Properties

Label 416.2.bk.a.175.1
Level $416$
Weight $2$
Character 416.175
Analytic conductor $3.322$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [416,2,Mod(15,416)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("416.15"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(416, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 6, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bk (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 175.1
Character \(\chi\) \(=\) 416.175
Dual form 416.2.bk.a.271.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.11333 + 1.92835i) q^{3} +(-0.0693382 - 0.0693382i) q^{5} +(3.36551 + 0.901786i) q^{7} +(-0.979029 - 1.69573i) q^{9} +(0.305781 - 0.0819339i) q^{11} +(3.13155 + 1.78702i) q^{13} +(0.210905 - 0.0565119i) q^{15} +(-5.48889 + 3.16901i) q^{17} +(0.397336 + 0.106466i) q^{19} +(-5.48590 + 5.48590i) q^{21} +(-3.68562 + 6.38369i) q^{23} -4.99038i q^{25} -2.32006 q^{27} +(3.16915 + 1.82971i) q^{29} +(1.12080 + 1.12080i) q^{31} +(-0.182440 + 0.680874i) q^{33} +(-0.170830 - 0.295887i) q^{35} +(-0.804964 - 3.00417i) q^{37} +(-6.93245 + 4.04918i) q^{39} +(1.85187 + 6.91129i) q^{41} +(-4.88743 + 2.82176i) q^{43} +(-0.0496946 + 0.185463i) q^{45} +(6.15946 - 6.15946i) q^{47} +(4.45127 + 2.56994i) q^{49} -14.1127i q^{51} +3.89384i q^{53} +(-0.0268835 - 0.0155212i) q^{55} +(-0.647671 + 0.647671i) q^{57} +(2.51467 - 9.38488i) q^{59} +(11.9231 - 6.88378i) q^{61} +(-1.76575 - 6.58987i) q^{63} +(-0.0932273 - 0.341044i) q^{65} +(3.16917 + 11.8275i) q^{67} +(-8.20666 - 14.2144i) q^{69} +(1.81764 - 6.78351i) q^{71} +(1.49582 + 1.49582i) q^{73} +(9.62322 + 5.55597i) q^{75} +1.10300 q^{77} -10.3044i q^{79} +(5.52009 - 9.56108i) q^{81} +(-2.53771 + 2.53771i) q^{83} +(0.600323 + 0.160856i) q^{85} +(-7.05665 + 4.07416i) q^{87} +(0.110536 - 0.0296181i) q^{89} +(8.92775 + 8.83821i) q^{91} +(-3.40912 + 0.913470i) q^{93} +(-0.0201684 - 0.0349327i) q^{95} +(6.28973 + 1.68533i) q^{97} +(-0.438306 - 0.438306i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{3} - 20 q^{9} + 8 q^{11} - 12 q^{17} + 8 q^{19} - 8 q^{27} + 4 q^{33} + 4 q^{35} + 12 q^{43} - 60 q^{49} + 36 q^{57} + 64 q^{59} - 16 q^{65} + 8 q^{67} - 12 q^{73} - 24 q^{75} - 8 q^{81} + 48 q^{83}+ \cdots - 168 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.11333 + 1.92835i −0.642784 + 1.11333i 0.342024 + 0.939691i \(0.388887\pi\)
−0.984809 + 0.173644i \(0.944446\pi\)
\(4\) 0 0
\(5\) −0.0693382 0.0693382i −0.0310090 0.0310090i 0.691432 0.722441i \(-0.256980\pi\)
−0.722441 + 0.691432i \(0.756980\pi\)
\(6\) 0 0
\(7\) 3.36551 + 0.901786i 1.27204 + 0.340843i 0.830814 0.556551i \(-0.187876\pi\)
0.441230 + 0.897394i \(0.354542\pi\)
\(8\) 0 0
\(9\) −0.979029 1.69573i −0.326343 0.565243i
\(10\) 0 0
\(11\) 0.305781 0.0819339i 0.0921966 0.0247040i −0.212426 0.977177i \(-0.568136\pi\)
0.304622 + 0.952473i \(0.401470\pi\)
\(12\) 0 0
\(13\) 3.13155 + 1.78702i 0.868534 + 0.495629i
\(14\) 0 0
\(15\) 0.210905 0.0565119i 0.0544555 0.0145913i
\(16\) 0 0
\(17\) −5.48889 + 3.16901i −1.33125 + 0.768598i −0.985491 0.169725i \(-0.945712\pi\)
−0.345760 + 0.938323i \(0.612379\pi\)
\(18\) 0 0
\(19\) 0.397336 + 0.106466i 0.0911550 + 0.0244249i 0.304108 0.952637i \(-0.401642\pi\)
−0.212953 + 0.977062i \(0.568308\pi\)
\(20\) 0 0
\(21\) −5.48590 + 5.48590i −1.19712 + 1.19712i
\(22\) 0 0
\(23\) −3.68562 + 6.38369i −0.768505 + 1.33109i 0.169868 + 0.985467i \(0.445666\pi\)
−0.938373 + 0.345624i \(0.887667\pi\)
\(24\) 0 0
\(25\) 4.99038i 0.998077i
\(26\) 0 0
\(27\) −2.32006 −0.446496
\(28\) 0 0
\(29\) 3.16915 + 1.82971i 0.588496 + 0.339768i 0.764503 0.644621i \(-0.222985\pi\)
−0.176006 + 0.984389i \(0.556318\pi\)
\(30\) 0 0
\(31\) 1.12080 + 1.12080i 0.201301 + 0.201301i 0.800557 0.599256i \(-0.204537\pi\)
−0.599256 + 0.800557i \(0.704537\pi\)
\(32\) 0 0
\(33\) −0.182440 + 0.680874i −0.0317587 + 0.118525i
\(34\) 0 0
\(35\) −0.170830 0.295887i −0.0288756 0.0500140i
\(36\) 0 0
\(37\) −0.804964 3.00417i −0.132335 0.493882i 0.867659 0.497159i \(-0.165624\pi\)
−0.999995 + 0.00327710i \(0.998957\pi\)
\(38\) 0 0
\(39\) −6.93245 + 4.04918i −1.11008 + 0.648387i
\(40\) 0 0
\(41\) 1.85187 + 6.91129i 0.289214 + 1.07936i 0.945705 + 0.325027i \(0.105373\pi\)
−0.656491 + 0.754334i \(0.727960\pi\)
\(42\) 0 0
\(43\) −4.88743 + 2.82176i −0.745326 + 0.430314i −0.824003 0.566586i \(-0.808264\pi\)
0.0786766 + 0.996900i \(0.474931\pi\)
\(44\) 0 0
\(45\) −0.0496946 + 0.185463i −0.00740804 + 0.0276472i
\(46\) 0 0
\(47\) 6.15946 6.15946i 0.898449 0.898449i −0.0968500 0.995299i \(-0.530877\pi\)
0.995299 + 0.0968500i \(0.0308767\pi\)
\(48\) 0 0
\(49\) 4.45127 + 2.56994i 0.635896 + 0.367135i
\(50\) 0 0
\(51\) 14.1127i 1.97617i
\(52\) 0 0
\(53\) 3.89384i 0.534861i 0.963577 + 0.267430i \(0.0861745\pi\)
−0.963577 + 0.267430i \(0.913825\pi\)
\(54\) 0 0
\(55\) −0.0268835 0.0155212i −0.00362497 0.00209288i
\(56\) 0 0
\(57\) −0.647671 + 0.647671i −0.0857861 + 0.0857861i
\(58\) 0 0
\(59\) 2.51467 9.38488i 0.327382 1.22181i −0.584513 0.811385i \(-0.698714\pi\)
0.911895 0.410423i \(-0.134619\pi\)
\(60\) 0 0
\(61\) 11.9231 6.88378i 1.52659 0.881378i 0.527089 0.849810i \(-0.323283\pi\)
0.999502 0.0315679i \(-0.0100500\pi\)
\(62\) 0 0
\(63\) −1.76575 6.58987i −0.222463 0.830245i
\(64\) 0 0
\(65\) −0.0932273 0.341044i −0.0115634 0.0423013i
\(66\) 0 0
\(67\) 3.16917 + 11.8275i 0.387176 + 1.44496i 0.834708 + 0.550693i \(0.185637\pi\)
−0.447532 + 0.894268i \(0.647697\pi\)
\(68\) 0 0
\(69\) −8.20666 14.2144i −0.987966 1.71121i
\(70\) 0 0
