Properties

Label 936.2.dg.f.829.20
Level $936$
Weight $2$
Character 936.829
Analytic conductor $7.474$
Analytic rank $0$
Dimension $56$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(829,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.829"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.dg (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 829.20
Character \(\chi\) \(=\) 936.829
Dual form 936.2.dg.f.901.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.869780 + 1.11512i) q^{2} +(-0.486965 + 1.93981i) q^{4} -0.189692 q^{5} +(-1.84703 - 1.06638i) q^{7} +(-2.58667 + 1.14419i) q^{8} +(-0.164990 - 0.211528i) q^{10} +(-0.681249 - 1.17996i) q^{11} +(-0.163331 + 3.60185i) q^{13} +(-0.417370 - 2.98717i) q^{14} +(-3.52573 - 1.88924i) q^{16} +(-2.82570 + 4.89426i) q^{17} +(-2.09665 + 3.63151i) q^{19} +(0.0923733 - 0.367966i) q^{20} +(0.723252 - 1.78597i) q^{22} +(-2.99588 - 5.18901i) q^{23} -4.96402 q^{25} +(-4.15854 + 2.95069i) q^{26} +(2.96802 - 3.06360i) q^{28} +(-0.0901081 + 0.0520240i) q^{29} +2.73867i q^{31} +(-0.959891 - 5.57482i) q^{32} +(-7.91540 + 1.10595i) q^{34} +(0.350366 + 0.202284i) q^{35} +(1.06198 + 1.83940i) q^{37} +(-5.87318 + 0.820605i) q^{38} +(0.490669 - 0.217043i) q^{40} +(-8.00410 + 4.62117i) q^{41} +(6.06888 + 3.50387i) q^{43} +(2.62064 - 0.746896i) q^{44} +(3.18059 - 7.85405i) q^{46} -6.80383i q^{47} +(-1.22566 - 2.12290i) q^{49} +(-4.31760 - 5.53545i) q^{50} +(-6.90737 - 2.07080i) q^{52} -9.28824i q^{53} +(0.129227 + 0.223828i) q^{55} +(5.99779 + 0.645029i) q^{56} +(-0.136387 - 0.0552316i) q^{58} +(1.76132 - 3.05070i) q^{59} +(10.2886 + 5.94011i) q^{61} +(-3.05394 + 2.38204i) q^{62} +(5.38167 - 5.91926i) q^{64} +(0.0309825 - 0.683242i) q^{65} +(6.02495 + 10.4355i) q^{67} +(-8.11792 - 7.86466i) q^{68} +(0.0791716 + 0.566642i) q^{70} +(1.24609 + 0.719429i) q^{71} +7.83052i q^{73} +(-1.12745 + 2.78410i) q^{74} +(-6.02344 - 5.83553i) q^{76} +2.90589i q^{77} +5.68079 q^{79} +(0.668802 + 0.358373i) q^{80} +(-12.1149 - 4.90609i) q^{82} +12.8862 q^{83} +(0.536013 - 0.928401i) q^{85} +(1.37137 + 9.81510i) q^{86} +(3.11225 + 2.27268i) q^{88} +(-4.22833 + 2.44123i) q^{89} +(4.14263 - 6.47855i) q^{91} +(11.5246 - 3.28457i) q^{92} +(7.58705 - 5.91783i) q^{94} +(0.397718 - 0.688868i) q^{95} +(6.22643 + 3.59483i) q^{97} +(1.30122 - 3.21320i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 4 q^{10} - 4 q^{16} + 64 q^{25} - 48 q^{28} - 48 q^{40} + 20 q^{49} - 12 q^{52} + 16 q^{55} + 12 q^{58} - 72 q^{64} - 84 q^{76} + 80 q^{79} - 12 q^{82} - 12 q^{88} - 24 q^{94} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.869780 + 1.11512i 0.615027 + 0.788506i
\(3\) 0 0
\(4\) −0.486965 + 1.93981i −0.243482 + 0.969905i
\(5\) −0.189692 −0.0848328 −0.0424164 0.999100i \(-0.513506\pi\)
−0.0424164 + 0.999100i \(0.513506\pi\)
\(6\) 0 0
