0
\(814\) 1.34762 + 0.350249i 0.0472342 + 0.0122762i
\(815\) 0.211293 + 0.121990i 0.00740127 + 0.00427312i
\(816\) 0 0
\(817\) −2.24237 0.600841i −0.0784506 0.0210208i
\(818\) −23.1854 39.4694i −0.810658 1.38002i
\(819\) 0 0
\(820\) 1.22566 + 0.683255i 0.0428021 + 0.0238603i
\(821\) 19.9781 + 5.35310i 0.697239 + 0.186825i 0.589993 0.807408i \(-0.299130\pi\)
0.107245 + 0.994233i \(0.465797\pi\)
\(822\) 0 0
\(823\) −11.8141 + 20.4626i −0.411813 + 0.713281i −0.995088 0.0989937i \(-0.968438\pi\)
0.583275 + 0.812275i \(0.301771\pi\)
\(824\) −31.7737 30.3707i −1.10689 1.05801i
\(825\) 0 0
\(826\) −33.5970 + 34.1064i −1.16899 + 1.18671i
\(827\) 17.7598 17.7598i 0.617568 0.617568i −0.327339 0.944907i \(-0.606152\pi\)
0.944907 + 0.327339i \(0.106152\pi\)
\(828\) 0 0
\(829\) 16.4735 + 28.5329i 0.572147 + 0.990988i 0.996345 + 0.0854184i \(0.0272227\pi\)
−0.424198 + 0.905569i \(0.639444\pi\)
\(830\) 0.132425 + 0.479749i 0.00459655 + 0.0166523i
\(831\) 0 0
\(832\) −15.4122 24.3816i −0.534322 0.845281i
\(833\) 32.5767 1.12872
\(834\) 0 0
\(835\) −0.455484 0.788922i −0.0157627 0.0273018i
\(836\) 0.223564 0.133600i 0.00773213 0.00462066i
\(837\) 0 0
\(838\) −20.7472 + 21.0618i −0.716700 + 0.727567i
\(839\) 42.5633 11.4048i 1.46945 0.393737i 0.566706 0.823920i \(-0.308218\pi\)
0.902742 + 0.430183i \(0.141551\pi\)
\(840\) 0 0
\(841\) −7.80433 + 13.5175i −0.269115 + 0.466121i
\(842\) 14.6542 + 8.31423i 0.505018 + 0.286527i
\(843\) 0 0
\(844\) 17.9446 + 10.0034i 0.617680 + 0.344330i
\(845\) 0.317506 + 1.23459i 0.0109225 + 0.0424713i
\(846\) 0 0
\(847\) −36.6834 9.82927i −1.26045 0.337738i
\(848\) −13.7169 7.37825i −0.471041 0.253370i
\(849\) 0 0
\(850\) −43.2921 11.2517i −1.48491 0.385929i
\(851\) 22.1445 5.93359i 0.759102 0.203401i
\(852\) 0 0
\(853\) 0.463907 + 0.463907i 0.0158839 + 0.0158839i 0.715004 0.699120i \(-0.246425\pi\)
−0.699120 + 0.715004i \(0.746425\pi\)
\(854\) −0.510439 67.8371i −0.0174669 2.32134i
\(855\) 0 0
\(856\) 1.15966 4.75473i 0.0396365 0.162513i
\(857\) 33.1382i 1.13198i 0.824412 + 0.565990i \(0.191506\pi\)
−0.824412 + 0.565990i \(0.808494\pi\)
\(858\) 0 0
\(859\) 21.3046 0.726903 0.363451 0.931613i \(-0.381598\pi\)
0.363451 + 0.931613i \(0.381598\pi\)
\(860\) 0.770757 0.794311i 0.0262826 0.0270858i
\(861\) 0 0
\(862\) −0.237859 31.6114i −0.00810151 1.07669i
\(863\) −27.2032 + 27.2032i −0.926008 + 0.926008i −0.997445 0.0714372i \(-0.977241\pi\)