\(71\) 1.81764 6.78351i 0.215714 0.805055i −0.770200 0.637802i \(-0.779844\pi\)
0.985914 0.167253i \(-0.0534896\pi\)
\(72\) 0 0
\(73\) 1.49582 + 1.49582i 0.175072 + 0.175072i 0.789204 0.614131i \(-0.210494\pi\)
−0.614131 + 0.789204i \(0.710494\pi\)
\(74\) 0 0
\(75\) 9.62322 + 5.55597i 1.11119 + 0.641548i
\(76\) 0 0
\(77\) 1.10300 0.125698
\(78\) 0 0
\(79\) 10.3044i 1.15933i −0.814854 0.579667i \(-0.803183\pi\)
0.814854 0.579667i \(-0.196817\pi\)
\(80\) 0 0
\(81\) 5.52009 9.56108i 0.613344 1.06234i
\(82\) 0 0
\(83\) −2.53771 + 2.53771i −0.278550 + 0.278550i −0.832530 0.553980i \(-0.813108\pi\)
0.553980 + 0.832530i \(0.313108\pi\)
\(84\) 0 0
\(85\) 0.600323 + 0.160856i 0.0651142 + 0.0174473i
\(86\) 0 0
\(87\) −7.05665 + 4.07416i −0.756552 + 0.436796i
\(88\) 0 0
\(89\) 0.110536 0.0296181i 0.0117168 0.00313951i −0.252956 0.967478i \(-0.581403\pi\)
0.264673 + 0.964338i \(0.414736\pi\)
\(90\) 0 0
\(91\) 8.92775 + 8.83821i 0.935882 + 0.926496i
\(92\) 0 0
\(93\) −3.40912 + 0.913470i −0.353509 + 0.0947224i
\(94\) 0 0
\(95\) −0.0201684 0.0349327i −0.00206923 0.00358402i
\(96\) 0 0
\(97\) 6.28973 + 1.68533i 0.638626 + 0.171119i 0.563581 0.826061i \(-0.309423\pi\)
0.0750449 + 0.997180i \(0.476090\pi\)
\(98\) 0 0
\(99\) −0.438306 0.438306i −0.0440515 0.0440515i
\(100\) 0 0
\(101\) −3.22024 + 5.57761i −0.320425 + 0.554993i −0.980576 0.196140i \(-0.937159\pi\)
0.660150 + 0.751133i \(0.270493\pi\)
\(102\) 0 0
\(103\) 15.5401 1.53121 0.765604 0.643312i \(-0.222440\pi\)
0.765604 + 0.643312i \(0.222440\pi\)
\(104\) 0 0
\(105\) 0.760766 0.0742431
\(106\) 0 0
\(107\) 0.865163 1.49851i 0.0836385 0.144866i −0.821172 0.570681i \(-0.806679\pi\)
0.904810 + 0.425815i \(0.140013\pi\)
\(108\) 0 0
\(109\) −13.2174 13.2174i −1.26599 1.26599i −0.948140 0.317853i \(-0.897038\pi\)
−0.317853 0.948140i \(-0.602962\pi\)
\(110\) 0 0
\(111\) 6.68929 + 1.79239i 0.634919 + 0.170126i
\(112\) 0 0
\(113\) −6.88323 11.9221i −0.647520 1.12154i −0.983713 0.179744i \(-0.942473\pi\)
0.336193 0.941793i \(-0.390860\pi\)
\(114\) 0 0
\(115\) 0.698188 0.187079i 0.0651064 0.0174452i
\(116\) 0 0
\(117\) −0.0355813 7.05979i −0.00328949 0.652678i
\(118\) 0 0
\(119\) −21.3307 + 5.71554i −1.95538 + 0.523943i
\(120\) 0 0
\(121\) −9.43949 + 5.44989i −0.858135 + 0.495445i
\(122\) 0 0
\(123\) −15.3891 4.12351i −1.38759 0.371804i
\(124\) 0 0
\(125\) −0.692716 + 0.692716i −0.0619584 + 0.0619584i
\(126\) 0 0
\(127\) 4.23231 7.33057i 0.375557 0.650483i −0.614853 0.788641i \(-0.710785\pi\)
0.990410 + 0.138158i \(0.0441182\pi\)
\(128\) 0 0
\(129\) 12.5662i 1.10640i
\(130\) 0 0
\(131\) 13.5858 1.18700 0.593499 0.804835i \(-0.297746\pi\)
0.593499 + 0.804835i \(0.297746\pi\)
\(132\) 0 0
\(133\) 1.24123 + 0.716623i 0.107628 + 0.0621391i
\(134\) 0 0
\(135\) 0.160869 + 0.160869i 0.0138454 + 0.0138454i
\(136\) 0 0
\(137\) 3.19234 11.9140i 0.272740 1.01788i −0.684601 0.728918i \(-0.740024\pi\)
0.957341 0.288961i \(-0.0933097\pi\)
\(138\) 0 0
\(139\) −5.36196 9.28718i −0.454795 0.787729i 0.543881 0.839162i \(-0.316954\pi\)
−0.998676 + 0.0514337i \(0.983621\pi\)
\(140\) 0 0
\(141\) 5.02007 + 18.7351i 0.422766 + 1.57778i
\(142\) 0 0
\(143\) 1.10399 + 0.289857i 0.0923199 + 0.0242390i
\(144\) 0 0
\(145\) −0.0928744 0.346612i −0.00771280 0.0287846i
\(146\) 0 0
\(147\) −9.91151 + 5.72241i −0.817488 + 0.471977i
\(148\) 0 0
\(149\) −2.96712 + 11.0734i −0.243076 + 0.907172i 0.731265 + 0.682094i \(0.238930\pi\)
−0.974341 + 0.225078i \(0.927736\pi\)
\(150\) 0 0
\(151\) −7.63837 + 7.63837i −0.621602 + 0.621602i −0.945941 0.324339i \(-0.894858\pi\)
0.324339 + 0.945941i \(0.394858\pi\)
\(152\) 0 0
\(153\) 10.7476 + 6.20511i 0.868889 + 0.501653i
\(154\) 0 0
\(155\) 0.155428i 0.0124843i
\(156\) 0 0
\(157\) 0.295631i 0.0235940i −0.999930 0.0117970i \(-0.996245\pi\)
0.999930 0.0117970i \(-0.00375518\pi\)
\(158\) 0 0
\(159\) −7.50870 4.33515i −0.595479 0.343800i
\(160\) 0 0
\(161\) −18.1607 + 18.1607i −1.43127 + 1.43127i
\(162\) 0 0
\(163\) 0.643966 2.40331i 0.0504393 0.188242i −0.936110 0.351708i \(-0.885601\pi\)
0.986549 + 0.163466i \(0.0522675\pi\)
\(164\) 0 0
\(165\) 0.0598607 0.0345606i 0.00466015 0.00269054i
\(166\) 0 0
\(167\) 2.40443 + 8.97345i 0.186060 + 0.694386i 0.994401 + 0.105672i \(0.0336992\pi\)
−0.808341 + 0.588715i \(0.799634\pi\)
\(168\) 0 0
\(169\) 6.61315 + 11.1922i 0.508704 + 0.860942i
\(170\) 0 0
\(171\) −0.208466 0.778006i −0.0159418 0.0594956i
\(172\) 0 0
\(173\) −1.48266 2.56803i −0.112724 0.195244i 0.804144 0.594435i \(-0.202624\pi\)
−0.916868 + 0.399191i \(0.869291\pi\)
\(174\) 0 0
\(175\) 4.50026 16.7952i 0.340188 1.26960i
\(176\) 0 0
\(177\) 15.2977 + 15.2977i 1.14984 + 1.14984i
\(178\) 0 0
\(179\) −5.42364 3.13134i −0.405382 0.234047i 0.283422 0.958995i \(-0.408530\pi\)
−0.688803 + 0.724948i \(0.741864\pi\)
\(180\) 0 0
\(181\) 19.6735 1.46232 0.731160 0.682206i \(-0.238979\pi\)
0.731160 + 0.682206i \(0.238979\pi\)
\(182\) 0 0
\(183\) 30.6558i 2.26614i
\(184\) 0 0
\(185\) −0.152489 + 0.264119i −0.0112112 + 0.0194184i
\(186\) 0 0
\(187\) −1.41875 + 1.41875i −0.103749 + 0.103749i
\(188\) 0 0
\(189\) −7.80819 2.09220i −0.567963 0.152185i
\(190\) 0 0
\(191\) 6.98944 4.03535i 0.505738 0.291988i −0.225342 0.974280i \(-0.572350\pi\)
0.731080 + 0.682292i \(0.239017\pi\)
\(192\) 0 0
\(193\) 3.79172 1.01599i 0.272934 0.0731325i −0.119756 0.992803i \(-0.538211\pi\)
0.392690 + 0.919671i \(0.371545\pi\)
\(194\) 0 0
\(195\) 0.761447 + 0.199921i 0.0545283 + 0.0143167i
\(196\) 0 0
\(197\) 17.9395 4.80687i 1.27813 0.342475i 0.444993 0.895534i \(-0.353206\pi\)
0.833142 + 0.553059i \(0.186540\pi\)