\(7\) −1.84703 1.06638i −0.698111 0.403055i 0.108532 0.994093i \(-0.465385\pi\)
−0.806644 + 0.591038i \(0.798718\pi\)
\(8\) −2.58667 + 1.14419i −0.914524 + 0.404531i
\(9\) 0 0
\(10\) −0.164990 0.211528i −0.0521745 0.0668911i
\(11\) −0.681249 1.17996i −0.205404 0.355770i 0.744857 0.667224i \(-0.232518\pi\)
−0.950261 + 0.311453i \(0.899184\pi\)
\(12\) 0 0
\(13\) −0.163331 + 3.60185i −0.0452998 + 0.998973i
\(14\) −0.417370 2.98717i −0.111547 0.798355i
\(15\) 0 0
\(16\) −3.52573 1.88924i −0.881433 0.472310i
\(17\) −2.82570 + 4.89426i −0.685333 + 1.18703i 0.287999 + 0.957631i \(0.407010\pi\)
−0.973332 + 0.229401i \(0.926323\pi\)
\(18\) 0 0
\(19\) −2.09665 + 3.63151i −0.481005 + 0.833125i −0.999762 0.0217961i \(-0.993062\pi\)
0.518757 + 0.854922i \(0.326395\pi\)
\(20\) 0.0923733 0.367966i 0.0206553 0.0822798i
\(21\) 0 0
\(22\) 0.723252 1.78597i 0.154198 0.380771i
\(23\) −2.99588 5.18901i −0.624683 1.08198i −0.988602 0.150553i \(-0.951895\pi\)
0.363919 0.931431i \(-0.381439\pi\)
\(24\) 0 0
\(25\) −4.96402 −0.992803
\(26\) −4.15854 + 2.95069i −0.815557 + 0.578677i
\(27\) 0 0
\(28\) 2.96802 3.06360i 0.560903 0.578965i
\(29\) −0.0901081 + 0.0520240i −0.0167327 + 0.00966061i −0.508343 0.861155i \(-0.669742\pi\)
0.491610 + 0.870815i \(0.336408\pi\)
\(30\) 0 0
\(31\) 2.73867i 0.491880i 0.969285 + 0.245940i \(0.0790967\pi\)
−0.969285 + 0.245940i \(0.920903\pi\)
\(32\) −0.959891 5.57482i −0.169686 0.985498i
\(33\) 0 0
\(34\) −7.91540 + 1.10595i −1.35748 + 0.189668i
\(35\) 0.350366 + 0.202284i 0.0592227 + 0.0341923i
\(36\) 0 0
\(37\) 1.06198 + 1.83940i 0.174588 + 0.302395i 0.940019 0.341123i \(-0.110807\pi\)
−0.765431 + 0.643518i \(0.777474\pi\)
\(38\) −5.87318 + 0.820605i −0.952756 + 0.133120i
\(39\) 0 0
\(40\) 0.490669 0.217043i 0.0775816 0.0343175i
\(41\) −8.00410 + 4.62117i −1.25003 + 0.721705i −0.971115 0.238611i \(-0.923308\pi\)
−0.278914 + 0.960316i \(0.589975\pi\)
\(42\) 0 0
\(43\) 6.06888 + 3.50387i 0.925496 + 0.534335i 0.885384 0.464860i \(-0.153895\pi\)
0.0401118 + 0.999195i \(0.487229\pi\)
\(44\) 2.62064 0.746896i 0.395076 0.112599i
\(45\) 0 0
\(46\) 3.18059 7.85405i 0.468953 1.15802i
\(47\) 6.80383i 0.992440i −0.868197 0.496220i \(-0.834721\pi\)
0.868197 0.496220i \(-0.165279\pi\)
\(48\) 0 0
\(49\) −1.22566 2.12290i −0.175094 0.303271i
\(50\) −4.31760 5.53545i −0.610601 0.782831i
\(51\) 0 0
\(52\) −6.90737 2.07080i −0.957880 0.287169i
\(53\) 9.28824i 1.27584i −0.770103 0.637919i \(-0.779795\pi\)
0.770103 0.637919i \(-0.220205\pi\)
\(54\) 0 0
\(55\) 0.129227 + 0.223828i 0.0174250 + 0.0301810i
\(56\) 5.99779 + 0.645029i 0.801488 + 0.0861956i
\(57\) 0 0
\(58\) −0.136387 0.0552316i −0.0179085 0.00725226i
\(59\) 1.76132 3.05070i 0.229305 0.397168i −0.728297 0.685261i \(-0.759688\pi\)
0.957602 + 0.288093i \(0.0930214\pi\)
\(60\) 0 0
\(61\) 10.2886 + 5.94011i 1.31732 + 0.760554i 0.983296 0.182012i \(-0.0582610\pi\)