0.0714372 + 0.997445i \(0.477241\pi\)
\(864\) 0 0
\(865\) −0.0752583 0.280868i −0.00255886 0.00954979i
\(866\) 5.07679 19.5336i 0.172516 0.663777i
\(867\) 0 0
\(868\) 0.166212 + 11.0441i 0.00564159 + 0.374861i
\(869\) −0.844278 + 3.15089i −0.0286402 + 0.106887i
\(870\) 0 0
\(871\) −11.2115 42.7018i −0.379889 1.44689i
\(872\) −52.8560 + 1.19332i −1.78993 + 0.0404110i
\(873\) 0 0
\(874\) 2.11607 3.72967i 0.0715771 0.126158i
\(875\) −2.95602 1.70666i −0.0999318 0.0576957i
\(876\) 0 0
\(877\) 4.86299 + 18.1489i 0.164212 + 0.612846i 0.998139 + 0.0609726i \(0.0194202\pi\)
−0.833928 + 0.551874i \(0.813913\pi\)
\(878\) −3.54512 + 3.59887i −0.119642 + 0.121456i
\(879\) 0 0
\(880\) 0.00373661 + 0.124113i 0.000125961 + 0.00418386i
\(881\) 10.8962 6.29091i 0.367101 0.211946i −0.305090 0.952324i \(-0.598687\pi\)
0.672191 + 0.740377i \(0.265353\pi\)
\(882\) 0 0
\(883\) 44.2186i 1.48807i −0.668139 0.744036i \(-0.732909\pi\)
0.668139 0.744036i \(-0.267091\pi\)
\(884\) 39.3502 23.2471i 1.32349 0.781884i
\(885\) 0 0
\(886\) −3.28852 11.9136i −0.110480 0.400246i
\(887\) 5.54684 3.20247i 0.186245 0.107528i −0.403979 0.914768i \(-0.632373\pi\)
0.590223 + 0.807240i \(0.299040\pi\)
\(888\) 0 0
\(889\) 20.8545 + 20.8545i 0.699437 + 0.699437i
\(890\) 0.0113056 + 0.0111367i 0.000378963 + 0.000373303i
\(891\) 0 0
\(892\) 8.14563 2.31454i 0.272736 0.0774965i
\(893\) 3.10314 + 1.79160i 0.103843 + 0.0599536i
\(894\) 0 0
\(895\) 0.158944 0.593187i 0.00531291 0.0198280i
\(896\) −33.0534 + 21.4797i −1.10424 + 0.717587i
\(897\) 0 0
\(898\) −31.9539 + 18.7706i −1.06632 + 0.626383i
\(899\) 1.50124 5.60271i 0.0500692 0.186861i
\(900\) 0 0
\(901\) 12.3396 21.3729i 0.411093 0.712034i
\(902\) −3.10030 0.805770i −0.103229 0.0268292i
\(903\) 0 0
\(904\) −37.3736 + 10.9241i −1.24303 + 0.363330i
\(905\) 1.36413 1.36413i 0.0453451 0.0453451i
\(906\) 0 0
\(907\) 11.0865 6.40082i 0.368123 0.212536i −0.304515 0.952507i \(-0.598494\pi\)
0.672638 + 0.739972i \(0.265161\pi\)
\(908\) 29.5938 30.4982i 0.982105 1.01212i
\(909\) 0 0
\(910\) 1.68165 0.455077i 0.0557461 0.0150857i
\(911\) 4.52483i 0.149914i 0.997187 + 0.0749572i \(0.0238820\pi\)
−0.997187 + 0.0749572i \(0.976118\pi\)
\(912\) 0 0
\(913\) −0.568060 0.983909i −0.0188000 0.0325626i
\(914\) 45.7507 0.344251i 1.51330 0.0113868i
\(915\) 0 0
\(916\) 7.29426 + 1.83730i 0.241009 + 0.0607063i