\(198\) 0 0
\(199\) 0.747531 + 1.29476i 0.0529911 + 0.0917833i 0.891304 0.453406i \(-0.149791\pi\)
−0.838313 + 0.545189i \(0.816458\pi\)
\(200\) 0 0
\(201\) −26.3360 7.05670i −1.85760 0.497741i
\(202\) 0 0
\(203\) 9.01580 + 9.01580i 0.632785 + 0.632785i
\(204\) 0 0
\(205\) 0.350811 0.607622i 0.0245017 0.0424382i
\(206\) 0 0
\(207\) 14.4333 1.00319
\(208\) 0 0
\(209\) 0.130221 0.00900758
\(210\) 0 0
\(211\) 5.13613 8.89604i 0.353586 0.612429i −0.633289 0.773915i \(-0.718296\pi\)
0.986875 + 0.161487i \(0.0516289\pi\)
\(212\) 0 0
\(213\) 11.0574 + 11.0574i 0.757638 + 0.757638i
\(214\) 0 0
\(215\) 0.534542 + 0.143230i 0.0364554 + 0.00976820i
\(216\) 0 0
\(217\) 2.76134 + 4.78278i 0.187452 + 0.324676i
\(218\) 0 0
\(219\) −4.54982 + 1.21912i −0.307448 + 0.0823805i
\(220\) 0 0
\(221\) −22.8518 + 0.115173i −1.53718 + 0.00774737i
\(222\) 0 0
\(223\) −4.08977 + 1.09585i −0.273871 + 0.0733836i −0.393141 0.919478i \(-0.628611\pi\)
0.119269 + 0.992862i \(0.461945\pi\)
\(224\) 0 0
\(225\) −8.46233 + 4.88573i −0.564155 + 0.325715i
\(226\) 0 0
\(227\) −20.5241 5.49942i −1.36223 0.365009i −0.497598 0.867408i \(-0.665784\pi\)
−0.864636 + 0.502399i \(0.832451\pi\)
\(228\) 0 0
\(229\) 2.65946 2.65946i 0.175742 0.175742i −0.613755 0.789497i \(-0.710342\pi\)
0.789497 + 0.613755i \(0.210342\pi\)
\(230\) 0 0
\(231\) −1.22801 + 2.12697i −0.0807969 + 0.139944i
\(232\) 0 0
\(233\) 12.9659i 0.849423i −0.905329 0.424711i \(-0.860376\pi\)
0.905329 0.424711i \(-0.139624\pi\)
\(234\) 0 0
\(235\) −0.854172 −0.0557200
\(236\) 0 0
\(237\) 19.8705 + 11.4722i 1.29073 + 0.745201i
\(238\) 0 0
\(239\) −2.00711 2.00711i −0.129829 0.129829i 0.639206 0.769035i \(-0.279263\pi\)
−0.769035 + 0.639206i \(0.779263\pi\)
\(240\) 0 0
\(241\) −2.01768 + 7.53010i −0.129970 + 0.485056i −0.999968 0.00799977i \(-0.997454\pi\)
0.869998 + 0.493056i \(0.164120\pi\)
\(242\) 0 0
\(243\) 8.81133 + 15.2617i 0.565247 + 0.979036i
\(244\) 0 0
\(245\) −0.130448 0.486839i −0.00833402 0.0311030i
\(246\) 0 0
\(247\) 1.05402 + 1.04345i 0.0670656 + 0.0663929i
\(248\) 0 0
\(249\) −2.06828 7.71891i −0.131072 0.489166i
\(250\) 0 0
\(251\) 8.49344 4.90369i 0.536101 0.309518i −0.207396 0.978257i \(-0.566499\pi\)
0.743497 + 0.668739i \(0.233166\pi\)
\(252\) 0 0
\(253\) −0.603955 + 2.25399i −0.0379703 + 0.141707i
\(254\) 0 0
\(255\) −0.978548 + 0.978548i −0.0612791 + 0.0612791i
\(256\) 0 0
\(257\) 8.22290 + 4.74749i 0.512930 + 0.296140i 0.734037 0.679109i \(-0.237634\pi\)
−0.221107 + 0.975250i \(0.570967\pi\)
\(258\) 0 0
\(259\) 10.8365i 0.673345i
\(260\) 0 0
\(261\) 7.16535i 0.443524i
\(262\) 0 0
\(263\) 0.383169 + 0.221223i 0.0236272 + 0.0136412i 0.511767 0.859124i \(-0.328991\pi\)
−0.488140 + 0.872765i \(0.662324\pi\)
\(264\) 0 0
\(265\) 0.269992 0.269992i 0.0165855 0.0165855i
\(266\) 0 0
\(267\) −0.0659497 + 0.246128i −0.00403606 + 0.0150628i
\(268\) 0 0
\(269\) −12.2972 + 7.09981i −0.749776 + 0.432883i −0.825613 0.564237i \(-0.809170\pi\)
0.0758371 + 0.997120i \(0.475837\pi\)
\(270\) 0 0
\(271\) 1.28851 + 4.80880i 0.0782717 + 0.292114i 0.993955 0.109786i \(-0.0350166\pi\)
−0.915684 + 0.401900i \(0.868350\pi\)
\(272\) 0 0
\(273\) −26.9827 + 7.37596i −1.63307 + 0.446413i
\(274\) 0 0
\(275\) −0.408882 1.52597i −0.0246565 0.0920193i
\(276\) 0 0
\(277\) 5.99110 + 10.3769i 0.359970 + 0.623487i 0.987955 0.154739i \(-0.0494535\pi\)
−0.627985 + 0.778225i \(0.716120\pi\)
\(278\) 0 0
\(279\) 0.803275 2.99786i 0.0480908 0.179477i
\(280\) 0 0
\(281\) −5.12419 5.12419i −0.305684 0.305684i 0.537549 0.843233i \(-0.319350\pi\)
−0.843233 + 0.537549i \(0.819350\pi\)
\(282\) 0 0
\(283\) 10.7351 + 6.19789i 0.638133 + 0.368426i 0.783895 0.620893i \(-0.213230\pi\)
−0.145762 + 0.989320i \(0.546563\pi\)
\(284\) 0 0
\(285\) 0.0898167 0.00532028
\(286\) 0 0
\(287\) 24.9300i 1.47157i
\(288\) 0 0
\(289\) 11.5853 20.0663i 0.681486 1.18037i
\(290\) 0 0
\(291\) −10.2525 + 10.2525i −0.601012 + 0.601012i
\(292\) 0 0
\(293\) −2.75972 0.739465i −0.161225 0.0432000i 0.177304 0.984156i \(-0.443262\pi\)
−0.338528 + 0.940956i \(0.609929\pi\)
\(294\) 0 0
\(295\) −0.825094 + 0.476368i −0.0480388 + 0.0277352i
\(296\) 0 0
\(297\) −0.709432 + 0.190092i −0.0411654 + 0.0110302i
\(298\) 0 0
\(299\) −22.9494 + 13.4045i −1.32720 + 0.775204i
\(300\) 0 0
\(301\) −18.9933 + 5.08925i −1.09476 + 0.293339i
\(302\) 0 0
\(303\) −7.17040 12.4195i −0.411929 0.713481i
\(304\) 0 0
\(305\) −1.30403 0.349415i −0.0746687 0.0200074i
\(306\) 0 0
\(307\) −1.31454 1.31454i −0.0750248 0.0750248i 0.668599 0.743623i \(-0.266894\pi\)
−0.743623 + 0.668599i \(0.766894\pi\)
\(308\) 0 0
\(309\) −17.3013 + 29.9667i −0.984236 + 1.70475i
\(310\) 0 0
\(311\) −26.3976 −1.49687 −0.748436 0.663207i \(-0.769195\pi\)
−0.748436 + 0.663207i \(0.769195\pi\)
\(312\) 0 0
\(313\) 23.0930 1.30529 0.652647 0.757662i \(-0.273658\pi\)
0.652647 + 0.757662i \(0.273658\pi\)
\(314\) 0 0
\(315\) −0.334496 + 0.579364i −0.0188467 + 0.0326434i
\(316\) 0 0
\(317\) −13.9691 13.9691i −0.784583 0.784583i 0.196018 0.980600i \(-0.437199\pi\)
−0.980600 + 0.196018i \(0.937199\pi\)
\(318\) 0 0
\(319\) 1.11898 + 0.299830i 0.0626510 + 0.0167873i
\(320\) 0 0
\(321\) 1.92643 + 3.33668i 0.107523 + 0.186235i
\(322\) 0 0
\(323\) −2.51832 + 0.674782i −0.140123 + 0.0375459i
\(324\) 0 0
\(325\) 8.91789 15.6276i 0.494676 0.866864i
\(326\) 0 0
\(327\) 40.2031 10.7724i 2.22323 0.595714i
\(328\) 0 0
\(329\) 26.2842 15.1752i 1.44910 0.836636i
\(330\) 0 0
\(331\) −8.82798 2.36545i −0.485229 0.130017i 0.00790714 0.999969i \(-0.497483\pi\)
