Properties

Label 936.2.ed.a.19.1
Level $936$
Weight $2$
Character 936.19
Analytic conductor $7.474$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(19,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 6, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.ed (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 19.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 936.19
Dual form 936.2.ed.a.739.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.36603 - 0.366025i) q^{2} +(1.73205 + 1.00000i) q^{4} +(0.366025 + 0.366025i) q^{5} +(2.36603 + 0.633975i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(-0.366025 - 0.633975i) q^{10} +(3.36603 - 0.901924i) q^{11} +(3.50000 + 0.866025i) q^{13} +(-3.00000 - 1.73205i) q^{14} +(2.00000 + 3.46410i) q^{16} +(-0.232051 + 0.133975i) q^{17} +(-4.09808 - 1.09808i) q^{19} +(0.267949 + 1.00000i) q^{20} -4.92820 q^{22} +(-0.366025 + 0.633975i) q^{23} -4.73205i q^{25} +(-4.46410 - 2.46410i) q^{26} +(3.46410 + 3.46410i) q^{28} +(2.59808 + 1.50000i) q^{29} +(4.00000 + 4.00000i) q^{31} +(-1.46410 - 5.46410i) q^{32} +(0.366025 - 0.0980762i) q^{34} +(0.633975 + 1.09808i) q^{35} +(-1.86603 - 6.96410i) q^{37} +(5.19615 + 3.00000i) q^{38} -1.46410i q^{40} +(2.50000 + 9.33013i) q^{41} +(-0.633975 + 0.366025i) q^{43} +(6.73205 + 1.80385i) q^{44} +(0.732051 - 0.732051i) q^{46} +(-2.26795 + 2.26795i) q^{47} +(-0.866025 - 0.500000i) q^{49} +(-1.73205 + 6.46410i) q^{50} +(5.19615 + 5.00000i) q^{52} +8.66025i q^{53} +(1.56218 + 0.901924i) q^{55} +(-3.46410 - 6.00000i) q^{56} +(-3.00000 - 3.00000i) q^{58} +(2.80385 - 10.4641i) q^{59} +(1.66987 - 0.964102i) q^{61} +(-4.00000 - 6.92820i) q^{62} +8.00000i q^{64} +(0.964102 + 1.59808i) q^{65} +(-1.56218 - 5.83013i) q^{67} -0.535898 q^{68} +(-0.464102 - 1.73205i) q^{70} +(-1.83013 + 6.83013i) q^{71} +(7.83013 + 7.83013i) q^{73} +10.1962i q^{74} +(-6.00000 - 6.00000i) q^{76} +8.53590 q^{77} -1.07180i q^{79} +(-0.535898 + 2.00000i) q^{80} -13.6603i q^{82} +(7.92820 - 7.92820i) q^{83} +(-0.133975 - 0.0358984i) q^{85} +(1.00000 - 0.267949i) q^{86} +(-8.53590 - 4.92820i) q^{88} +(12.5622 - 3.36603i) q^{89} +(7.73205 + 4.26795i) q^{91} +(-1.26795 + 0.732051i) q^{92} +(3.92820 - 2.26795i) q^{94} +(-1.09808 - 1.90192i) q^{95} +(15.2942 + 4.09808i) q^{97} +(1.00000 + 1.00000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{5} + 6 q^{7} - 8 q^{8} + 2 q^{10} + 10 q^{11} + 14 q^{13} - 12 q^{14} + 8 q^{16} + 6 q^{17} - 6 q^{19} + 8 q^{20} + 8 q^{22} + 2 q^{23} - 4 q^{26} + 16 q^{31} + 8 q^{32} - 2 q^{34}+ \cdots + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 0.366025i −0.965926 0.258819i
\(3\) 0 0
\(4\) 1.73205 + 1.00000i 0.866025 + 0.500000i
\(5\) 0.366025 + 0.366025i 0.163692 + 0.163692i 0.784200 0.620508i \(-0.213074\pi\)
−0.620508 + 0.784200i \(0.713074\pi\)
\(6\) 0 0
\(7\) 2.36603 + 0.633975i 0.894274 + 0.239620i 0.676555 0.736392i \(-0.263472\pi\)
0.217718 + 0.976012i \(0.430139\pi\)
\(8\) −2.00000 2.00000i −0.707107 0.707107i
\(9\) 0 0
\(10\) −0.366025 0.633975i −0.115747 0.200480i
\(11\) 3.36603 0.901924i 1.01489 0.271940i 0.287222 0.957864i \(-0.407268\pi\)
0.727673 + 0.685924i \(0.240602\pi\)
\(12\) 0 0
\(13\) 3.50000 + 0.866025i 0.970725 + 0.240192i
\(14\) −3.00000 1.73205i −0.801784 0.462910i
\(15\) 0 0
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) −0.232051 + 0.133975i −0.0562806 + 0.0324936i −0.527876 0.849321i \(-0.677012\pi\)
0.471596 + 0.881815i \(0.343678\pi\)
\(18\) 0 0
\(19\) −4.09808 1.09808i −0.940163 0.251916i −0.243980 0.969780i \(-0.578453\pi\)
−0.696183 + 0.717864i \(0.745120\pi\)
\(20\) 0.267949 + 1.00000i 0.0599153 + 0.223607i
\(21\) 0 0
\(22\) −4.92820 −1.05070
\(23\) −0.366025 + 0.633975i −0.0763216 + 0.132193i −0.901660 0.432445i \(-0.857651\pi\)
0.825339 + 0.564638i \(0.190984\pi\)
\(24\) 0 0
\(25\) 4.73205i 0.946410i
\(26\) −4.46410 2.46410i −0.875482 0.483250i
\(27\) 0 0
\(28\) 3.46410 + 3.46410i 0.654654 + 0.654654i
\(29\) 2.59808 + 1.50000i 0.482451 + 0.278543i 0.721437 0.692480i \(-0.243482\pi\)
−0.238987 + 0.971023i \(0.576815\pi\)
\(30\) 0 0
\(31\) 4.00000 + 4.00000i 0.718421 + 0.718421i 0.968282 0.249861i \(-0.0803848\pi\)
−0.249861 + 0.968282i \(0.580385\pi\)
\(32\) −1.46410 5.46410i −0.258819 0.965926i
\(33\) 0 0
\(34\) 0.366025 0.0980762i 0.0627728 0.0168199i
\(35\) 0.633975 + 1.09808i 0.107161 + 0.185609i
\(36\) 0 0
\(37\) −1.86603 6.96410i −0.306773 1.14489i −0.931409 0.363975i \(-0.881419\pi\)
0.624636 0.780916i \(-0.285247\pi\)
\(38\) 5.19615 + 3.00000i 0.842927 + 0.486664i
\(39\) 0 0
\(40\) 1.46410i 0.231495i
\(41\) 2.50000 + 9.33013i 0.390434 + 1.45712i 0.829419 + 0.558627i \(0.188671\pi\)
−0.438985 + 0.898494i \(0.644662\pi\)
\(42\) 0 0
\(43\) −0.633975 + 0.366025i −0.0966802 + 0.0558184i −0.547561 0.836766i \(-0.684443\pi\)
0.450880 + 0.892584i \(0.351110\pi\)
\(44\) 6.73205 + 1.80385i 1.01489 + 0.271940i
\(45\) 0 0
\(46\) 0.732051 0.732051i 0.107935 0.107935i
\(47\) −2.26795 + 2.26795i −0.330814 + 0.330814i −0.852896 0.522081i \(-0.825156\pi\)
0.522081 + 0.852896i \(0.325156\pi\)
\(48\) 0 0
\(49\) −0.866025 0.500000i −0.123718 0.0714286i
\(50\) −1.73205 + 6.46410i −0.244949 + 0.914162i
\(51\) 0 0
\(52\) 5.19615 + 5.00000i 0.720577 + 0.693375i
\(53\) 8.66025i 1.18958i 0.803882 + 0.594789i \(0.202764\pi\)
−0.803882 + 0.594789i \(0.797236\pi\)
\(54\) 0 0
\(55\) 1.56218 + 0.901924i 0.210644 + 0.121615i
\(56\) −3.46410 6.00000i −0.462910 0.801784i
\(57\) 0 0
\(58\) −3.00000 3.00000i −0.393919 0.393919i
\(59\) 2.80385 10.4641i 0.365030 1.36231i −0.502350 0.864664i \(-0.667531\pi\)
0.867380 0.497646i \(-0.165802\pi\)
\(60\) 0 0
\(61\) 1.66987 0.964102i 0.213805 0.123441i −0.389273 0.921122i \(-0.627274\pi\)
0.603079 + 0.797682i \(0.293941\pi\)
\(62\) −4.00000 6.92820i −0.508001 0.879883i
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 0.964102 + 1.59808i 0.119582 + 0.198217i
\(66\) 0 0
\(67\) −1.56218 5.83013i −0.190850 0.712263i −0.993302 0.115546i \(-0.963138\pi\)
0.802452 0.596717i \(-0.203529\pi\)
\(68\) −0.535898 −0.0649872
\(69\) 0 0
\(70\) −0.464102 1.73205i −0.0554708 0.207020i
\(71\) −1.83013 + 6.83013i −0.217196 + 0.810587i 0.768186 + 0.640227i \(0.221160\pi\)
