Properties

Label 936.2.ed.a
Level $936$
Weight $2$
Character orbit 936.ed
Analytic conductor $7.474$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(19,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 6, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.ed (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{12}^{2} + \zeta_{12} - 1) q^{2} + (2 \zeta_{12}^{3} - 2 \zeta_{12}) q^{4} + ( - \zeta_{12}^{2} - \zeta_{12}) q^{5} + (2 \zeta_{12}^{3} + \zeta_{12}^{2} + \cdots + 1) q^{7} + ( - 2 \zeta_{12}^{3} - 2) q^{8}+ \cdots + (\zeta_{12}^{3} + 1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{5} + 6 q^{7} - 8 q^{8} + 2 q^{10} + 10 q^{11} + 14 q^{13} - 12 q^{14} + 8 q^{16} + 6 q^{17} - 6 q^{19} + 8 q^{20} + 8 q^{22} + 2 q^{23} - 4 q^{26} + 16 q^{31} + 8 q^{32} - 2 q^{34}+ \cdots + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(\zeta_{12}\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
−0.866025 + 0.500000i
0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
−1.36603 0.366025i 0 1.73205 + 1.00000i 0.366025 + 0.366025i 0 2.36603 + 0.633975i −2.00000 2.00000i 0 −0.366025 0.633975i
163.1 0.366025 1.36603i 0 −1.73205 1.00000i −1.36603 + 1.36603i 0 0.633975 2.36603i −2.00000 + 2.00000i 0 1.36603 + 2.36603i
379.1 0.366025 + 1.36603i 0 −1.73205 + 1.00000i −1.36603 1.36603i 0 0.633975 + 2.36603i −2.00000 2.00000i 0 1.36603 2.36603i
739.1 −1.36603 + 0.366025i 0 1.73205 1.00000i 0.366025 0.366025i 0 2.36603 0.633975i −2.00000 + 2.00000i 0 −0.366025 + 0.633975i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
104.u even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 936.2.ed.a 4
3.b odd 2 1 312.2.bt.b yes 4
8.d odd 2 1 936.2.ed.b 4
13.f odd 12 1 936.2.ed.b 4
24.f even 2 1 312.2.bt.a 4
39.k even 12 1 312.2.bt.a 4
104.u even 12 1 inner 936.2.ed.a 4
312.bq odd 12 1 312.2.bt.b yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
312.2.bt.a 4 24.f even 2 1
312.2.bt.a 4 39.k even 12 1
312.2.bt.b yes 4 3.b odd 2 1
312.2.bt.b yes 4 312.bq odd 12 1
936.2.ed.a 4 1.a even 1 1 trivial
936.2.ed.a 4 104.u even 12 1 inner
936.2.ed.b 4 8.d odd 2 1
936.2.ed.b 4 13.f odd 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 2T_{5}^{3} + 2T_{5}^{2} - 2T_{5} + 1 \) acting on \(S_{2}^{\mathrm{new}}(936, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{4} - 6 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$11$ \( T^{4} - 10 T^{3} + \cdots + 484 \) Copy content Toggle raw display
$13$ \( (T^{2} - 7 T + 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 6 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{4} + 6 T^{3} + \cdots + 324 \) Copy content Toggle raw display
$23$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$29$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$31$ \( (T^{2} - 8 T + 32)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$41$ \( T^{4} - 10 T^{3} + \cdots + 625 \) Copy content Toggle raw display
$43$ \( T^{4} + 6 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$47$ \( T^{4} + 16 T^{3} + \cdots + 676 \) Copy content Toggle raw display
$53$ \( (T^{2} + 75)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 32 T^{3} + \cdots + 21904 \) Copy content Toggle raw display
$61$ \( T^{4} - 24 T^{3} + \cdots + 529 \) Copy content Toggle raw display
$67$ \( T^{4} - 18 T^{3} + \cdots + 4356 \) Copy content Toggle raw display
$71$ \( T^{4} - 10 T^{3} + \cdots + 2500 \) Copy content Toggle raw display
$73$ \( T^{4} - 14 T^{3} + \cdots + 169 \) Copy content Toggle raw display
$79$ \( T^{4} + 224T^{2} + 256 \) Copy content Toggle raw display
$83$ \( T^{4} - 4 T^{3} + \cdots + 8836 \) Copy content Toggle raw display
$89$ \( T^{4} - 26 T^{3} + \cdots + 484 \) Copy content Toggle raw display
$97$ \( T^{4} - 30 T^{3} + \cdots + 324 \) Copy content Toggle raw display
show more
show less