−0.493137 + 0.869952i \(0.664150\pi\)
\(332\) 0 0
\(333\) −4.30617 + 4.30617i −0.235976 + 0.235976i
\(334\) 0 0
\(335\) 0.600354 1.03984i 0.0328009 0.0568127i
\(336\) 0 0
\(337\) 8.38992i 0.457028i 0.973541 + 0.228514i \(0.0733867\pi\)
−0.973541 + 0.228514i \(0.926613\pi\)
\(338\) 0 0
\(339\) 30.6534 1.66486
\(340\) 0 0
\(341\) 0.434551 + 0.250888i 0.0235322 + 0.0135863i
\(342\) 0 0
\(343\) −4.58281 4.58281i −0.247448 0.247448i
\(344\) 0 0
\(345\) −0.416563 + 1.55463i −0.0224270 + 0.0836987i
\(346\) 0 0
\(347\) −1.54479 2.67566i −0.0829287 0.143637i 0.821578 0.570096i \(-0.193094\pi\)
−0.904507 + 0.426459i \(0.859761\pi\)
\(348\) 0 0
\(349\) −7.75487 28.9416i −0.415109 1.54921i −0.784618 0.619980i \(-0.787141\pi\)
0.369509 0.929227i \(-0.379526\pi\)
\(350\) 0 0
\(351\) −7.26538 4.14599i −0.387797 0.221296i
\(352\) 0 0
\(353\) −6.52845 24.3645i −0.347474 1.29679i −0.889695 0.456556i \(-0.849083\pi\)
0.542220 0.840236i \(-0.317584\pi\)
\(354\) 0 0
\(355\) −0.596389 + 0.344325i −0.0316530 + 0.0182749i
\(356\) 0 0
\(357\) 12.7266 47.4964i 0.673564 2.51378i
\(358\) 0 0
\(359\) −9.78353 + 9.78353i −0.516355 + 0.516355i −0.916467 0.400111i \(-0.868971\pi\)
0.400111 + 0.916467i \(0.368971\pi\)
\(360\) 0 0
\(361\) −16.3079 9.41539i −0.858313 0.495547i
\(362\) 0 0
\(363\) 24.2702i 1.27386i
\(364\) 0 0
\(365\) 0.207435i 0.0108576i
\(366\) 0 0
\(367\) 7.32432 + 4.22870i 0.382327 + 0.220736i 0.678830 0.734295i \(-0.262487\pi\)
−0.296504 + 0.955032i \(0.595821\pi\)
\(368\) 0 0
\(369\) 9.90662 9.90662i 0.515718 0.515718i
\(370\) 0 0
\(371\) −3.51141 + 13.1048i −0.182304 + 0.680366i
\(372\) 0 0
\(373\) −8.98736 + 5.18886i −0.465348 + 0.268669i −0.714290 0.699850i \(-0.753250\pi\)
0.248942 + 0.968518i \(0.419917\pi\)
\(374\) 0 0
\(375\) −0.564575 2.10702i −0.0291546 0.108806i
\(376\) 0 0
\(377\) 6.65461 + 11.3931i 0.342730 + 0.586776i
\(378\) 0 0
\(379\) −1.21827 4.54665i −0.0625784 0.233546i 0.927552 0.373694i \(-0.121909\pi\)
−0.990131 + 0.140148i \(0.955242\pi\)
\(380\) 0 0
\(381\) 9.42395 + 16.3228i 0.482804 + 0.836241i
\(382\) 0 0
\(383\) 5.80376 21.6599i 0.296558 1.10677i −0.643414 0.765519i \(-0.722482\pi\)
0.939972 0.341252i \(-0.110851\pi\)
\(384\) 0 0
\(385\) −0.0764799 0.0764799i −0.00389778 0.00389778i
\(386\) 0 0
\(387\) 9.56987 + 5.52517i 0.486464 + 0.280860i
\(388\) 0 0
\(389\) −0.255974 −0.0129784 −0.00648920 0.999979i \(-0.502066\pi\)
−0.00648920 + 0.999979i \(0.502066\pi\)
\(390\) 0 0
\(391\) 46.7191i 2.36269i
\(392\) 0 0
\(393\) −15.1255 + 26.1982i −0.762983 + 1.32153i
\(394\) 0 0
\(395\) −0.714488 + 0.714488i −0.0359498 + 0.0359498i
\(396\) 0 0
\(397\) 29.9538 + 8.02610i 1.50334 + 0.402818i 0.914217 0.405226i \(-0.132807\pi\)
0.589122 + 0.808044i \(0.299474\pi\)
\(398\) 0 0
\(399\) −2.76380 + 1.59568i −0.138363 + 0.0798841i
\(400\) 0 0
\(401\) 20.6707 5.53870i 1.03225 0.276590i 0.297350 0.954769i \(-0.403897\pi\)
0.734897 + 0.678179i \(0.237231\pi\)
\(402\) 0 0
\(403\) 1.50695 + 5.51271i 0.0750663 + 0.274608i
\(404\) 0 0
\(405\) −1.04570 + 0.280195i −0.0519613 + 0.0139230i
\(406\) 0 0
\(407\) −0.492286 0.852665i −0.0244017 0.0422650i
\(408\) 0 0
\(409\) −31.2652 8.37750i −1.54597 0.414241i −0.617779 0.786352i \(-0.711967\pi\)
−0.928188 + 0.372112i \(0.878634\pi\)
\(410\) 0 0
\(411\) 19.4202 + 19.4202i 0.957927 + 0.957927i
\(412\) 0 0
\(413\) 16.9263 29.3172i 0.832889 1.44261i
\(414\) 0 0
\(415\) 0.351920 0.0172751
\(416\) 0 0
\(417\) 23.8786 1.16934
\(418\) 0 0
\(419\) 10.4525 18.1043i 0.510640 0.884454i −0.489284 0.872125i \(-0.662742\pi\)
0.999924 0.0123300i \(-0.00392485\pi\)
\(420\) 0 0
\(421\) −8.42426 8.42426i −0.410573 0.410573i 0.471365 0.881938i \(-0.343761\pi\)
−0.881938 + 0.471365i \(0.843761\pi\)
\(422\) 0 0
\(423\) −16.4750 4.41447i −0.801044 0.214639i
\(424\) 0 0
\(425\) 15.8146 + 27.3917i 0.767120 + 1.32869i
\(426\) 0 0
\(427\) 46.3349 12.4154i 2.24230 0.600823i
\(428\) 0 0
\(429\) −1.78805 + 1.80617i −0.0863279 + 0.0872025i
\(430\) 0 0
\(431\) 21.5916 5.78544i 1.04003 0.278675i 0.301904 0.953338i \(-0.402378\pi\)
0.738125 + 0.674663i \(0.235711\pi\)
\(432\) 0 0
\(433\) −12.3592 + 7.13560i −0.593946 + 0.342915i −0.766656 0.642058i \(-0.778081\pi\)
0.172710 + 0.984973i \(0.444748\pi\)
\(434\) 0 0
\(435\) 0.771790 + 0.206801i 0.0370045 + 0.00991533i
\(436\) 0 0
\(437\) −2.14407 + 2.14407i −0.102565 + 0.102565i
\(438\) 0 0
\(439\) 1.78605 3.09353i 0.0852434 0.147646i −0.820251 0.572003i \(-0.806167\pi\)
0.905495 + 0.424357i \(0.139500\pi\)
\(440\) 0 0
\(441\) 10.0642i 0.479247i
\(442\) 0 0
\(443\) −8.73925 −0.415214 −0.207607 0.978212i \(-0.566568\pi\)
−0.207607 + 0.978212i \(0.566568\pi\)
\(444\) 0 0
\(445\) −0.00971805 0.00561072i −0.000460680 0.000265974i
\(446\) 0 0
\(447\) −18.0501 18.0501i −0.853740 0.853740i
\(448\) 0 0
\(449\) −6.78232 + 25.3120i −0.320077 + 1.19455i 0.599091 + 0.800681i \(0.295529\pi\)
−0.919169 + 0.393864i \(0.871138\pi\)
\(450\) 0 0
\(451\) 1.13254 + 1.96161i 0.0533291 + 0.0923687i
\(452\) 0 0
\(453\) −6.22541 23.2335i −0.292495 1.09161i
\(454\) 0 0
\(455\) −0.00620857 1.23186i −0.000291062 0.0577505i
\(456\) 0 0
\(457\) 8.37320 + 31.2492i 0.391682 + 1.46178i 0.827359 + 0.561674i \(0.189842\pi\)
−0.435677 + 0.900103i \(0.643491\pi\)
\(458\) 0 0
\(459\) 12.7346 7.35230i 0.594398 0.343176i
\(460\) 0 0
\(461\) 4.21669 15.7369i 0.196391 0.732941i −0.795511 0.605939i \(-0.792798\pi\)
0.991902 0.127003i \(-0.0405356\pi\)
\(462\) 0 0
\(463\) −24.8178 + 24.8178i −1.15338 + 1.15338i −0.167509 + 0.985871i \(0.553572\pi\)
−0.985871 + 0.167509i \(0.946428\pi\)