−0.985382 + 0.170360i \(0.945507\pi\)
\(72\) 0 0
\(73\) 7.83013 + 7.83013i 0.916447 + 0.916447i 0.996769 0.0803219i \(-0.0255948\pi\)
−0.0803219 + 0.996769i \(0.525595\pi\)
\(74\) 10.1962i 1.18528i
\(75\) 0 0
\(76\) −6.00000 6.00000i −0.688247 0.688247i
\(77\) 8.53590 0.972756
\(78\) 0 0
\(79\) 1.07180i 0.120587i −0.998181 0.0602933i \(-0.980796\pi\)
0.998181 0.0602933i \(-0.0192036\pi\)
\(80\) −0.535898 + 2.00000i −0.0599153 + 0.223607i
\(81\) 0 0
\(82\) 13.6603i 1.50852i
\(83\) 7.92820 7.92820i 0.870233 0.870233i −0.122264 0.992498i \(-0.539016\pi\)
0.992498 + 0.122264i \(0.0390155\pi\)
\(84\) 0 0
\(85\) −0.133975 0.0358984i −0.0145316 0.00389373i
\(86\) 1.00000 0.267949i 0.107833 0.0288937i
\(87\) 0 0
\(88\) −8.53590 4.92820i −0.909930 0.525348i
\(89\) 12.5622 3.36603i 1.33159 0.356798i 0.478281 0.878207i \(-0.341260\pi\)
0.853307 + 0.521409i \(0.174593\pi\)
\(90\) 0 0
\(91\) 7.73205 + 4.26795i 0.810539 + 0.447403i
\(92\) −1.26795 + 0.732051i −0.132193 + 0.0763216i
\(93\) 0 0
\(94\) 3.92820 2.26795i 0.405163 0.233921i
\(95\) −1.09808 1.90192i −0.112660 0.195133i
\(96\) 0 0
\(97\) 15.2942 + 4.09808i 1.55289 + 0.416097i 0.930405 0.366532i \(-0.119455\pi\)
0.622488 + 0.782629i \(0.286122\pi\)
\(98\) 1.00000 + 1.00000i 0.101015 + 0.101015i
\(99\) 0 0
\(100\) 4.73205 8.19615i 0.473205 0.819615i
\(101\) 6.42820 11.1340i 0.639630 1.10787i −0.345884 0.938277i \(-0.612421\pi\)
0.985514 0.169595i \(-0.0542458\pi\)
\(102\) 0 0
\(103\) −12.1962 −1.20172 −0.600861 0.799353i \(-0.705176\pi\)
−0.600861 + 0.799353i \(0.705176\pi\)
\(104\) −5.26795 8.73205i −0.516565 0.856248i
\(105\) 0 0
\(106\) 3.16987 11.8301i 0.307885 1.14904i
\(107\) 1.90192 3.29423i 0.183866 0.318465i −0.759328 0.650708i \(-0.774472\pi\)
0.943194 + 0.332243i \(0.107805\pi\)
\(108\) 0 0
\(109\) 14.1244 + 14.1244i 1.35287 + 1.35287i 0.882437 + 0.470431i \(0.155902\pi\)
0.470431 + 0.882437i \(0.344098\pi\)
\(110\) −1.80385 1.80385i −0.171990 0.171990i
\(111\) 0 0
\(112\) 2.53590 + 9.46410i 0.239620 + 0.894274i
\(113\) 1.96410 + 3.40192i 0.184767 + 0.320026i 0.943498 0.331378i \(-0.107514\pi\)
−0.758731 + 0.651404i \(0.774180\pi\)
\(114\) 0 0
\(115\) −0.366025 + 0.0980762i −0.0341320 + 0.00914565i
\(116\) 3.00000 + 5.19615i 0.278543 + 0.482451i
\(117\) 0 0
\(118\) −7.66025 + 13.2679i −0.705184 + 1.22141i
\(119\) −0.633975 + 0.169873i −0.0581164 + 0.0155722i
\(120\) 0 0
\(121\) 0.990381 0.571797i 0.0900346 0.0519815i
\(122\) −2.63397 + 0.705771i −0.238469 + 0.0638975i
\(123\) 0 0
\(124\) 2.92820 + 10.9282i 0.262960 + 0.981382i
\(125\) 3.56218 3.56218i 0.318611 0.318611i
\(126\) 0 0
\(127\) 0.267949 0.464102i 0.0237766 0.0411824i −0.853892 0.520450i \(-0.825764\pi\)
0.877669 + 0.479267i \(0.159098\pi\)
\(128\) 2.92820 10.9282i 0.258819 0.965926i
\(129\) 0 0
\(130\) −0.732051 2.53590i −0.0642051 0.222413i
\(131\) −13.8564 −1.21064 −0.605320 0.795982i \(-0.706955\pi\)
−0.605320 + 0.795982i \(0.706955\pi\)
\(132\) 0 0
\(133\) −9.00000 5.19615i −0.780399 0.450564i
\(134\) 8.53590i 0.737389i
\(135\) 0 0
\(136\) 0.732051 + 0.196152i 0.0627728 + 0.0168199i
\(137\) 1.33013 4.96410i 0.113640 0.424112i −0.885541 0.464561i \(-0.846212\pi\)
0.999182 + 0.0404491i \(0.0128788\pi\)
\(138\) 0 0
\(139\) −7.66025 13.2679i −0.649734 1.12537i −0.983186 0.182606i \(-0.941547\pi\)
0.333452 0.942767i \(-0.391786\pi\)
\(140\) 2.53590i 0.214323i
\(141\) 0 0
\(142\) 5.00000 8.66025i 0.419591 0.726752i
\(143\) 12.5622 0.241670i 1.05050 0.0202094i
\(144\) 0 0
\(145\) 0.401924 + 1.50000i 0.0333780 + 0.124568i
\(146\) −7.83013 13.5622i −0.648026 1.12241i
\(147\) 0 0
\(148\) 3.73205 13.9282i 0.306773 1.14489i
\(149\) −4.30385 + 16.0622i −0.352585 + 1.31586i 0.530912 + 0.847427i \(0.321850\pi\)
−0.883497 + 0.468438i \(0.844817\pi\)
\(150\) 0 0
\(151\) −14.6603 + 14.6603i −1.19303 + 1.19303i −0.216824 + 0.976211i \(0.569570\pi\)
−0.976211 + 0.216824i \(0.930430\pi\)
\(152\) 6.00000 + 10.3923i 0.486664 + 0.842927i
\(153\) 0 0
\(154\) −11.6603 3.12436i −0.939610 0.251768i
\(155\) 2.92820i 0.235199i
\(156\) 0 0
\(157\) 0.803848i 0.0641540i −0.999485 0.0320770i \(-0.989788\pi\)
0.999485 0.0320770i \(-0.0102122\pi\)
\(158\) −0.392305 + 1.46410i −0.0312101 + 0.116478i
\(159\) 0 0
\(160\) 1.46410 2.53590i 0.115747 0.200480i
\(161\) −1.26795 + 1.26795i −0.0999284 + 0.0999284i
\(162\) 0 0
\(163\) −2.26795 + 8.46410i −0.177639 + 0.662960i 0.818447 + 0.574581i \(0.194835\pi\)
−0.996087 + 0.0883783i \(0.971832\pi\)
\(164\) −5.00000 + 18.6603i −0.390434 + 1.45712i
\(165\) 0 0
\(166\) −13.7321 + 7.92820i −1.06581 + 0.615348i
\(167\) −5.26795 19.6603i −0.407646 1.52136i −0.799123 0.601168i \(-0.794702\pi\)
0.391476 0.920188i \(-0.371964\pi\)
\(168\) 0 0
\(169\) 11.5000 + 6.06218i 0.884615 + 0.466321i
\(170\) 0.169873 + 0.0980762i 0.0130287 + 0.00752210i
\(171\) 0 0
\(172\) −1.46410 −0.111637
\(173\) −9.46410 16.3923i −0.719542 1.24628i −0.961181 0.275918i \(-0.911018\pi\)
0.241639 0.970366i \(-0.422315\pi\)
\(174\) 0 0
\(175\) 3.00000 11.1962i 0.226779 0.846350i
\(176\) 9.85641 + 9.85641i 0.742955 + 0.742955i
\(177\) 0 0
\(178\) −18.3923 −1.37856
\(179\) 1.09808 + 0.633975i 0.0820741 + 0.0473855i 0.540475 0.841360i \(-0.318244\pi\)
−0.458401 + 0.888745i \(0.651578\pi\)
\(180\) 0 0
\(181\) 1.92820 0.143322 0.0716611 0.997429i \(-0.477170\pi\)
0.0716611 + 0.997429i \(0.477170\pi\)
\(182\) −9.00000 8.66025i −0.667124 0.641941i
\(183\) 0 0
\(184\) 2.00000 0.535898i 0.147442 0.0395070i
\(185\) 1.86603 3.23205i 0.137193 0.237625i
\(186\) 0 0
\(187\) −0.660254 + 0.660254i −0.0482826 + 0.0482826i
\(188\) −6.19615 + 1.66025i −0.451901 + 0.121086i
\(189\) 0 0
\(190\) 0.803848 + 3.00000i 0.0583172 + 0.217643i
\(191\) −16.3923 + 9.46410i −1.18611 + 0.684798i −0.957419 0.288702i \(-0.906776\pi\)
−0.228686 + 0.973500i \(0.573443\pi\)
\(192\) 0 0
\(193\) −16.0622 + 4.30385i −1.15618 + 0.309798i −0.785440 0.618938i \(-0.787563\pi\)
−0.370741 + 0.928736i \(0.620896\pi\)
\(194\) −19.3923 11.1962i −1.39229 0.803837i
\(195\) 0 0
\(196\) −1.00000 1.73205i −0.0714286 0.123718i
\(197\) −9.56218 + 2.56218i −0.681277 + 0.182548i −0.582829 0.812595i \(-0.698054\pi\)
−0.0984477 + 0.995142i \(0.531388\pi\)