0.334021 + 0.942566i \(0.391594\pi\)
\(62\) −3.05394 + 2.38204i −0.387850 + 0.302520i
\(63\) 0 0
\(64\) 5.38167 5.91926i 0.672709 0.739907i
\(65\) 0.0309825 0.683242i 0.00384291 0.0847457i
\(66\) 0 0
\(67\) 6.02495 + 10.4355i 0.736065 + 1.27490i 0.954255 + 0.298995i \(0.0966514\pi\)
−0.218190 + 0.975906i \(0.570015\pi\)
\(68\) −8.11792 7.86466i −0.984442 0.953730i
\(69\) 0 0
\(70\) 0.0791716 + 0.566642i 0.00946282 + 0.0677266i
\(71\) 1.24609 + 0.719429i 0.147883 + 0.0853805i 0.572116 0.820173i \(-0.306123\pi\)
−0.424232 + 0.905553i \(0.639456\pi\)
\(72\) 0 0
\(73\) 7.83052i 0.916493i 0.888825 + 0.458246i \(0.151522\pi\)
−0.888825 + 0.458246i \(0.848478\pi\)
\(74\) −1.12745 + 2.78410i −0.131064 + 0.323645i
\(75\) 0 0
\(76\) −6.02344 5.83553i −0.690937 0.669381i
\(77\) 2.90589i 0.331157i
\(78\) 0 0
\(79\) 5.68079 0.639138 0.319569 0.947563i \(-0.396462\pi\)
0.319569 + 0.947563i \(0.396462\pi\)
\(80\) 0.668802 + 0.358373i 0.0747744 + 0.0400673i
\(81\) 0 0
\(82\) −12.1149 4.90609i −1.33787 0.541787i
\(83\) 12.8862 1.41444 0.707222 0.706992i \(-0.249948\pi\)
0.707222 + 0.706992i \(0.249948\pi\)
\(84\) 0 0
\(85\) 0.536013 0.928401i 0.0581387 0.100699i
\(86\) 1.37137 + 9.81510i 0.147879 + 1.05839i
\(87\) 0 0
\(88\) 3.11225 + 2.27268i 0.331767 + 0.242268i
\(89\) −4.22833 + 2.44123i −0.448202 + 0.258770i −0.707071 0.707143i \(-0.749984\pi\)
0.258868 + 0.965913i \(0.416650\pi\)
\(90\) 0 0
\(91\) 4.14263 6.47855i 0.434265 0.679136i
\(92\) 11.5246 3.28457i 1.20152 0.342440i
\(93\) 0 0
\(94\) 7.58705 5.91783i 0.782545 0.610378i
\(95\) 0.397718 0.688868i 0.0408050 0.0706763i
\(96\) 0 0
\(97\) 6.22643 + 3.59483i 0.632198 + 0.365000i 0.781603 0.623776i \(-0.214402\pi\)
−0.149405 + 0.988776i \(0.547736\pi\)
\(98\) 1.30122 3.21320i 0.131444 0.324582i
\(99\) 0 0
\(100\) 2.41730 9.62925i 0.241730 0.962925i
\(101\) −11.2612 + 6.50163i −1.12053 + 0.646937i −0.941535 0.336914i \(-0.890617\pi\)
−0.178992 + 0.983851i \(0.557284\pi\)
\(102\) 0 0
\(103\) −12.8045 −1.26167 −0.630834 0.775918i \(-0.717287\pi\)
−0.630834 + 0.775918i \(0.717287\pi\)
\(104\) −3.69871 9.50366i −0.362688 0.931911i
\(105\) 0 0
\(106\) 10.3575 8.07873i 1.00601 0.784676i
\(107\) −15.6901 + 9.05871i −1.51682 + 0.875738i −0.517018 + 0.855974i \(0.672958\pi\)
−0.999805 + 0.0197640i \(0.993709\pi\)
\(108\) 0 0
\(109\) −5.50733 −0.527507 −0.263753 0.964590i \(-0.584961\pi\)
−0.263753 + 0.964590i \(0.584961\pi\)
\(110\) −0.137195 + 0.338785i −0.0130810 + 0.0323019i
\(111\) 0 0
\(112\) 4.49748 + 7.24926i 0.424971 + 0.684991i
\(113\) −5.96077 + 10.3244i −0.560742 + 0.971234i 0.436690 + 0.899612i \(0.356151\pi\)
−0.997432 + 0.0716216i \(0.977183\pi\)
\(114\) 0 0
\(115\) 0.568293 + 0.984313i 0.0529936 + 0.0917876i
\(116\) −0.0570371 0.200127i −0.00529576 0.0185813i
\(117\) 0 0
\(118\) 4.93385 0.689361i 0.454198 0.0634609i