\(464\) 0 0
\(465\) 0.299721 + 0.173044i 0.0138992 + 0.00802471i
\(466\) 0 0
\(467\) 10.5453i 0.487976i 0.969778 + 0.243988i \(0.0784558\pi\)
−0.969778 + 0.243988i \(0.921544\pi\)
\(468\) 0 0
\(469\) 42.6636i 1.97002i
\(470\) 0 0
\(471\) 0.570082 + 0.329137i 0.0262680 + 0.0151658i
\(472\) 0 0
\(473\) −1.26329 + 1.26329i −0.0580860 + 0.0580860i
\(474\) 0 0
\(475\) 0.531305 1.98286i 0.0243779 0.0909797i
\(476\) 0 0
\(477\) 6.60290 3.81219i 0.302326 0.174548i
\(478\) 0 0
\(479\) 2.68034 + 10.0032i 0.122468 + 0.457057i 0.999737 0.0229425i \(-0.00730348\pi\)
−0.877269 + 0.480000i \(0.840637\pi\)
\(480\) 0 0
\(481\) 2.84771 10.8462i 0.129845 0.494543i
\(482\) 0 0
\(483\) −14.8013 55.2392i −0.673483 2.51347i
\(484\) 0 0
\(485\) −0.319261 0.552977i −0.0144969 0.0251094i
\(486\) 0 0
\(487\) −6.29726 + 23.5017i −0.285356 + 1.06496i 0.663222 + 0.748422i \(0.269188\pi\)
−0.948579 + 0.316541i \(0.897478\pi\)
\(488\) 0 0
\(489\) 3.91748 + 3.91748i 0.177155 + 0.177155i
\(490\) 0 0
\(491\) −28.1909 16.2760i −1.27224 0.734525i −0.296827 0.954931i \(-0.595928\pi\)
−0.975408 + 0.220406i \(0.929262\pi\)
\(492\) 0 0
\(493\) −23.1935 −1.04458
\(494\) 0 0
\(495\) 0.0607828i 0.00273198i
\(496\) 0 0
\(497\) 12.2346 21.1909i 0.548795 0.950541i
\(498\) 0 0
\(499\) −20.4541 + 20.4541i −0.915653 + 0.915653i −0.996710 0.0810563i \(-0.974171\pi\)
0.0810563 + 0.996710i \(0.474171\pi\)
\(500\) 0 0
\(501\) −19.9809 5.35387i −0.892681 0.239193i
\(502\) 0 0
\(503\) 22.7444 13.1315i 1.01412 0.585504i 0.101726 0.994812i \(-0.467563\pi\)
0.912396 + 0.409309i \(0.134230\pi\)
\(504\) 0 0
\(505\) 0.610027 0.163456i 0.0271459 0.00727371i
\(506\) 0 0
\(507\) −28.9452 + 0.291775i −1.28550 + 0.0129582i
\(508\) 0 0
\(509\) 13.3661 3.58144i 0.592443 0.158745i 0.0498735 0.998756i \(-0.484118\pi\)
0.542569 + 0.840011i \(0.317452\pi\)
\(510\) 0 0
\(511\) 3.68529 + 6.38311i 0.163028 + 0.282372i
\(512\) 0 0
\(513\) −0.921843 0.247007i −0.0407004 0.0109056i
\(514\) 0 0
\(515\) −1.07752 1.07752i −0.0474812 0.0474812i
\(516\) 0 0
\(517\) 1.37878 2.38812i 0.0606386 0.105029i
\(518\) 0 0
\(519\) 6.60277 0.289829
\(520\) 0 0
\(521\) 0.605870 0.0265437 0.0132718 0.999912i \(-0.495775\pi\)
0.0132718 + 0.999912i \(0.495775\pi\)
\(522\) 0 0
\(523\) −6.97171 + 12.0753i −0.304851 + 0.528018i −0.977228 0.212191i \(-0.931940\pi\)
0.672377 + 0.740209i \(0.265273\pi\)
\(524\) 0 0
\(525\) 27.3768 + 27.3768i 1.19482 + 1.19482i
\(526\) 0 0
\(527\) −9.70376 2.60011i −0.422702 0.113263i
\(528\) 0 0
\(529\) −15.6676 27.1371i −0.681201 1.17987i
\(530\) 0 0
\(531\) −18.3761 + 4.92387i −0.797457 + 0.213678i
\(532\) 0 0
\(533\) −6.55135 + 24.9523i −0.283770 + 1.08081i
\(534\) 0 0
\(535\) −0.163893 + 0.0439149i −0.00708570 + 0.00189861i
\(536\) 0 0
\(537\) 12.0766 6.97245i 0.521146 0.300884i
\(538\) 0 0
\(539\) 1.57168 + 0.421131i 0.0676971 + 0.0181394i
\(540\) 0 0
\(541\) 8.59605 8.59605i 0.369573 0.369573i −0.497748 0.867321i \(-0.665840\pi\)
0.867321 + 0.497748i \(0.165840\pi\)
\(542\) 0 0
\(543\) −21.9032 + 37.9374i −0.939956 + 1.62805i
\(544\) 0 0
\(545\) 1.83294i 0.0785144i
\(546\) 0 0
\(547\) −8.02828 −0.343264 −0.171632 0.985161i \(-0.554904\pi\)
−0.171632 + 0.985161i \(0.554904\pi\)
\(548\) 0 0
\(549\) −23.3460 13.4788i −0.996384 0.575263i
\(550\) 0 0
\(551\) 1.06441 + 1.06441i 0.0453456 + 0.0453456i
\(552\) 0 0
\(553\) 9.29235 34.6795i 0.395151 1.47472i
\(554\) 0 0
\(555\) −0.339542 0.588105i −0.0144128 0.0249637i
\(556\) 0 0
\(557\) 9.27198 + 34.6035i 0.392866 + 1.46620i 0.825384 + 0.564572i \(0.190959\pi\)
−0.432517 + 0.901626i \(0.642375\pi\)
\(558\) 0 0
\(559\) −20.3477 + 0.102553i −0.860617 + 0.00433751i
\(560\) 0 0
\(561\) −1.15631 4.31540i −0.0488193 0.182196i
\(562\) 0 0
\(563\) 5.28880 3.05349i 0.222897 0.128689i −0.384394 0.923169i \(-0.625590\pi\)
0.607291 + 0.794480i \(0.292256\pi\)
\(564\) 0 0
\(565\) −0.349387 + 1.30393i −0.0146988 + 0.0548567i
\(566\) 0 0
\(567\) 27.2000 27.2000i 1.14229 1.14229i
\(568\) 0 0
\(569\) −16.0840 9.28610i −0.674276 0.389293i 0.123419 0.992355i \(-0.460614\pi\)
−0.797695 + 0.603061i \(0.793947\pi\)
\(570\) 0 0
\(571\) 30.2053i 1.26405i 0.774947 + 0.632026i \(0.217777\pi\)
−0.774947 + 0.632026i \(0.782223\pi\)
\(572\) 0 0
\(573\) 17.9708i 0.750741i
\(574\) 0 0
\(575\) 31.8570 + 18.3927i 1.32853 + 0.767027i
\(576\) 0 0
\(577\) −26.5827 + 26.5827i −1.10665 + 1.10665i −0.113063 + 0.993588i \(0.536066\pi\)
−0.993588 + 0.113063i \(0.963934\pi\)
\(578\) 0 0
\(579\) −2.26227 + 8.44291i −0.0940168 + 0.350875i
\(580\) 0 0
\(581\) −10.8292 + 6.25222i −0.449269 + 0.259386i
\(582\) 0 0
\(583\) 0.319038 + 1.19067i 0.0132132 + 0.0493123i
\(584\) 0 0
\(585\) −0.487046 + 0.491980i −0.0201369 + 0.0203409i
\(586\) 0 0
\(587\) 9.64475 + 35.9947i 0.398081 + 1.48566i 0.816468 + 0.577391i \(0.195929\pi\)
−0.418387 + 0.908269i \(0.637404\pi\)
\(588\) 0 0
\(589\) 0.326006 + 0.564659i 0.0134329 + 0.0232664i
\(590\) 0 0
\(591\) −10.7033 + 39.9453i −0.440275 + 1.64313i
\(592\) 0 0
\(593\) 11.5292 + 11.5292i 0.473447 + 0.473447i 0.903028 0.429581i \(-0.141339\pi\)
−0.429581 + 0.903028i \(0.641339\pi\)
\(594\) 0 0
\(595\) 1.87534 + 1.08273i 0.0768814 + 0.0443875i
\(596\) 0 0
\(597\) −3.32901 −0.136247
\(598\) 0 0
\(599\) 16.7701i 0.685208i 0.939480 + 0.342604i \(0.111309\pi\)
−0.939480 + 0.342604i \(0.888691\pi\)
\(600\) 0 0
\(601\) −8.91511 + 15.4414i −0.363655 + 0.629869i −0.988559 0.150832i \(-0.951805\pi\)
0.624904 + 0.780701i \(0.285138\pi\)
\(602\) 0 0
\(603\) 16.9535 16.9535i 0.690401 0.690401i
\(604\) 0 0