\(198\) 0 0
\(199\) 5.36603 + 9.29423i 0.380387 + 0.658850i 0.991118 0.132988i \(-0.0424573\pi\)
−0.610730 + 0.791839i \(0.709124\pi\)
\(200\) −9.46410 + 9.46410i −0.669213 + 0.669213i
\(201\) 0 0
\(202\) −12.8564 + 12.8564i −0.904574 + 0.904574i
\(203\) 5.19615 + 5.19615i 0.364698 + 0.364698i
\(204\) 0 0
\(205\) −2.50000 + 4.33013i −0.174608 + 0.302429i
\(206\) 16.6603 + 4.46410i 1.16077 + 0.311029i
\(207\) 0 0
\(208\) 4.00000 + 13.8564i 0.277350 + 0.960769i
\(209\) −14.7846 −1.02267
\(210\) 0 0
\(211\) 11.0000 19.0526i 0.757271 1.31163i −0.186966 0.982366i \(-0.559865\pi\)
0.944237 0.329266i \(-0.106801\pi\)
\(212\) −8.66025 + 15.0000i −0.594789 + 1.03020i
\(213\) 0 0
\(214\) −3.80385 + 3.80385i −0.260026 + 0.260026i
\(215\) −0.366025 0.0980762i −0.0249627 0.00668874i
\(216\) 0 0
\(217\) 6.92820 + 12.0000i 0.470317 + 0.814613i
\(218\) −14.1244 24.4641i −0.956622 1.65692i
\(219\) 0 0
\(220\) 1.80385 + 3.12436i 0.121615 + 0.210644i
\(221\) −0.928203 + 0.267949i −0.0624377 + 0.0180242i
\(222\) 0 0
\(223\) −17.9282 + 4.80385i −1.20056 + 0.321689i −0.803052 0.595909i \(-0.796792\pi\)
−0.397509 + 0.917598i \(0.630125\pi\)
\(224\) 13.8564i 0.925820i
\(225\) 0 0
\(226\) −1.43782 5.36603i −0.0956425 0.356943i
\(227\) −1.09808 0.294229i −0.0728819 0.0195286i 0.222194 0.975003i \(-0.428678\pi\)
−0.295076 + 0.955474i \(0.595345\pi\)
\(228\) 0 0
\(229\) 5.00000 5.00000i 0.330409 0.330409i −0.522333 0.852742i \(-0.674938\pi\)
0.852742 + 0.522333i \(0.174938\pi\)
\(230\) 0.535898 0.0353361
\(231\) 0 0
\(232\) −2.19615 8.19615i −0.144184 0.538104i
\(233\) 9.07180i 0.594313i −0.954829 0.297157i \(-0.903962\pi\)
0.954829 0.297157i \(-0.0960383\pi\)
\(234\) 0 0
\(235\) −1.66025 −0.108303
\(236\) 15.3205 15.3205i 0.997280 0.997280i
\(237\) 0 0
\(238\) 0.928203 0.0601665
\(239\) 13.0000 + 13.0000i 0.840900 + 0.840900i 0.988976 0.148076i \(-0.0473080\pi\)
−0.148076 + 0.988976i \(0.547308\pi\)
\(240\) 0 0
\(241\) −3.83975 + 14.3301i −0.247340 + 0.923085i 0.724853 + 0.688903i \(0.241908\pi\)
−0.972193 + 0.234181i \(0.924759\pi\)
\(242\) −1.56218 + 0.418584i −0.100421 + 0.0269076i
\(243\) 0 0
\(244\) 3.85641 0.246881
\(245\) −0.133975 0.500000i −0.00855932 0.0319438i
\(246\) 0 0
\(247\) −13.3923 7.39230i −0.852132 0.470361i
\(248\) 16.0000i 1.01600i
\(249\) 0 0
\(250\) −6.16987 + 3.56218i −0.390217 + 0.225292i
\(251\) −24.9282 + 14.3923i −1.57345 + 0.908434i −0.577713 + 0.816240i \(0.696055\pi\)
−0.995741 + 0.0921944i \(0.970612\pi\)
\(252\) 0 0
\(253\) −0.660254 + 2.46410i −0.0415098 + 0.154917i
\(254\) −0.535898 + 0.535898i −0.0336253 + 0.0336253i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) −2.13397 1.23205i −0.133114 0.0768532i 0.431964 0.901891i \(-0.357821\pi\)
−0.565078 + 0.825037i \(0.691154\pi\)
\(258\) 0 0
\(259\) 17.6603i 1.09735i
\(260\) 0.0717968 + 3.73205i 0.00445265 + 0.231452i
\(261\) 0 0
\(262\) 18.9282 + 5.07180i 1.16939 + 0.313337i
\(263\) 1.56218 + 0.901924i 0.0963280 + 0.0556150i 0.547390 0.836878i \(-0.315621\pi\)
−0.451062 + 0.892493i \(0.648955\pi\)
\(264\) 0 0
\(265\) −3.16987 + 3.16987i −0.194724 + 0.194724i
\(266\) 10.3923 + 10.3923i 0.637193 + 0.637193i
\(267\) 0 0
\(268\) 3.12436 11.6603i 0.190850 0.712263i
\(269\) −7.85641 + 4.53590i −0.479014 + 0.276559i −0.720005 0.693969i \(-0.755861\pi\)
0.240992 + 0.970527i \(0.422527\pi\)
\(270\) 0 0
\(271\) 0.196152 + 0.732051i 0.0119154 + 0.0444689i 0.971628 0.236516i \(-0.0760056\pi\)
−0.959712 + 0.280985i \(0.909339\pi\)
\(272\) −0.928203 0.535898i −0.0562806 0.0324936i
\(273\) 0 0
\(274\) −3.63397 + 6.29423i −0.219536 + 0.380248i
\(275\) −4.26795 15.9282i −0.257367 0.960507i
\(276\) 0 0
\(277\) −14.0622 24.3564i −0.844914 1.46343i −0.885696 0.464267i \(-0.846318\pi\)
0.0407812 0.999168i \(-0.487015\pi\)
\(278\) 5.60770 + 20.9282i 0.336327 + 1.25519i
\(279\) 0 0
\(280\) 0.928203 3.46410i 0.0554708 0.207020i
\(281\) 13.2942 + 13.2942i 0.793067 + 0.793067i 0.981992 0.188924i \(-0.0605001\pi\)
−0.188924 + 0.981992i \(0.560500\pi\)
\(282\) 0 0
\(283\) −27.2942 15.7583i −1.62247 0.936736i −0.986256 0.165226i \(-0.947165\pi\)
−0.636218 0.771510i \(-0.719502\pi\)
\(284\) −10.0000 + 10.0000i −0.593391 + 0.593391i
\(285\) 0 0
\(286\) −17.2487 4.26795i −1.01994 0.252369i
\(287\) 23.6603i 1.39662i
\(288\) 0 0
\(289\) −8.46410 + 14.6603i −0.497888 + 0.862368i
\(290\) 2.19615i 0.128963i
\(291\) 0 0
\(292\) 5.73205 + 21.3923i 0.335443 + 1.25189i
\(293\) 6.59808 + 1.76795i 0.385464 + 0.103285i 0.446346 0.894860i \(-0.352725\pi\)
−0.0608827 + 0.998145i \(0.519392\pi\)
\(294\) 0 0
\(295\) 4.85641 2.80385i 0.282751 0.163246i
\(296\) −10.1962 + 17.6603i −0.592639 + 1.02648i
\(297\) 0 0
\(298\) 11.7583 20.3660i 0.681142 1.17977i
\(299\) −1.83013 + 1.90192i −0.105839 + 0.109991i
\(300\) 0 0
\(301\) −1.73205 + 0.464102i −0.0998337 + 0.0267504i
\(302\) 25.3923 14.6603i 1.46116 0.843603i
\(303\) 0 0
\(304\) −4.39230 16.3923i −0.251916 0.940163i
\(305\) 0.964102 + 0.258330i 0.0552043 + 0.0147919i
\(306\) 0 0
\(307\) −7.73205 7.73205i −0.441291 0.441291i 0.451154 0.892446i \(-0.351012\pi\)
−0.892446 + 0.451154i \(0.851012\pi\)
\(308\) 14.7846 + 8.53590i 0.842431 + 0.486378i
\(309\) 0 0
\(310\) 1.07180 4.00000i 0.0608740 0.227185i
\(311\) −10.7321 −0.608559 −0.304279 0.952583i \(-0.598416\pi\)
−0.304279 + 0.952583i \(0.598416\pi\)
\(312\) 0 0
\(313\) −19.8564 −1.12235 −0.561175 0.827697i \(-0.689651\pi\)
−0.561175 + 0.827697i \(0.689651\pi\)
\(314\) −0.294229 + 1.09808i −0.0166043 + 0.0619680i
\(315\) 0 0
\(316\) 1.07180 1.85641i 0.0602933 0.104431i
\(317\) −21.3660 21.3660i −1.20004 1.20004i −0.974155 0.225881i \(-0.927474\pi\)
−0.225881 0.974155i \(-0.572526\pi\)
\(318\) 0 0
\(319\) 10.0981 + 2.70577i 0.565384 + 0.151494i
\(320\) −2.92820 + 2.92820i −0.163692 + 0.163692i
\(321\) 0 0
\(322\) 2.19615 1.26795i 0.122387 0.0706600i
\(323\) 1.09808 0.294229i 0.0610986 0.0163713i
\(324\) 0 0
\(325\) 4.09808 16.5622i 0.227320 0.918704i
\(326\) 6.19615 10.7321i 0.343173 0.594393i
\(327\) 0 0
\(328\) 13.6603 23.6603i 0.754261 1.30642i
\(329\) −6.80385 + 3.92820i −0.375108 + 0.216569i
\(330\) 0 0
\(331\) 12.6603 + 3.39230i 0.695870 + 0.186458i 0.589380 0.807856i \(-0.299372\pi\)