\(119\) 10.4383 6.02656i 0.956878 0.552454i
\(120\) 0 0
\(121\) 4.57180 7.91859i 0.415618 0.719872i
\(122\) 2.32489 + 16.6395i 0.210486 + 1.50647i
\(123\) 0 0
\(124\) −5.31251 1.33364i −0.477077 0.119764i
\(125\) 1.89009 0.169055
\(126\) 0 0
\(127\) −1.00642 1.74317i −0.0893055 0.154682i 0.817912 0.575343i \(-0.195131\pi\)
−0.907218 + 0.420661i \(0.861798\pi\)
\(128\) 11.2815 + 0.852734i 0.997156 + 0.0753718i
\(129\) 0 0
\(130\) 0.788841 0.559721i 0.0691859 0.0490908i
\(131\) 2.68138i 0.234273i −0.993116 0.117137i \(-0.962628\pi\)
0.993116 0.117137i \(-0.0373715\pi\)
\(132\) 0 0
\(133\) 7.74516 4.47167i 0.671590 0.387743i
\(134\) −6.39643 + 15.7951i −0.552567 + 1.36449i
\(135\) 0 0
\(136\) 1.70920 15.8929i 0.146562 1.36281i
\(137\) 7.55372 + 4.36114i 0.645358 + 0.372598i 0.786676 0.617367i \(-0.211800\pi\)
−0.141317 + 0.989964i \(0.545134\pi\)
\(138\) 0 0
\(139\) −4.71129 2.72007i −0.399607 0.230713i 0.286708 0.958018i \(-0.407439\pi\)
−0.686314 + 0.727305i \(0.740773\pi\)
\(140\) −0.563009 + 0.581139i −0.0475829 + 0.0491152i
\(141\) 0 0
\(142\) 0.281576 + 2.01528i 0.0236293 + 0.169118i
\(143\) 4.36130 2.26103i 0.364710 0.189077i
\(144\) 0 0
\(145\) 0.0170928 0.00986852i 0.00141948 0.000819536i
\(146\) −8.73193 + 6.81083i −0.722660 + 0.563668i
\(147\) 0 0
\(148\) −4.08523 + 1.16431i −0.335804 + 0.0957058i
\(149\) 4.35351 7.54051i 0.356654 0.617742i −0.630746 0.775989i \(-0.717251\pi\)
0.987400 + 0.158247i \(0.0505843\pi\)
\(150\) 0 0
\(151\) 11.5767i 0.942102i 0.882106 + 0.471051i \(0.156125\pi\)
−0.882106 + 0.471051i \(0.843875\pi\)
\(152\) 1.26821 11.7925i 0.102866 0.956495i
\(153\) 0 0
\(154\) −3.24040 + 2.52748i −0.261119 + 0.203670i
\(155\) 0.519504i 0.0417276i
\(156\) 0 0
\(157\) 17.8314i 1.42310i 0.702634 + 0.711552i \(0.252007\pi\)
−0.702634 + 0.711552i \(0.747993\pi\)
\(158\) 4.94104 + 6.33473i 0.393088 + 0.503964i
\(159\) 0 0
\(160\) 0.182083 + 1.05750i 0.0143950 + 0.0836025i
\(161\) 12.7790i 1.00713i
\(162\) 0 0
\(163\) −1.93263 + 3.34741i −0.151375 + 0.262189i −0.931733 0.363143i \(-0.881703\pi\)
0.780358 + 0.625333i \(0.215037\pi\)
\(164\) −5.06648 17.7768i −0.395625 1.38813i
\(165\) 0 0
\(166\) 11.2082 + 14.3696i 0.869922 + 1.11530i
\(167\) 17.2142 9.93865i 1.33208 0.769076i 0.346461 0.938065i \(-0.387383\pi\)
0.985618 + 0.168989i \(0.0540501\pi\)
\(168\) 0 0
\(169\) −12.9466 1.17659i −0.995896 0.0905066i
\(170\) 1.50149 0.209789i 0.115159 0.0160901i
\(171\) 0 0
\(172\) −9.75218 + 10.0662i −0.743597 + 0.767542i
\(173\) 11.8468 + 6.83976i 0.900696 + 0.520017i 0.877426 0.479712i \(-0.159259\pi\)
0.0232702 + 0.999729i \(0.492592\pi\)
\(174\) 0 0
\(175\) 9.16868 + 5.29354i 0.693087 + 0.400154i
\(176\) 0.172678 + 5.44725i 0.0130161 + 0.410602i
\(177\) 0 0
\(178\) −6.39997 2.59175i −0.479698 0.194260i
\(179\) 3.06137 1.76748i 0.228817 0.132108i −0.381209 0.924489i \(-0.624492\pi\)