\(605\) 1.03240 + 0.276632i 0.0419732 + 0.0112467i
\(606\) 0 0
\(607\) −7.27664 + 4.20117i −0.295350 + 0.170520i −0.640352 0.768082i \(-0.721211\pi\)
0.345002 + 0.938602i \(0.387878\pi\)
\(608\) 0 0
\(609\) −27.4232 + 7.34804i −1.11125 + 0.297757i
\(610\) 0 0
\(611\) 30.2957 8.28157i 1.22563 0.335037i
\(612\) 0 0
\(613\) −28.9567 + 7.75893i −1.16955 + 0.313380i −0.790774 0.612108i \(-0.790322\pi\)
−0.378776 + 0.925488i \(0.623655\pi\)
\(614\) 0 0
\(615\) 0.781140 + 1.35297i 0.0314986 + 0.0545572i
\(616\) 0 0
\(617\) −29.7623 7.97479i −1.19819 0.321053i −0.396069 0.918221i \(-0.629626\pi\)
−0.802116 + 0.597168i \(0.796293\pi\)
\(618\) 0 0
\(619\) −16.2444 16.2444i −0.652916 0.652916i 0.300778 0.953694i \(-0.402754\pi\)
−0.953694 + 0.300778i \(0.902754\pi\)
\(620\) 0 0
\(621\) 8.55087 14.8105i 0.343135 0.594327i
\(622\) 0 0
\(623\) 0.398720 0.0159744
\(624\) 0 0
\(625\) −24.8559 −0.994234
\(626\) 0 0
\(627\) −0.144980 + 0.251112i −0.00578993 + 0.0100284i
\(628\) 0 0
\(629\) 13.9386 + 13.9386i 0.555768 + 0.555768i
\(630\) 0 0
\(631\) 18.9019 + 5.06474i 0.752472 + 0.201624i 0.614614 0.788828i \(-0.289312\pi\)
0.137858 + 0.990452i \(0.455978\pi\)
\(632\) 0 0
\(633\) 11.4365 + 19.8085i 0.454559 + 0.787319i
\(634\) 0 0
\(635\) −0.801750 + 0.214828i −0.0318165 + 0.00852520i
\(636\) 0 0
\(637\) 9.34683 + 16.0024i 0.370335 + 0.634038i
\(638\) 0 0
\(639\) −13.2825 + 3.55904i −0.525448 + 0.140793i
\(640\) 0 0
\(641\) 15.3793 8.87927i 0.607448 0.350710i −0.164518 0.986374i \(-0.552607\pi\)
0.771966 + 0.635664i \(0.219274\pi\)
\(642\) 0 0
\(643\) 32.3334 + 8.66372i 1.27511 + 0.341664i 0.831985 0.554798i \(-0.187204\pi\)
0.443121 + 0.896462i \(0.353871\pi\)
\(644\) 0 0
\(645\) −0.871322 + 0.871322i −0.0343083 + 0.0343083i
\(646\) 0 0
\(647\) 13.7124 23.7505i 0.539089 0.933730i −0.459864 0.887989i \(-0.652102\pi\)
0.998953 0.0457408i \(-0.0145648\pi\)
\(648\) 0 0
\(649\) 3.07576i 0.120734i
\(650\) 0 0
\(651\) −12.2972 −0.481964
\(652\) 0 0
\(653\) −15.1849 8.76701i −0.594232 0.343080i 0.172537 0.985003i \(-0.444803\pi\)
−0.766769 + 0.641923i \(0.778137\pi\)
\(654\) 0 0
\(655\) −0.942016 0.942016i −0.0368076 0.0368076i
\(656\) 0 0
\(657\) 1.07205 4.00095i 0.0418247 0.156092i
\(658\) 0 0
\(659\) 1.44190 + 2.49744i 0.0561684 + 0.0972865i 0.892742 0.450567i \(-0.148778\pi\)
−0.836574 + 0.547854i \(0.815445\pi\)
\(660\) 0 0
\(661\) 10.3684 + 38.6953i 0.403283 + 1.50507i 0.807200 + 0.590278i \(0.200982\pi\)
−0.403917 + 0.914796i \(0.632351\pi\)
\(662\) 0 0
\(663\) 25.2196 44.1945i 0.979447 1.71637i
\(664\) 0 0
\(665\) −0.0363752 0.135754i −0.00141057 0.00526431i
\(666\) 0 0
\(667\) −23.3606 + 13.4872i −0.904525 + 0.522228i
\(668\) 0 0
\(669\) 2.44010 9.10656i 0.0943396 0.352080i
\(670\) 0 0
\(671\) 3.08184 3.08184i 0.118973 0.118973i
\(672\) 0 0
\(673\) 6.34609 + 3.66391i 0.244624 + 0.141234i 0.617300 0.786728i \(-0.288226\pi\)
−0.372676 + 0.927961i \(0.621560\pi\)
\(674\) 0 0
\(675\) 11.5780i 0.445637i
\(676\) 0 0
\(677\) 45.6313i 1.75376i −0.480714 0.876878i \(-0.659622\pi\)
0.480714 0.876878i \(-0.340378\pi\)
\(678\) 0 0
\(679\) 19.6484 + 11.3440i 0.754035 + 0.435342i
\(680\) 0 0
\(681\) 33.4550 33.4550i 1.28200 1.28200i
\(682\) 0 0
\(683\) −5.80580 + 21.6676i −0.222153 + 0.829086i 0.761372 + 0.648315i \(0.224526\pi\)
−0.983525 + 0.180771i \(0.942141\pi\)
\(684\) 0 0
\(685\) −1.04744 + 0.604742i −0.0400208 + 0.0231060i
\(686\) 0 0
\(687\) 2.16751 + 8.08925i 0.0826956 + 0.308624i
\(688\) 0 0
\(689\) −6.95836 + 12.1937i −0.265092 + 0.464545i
\(690\) 0 0
\(691\) 1.10893 + 4.13859i 0.0421857 + 0.157439i 0.983806 0.179238i \(-0.0573634\pi\)
−0.941620 + 0.336678i \(0.890697\pi\)
\(692\) 0 0
\(693\) −1.07987 1.87038i −0.0410207 0.0710500i
\(694\) 0 0
\(695\) −0.272168 + 1.01575i −0.0103239 + 0.0385294i
\(696\) 0 0
\(697\) −32.0667 32.0667i −1.21461 1.21461i
\(698\) 0 0
\(699\) 25.0028 + 14.4354i 0.945692 + 0.545995i
\(700\) 0 0
\(701\) 36.4870 1.37810 0.689048 0.724716i \(-0.258029\pi\)
0.689048 + 0.724716i \(0.258029\pi\)
\(702\) 0 0
\(703\) 1.27936i 0.0482521i
\(704\) 0 0
\(705\) 0.950979 1.64714i 0.0358159 0.0620350i
\(706\) 0 0
\(707\) −15.8676 + 15.8676i −0.596761 + 0.596761i
\(708\) 0 0
\(709\) 14.8664 + 3.98345i 0.558321 + 0.149602i 0.526935 0.849906i \(-0.323341\pi\)
0.0313862 + 0.999507i \(0.490008\pi\)
\(710\) 0 0
\(711\) −17.4734 + 10.0883i −0.655305 + 0.378340i
\(712\) 0 0
\(713\) −11.2857 + 3.02398i −0.422651 + 0.113249i
\(714\) 0 0
\(715\) −0.0564503 0.0966466i −0.00211112 0.00361438i
\(716\) 0 0
\(717\) 6.10501 1.63583i 0.227996 0.0610913i
\(718\) 0 0
\(719\) 11.9512 + 20.7000i 0.445703 + 0.771980i 0.998101 0.0616005i \(-0.0196205\pi\)
−0.552398 + 0.833580i \(0.686287\pi\)
\(720\) 0 0
\(721\) 52.3002 + 14.0138i 1.94776 + 0.521902i
\(722\) 0 0
\(723\) −12.2743 12.2743i −0.456487 0.456487i
\(724\) 0 0
\(725\) 9.13095 15.8153i 0.339115 0.587364i
\(726\) 0 0
\(727\) 21.0545 0.780868 0.390434 0.920631i \(-0.372325\pi\)
0.390434 + 0.920631i \(0.372325\pi\)
\(728\) 0 0
\(729\) −6.11928 −0.226640
\(730\) 0 0
\(731\) 17.8844 30.9766i 0.661477 1.14571i
\(732\) 0 0
\(733\) −2.18046 2.18046i −0.0805370 0.0805370i 0.665691 0.746228i \(-0.268137\pi\)
−0.746228 + 0.665691i \(0.768137\pi\)
\(734\) 0 0
\(735\) 1.08403 + 0.290465i 0.0399850 + 0.0107140i
\(736\) 0 0
\(737\) 1.93815 + 3.35697i 0.0713926 + 0.123656i
\(738\) 0 0
\(739\) −45.3273 + 12.1454i −1.66739 + 0.446776i −0.964405 0.264429i \(-0.914817\pi\)
−0.702985 + 0.711204i \(0.748150\pi\)
\(740\) 0 0
\(741\) −3.18561 + 0.870813i −0.117026 + 0.0319901i
\(742\) 0 0