0.106490 + 0.994314i \(0.466039\pi\)
\(332\) 21.6603 5.80385i 1.18876 0.318528i
\(333\) 0 0
\(334\) 28.7846i 1.57502i
\(335\) 1.56218 2.70577i 0.0853509 0.147832i
\(336\) 0 0
\(337\) 20.8564i 1.13612i −0.822987 0.568060i \(-0.807694\pi\)
0.822987 0.568060i \(-0.192306\pi\)
\(338\) −13.4904 12.4904i −0.733780 0.679387i
\(339\) 0 0
\(340\) −0.196152 0.196152i −0.0106379 0.0106379i
\(341\) 17.0718 + 9.85641i 0.924490 + 0.533754i
\(342\) 0 0
\(343\) −13.8564 13.8564i −0.748176 0.748176i
\(344\) 2.00000 + 0.535898i 0.107833 + 0.0288937i
\(345\) 0 0
\(346\) 6.92820 + 25.8564i 0.372463 + 1.39005i
\(347\) 2.36603 + 4.09808i 0.127015 + 0.219996i 0.922519 0.385952i \(-0.126127\pi\)
−0.795504 + 0.605949i \(0.792794\pi\)
\(348\) 0 0
\(349\) 4.68653 + 17.4904i 0.250864 + 0.936239i 0.970345 + 0.241726i \(0.0777134\pi\)
−0.719480 + 0.694513i \(0.755620\pi\)
\(350\) −8.19615 + 14.1962i −0.438103 + 0.758816i
\(351\) 0 0
\(352\) −9.85641 17.0718i −0.525348 0.909930i
\(353\) 0.866025 + 3.23205i 0.0460939 + 0.172025i 0.985136 0.171779i \(-0.0549513\pi\)
−0.939042 + 0.343803i \(0.888285\pi\)
\(354\) 0 0
\(355\) −3.16987 + 1.83013i −0.168239 + 0.0971331i
\(356\) 25.1244 + 6.73205i 1.33159 + 0.356798i
\(357\) 0 0
\(358\) −1.26795 1.26795i −0.0670132 0.0670132i
\(359\) −4.07180 + 4.07180i −0.214901 + 0.214901i −0.806346 0.591444i \(-0.798558\pi\)
0.591444 + 0.806346i \(0.298558\pi\)
\(360\) 0 0
\(361\) −0.866025 0.500000i −0.0455803 0.0263158i
\(362\) −2.63397 0.705771i −0.138439 0.0370945i
\(363\) 0 0
\(364\) 9.12436 + 15.1244i 0.478246 + 0.792732i
\(365\) 5.73205i 0.300029i
\(366\) 0 0
\(367\) 6.16987 + 3.56218i 0.322065 + 0.185944i 0.652313 0.757950i \(-0.273799\pi\)
−0.330248 + 0.943894i \(0.607132\pi\)
\(368\) −2.92820 −0.152643
\(369\) 0 0
\(370\) −3.73205 + 3.73205i −0.194020 + 0.194020i
\(371\) −5.49038 + 20.4904i −0.285046 + 1.06381i
\(372\) 0 0
\(373\) 14.3038 8.25833i 0.740625 0.427600i −0.0816714 0.996659i \(-0.526026\pi\)
0.822297 + 0.569059i \(0.192692\pi\)
\(374\) 1.14359 0.660254i 0.0591338 0.0341409i
\(375\) 0 0
\(376\) 9.07180 0.467842
\(377\) 7.79423 + 7.50000i 0.401423 + 0.386270i
\(378\) 0 0
\(379\) −6.07180 22.6603i −0.311887 1.16398i −0.926853 0.375425i \(-0.877497\pi\)
0.614966 0.788554i \(-0.289170\pi\)
\(380\) 4.39230i 0.225320i
\(381\) 0 0
\(382\) 25.8564 6.92820i 1.32293 0.354478i
\(383\) 4.19615 15.6603i 0.214413 0.800202i −0.771959 0.635672i \(-0.780723\pi\)
0.986372 0.164529i \(-0.0526104\pi\)
\(384\) 0 0
\(385\) 3.12436 + 3.12436i 0.159232 + 0.159232i
\(386\) 23.5167 1.19697
\(387\) 0 0
\(388\) 22.3923 + 22.3923i 1.13680 + 1.13680i
\(389\) 1.73205 0.0878185 0.0439092 0.999036i \(-0.486019\pi\)
0.0439092 + 0.999036i \(0.486019\pi\)
\(390\) 0 0
\(391\) 0.196152i 0.00991985i
\(392\) 0.732051 + 2.73205i 0.0369741 + 0.137989i
\(393\) 0 0
\(394\) 14.0000 0.705310
\(395\) 0.392305 0.392305i 0.0197390 0.0197390i
\(396\) 0 0
\(397\) 7.29423 + 1.95448i 0.366087 + 0.0980927i 0.437173 0.899378i \(-0.355980\pi\)
−0.0710860 + 0.997470i \(0.522646\pi\)
\(398\) −3.92820 14.6603i −0.196903 0.734852i
\(399\) 0 0
\(400\) 16.3923 9.46410i 0.819615 0.473205i
\(401\) −2.13397 + 0.571797i −0.106566 + 0.0285542i −0.311708 0.950178i \(-0.600901\pi\)
0.205142 + 0.978732i \(0.434234\pi\)
\(402\) 0 0
\(403\) 10.5359 + 17.4641i 0.524830 + 0.869949i
\(404\) 22.2679 12.8564i 1.10787 0.639630i
\(405\) 0 0
\(406\) −5.19615 9.00000i −0.257881 0.446663i
\(407\) −12.5622 21.7583i −0.622684 1.07852i
\(408\) 0 0
\(409\) −2.33013 0.624356i −0.115217 0.0308724i 0.200750 0.979643i \(-0.435662\pi\)
−0.315967 + 0.948770i \(0.602329\pi\)
\(410\) 5.00000 5.00000i 0.246932 0.246932i
\(411\) 0 0
\(412\) −21.1244 12.1962i −1.04072 0.600861i
\(413\) 13.2679 22.9808i 0.652873 1.13081i
\(414\) 0 0
\(415\) 5.80385 0.284900
\(416\) −0.392305 20.3923i −0.0192343 0.999815i
\(417\) 0 0
\(418\) 20.1962 + 5.41154i 0.987826 + 0.264687i
\(419\) −4.80385 + 8.32051i −0.234683 + 0.406483i −0.959181 0.282794i \(-0.908739\pi\)
0.724497 + 0.689278i \(0.242072\pi\)
\(420\) 0 0
\(421\) 26.3660 + 26.3660i 1.28500 + 1.28500i 0.937785 + 0.347216i \(0.112873\pi\)
0.347216 + 0.937785i \(0.387127\pi\)
\(422\) −22.0000 + 22.0000i −1.07094 + 1.07094i
\(423\) 0 0
\(424\) 17.3205 17.3205i 0.841158 0.841158i
\(425\) 0.633975 + 1.09808i 0.0307523 + 0.0532645i
\(426\) 0 0
\(427\) 4.56218 1.22243i 0.220779 0.0591576i
\(428\) 6.58846 3.80385i 0.318465 0.183866i
\(429\) 0 0
\(430\) 0.464102 + 0.267949i 0.0223810 + 0.0129217i
\(431\) 39.4186 10.5622i 1.89873 0.508762i 0.901639 0.432488i \(-0.142364\pi\)
0.997087 0.0762738i \(-0.0243023\pi\)
\(432\) 0 0
\(433\) −8.42820 + 4.86603i −0.405034 + 0.233846i −0.688654 0.725090i \(-0.741798\pi\)
0.283620 + 0.958937i \(0.408465\pi\)
\(434\) −5.07180 18.9282i −0.243454 0.908583i
\(435\) 0 0
\(436\) 10.3397 + 38.5885i 0.495184 + 1.84805i
\(437\) 2.19615 2.19615i 0.105056 0.105056i
\(438\) 0 0
\(439\) 16.8301 29.1506i 0.803258 1.39128i −0.114203 0.993457i \(-0.536431\pi\)
0.917461 0.397826i \(-0.130235\pi\)
\(440\) −1.32051 4.92820i −0.0629528 0.234943i
\(441\) 0 0
\(442\) 1.36603 0.0262794i 0.0649752 0.00124999i
\(443\) −12.1436 −0.576960 −0.288480 0.957486i \(-0.593150\pi\)
−0.288480 + 0.957486i \(0.593150\pi\)
\(444\) 0 0
\(445\) 5.83013 + 3.36603i 0.276375 + 0.159565i
\(446\) 26.2487 1.24291
\(447\) 0 0
\(448\) −5.07180 + 18.9282i −0.239620 + 0.894274i
\(449\) 7.02628 26.2224i 0.331591 1.23751i −0.575928 0.817501i \(-0.695359\pi\)
0.907518 0.420012i \(-0.137974\pi\)
\(450\) 0 0
\(451\) 16.8301 + 29.1506i 0.792500 + 1.37265i
\(452\) 7.85641i 0.369534i
\(453\) 0 0
\(454\) 1.39230 + 0.803848i 0.0653441 + 0.0377264i
\(455\) 1.26795 + 4.39230i 0.0594424 + 0.205914i
\(456\) 0 0
\(457\) −1.59808 5.96410i −0.0747549 0.278989i 0.918423 0.395600i \(-0.129463\pi\)
−0.993178 + 0.116611i \(0.962797\pi\)
\(458\) −8.66025 + 5.00000i −0.404667 + 0.233635i
\(459\) 0 0
\(460\) −0.732051 0.196152i −0.0341320 0.00914565i
\(461\) 7.28461 27.1865i 0.339278 1.26620i −0.559878 0.828575i \(-0.689152\pi\)
0.899156 0.437628i \(-0.144181\pi\)
\(462\) 0 0
\(463\) −0.660254 + 0.660254i −0.0306846 + 0.0306846i −0.722283 0.691598i \(-0.756907\pi\)