\(917\) 45.7232 12.2515i 1.50991 0.404580i
\(918\) 0 0
\(919\) 44.0101 + 25.4093i 1.45176 + 0.838174i 0.998581 0.0532452i \(-0.0169565\pi\)
0.453179 + 0.891420i \(0.350290\pi\)
\(920\) 1.06192 + 1.74701i 0.0350105 + 0.0575972i
\(921\) 0 0
\(922\) −19.8664 + 11.6700i −0.654264 + 0.384332i
\(923\) 17.8143 + 17.9947i 0.586363 + 0.592304i
\(924\) 0 0
\(925\) 14.9920 + 4.01708i 0.492932 + 0.132081i
\(926\) 24.4936 43.1712i 0.804911 1.41869i
\(927\) 0 0
\(928\) 19.7798 6.10605i 0.649303 0.200441i
\(929\) −58.1272 + 15.5751i −1.90709 + 0.511003i −0.912240 + 0.409657i \(0.865649\pi\)
−0.994851 + 0.101347i \(0.967685\pi\)
\(930\) 0 0
\(931\) −1.49504 + 1.49504i −0.0489979 + 0.0489979i
\(932\) 13.3023 + 22.2599i 0.435733 + 0.729147i
\(933\) 0 0
\(934\) 14.3756 3.96811i 0.470385 0.129841i
\(935\) −0.196747 −0.00643433
\(936\) 0 0
\(937\) −31.3424 −1.02391 −0.511956 0.859012i \(-0.671079\pi\)
−0.511956 + 0.859012i \(0.671079\pi\)
\(938\) −58.1604 + 16.0540i −1.89900 + 0.524182i
\(939\) 0 0
\(940\) −1.46645 + 0.876338i −0.0478302 + 0.0285830i
\(941\) −22.8653 + 22.8653i −0.745387 + 0.745387i −0.973609 0.228222i \(-0.926709\pi\)
0.228222 + 0.973609i \(0.426709\pi\)
\(942\) 0 0
\(943\) −50.9448 + 13.6506i −1.65899 + 0.444525i
\(944\) 37.8252 + 8.92446i 1.23111 + 0.290466i
\(945\) 0 0
\(946\) −1.24679 + 2.19752i −0.0405366 + 0.0714476i
\(947\) 20.0408 + 5.36992i 0.651239 + 0.174499i 0.569289 0.822138i \(-0.307219\pi\)
0.0819499 + 0.996636i \(0.473885\pi\)
\(948\) 0 0
\(949\) −2.01117 + 7.35728i −0.0652855 + 0.238827i
\(950\) 2.50317 1.47043i 0.0812135 0.0477070i
\(951\) 0 0
\(952\) −32.4433 53.3738i −1.05149 1.72985i
\(953\) −2.83553 1.63710i −0.0918520 0.0530308i 0.453370 0.891322i \(-0.350221\pi\)
−0.545222 + 0.838291i \(0.683555\pi\)
\(954\) 0 0
\(955\) 0.764439 0.204831i 0.0247367 0.00662817i
\(956\) −1.38663 + 5.50503i −0.0448467 + 0.178045i
\(957\) 0 0
\(958\) −14.6453 + 0.110198i −0.473167 + 0.00356034i
\(959\) −21.4877 37.2178i −0.693874 1.20182i
\(960\) 0 0
\(961\) 28.4876i 0.918956i
\(962\) −13.7143 + 7.96344i −0.442166 + 0.256752i
\(963\) 0 0
\(964\) 11.1895 + 10.8577i 0.360389 + 0.349702i
\(965\) −0.333358 + 0.192464i −0.0107312 + 0.00619565i
\(966\) 0 0
\(967\) 15.9826 15.9826i 0.513966 0.513966i −0.401773 0.915739i \(-0.631606\pi\)
0.915739 + 0.401773i \(0.131606\pi\)
\(968\) 8.64930 + 29.5911i 0.277999 + 0.951093i