\(743\) −41.4704 + 11.1120i −1.52140 + 0.407658i −0.920203 0.391442i \(-0.871976\pi\)
−0.601198 + 0.799100i \(0.705310\pi\)
\(744\) 0 0
\(745\) 0.973548 0.562078i 0.0356680 0.0205929i
\(746\) 0 0
\(747\) 6.78775 + 1.81877i 0.248351 + 0.0665454i
\(748\) 0 0
\(749\) 4.26305 4.26305i 0.155768 0.155768i
\(750\) 0 0
\(751\) −3.78589 + 6.55735i −0.138149 + 0.239281i −0.926796 0.375565i \(-0.877449\pi\)
0.788647 + 0.614846i \(0.210782\pi\)
\(752\) 0 0
\(753\) 21.8378i 0.795814i
\(754\) 0 0
\(755\) 1.05926 0.0385505
\(756\) 0 0
\(757\) −18.5122 10.6880i −0.672836 0.388462i 0.124314 0.992243i \(-0.460327\pi\)
−0.797151 + 0.603781i \(0.793660\pi\)
\(758\) 0 0
\(759\) −3.67408 3.67408i −0.133361 0.133361i
\(760\) 0 0
\(761\) 0.991139 3.69898i 0.0359288 0.134088i −0.945632 0.325239i \(-0.894555\pi\)
0.981561 + 0.191151i \(0.0612220\pi\)
\(762\) 0 0
\(763\) −32.5639 56.4024i −1.17889 2.04190i
\(764\) 0 0
\(765\) −0.314966 1.17547i −0.0113876 0.0424991i
\(766\) 0 0
\(767\) 24.6457 24.8954i 0.889906 0.898922i
\(768\) 0 0
\(769\) 4.33512 + 16.1789i 0.156329 + 0.583426i 0.998988 + 0.0449792i \(0.0143221\pi\)
−0.842659 + 0.538447i \(0.819011\pi\)
\(770\) 0 0
\(771\) −18.3097 + 10.5711i −0.659407 + 0.380709i
\(772\) 0 0
\(773\) −6.29416 + 23.4901i −0.226385 + 0.844882i 0.755459 + 0.655195i \(0.227414\pi\)
−0.981845 + 0.189686i \(0.939253\pi\)
\(774\) 0 0
\(775\) 5.59321 5.59321i 0.200914 0.200914i
\(776\) 0 0
\(777\) 20.8965 + 12.0646i 0.749659 + 0.432816i
\(778\) 0 0
\(779\) 2.94326i 0.105453i
\(780\) 0 0
\(781\) 2.22320i 0.0795523i
\(782\) 0 0
\(783\) −7.35262 4.24504i −0.262761 0.151705i
\(784\) 0 0
\(785\) −0.0204986 + 0.0204986i −0.000731625 + 0.000731625i
\(786\) 0 0
\(787\) 9.30815 34.7385i 0.331800 1.23829i −0.575498 0.817803i \(-0.695192\pi\)
0.907297 0.420490i \(-0.138142\pi\)
\(788\) 0 0
\(789\) −0.853191 + 0.492590i −0.0303744 + 0.0175367i
\(790\) 0 0
\(791\) −12.4144 46.3312i −0.441405 1.64735i
\(792\) 0 0
\(793\) 49.6390 0.250181i 1.76273 0.00888417i
\(794\) 0 0
\(795\) 0.220048 + 0.821232i 0.00780431 + 0.0291261i
\(796\) 0 0
\(797\) −5.36008 9.28393i −0.189864 0.328854i 0.755341 0.655332i \(-0.227471\pi\)
−0.945205 + 0.326478i \(0.894138\pi\)
\(798\) 0 0
\(799\) −14.2892 + 53.3280i −0.505515 + 1.88661i
\(800\) 0 0
\(801\) −0.158442 0.158442i −0.00559829 0.00559829i
\(802\) 0 0
\(803\) 0.579952 + 0.334836i 0.0204661 + 0.0118161i
\(804\) 0 0
\(805\) 2.51847 0.0887642
\(806\) 0 0
\(807\) 31.6179i 1.11300i
\(808\) 0 0
\(809\) −19.6641 + 34.0593i −0.691355 + 1.19746i 0.280040 + 0.959988i \(0.409652\pi\)
−0.971394 + 0.237473i \(0.923681\pi\)
\(810\) 0 0
\(811\) 38.2641 38.2641i 1.34364 1.34364i 0.451226 0.892410i \(-0.350987\pi\)
0.892410 0.451226i \(-0.149013\pi\)
\(812\) 0 0
\(813\) −10.7076 2.86910i −0.375532 0.100624i
\(814\) 0 0
\(815\) −0.211293 + 0.121990i −0.00740127 + 0.00427312i
\(816\) 0 0
\(817\) −2.24237 + 0.600841i −0.0784506 + 0.0210208i
\(818\) 0 0
\(819\) 6.24667 23.7919i 0.218276 0.831356i
\(820\) 0 0
\(821\) 19.9781 5.35310i 0.697239 0.186825i 0.107245 0.994233i \(-0.465797\pi\)
0.589993 + 0.807408i \(0.299130\pi\)
\(822\) 0 0
\(823\) −11.8141 20.4626i −0.411813 0.713281i 0.583275 0.812275i \(-0.301771\pi\)
−0.995088 + 0.0989937i \(0.968438\pi\)
\(824\) 0 0
\(825\) 3.39782 + 0.910444i 0.118297 + 0.0316976i
\(826\) 0 0
\(827\) 17.7598 + 17.7598i 0.617568 + 0.617568i 0.944907 0.327339i \(-0.106152\pi\)
−0.327339 + 0.944907i \(0.606152\pi\)
\(828\) 0 0
\(829\) −16.4735 + 28.5329i −0.572147 + 0.990988i 0.424198 + 0.905569i \(0.360556\pi\)
−0.996345 + 0.0854184i \(0.972777\pi\)
\(830\) 0 0
\(831\) −26.6804 −0.925533
\(832\) 0 0
\(833\) −32.5767 −1.12872
\(834\) 0 0
\(835\) 0.455484 0.788922i 0.0157627 0.0273018i
\(836\) 0 0
\(837\) −2.60032 2.60032i −0.0898802 0.0898802i
\(838\) 0 0
\(839\) −42.5633 11.4048i −1.46945 0.393737i −0.566706 0.823920i \(-0.691782\pi\)
−0.902742 + 0.430183i \(0.858449\pi\)
\(840\) 0 0
\(841\) −7.80433 13.5175i −0.269115 0.466121i
\(842\) 0 0
\(843\) 15.5862 4.17630i 0.536817 0.143840i
\(844\) 0 0
\(845\) 0.317506 1.23459i 0.0109225 0.0424713i
\(846\) 0 0
\(847\) −36.6834 + 9.82927i −1.26045 + 0.337738i
\(848\) 0 0
\(849\) −23.9034 + 13.8007i −0.820364 + 0.473637i
\(850\) 0 0
\(851\) 22.1445 + 5.93359i 0.759102 + 0.203401i
\(852\) 0 0
\(853\) −0.463907 + 0.463907i −0.0158839 + 0.0158839i −0.715004 0.699120i \(-0.753575\pi\)
0.699120 + 0.715004i \(0.253575\pi\)
\(854\) 0 0
\(855\) −0.0394909 + 0.0684002i −0.00135056 + 0.00233924i
\(856\) 0 0
\(857\) 33.1382i 1.13198i 0.824412 + 0.565990i \(0.191506\pi\)
−0.824412 + 0.565990i \(0.808494\pi\)
\(858\) 0 0
\(859\) −21.3046 −0.726903 −0.363451 0.931613i \(-0.618402\pi\)
−0.363451 + 0.931613i \(0.618402\pi\)
\(860\) 0 0
\(861\) −48.0738 27.7554i −1.63835 0.945903i
\(862\) 0 0
\(863\) 27.2032 + 27.2032i 0.926008 + 0.926008i 0.997445 0.0714372i \(-0.0227585\pi\)
−0.0714372 + 0.997445i \(0.522759\pi\)
\(864\) 0 0
\(865\) −0.0752583 + 0.280868i −0.00255886 + 0.00954979i
\(866\) 0 0
\(867\) 25.7966 + 44.6809i 0.876097 + 1.51744i
\(868\) 0 0
\(869\) −0.844278 3.15089i −0.0286402 0.106887i
\(870\) 0 0
\(871\) −11.2115 + 42.7018i −0.379889 + 1.44689i
\(872\) 0 0
\(873\) −3.29997 12.3157i −0.111687 0.416822i
\(874\) 0 0
\(875\) −2.95602 + 1.70666i −0.0999318 + 0.0576957i
\(876\) 0 0
\(877\) −4.86299 + 18.1489i −0.164212 + 0.612846i 0.833928 + 0.551874i \(0.186087\pi\)
−0.998139 + 0.0609726i \(0.980580\pi\)
\(878\) 0 0
\(879\) 4.49844 4.49844i 0.151729 0.151729i
\(880\) 0 0