0.691598 + 0.722283i \(0.256907\pi\)
\(464\) 12.0000i 0.557086i
\(465\) 0 0
\(466\) −3.32051 + 12.3923i −0.153820 + 0.574062i
\(467\) 14.1962i 0.656920i 0.944518 + 0.328460i \(0.106530\pi\)
−0.944518 + 0.328460i \(0.893470\pi\)
\(468\) 0 0
\(469\) 14.7846i 0.682690i
\(470\) 2.26795 + 0.607695i 0.104613 + 0.0280309i
\(471\) 0 0
\(472\) −26.5359 + 15.3205i −1.22141 + 0.705184i
\(473\) −1.80385 + 1.80385i −0.0829410 + 0.0829410i
\(474\) 0 0
\(475\) −5.19615 + 19.3923i −0.238416 + 0.889780i
\(476\) −1.26795 0.339746i −0.0581164 0.0155722i
\(477\) 0 0
\(478\) −13.0000 22.5167i −0.594606 1.02989i
\(479\) −10.1244 37.7846i −0.462594 1.72642i −0.664747 0.747069i \(-0.731460\pi\)
0.202153 0.979354i \(-0.435206\pi\)
\(480\) 0 0
\(481\) −0.500000 25.9904i −0.0227980 1.18506i
\(482\) 10.4904 18.1699i 0.477824 0.827615i
\(483\) 0 0
\(484\) 2.28719 0.103963
\(485\) 4.09808 + 7.09808i 0.186084 + 0.322307i
\(486\) 0 0
\(487\) 3.29423 12.2942i 0.149276 0.557105i −0.850252 0.526376i \(-0.823550\pi\)
0.999528 0.0307288i \(-0.00978283\pi\)
\(488\) −5.26795 1.41154i −0.238469 0.0638975i
\(489\) 0 0
\(490\) 0.732051i 0.0330707i
\(491\) 4.09808 + 2.36603i 0.184944 + 0.106777i 0.589613 0.807686i \(-0.299280\pi\)
−0.404670 + 0.914463i \(0.632613\pi\)
\(492\) 0 0
\(493\) −0.803848 −0.0362035
\(494\) 15.5885 + 15.0000i 0.701358 + 0.674882i
\(495\) 0 0
\(496\) −5.85641 + 21.8564i −0.262960 + 0.981382i
\(497\) −8.66025 + 15.0000i −0.388465 + 0.672842i
\(498\) 0 0
\(499\) −13.0718 + 13.0718i −0.585174 + 0.585174i −0.936321 0.351147i \(-0.885792\pi\)
0.351147 + 0.936321i \(0.385792\pi\)
\(500\) 9.73205 2.60770i 0.435231 0.116620i
\(501\) 0 0
\(502\) 39.3205 10.5359i 1.75496 0.470240i
\(503\) −22.8109 + 13.1699i −1.01709 + 0.587216i −0.913259 0.407380i \(-0.866443\pi\)
−0.103828 + 0.994595i \(0.533109\pi\)
\(504\) 0 0
\(505\) 6.42820 1.72243i 0.286051 0.0766472i
\(506\) 1.80385 3.12436i 0.0801908 0.138895i
\(507\) 0 0
\(508\) 0.928203 0.535898i 0.0411824 0.0237766i
\(509\) −29.4545 + 7.89230i −1.30555 + 0.349820i −0.843545 0.537059i \(-0.819535\pi\)
−0.462002 + 0.886879i \(0.652869\pi\)
\(510\) 0 0
\(511\) 13.5622 + 23.4904i 0.599955 + 1.03915i
\(512\) 16.0000 16.0000i 0.707107 0.707107i
\(513\) 0 0
\(514\) 2.46410 + 2.46410i 0.108687 + 0.108687i
\(515\) −4.46410 4.46410i −0.196712 0.196712i
\(516\) 0 0
\(517\) −5.58846 + 9.67949i −0.245780 + 0.425704i
\(518\) −6.46410 + 24.1244i −0.284016 + 1.05996i
\(519\) 0 0
\(520\) 1.26795 5.12436i 0.0556033 0.224718i
\(521\) −34.7128 −1.52080 −0.760398 0.649457i \(-0.774996\pi\)
−0.760398 + 0.649457i \(0.774996\pi\)
\(522\) 0 0
\(523\) −5.36603 + 9.29423i −0.234640 + 0.406408i −0.959168 0.282837i \(-0.908724\pi\)
0.724528 + 0.689245i \(0.242058\pi\)
\(524\) −24.0000 13.8564i −1.04844 0.605320i
\(525\) 0 0
\(526\) −1.80385 1.80385i −0.0786515 0.0786515i
\(527\) −1.46410 0.392305i −0.0637773 0.0170891i
\(528\) 0 0
\(529\) 11.2321 + 19.4545i 0.488350 + 0.845847i
\(530\) 5.49038 3.16987i 0.238487 0.137690i
\(531\) 0 0
\(532\) −10.3923 18.0000i −0.450564 0.780399i
\(533\) 0.669873 + 34.8205i 0.0290154 + 1.50824i
\(534\) 0 0
\(535\) 1.90192 0.509619i 0.0822273 0.0220327i
\(536\) −8.53590 + 14.7846i −0.368695 + 0.638598i
\(537\) 0 0
\(538\) 12.3923 3.32051i 0.534270 0.143157i
\(539\) −3.36603 0.901924i −0.144985 0.0388486i
\(540\) 0 0
\(541\) −20.2942 + 20.2942i −0.872517 + 0.872517i −0.992746 0.120229i \(-0.961637\pi\)
0.120229 + 0.992746i \(0.461637\pi\)
\(542\) 1.07180i 0.0460376i
\(543\) 0 0
\(544\) 1.07180 + 1.07180i 0.0459529 + 0.0459529i
\(545\) 10.3397i 0.442906i
\(546\) 0 0
\(547\) −4.33975 −0.185554 −0.0927771 0.995687i \(-0.529574\pi\)
−0.0927771 + 0.995687i \(0.529574\pi\)
\(548\) 7.26795 7.26795i 0.310471 0.310471i
\(549\) 0 0
\(550\) 23.3205i 0.994390i
\(551\) −9.00000 9.00000i −0.383413 0.383413i
\(552\) 0 0
\(553\) 0.679492 2.53590i 0.0288949 0.107837i
\(554\) 10.2942 + 38.4186i 0.437360 + 1.63225i
\(555\) 0 0
\(556\) 30.6410i 1.29947i
\(557\) −4.13397 15.4282i −0.175162 0.653714i −0.996524 0.0833065i \(-0.973452\pi\)
0.821362 0.570407i \(-0.193215\pi\)
\(558\) 0 0
\(559\) −2.53590 + 0.732051i −0.107257 + 0.0309625i
\(560\) −2.53590 + 4.39230i −0.107161 + 0.185609i
\(561\) 0 0
\(562\) −13.2942 23.0263i −0.560783 0.971305i
\(563\) 35.7846 20.6603i 1.50814 0.870726i 0.508186 0.861247i \(-0.330316\pi\)
0.999955 0.00947879i \(-0.00301724\pi\)
\(564\) 0 0
\(565\) −0.526279 + 1.96410i −0.0221407 + 0.0826304i
\(566\) 31.5167 + 31.5167i 1.32474 + 1.32474i
\(567\) 0 0
\(568\) 17.3205 10.0000i 0.726752 0.419591i
\(569\) −35.1962 20.3205i −1.47550 0.851880i −0.475881 0.879510i \(-0.657871\pi\)
−0.999618 + 0.0276295i \(0.991204\pi\)
\(570\) 0 0
\(571\) 25.6603i 1.07385i 0.843631 + 0.536924i \(0.180414\pi\)
−0.843631 + 0.536924i \(0.819586\pi\)
\(572\) 22.0000 + 12.1436i 0.919866 + 0.507749i
\(573\) 0 0
\(574\) 8.66025 32.3205i 0.361472 1.34903i
\(575\) 3.00000 + 1.73205i 0.125109 + 0.0722315i
\(576\) 0 0
\(577\) 29.0263 29.0263i 1.20838 1.20838i 0.236828 0.971552i \(-0.423892\pi\)
0.971552 0.236828i \(-0.0761079\pi\)
\(578\) 16.9282 16.9282i 0.704120 0.704120i
\(579\) 0 0
\(580\) −0.803848 + 3.00000i −0.0333780 + 0.124568i
\(581\) 23.7846 13.7321i 0.986752 0.569701i
\(582\) 0 0
\(583\) 7.81089 + 29.1506i 0.323494 + 1.20730i
\(584\) 31.3205i 1.29605i
\(585\) 0 0
\(586\) −8.36603 4.83013i −0.345597 0.199531i
\(587\) −9.58846 35.7846i −0.395758 1.47699i −0.820485 0.571668i \(-0.806297\pi\)
0.424727 0.905321i \(-0.360370\pi\)
\(588\) 0 0
\(589\) −12.0000 20.7846i −0.494451 0.856415i
\(590\) −7.66025 + 2.05256i −0.315368 + 0.0845025i
\(591\) 0 0
\(592\) 20.3923 20.3923i 0.838119 0.838119i
\(593\) −5.75833 5.75833i −0.236466 0.236466i 0.578919 0.815385i \(-0.303475\pi\)
−0.815385 + 0.578919i \(0.803475\pi\)
\(594\) 0 0
\(595\) −0.294229 0.169873i −0.0120622 0.00696411i
\(596\) −23.5167 + 23.5167i −0.963280 + 0.963280i
\(597\) 0 0
\(598\) 3.19615 1.92820i 0.130700 0.0788501i
\(599\) 18.5359i 0.757356i 0.925528 + 0.378678i \(0.123621\pi\)
−0.925528 + 0.378678i \(0.876379\pi\)
\(600\) 0 0
\(601\) −0.205771 + 0.356406i −0.00839359 + 0.0145381i −0.870192 0.492713i \(-0.836005\pi\)