\(969\) 0 0
\(970\) −0.873972 0.227146i −0.0280616 0.00729322i
\(971\) −12.5870 + 21.8014i −0.403938 + 0.699640i −0.994197 0.107573i \(-0.965692\pi\)
0.590260 + 0.807213i \(0.299025\pi\)
\(972\) 0 0
\(973\) 9.67068 36.0915i 0.310028 1.15704i
\(974\) 29.6687 17.4282i 0.950645 0.558435i
\(975\) 0 0
\(976\) −46.8420 + 28.9578i −1.49938 + 0.926918i
\(977\) 5.42229 20.2363i 0.173475 0.647416i −0.823332 0.567560i \(-0.807887\pi\)
0.996806 0.0798556i \(-0.0254459\pi\)
\(978\) 0 0
\(979\) −0.0313732 0.0181133i −0.00100269 0.000578905i
\(980\) −0.275519 0.969641i −0.00880112 0.0309740i
\(981\) 0 0
\(982\) −32.7960 32.3061i −1.04656 1.03093i
\(983\) −14.2586 14.2586i −0.454777 0.454777i 0.442159 0.896937i \(-0.354213\pi\)
−0.896937 + 0.442159i \(0.854213\pi\)
\(984\) 0 0
\(985\) −1.57719 + 0.910592i −0.0502535 + 0.0290139i
\(986\) 8.72755 + 31.6181i 0.277942 + 1.00693i
\(987\) 0 0
\(988\) −0.739020 + 2.87277i −0.0235114 + 0.0913949i
\(989\) 41.5997i 1.32280i
\(990\) 0 0
\(991\) −23.1803 + 13.3832i −0.736348 + 0.425131i −0.820740 0.571302i \(-0.806439\pi\)
0.0843920 + 0.996433i \(0.473105\pi\)
\(992\) 7.59100 4.77209i 0.241014 0.151514i
\(993\) 0 0
\(994\) 24.2843 24.6525i 0.770251 0.781931i
\(995\) 0.0379440 + 0.141609i 0.00120291 + 0.00448931i
\(996\) 0 0
\(997\) −31.1545 17.9870i −0.986672 0.569655i −0.0823942 0.996600i \(-0.526257\pi\)
−0.904278 + 0.426944i \(0.859590\pi\)
\(998\) −20.1870 + 35.5805i −0.639008 + 1.12628i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.ed.d.739.8 48
3.2 odd 2 104.2.u.a.11.5 48
8.3 odd 2 inner 936.2.ed.d.739.2 48
12.11 even 2 416.2.bk.a.271.2 48
13.6 odd 12 inner 936.2.ed.d.19.2 48
24.5 odd 2 416.2.bk.a.271.1 48
24.11 even 2 104.2.u.a.11.11 yes 48
39.32 even 12 104.2.u.a.19.11 yes 48
104.19 even 12 inner 936.2.ed.d.19.8 48
156.71 odd 12 416.2.bk.a.175.1 48
312.149 even 12 416.2.bk.a.175.2 48
312.227 odd 12 104.2.u.a.19.5 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.u.a.11.5 48 3.2 odd 2
104.2.u.a.11.11 yes 48 24.11 even 2
104.2.u.a.19.5 yes 48 312.227 odd 12
104.2.u.a.19.11 yes 48 39.32 even 12
416.2.bk.a.175.1 48 156.71 odd 12
416.2.bk.a.175.2 48 312.149 even 12
416.2.bk.a.271.1 48 24.5 odd 2
416.2.bk.a.271.2 48 12.11 even 2
936.2.ed.d.19.2 48 13.6 odd 12 inner
936.2.ed.d.19.8 48 104.19 even 12 inner
936.2.ed.d.739.2 48 8.3 odd 2 inner
936.2.ed.d.739.8 48 1.1 even 1 trivial