\(881\) −10.8962 6.29091i −0.367101 0.211946i 0.305090 0.952324i \(-0.401313\pi\)
−0.672191 + 0.740377i \(0.734647\pi\)
\(882\) 0 0
\(883\) 44.2186i 1.48807i −0.668139 0.744036i \(-0.732909\pi\)
0.668139 0.744036i \(-0.267091\pi\)
\(884\) 0 0
\(885\) 2.12143i 0.0713111i
\(886\) 0 0
\(887\) −5.54684 3.20247i −0.186245 0.107528i 0.403979 0.914768i \(-0.367627\pi\)
−0.590223 + 0.807240i \(0.700960\pi\)
\(888\) 0 0
\(889\) 20.8545 20.8545i 0.699437 0.699437i
\(890\) 0 0
\(891\) 0.904565 3.37588i 0.0303041 0.113096i
\(892\) 0 0
\(893\) 3.10314 1.79160i 0.103843 0.0599536i
\(894\) 0 0
\(895\) 0.158944 + 0.593187i 0.00531291 + 0.0198280i
\(896\) 0 0
\(897\) −0.298259 59.1783i −0.00995857 1.97591i
\(898\) 0 0
\(899\) 1.50124 + 5.60271i 0.0500692 + 0.186861i
\(900\) 0 0
\(901\) −12.3396 21.3729i −0.411093 0.712034i
\(902\) 0 0
\(903\) 11.3321 42.2919i 0.377108 1.40738i
\(904\) 0 0
\(905\) −1.36413 1.36413i −0.0453451 0.0453451i
\(906\) 0 0
\(907\) −11.0865 6.40082i −0.368123 0.212536i 0.304515 0.952507i \(-0.401506\pi\)
−0.672638 + 0.739972i \(0.734839\pi\)
\(908\) 0 0
\(909\) 12.6108 0.418274
\(910\) 0 0
\(911\) 4.52483i 0.149914i 0.997187 + 0.0749572i \(0.0238820\pi\)
−0.997187 + 0.0749572i \(0.976118\pi\)
\(912\) 0 0
\(913\) −0.568060 + 0.983909i −0.0188000 + 0.0325626i
\(914\) 0 0
\(915\) 2.12562 2.12562i 0.0702708 0.0702708i
\(916\) 0 0
\(917\) 45.7232 + 12.2515i 1.50991 + 0.404580i
\(918\) 0 0
\(919\) 44.0101 25.4093i 1.45176 0.838174i 0.453179 0.891420i \(-0.350290\pi\)
0.998581 + 0.0532452i \(0.0169565\pi\)
\(920\) 0 0
\(921\) 3.99842 1.07137i 0.131753 0.0353030i
\(922\) 0 0
\(923\) 17.8143 17.9947i 0.586363 0.592304i
\(924\) 0 0
\(925\) −14.9920 + 4.01708i −0.492932 + 0.132081i
\(926\) 0 0
\(927\) −15.2142 26.3517i −0.499699 0.865504i
\(928\) 0 0
\(929\) 58.1272 + 15.5751i 1.90709 + 0.511003i 0.994851 + 0.101347i \(0.0323152\pi\)
0.912240 + 0.409657i \(0.134351\pi\)
\(930\) 0 0
\(931\) 1.49504 + 1.49504i 0.0489979 + 0.0489979i
\(932\) 0 0
\(933\) 29.3894 50.9040i 0.962166 1.66652i
\(934\) 0 0
\(935\) 0.196747 0.00643433
\(936\) 0 0
\(937\) −31.3424 −1.02391 −0.511956 0.859012i \(-0.671079\pi\)
−0.511956 + 0.859012i \(0.671079\pi\)
\(938\) 0 0
\(939\) −25.7103 + 44.5315i −0.839023 + 1.45323i
\(940\) 0 0
\(941\) −22.8653 22.8653i −0.745387 0.745387i 0.228222 0.973609i \(-0.426709\pi\)
−0.973609 + 0.228222i \(0.926709\pi\)
\(942\) 0 0
\(943\) −50.9448 13.6506i −1.65899 0.444525i
\(944\) 0 0
\(945\) 0.396337 + 0.686476i 0.0128928 + 0.0223311i
\(946\) 0 0
\(947\) 20.0408 5.36992i 0.651239 0.174499i 0.0819499 0.996636i \(-0.473885\pi\)
0.569289 + 0.822138i \(0.307219\pi\)
\(948\) 0 0
\(949\) 2.01117 + 7.35728i 0.0652855 + 0.238827i
\(950\) 0 0
\(951\) 42.4896 11.3851i 1.37782 0.369186i
\(952\) 0 0
\(953\) 2.83553 1.63710i 0.0918520 0.0530308i −0.453370 0.891322i \(-0.649779\pi\)
0.545222 + 0.838291i \(0.316445\pi\)
\(954\) 0 0
\(955\) −0.764439 0.204831i −0.0247367 0.00662817i
\(956\) 0 0
\(957\) −1.82398 + 1.82398i −0.0589609 + 0.0589609i
\(958\) 0 0
\(959\) 21.4877 37.2178i 0.693874 1.20182i
\(960\) 0 0
\(961\) 28.4876i 0.918956i
\(962\) 0 0
\(963\) −3.38808 −0.109179
\(964\) 0 0
\(965\) −0.333358 0.192464i −0.0107312 0.00619565i
\(966\) 0 0
\(967\) 15.9826 + 15.9826i 0.513966 + 0.513966i 0.915739 0.401773i \(-0.131606\pi\)
−0.401773 + 0.915739i \(0.631606\pi\)
\(968\) 0 0
\(969\) 1.50252 5.60747i 0.0482678 0.180138i
\(970\) 0 0
\(971\) −12.5870 21.8014i −0.403938 0.699640i 0.590260 0.807213i \(-0.299025\pi\)
−0.994197 + 0.107573i \(0.965692\pi\)
\(972\) 0 0
\(973\) −9.67068 36.0915i −0.310028 1.15704i
\(974\) 0 0
\(975\) 20.2069 + 34.5956i 0.647140 + 1.10795i
\(976\) 0 0
\(977\) −5.42229 20.2363i −0.173475 0.647416i −0.996806 0.0798556i \(-0.974554\pi\)
0.823332 0.567560i \(-0.192113\pi\)
\(978\) 0 0
\(979\) 0.0313732 0.0181133i 0.00100269 0.000578905i
\(980\) 0 0
\(981\) −9.47286 + 35.3532i −0.302445 + 1.12874i
\(982\) 0 0
\(983\) 14.2586 14.2586i 0.454777 0.454777i −0.442159 0.896937i \(-0.645787\pi\)
0.896937 + 0.442159i \(0.145787\pi\)
\(984\) 0 0
\(985\) −1.57719 0.910592i −0.0502535 0.0290139i
\(986\) 0 0
\(987\) 67.5804i 2.15111i
\(988\) 0 0
\(989\) 41.5997i 1.32280i
\(990\) 0 0
\(991\) −23.1803 13.3832i −0.736348 0.425131i 0.0843920 0.996433i \(-0.473105\pi\)
−0.820740 + 0.571302i \(0.806439\pi\)
\(992\) 0 0
\(993\) 14.3899 14.3899i 0.456650 0.456650i
\(994\) 0 0
\(995\) 0.0379440 0.141609i 0.00120291 0.00448931i
\(996\) 0 0
\(997\) 31.1545 17.9870i 0.986672 0.569655i 0.0823942 0.996600i \(-0.473743\pi\)
0.904278 + 0.426944i \(0.140410\pi\)
\(998\) 0 0
\(999\) 1.86757 + 6.96985i 0.0590872 + 0.220516i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.2.bk.a.175.1 48
4.3 odd 2 104.2.u.a.19.11 yes 48
8.3 odd 2 inner 416.2.bk.a.175.2 48
8.5 even 2 104.2.u.a.19.5 yes 48
12.11 even 2 936.2.ed.d.19.2 48
13.11 odd 12 inner 416.2.bk.a.271.2 48
24.5 odd 2 936.2.ed.d.19.8 48
52.11 even 12 104.2.u.a.11.5 48
104.11 even 12 inner 416.2.bk.a.271.1 48
104.37 odd 12 104.2.u.a.11.11 yes 48
156.11 odd 12 936.2.ed.d.739.8 48
312.245 even 12 936.2.ed.d.739.2 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.u.a.11.5 48 52.11 even 12
104.2.u.a.11.11 yes 48 104.37 odd 12
104.2.u.a.19.5 yes 48 8.5 even 2
104.2.u.a.19.11 yes 48 4.3 odd 2
416.2.bk.a.175.1 48 1.1 even 1 trivial
416.2.bk.a.175.2 48 8.3 odd 2 inner
416.2.bk.a.271.1 48 104.11 even 12 inner
416.2.bk.a.271.2 48 13.11 odd 12 inner
936.2.ed.d.19.2 48 12.11 even 2
936.2.ed.d.19.8 48 24.5 odd 2
936.2.ed.d.739.2 48 312.245 even 12
936.2.ed.d.739.8 48 156.11 odd 12