0.861798 + 0.507251i \(0.169338\pi\)
\(602\) 2.53590 0.103356
\(603\) 0 0
\(604\) −40.0526 + 10.7321i −1.62972 + 0.436681i
\(605\) 0.571797 + 0.153212i 0.0232468 + 0.00622897i
\(606\) 0 0
\(607\) 28.0526 16.1962i 1.13862 0.657382i 0.192530 0.981291i \(-0.438331\pi\)
0.946088 + 0.323910i \(0.104997\pi\)
\(608\) 24.0000i 0.973329i
\(609\) 0 0
\(610\) −1.22243 0.705771i −0.0494948 0.0285758i
\(611\) −9.90192 + 5.97372i −0.400589 + 0.241671i
\(612\) 0 0
\(613\) −29.2583 + 7.83975i −1.18173 + 0.316644i −0.795614 0.605805i \(-0.792851\pi\)
−0.386119 + 0.922449i \(0.626185\pi\)
\(614\) 7.73205 + 13.3923i 0.312040 + 0.540469i
\(615\) 0 0
\(616\) −17.0718 17.0718i −0.687842 0.687842i
\(617\) −2.33013 0.624356i −0.0938074 0.0251356i 0.211610 0.977354i \(-0.432129\pi\)
−0.305417 + 0.952219i \(0.598796\pi\)
\(618\) 0 0
\(619\) 17.1244 + 17.1244i 0.688286 + 0.688286i 0.961853 0.273567i \(-0.0882035\pi\)
−0.273567 + 0.961853i \(0.588204\pi\)
\(620\) −2.92820 + 5.07180i −0.117599 + 0.203688i
\(621\) 0 0
\(622\) 14.6603 + 3.92820i 0.587823 + 0.157507i
\(623\) 31.8564 1.27630
\(624\) 0 0
\(625\) −21.0526 −0.842102
\(626\) 27.1244 + 7.26795i 1.08411 + 0.290486i
\(627\) 0 0
\(628\) 0.803848 1.39230i 0.0320770 0.0555590i
\(629\) 1.36603 + 1.36603i 0.0544670 + 0.0544670i
\(630\) 0 0
\(631\) −32.5167 8.71281i −1.29447 0.346852i −0.455112 0.890434i \(-0.650401\pi\)
−0.839356 + 0.543583i \(0.817067\pi\)
\(632\) −2.14359 + 2.14359i −0.0852676 + 0.0852676i
\(633\) 0 0
\(634\) 21.3660 + 37.0070i 0.848553 + 1.46974i
\(635\) 0.267949 0.0717968i 0.0106332 0.00284917i
\(636\) 0 0
\(637\) −2.59808 2.50000i −0.102940 0.0990536i
\(638\) −12.8038 7.39230i −0.506909 0.292664i
\(639\) 0 0
\(640\) 5.07180 2.92820i 0.200480 0.115747i
\(641\) 14.5526 8.40192i 0.574792 0.331856i −0.184269 0.982876i \(-0.558992\pi\)
0.759061 + 0.651020i \(0.225659\pi\)
\(642\) 0 0
\(643\) −16.1962 4.33975i −0.638714 0.171143i −0.0750931 0.997177i \(-0.523925\pi\)
−0.563621 + 0.826034i \(0.690592\pi\)
\(644\) −3.46410 + 0.928203i −0.136505 + 0.0365763i
\(645\) 0 0
\(646\) −1.60770 −0.0632539
\(647\) 5.19615 9.00000i 0.204282 0.353827i −0.745622 0.666369i \(-0.767847\pi\)
0.949904 + 0.312543i \(0.101181\pi\)
\(648\) 0 0
\(649\) 37.7513i 1.48187i
\(650\) −11.6603 + 21.1244i −0.457353 + 0.828565i
\(651\) 0 0
\(652\) −12.3923 + 12.3923i −0.485320 + 0.485320i
\(653\) 36.2487 + 20.9282i 1.41852 + 0.818984i 0.996169 0.0874477i \(-0.0278711\pi\)
0.422353 + 0.906432i \(0.361204\pi\)
\(654\) 0 0
\(655\) −5.07180 5.07180i −0.198171 0.198171i
\(656\) −27.3205 + 27.3205i −1.06669 + 1.06669i
\(657\) 0 0
\(658\) 10.7321 2.87564i 0.418379 0.112104i
\(659\) −1.92820 3.33975i −0.0751121 0.130098i 0.826023 0.563637i \(-0.190598\pi\)
−0.901135 + 0.433539i \(0.857265\pi\)
\(660\) 0 0
\(661\) −9.59808 35.8205i −0.373322 1.39326i −0.855781 0.517338i \(-0.826923\pi\)
0.482459 0.875918i \(-0.339744\pi\)
\(662\) −16.0526 9.26795i −0.623900 0.360209i
\(663\) 0 0
\(664\) −31.7128 −1.23070
\(665\) −1.39230 5.19615i −0.0539913 0.201498i
\(666\) 0 0
\(667\) −1.90192 + 1.09808i −0.0736428 + 0.0425177i
\(668\) 10.5359 39.3205i 0.407646 1.52136i
\(669\) 0 0
\(670\) −3.12436 + 3.12436i −0.120704 + 0.120704i
\(671\) 4.75129 4.75129i 0.183421 0.183421i
\(672\) 0 0
\(673\) 15.0622 + 8.69615i 0.580604 + 0.335212i 0.761373 0.648314i \(-0.224525\pi\)
−0.180769 + 0.983526i \(0.557859\pi\)
\(674\) −7.63397 + 28.4904i −0.294050 + 1.09741i
\(675\) 0 0
\(676\) 13.8564 + 22.0000i 0.532939 + 0.846154i
\(677\) 36.2487i 1.39315i 0.717483 + 0.696576i \(0.245294\pi\)
−0.717483 + 0.696576i \(0.754706\pi\)
\(678\) 0 0
\(679\) 33.5885 + 19.3923i 1.28901 + 0.744208i
\(680\) 0.196152 + 0.339746i 0.00752210 + 0.0130287i
\(681\) 0 0
\(682\) −19.7128 19.7128i −0.754843 0.754843i
\(683\) −4.12436 + 15.3923i −0.157814 + 0.588970i 0.841034 + 0.540983i \(0.181947\pi\)
−0.998848 + 0.0479877i \(0.984719\pi\)
\(684\) 0 0
\(685\) 2.30385 1.33013i 0.0880255 0.0508215i
\(686\) 13.8564 + 24.0000i 0.529040 + 0.916324i
\(687\) 0 0
\(688\) −2.53590 1.46410i −0.0966802 0.0558184i
\(689\) −7.50000 + 30.3109i −0.285727 + 1.15475i
\(690\) 0 0
\(691\) 0.241670 + 0.901924i 0.00919355 + 0.0343108i 0.970370 0.241623i \(-0.0776797\pi\)
−0.961177 + 0.275934i \(0.911013\pi\)
\(692\) 37.8564i 1.43908i
\(693\) 0 0
\(694\) −1.73205 6.46410i −0.0657477 0.245374i
\(695\) 2.05256 7.66025i 0.0778580 0.290570i
\(696\) 0 0
\(697\) −1.83013 1.83013i −0.0693210 0.0693210i
\(698\) 25.6077i 0.969266i
\(699\) 0 0
\(700\) 16.3923 16.3923i 0.619571 0.619571i
\(701\) −36.6410 −1.38391 −0.691956 0.721940i \(-0.743251\pi\)
−0.691956 + 0.721940i \(0.743251\pi\)
\(702\) 0 0
\(703\) 30.5885i 1.15367i
\(704\) 7.21539 + 26.9282i 0.271940 + 1.01489i
\(705\) 0 0
\(706\) 4.73205i 0.178093i
\(707\) 22.2679 22.2679i 0.837472 0.837472i
\(708\) 0 0
\(709\) −14.3301 3.83975i −0.538179 0.144205i −0.0205166 0.999790i \(-0.506531\pi\)
−0.517663 + 0.855585i \(0.673198\pi\)
\(710\) 5.00000 1.33975i 0.187647 0.0502798i
\(711\) 0 0
\(712\) −31.8564 18.3923i −1.19387 0.689281i
\(713\) −4.00000 + 1.07180i −0.149801 + 0.0401391i
\(714\) 0 0
\(715\) 4.68653 + 4.50962i 0.175266 + 0.168650i
\(716\) 1.26795 + 2.19615i 0.0473855 + 0.0820741i
\(717\) 0 0
\(718\) 7.05256 4.07180i 0.263199 0.151958i
\(719\) 19.4641 + 33.7128i 0.725889 + 1.25728i 0.958607 + 0.284732i \(0.0919045\pi\)
−0.232719 + 0.972544i \(0.574762\pi\)
\(720\) 0 0
\(721\) −28.8564 7.73205i −1.07467 0.287957i
\(722\) 1.00000 + 1.00000i 0.0372161 + 0.0372161i
\(723\) 0 0
\(724\) 3.33975 + 1.92820i 0.124121 + 0.0716611i
\(725\) 7.09808 12.2942i 0.263616 0.456596i
\(726\) 0 0
\(727\) −32.5885 −1.20864 −0.604319 0.796742i \(-0.706555\pi\)
−0.604319 + 0.796742i \(0.706555\pi\)
\(728\) −6.92820 24.0000i −0.256776 0.889499i
\(729\) 0 0
\(730\) 2.09808 7.83013i 0.0776533 0.289806i
\(731\) 0.0980762 0.169873i 0.00362748 0.00628298i
\(732\) 0 0
\(733\) 4.68653 + 4.68653i 0.173101 + 0.173101i 0.788340 0.615239i \(-0.210941\pi\)
−0.615239 + 0.788340i \(0.710941\pi\)
\(734\) −7.12436 7.12436i −0.262965 0.262965i
\(735\) 0 0
\(736\) 4.00000 + 1.07180i 0.147442 + 0.0395070i
\(737\) −10.5167 18.2154i −0.387386 0.670973i
