| L(s) = 1 | + (−1.36 − 0.366i)2-s + (1.73 + i)4-s + (0.366 + 0.366i)5-s + (2.36 + 0.633i)7-s + (−1.99 − 2i)8-s + (−0.366 − 0.633i)10-s + (3.36 − 0.901i)11-s + (3.5 + 0.866i)13-s + (−3 − 1.73i)14-s + (1.99 + 3.46i)16-s + (−0.232 + 0.133i)17-s + (−4.09 − 1.09i)19-s + (0.267 + i)20-s − 4.92·22-s + (−0.366 + 0.633i)23-s + ⋯ |
| L(s) = 1 | + (−0.965 − 0.258i)2-s + (0.866 + 0.5i)4-s + (0.163 + 0.163i)5-s + (0.894 + 0.239i)7-s + (−0.707 − 0.707i)8-s + (−0.115 − 0.200i)10-s + (1.01 − 0.271i)11-s + (0.970 + 0.240i)13-s + (−0.801 − 0.462i)14-s + (0.499 + 0.866i)16-s + (−0.0562 + 0.0324i)17-s + (−0.940 − 0.251i)19-s + (0.0599 + 0.223i)20-s − 1.05·22-s + (−0.0763 + 0.132i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0193i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0193i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.28309 - 0.0124324i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.28309 - 0.0124324i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (1.36 + 0.366i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-3.5 - 0.866i)T \) |
| good | 5 | \( 1 + (-0.366 - 0.366i)T + 5iT^{2} \) |
| 7 | \( 1 + (-2.36 - 0.633i)T + (6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (-3.36 + 0.901i)T + (9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (0.232 - 0.133i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (4.09 + 1.09i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (0.366 - 0.633i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.59 - 1.5i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-4 - 4i)T + 31iT^{2} \) |
| 37 | \( 1 + (1.86 + 6.96i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (-2.5 - 9.33i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (0.633 - 0.366i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (2.26 - 2.26i)T - 47iT^{2} \) |
| 53 | \( 1 - 8.66iT - 53T^{2} \) |
| 59 | \( 1 + (-2.80 + 10.4i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-1.66 + 0.964i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (1.56 + 5.83i)T + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (1.83 - 6.83i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (-7.83 - 7.83i)T + 73iT^{2} \) |
| 79 | \( 1 + 1.07iT - 79T^{2} \) |
| 83 | \( 1 + (-7.92 + 7.92i)T - 83iT^{2} \) |
| 89 | \( 1 + (-12.5 + 3.36i)T + (77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-15.2 - 4.09i)T + (84.0 + 48.5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.07517185532528795565022375595, −9.031230584776193848223218845113, −8.565478890778972911063834607184, −7.81896796485936780596292093304, −6.58530209257513790396002699107, −6.17661322863706833767931815444, −4.62774120428496797313902698109, −3.53280716856945501875914399351, −2.22219898721644570085246962603, −1.16561292236569533570320317910,
1.09506479878967122038639681596, 2.07755763484233121765089651466, 3.71447979056261487683136555976, 4.89552009356364768004235383480, 6.02669130431750697348322653062, 6.70984596219345152033879042557, 7.72721833474217809237227381476, 8.474845699075002009081221021657, 9.048695626822718283921603721775, 10.03397687153176263049091506521