\(738\) 0 0
\(739\) 24.5885 6.58846i 0.904501 0.242360i 0.223553 0.974692i \(-0.428235\pi\)
0.680948 + 0.732332i \(0.261568\pi\)
\(740\) 6.46410 3.73205i 0.237625 0.137193i
\(741\) 0 0
\(742\) 15.0000 25.9808i 0.550667 0.953784i
\(743\) −47.7846 + 12.8038i −1.75305 + 0.469728i −0.985272 0.170992i \(-0.945303\pi\)
−0.767775 + 0.640720i \(0.778636\pi\)
\(744\) 0 0
\(745\) −7.45448 + 4.30385i −0.273111 + 0.157681i
\(746\) −22.5622 + 6.04552i −0.826060 + 0.221342i
\(747\) 0 0
\(748\) −1.80385 + 0.483340i −0.0659552 + 0.0176726i
\(749\) 6.58846 6.58846i 0.240737 0.240737i
\(750\) 0 0
\(751\) 22.9545 39.7583i 0.837621 1.45080i −0.0542575 0.998527i \(-0.517279\pi\)
0.891878 0.452275i \(-0.149387\pi\)
\(752\) −12.3923 3.32051i −0.451901 0.121086i
\(753\) 0 0
\(754\) −7.90192 13.0981i −0.287771 0.477004i
\(755\) −10.7321 −0.390579
\(756\) 0 0
\(757\) −11.6603 6.73205i −0.423799 0.244681i 0.272902 0.962042i \(-0.412016\pi\)
−0.696701 + 0.717361i \(0.745350\pi\)
\(758\) 33.1769i 1.20504i
\(759\) 0 0
\(760\) −1.60770 + 6.00000i −0.0583172 + 0.217643i
\(761\) −11.9545 + 44.6147i −0.433350 + 1.61728i 0.311635 + 0.950202i \(0.399123\pi\)
−0.744985 + 0.667081i \(0.767543\pi\)
\(762\) 0 0
\(763\) 24.4641 + 42.3731i 0.885660 + 1.53401i
\(764\) −37.8564 −1.36960
\(765\) 0 0
\(766\) −11.4641 + 19.8564i −0.414215 + 0.717441i
\(767\) 18.8756 34.1962i 0.681560 1.23475i
\(768\) 0 0
\(769\) −5.95448 22.2224i −0.214724 0.801361i −0.986263 0.165180i \(-0.947180\pi\)
0.771539 0.636182i \(-0.219487\pi\)
\(770\) −3.12436 5.41154i −0.112594 0.195018i
\(771\) 0 0
\(772\) −32.1244 8.60770i −1.15618 0.309798i
\(773\) −3.95448 + 14.7583i −0.142233 + 0.530820i 0.857630 + 0.514267i \(0.171936\pi\)
−0.999863 + 0.0165532i \(0.994731\pi\)
\(774\) 0 0
\(775\) 18.9282 18.9282i 0.679921 0.679921i
\(776\) −22.3923 38.7846i −0.803837 1.39229i
\(777\) 0 0
\(778\) −2.36603 0.633975i −0.0848261 0.0227291i
\(779\) 40.9808i 1.46829i
\(780\) 0 0
\(781\) 24.6410i 0.881725i
\(782\) −0.0717968 + 0.267949i −0.00256745 + 0.00958184i
\(783\) 0 0
\(784\) 4.00000i 0.142857i
\(785\) 0.294229 0.294229i 0.0105015 0.0105015i
\(786\) 0 0
\(787\) −2.87564 + 10.7321i −0.102506 + 0.382556i −0.998050 0.0624155i \(-0.980120\pi\)
0.895545 + 0.444972i \(0.146786\pi\)
\(788\) −19.1244 5.12436i −0.681277 0.182548i
\(789\) 0 0
\(790\) −0.679492 + 0.392305i −0.0241752 + 0.0139576i
\(791\) 2.49038 + 9.29423i 0.0885478 + 0.330465i
\(792\) 0 0
\(793\) 6.67949 1.92820i 0.237196 0.0684725i
\(794\) −9.24871 5.33975i −0.328224 0.189500i
\(795\) 0 0
\(796\) 21.4641i 0.760775i
\(797\) −1.85641 3.21539i −0.0657573 0.113895i 0.831272 0.555865i \(-0.187613\pi\)
−0.897030 + 0.441970i \(0.854280\pi\)
\(798\) 0 0
\(799\) 0.222432 0.830127i 0.00786907 0.0293678i
\(800\) −25.8564 + 6.92820i −0.914162 + 0.244949i
\(801\) 0 0
\(802\) 3.12436 0.110325
\(803\) 33.4186 + 19.2942i 1.17932 + 0.680879i
\(804\) 0 0
\(805\) −0.928203 −0.0327149
\(806\) −8.00000 27.7128i −0.281788 0.976142i
\(807\) 0 0
\(808\) −35.1244 + 9.41154i −1.23567 + 0.331097i
\(809\) 22.0885 38.2583i 0.776589 1.34509i −0.157308 0.987550i \(-0.550282\pi\)
0.933897 0.357542i \(-0.116385\pi\)
\(810\) 0 0
\(811\) 16.9808 16.9808i 0.596275 0.596275i −0.343044 0.939319i \(-0.611458\pi\)
0.939319 + 0.343044i \(0.111458\pi\)
\(812\) 3.80385 + 14.1962i 0.133489 + 0.498187i
\(813\) 0 0
\(814\) 9.19615 + 34.3205i 0.322325 + 1.20293i
\(815\) −3.92820 + 2.26795i −0.137599 + 0.0794428i
\(816\) 0 0
\(817\) 3.00000 0.803848i 0.104957 0.0281231i
\(818\) 2.95448 + 1.70577i 0.103301 + 0.0596409i
\(819\) 0 0
\(820\) −8.66025 + 5.00000i −0.302429 + 0.174608i
\(821\) −34.4186 + 9.22243i −1.20122 + 0.321865i −0.803310 0.595561i \(-0.796930\pi\)
−0.397907 + 0.917426i \(0.630263\pi\)
\(822\) 0 0
\(823\) 18.2679 + 31.6410i 0.636781 + 1.10294i 0.986135 + 0.165946i \(0.0530677\pi\)
−0.349354 + 0.936991i \(0.613599\pi\)
\(824\) 24.3923 + 24.3923i 0.849746 + 0.849746i
\(825\) 0 0
\(826\) −26.5359 + 26.5359i −0.923302 + 0.923302i
\(827\) 30.1962 + 30.1962i 1.05002 + 1.05002i 0.998681 + 0.0513420i \(0.0163498\pi\)
0.0513420 + 0.998681i \(0.483650\pi\)
\(828\) 0 0
\(829\) −24.4545 + 42.3564i −0.849339 + 1.47110i 0.0324595 + 0.999473i \(0.489666\pi\)
−0.881799 + 0.471626i \(0.843667\pi\)
\(830\) −7.92820 2.12436i −0.275192 0.0737375i
\(831\) 0 0
\(832\) −6.92820 + 28.0000i −0.240192 + 0.970725i
\(833\) 0.267949 0.00928389
\(834\) 0 0
\(835\) 5.26795 9.12436i 0.182305 0.315761i
\(836\) −25.6077 14.7846i −0.885661 0.511336i
\(837\) 0 0
\(838\) 9.60770 9.60770i 0.331892 0.331892i
\(839\) −38.3205 10.2679i −1.32297 0.354489i −0.472881 0.881126i \(-0.656786\pi\)
−0.850090 + 0.526637i \(0.823453\pi\)
\(840\) 0 0
\(841\) −10.0000 17.3205i −0.344828 0.597259i
\(842\) −26.3660 45.6673i −0.908633 1.57380i
\(843\) 0 0
\(844\) 38.1051 22.0000i 1.31163 0.757271i
\(845\) 1.99038 + 6.42820i 0.0684712 + 0.221137i
\(846\) 0 0
\(847\) 2.70577 0.725009i 0.0929714 0.0249116i
\(848\) −30.0000 + 17.3205i −1.03020 + 0.594789i
\(849\) 0 0
\(850\) −0.464102 1.73205i −0.0159186 0.0594089i
\(851\) 5.09808 + 1.36603i 0.174760 + 0.0468267i
\(852\) 0 0
\(853\) −7.77757 + 7.77757i −0.266299 + 0.266299i −0.827607 0.561308i \(-0.810298\pi\)
0.561308 + 0.827607i \(0.310298\pi\)
\(854\) −6.67949 −0.228568
\(855\) 0 0
\(856\) −10.3923 + 2.78461i −0.355202 + 0.0951760i
\(857\) 3.39230i 0.115879i 0.998320 + 0.0579395i \(0.0184530\pi\)
−0.998320 + 0.0579395i \(0.981547\pi\)
\(858\) 0 0
\(859\) −33.6603 −1.14847 −0.574237 0.818689i \(-0.694701\pi\)
−0.574237 + 0.818689i \(0.694701\pi\)
\(860\) −0.535898 0.535898i −0.0182740 0.0182740i
\(861\) 0 0
\(862\) −57.7128 −1.96571
\(863\) 33.6410 + 33.6410i 1.14515 + 1.14515i 0.987493 + 0.157660i \(0.0503950\pi\)
0.157660 + 0.987493i \(0.449605\pi\)
\(864\) 0 0
\(865\) 2.53590 9.46410i 0.0862231 0.321789i
\(866\) 13.2942 3.56218i 0.451756 0.121048i
\(867\) 0 0
\(868\) 27.7128i 0.940634i
\(869\) −0.966679 3.60770i −0.0327923 0.122383i
\(870\) 0 0
\(871\) −0.418584 21.7583i −0.0141832 0.737253i
\(872\) 56.4974i 1.91324i
\(873\) 0 0
\(874\) −3.80385 + 2.19615i −0.128667 + 0.0742860i
\(875\) 10.6865 6.16987i 0.361271 0.208580i
\(876\) 0 0
\(877\) 2.83975 10.5981i 0.0958914 0.357872i −0.901262 0.433275i \(-0.857358\pi\)
0.997153 + 0.0754036i \(0.0240245\pi\)
\(878\) −33.6603 + 33.6603i −1.13598 + 1.13598i
\(879\) 0 0
\(880\) 7.21539i 0.243231i
\(881\) 37.7942 + 21.8205i 1.27332 + 0.735152i 0.975611 0.219505i \(-0.0704443\pi\)
0.297709 + 0.954657i \(0.403778\pi\)
\(882\) 0 0
\(883\) 12.7846i 0.430236i 0.976588 + 0.215118i \(0.0690137\pi\)
−0.976588 + 0.215118i \(0.930986\pi\)
\(884\) −1.87564 0.464102i −0.0630847 0.0156094i
\(885\) 0 0
\(886\) 16.5885 + 4.44486i 0.557300 + 0.149328i
\(887\) −24.8038 14.3205i −0.832832 0.480836i 0.0219895 0.999758i \(-0.493000\pi\)
−0.854821 + 0.518923i \(0.826333\pi\)
\(888\) 0 0
\(889\) 0.928203 0.928203i 0.0311309 0.0311309i
\(890\) −6.73205 6.73205i −0.225659 0.225659i
\(891\) 0 0
\(892\) −35.8564 9.60770i −1.20056 0.321689i
\(893\) 11.7846 6.80385i 0.394357 0.227682i
\(894\) 0 0
\(895\) 0.169873 + 0.633975i 0.00567823 + 0.0211914i
\(896\) 13.8564 24.0000i 0.462910 0.801784i
\(897\) 0 0
\(898\) −19.1962 + 33.2487i −0.640584 + 1.10952i
\(899\) 4.39230 + 16.3923i 0.146492 + 0.546714i
\(900\) 0 0
\(901\) −1.16025 2.00962i −0.0386537 0.0669501i
\(902\) −12.3205 45.9808i −0.410228 1.53099i
\(903\) 0 0
\(904\) 2.87564 10.7321i 0.0956425 0.356943i
\(905\) 0.705771 + 0.705771i 0.0234606 + 0.0234606i
\(906\) 0 0
\(907\) 1.85641 + 1.07180i 0.0616410 + 0.0355884i 0.530504 0.847683i \(-0.322003\pi\)
−0.468863 + 0.883271i \(0.655336\pi\)
\(908\) −1.60770 1.60770i −0.0533532 0.0533532i
\(909\) 0 0
\(910\) −0.124356 6.46410i −0.00412235 0.214283i
\(911\) 50.7846i 1.68257i 0.540592 + 0.841285i \(0.318200\pi\)
−0.540592 + 0.841285i \(0.681800\pi\)
\(912\) 0 0
\(913\) 19.5359 33.8372i 0.646544 1.11985i
\(914\) 8.73205i 0.288831i
\(915\) 0 0
\(916\) 13.6603 3.66025i 0.451347 0.120938i
\(917\) −32.7846 8.78461i −1.08264 0.290093i
\(918\) 0 0
\(919\) −30.9282 + 17.8564i −1.02023 + 0.589028i −0.914170 0.405331i \(-0.867156\pi\)
−0.106058 + 0.994360i \(0.533823\pi\)
\(920\) 0.928203 + 0.535898i 0.0306020 + 0.0176680i
\(921\) 0 0
\(922\) −19.9019 + 34.4711i −0.655435 + 1.13525i
\(923\) −12.3205 + 22.3205i −0.405534 + 0.734688i
\(924\) 0 0
\(925\) −32.9545 + 8.83013i −1.08354 + 0.290333i
\(926\) 1.14359 0.660254i 0.0375808 0.0216973i
\(927\) 0 0
\(928\) 4.39230 16.3923i 0.144184 0.538104i
\(929\) 27.3564 + 7.33013i 0.897535 + 0.240494i 0.677957 0.735101i \(-0.262865\pi\)
0.219577 + 0.975595i \(0.429532\pi\)
\(930\) 0 0
\(931\) 3.00000 + 3.00000i 0.0983210 + 0.0983210i
\(932\) 9.07180 15.7128i 0.297157 0.514690i
\(933\) 0 0
\(934\) 5.19615 19.3923i 0.170023 0.634536i
\(935\) −0.483340 −0.0158069
\(936\) 0 0
\(937\) −46.7128 −1.52604 −0.763021 0.646374i \(-0.776285\pi\)
−0.763021 + 0.646374i \(0.776285\pi\)
\(938\) −5.41154 + 20.1962i −0.176693 + 0.659428i
\(939\) 0 0
\(940\) −2.87564 1.66025i −0.0937932 0.0541515i
\(941\) 5.19615 + 5.19615i 0.169390 + 0.169390i 0.786711 0.617321i \(-0.211782\pi\)
−0.617321 + 0.786711i \(0.711782\pi\)
\(942\) 0 0
\(943\) −6.83013 1.83013i −0.222420 0.0595971i
\(944\) 41.8564 11.2154i 1.36231 0.365030i
\(945\) 0 0
\(946\) 3.12436 1.80385i 0.101582 0.0586481i
\(947\) 12.3923 3.32051i 0.402696 0.107902i −0.0517856 0.998658i \(-0.516491\pi\)
0.454481 + 0.890756i \(0.349825\pi\)
\(948\) 0 0
\(949\) 20.6244 + 34.1865i 0.669495 + 1.10974i
\(950\) 14.1962 24.5885i 0.460584 0.797755i
\(951\) 0 0
\(952\) 1.60770 + 0.928203i 0.0521057 + 0.0300832i
\(953\) 34.2679 19.7846i 1.11005 0.640886i 0.171206 0.985235i \(-0.445234\pi\)
0.938842 + 0.344349i \(0.111900\pi\)
\(954\) 0 0
\(955\) −9.46410 2.53590i −0.306251 0.0820597i
\(956\) 9.51666 + 35.5167i 0.307791 + 1.14869i
\(957\) 0 0
\(958\) 55.3205i 1.78732i
\(959\) 6.29423 10.9019i 0.203251 0.352041i
\(960\) 0 0
\(961\) 1.00000i 0.0322581i
\(962\) −8.83013 + 35.6865i −0.284695 + 1.15058i
\(963\) 0 0
\(964\) −20.9808 + 20.9808i −0.675745 + 0.675745i
\(965\) −7.45448 4.30385i −0.239968 0.138546i
\(966\) 0 0
\(967\) −19.0526 19.0526i −0.612689 0.612689i 0.330957 0.943646i \(-0.392629\pi\)
−0.943646 + 0.330957i \(0.892629\pi\)
\(968\) −3.12436 0.837169i −0.100421 0.0269076i
\(969\) 0 0
\(970\) −3.00000 11.1962i −0.0963242 0.359487i
\(971\) 20.1244 + 34.8564i 0.645821 + 1.11860i 0.984111 + 0.177553i \(0.0568182\pi\)
−0.338290 + 0.941042i \(0.609848\pi\)
\(972\) 0 0
\(973\) −9.71281 36.2487i −0.311378 1.16208i
\(974\) −9.00000 + 15.5885i −0.288379 + 0.499486i
\(975\) 0 0
\(976\) 6.67949 + 3.85641i 0.213805 + 0.123441i
\(977\) −11.8397 44.1865i −0.378787 1.41365i −0.847732 0.530425i \(-0.822032\pi\)
0.468945 0.883227i \(-0.344634\pi\)
\(978\) 0 0
\(979\) 39.2487 22.6603i 1.25439 0.724225i
\(980\) 0.267949 1.00000i 0.00855932 0.0319438i
\(981\) 0 0
\(982\) −4.73205 4.73205i −0.151006 0.151006i
\(983\) −6.33975 + 6.33975i −0.202206 + 0.202206i −0.800945 0.598738i \(-0.795669\pi\)
0.598738 + 0.800945i \(0.295669\pi\)
\(984\) 0 0
\(985\) −4.43782 2.56218i −0.141401 0.0816378i
\(986\) 1.09808 + 0.294229i 0.0349699 + 0.00937015i
\(987\) 0 0
\(988\) −15.8038 26.1962i −0.502787 0.833411i
\(989\) 0.535898i 0.0170406i
\(990\) 0 0
\(991\) 34.8109 + 20.0981i 1.10580 + 0.638436i 0.937739 0.347340i \(-0.112915\pi\)
0.168065 + 0.985776i \(0.446248\pi\)
\(992\) 16.0000 27.7128i 0.508001 0.879883i
\(993\) 0 0
\(994\) 17.3205 17.3205i 0.549373 0.549373i
\(995\) −1.43782 + 5.36603i −0.0455820 + 0.170114i
\(996\) 0 0
\(997\) 6.86603 3.96410i 0.217449 0.125544i −0.387319 0.921946i \(-0.626599\pi\)
0.604769 + 0.796401i \(0.293266\pi\)
\(998\) 22.6410 13.0718i 0.716689 0.413780i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.ed.a.19.1 4
3.2 odd 2 312.2.bt.b.19.1 yes 4
8.3 odd 2 936.2.ed.b.19.1 4
13.11 odd 12 936.2.ed.b.739.1 4
24.11 even 2 312.2.bt.a.19.1 4
39.11 even 12 312.2.bt.a.115.1 yes 4
104.11 even 12 inner 936.2.ed.a.739.1 4
312.11 odd 12 312.2.bt.b.115.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bt.a.19.1 4 24.11 even 2
312.2.bt.a.115.1 yes 4 39.11 even 12
312.2.bt.b.19.1 yes 4 3.2 odd 2
312.2.bt.b.115.1 yes 4 312.11 odd 12
936.2.ed.a.19.1 4 1.1 even 1 trivial
936.2.ed.a.739.1 4 104.11 even 12 inner
936.2.ed.b.19.1 4 8.3 odd 2
936.2.ed.b.739.1 4 13.11 odd 12