0.610026 + 0.792381i \(0.291159\pi\)
\(180\) 0 0
\(181\) 5.66016i 0.420717i −0.977624 0.210358i \(-0.932537\pi\)
0.977624 0.210358i \(-0.0674631\pi\)
\(182\) 10.8275 1.01541i 0.802588 0.0752669i
\(183\) 0 0
\(184\) 13.6865 + 9.99439i 1.00898 + 0.736796i
\(185\) −0.201448 0.348919i −0.0148108 0.0256530i
\(186\) 0 0
\(187\) 7.70002 0.563081
\(188\) 13.1981 + 3.31322i 0.962573 + 0.241642i
\(189\) 0 0
\(190\) 1.11409 0.155662i 0.0808249 0.0112929i
\(191\) 10.2536 17.7597i 0.741923 1.28505i −0.209695 0.977767i \(-0.567247\pi\)
0.951619 0.307282i \(-0.0994195\pi\)
\(192\) 0 0
\(193\) −9.93758 + 5.73747i −0.715323 + 0.412992i −0.813029 0.582224i \(-0.802183\pi\)
0.0977060 + 0.995215i \(0.468850\pi\)
\(194\) 1.40697 + 10.0699i 0.101015 + 0.722977i
\(195\) 0 0
\(196\) 4.71487 1.34376i 0.336776 0.0959831i
\(197\) 8.30543 + 14.3854i 0.591737 + 1.02492i 0.993998 + 0.109394i \(0.0348911\pi\)
−0.402261 + 0.915525i \(0.631776\pi\)
\(198\) 0 0
\(199\) 11.7805 20.4043i 0.835094 1.44643i −0.0588595 0.998266i \(-0.518746\pi\)
0.893954 0.448159i \(-0.147920\pi\)
\(200\) 12.8402 5.67976i 0.907943 0.401620i
\(201\) 0 0
\(202\) −17.0448 6.90250i −1.19927 0.485658i
\(203\) 0.221910 0.0155750
\(204\) 0 0
\(205\) 1.51831 0.876598i 0.106043 0.0612242i
\(206\) −11.1371 14.2785i −0.775961 0.994833i
\(207\) 0 0
\(208\) 7.38062 12.3906i 0.511754 0.859132i
\(209\) 5.71337 0.395202
\(210\) 0 0
\(211\) −8.68952 + 5.01690i −0.598212 + 0.345378i −0.768338 0.640045i \(-0.778916\pi\)
0.170126 + 0.985422i \(0.445582\pi\)
\(212\) 18.0174 + 4.52305i 1.23744 + 0.310644i
\(213\) 0 0
\(214\) −23.7485 9.61723i −1.62341 0.657421i
\(215\) −1.15122 0.664656i −0.0785124 0.0453292i
\(216\) 0 0
\(217\) 2.92048 5.05841i 0.198255 0.343387i
\(218\) −4.79017 6.14131i −0.324431 0.415942i
\(219\) 0 0
\(220\) −0.497114 + 0.141680i −0.0335154 + 0.00955206i
\(221\) −17.1669 10.9771i −1.15477 0.738402i
\(222\) 0 0
\(223\) −5.39103 + 3.11251i −0.361010 + 0.208429i −0.669524 0.742791i \(-0.733502\pi\)
0.308514 + 0.951220i \(0.400168\pi\)
\(224\) −4.17194 + 11.3205i −0.278750 + 0.756380i
\(225\) 0 0
\(226\) −16.6974 + 2.33297i −1.11070 + 0.155187i
\(227\) −6.07319 + 10.5191i −0.403092 + 0.698175i −0.994097 0.108492i \(-0.965398\pi\)
0.591006 + 0.806667i \(0.298731\pi\)
\(228\) 0 0
\(229\) −11.8639 −0.783987 −0.391994 0.919968i \(-0.628215\pi\)
−0.391994 + 0.919968i \(0.628215\pi\)
\(230\) −0.603332 + 1.48985i −0.0397825 + 0.0982377i
\(231\) 0 0
\(232\) 0.173554 0.237669i 0.0113944 0.0156037i
\(233\) −7.14863 −0.468322 −0.234161 0.972198i \(-0.575234\pi\)
−0.234161 + 0.972198i \(0.575234\pi\)
\(234\) 0 0
\(235\) 1.29063i 0.0841914i
\(236\) 5.06008 + 4.90222i 0.329383 + 0.319107i
\(237\) 0 0
\(238\) 15.7993 + 6.39814i 1.02412 + 0.414729i
\(239\) 0.661526i 0.0427906i −0.999771 0.0213953i \(-0.993189\pi\)
0.999771 0.0213953i \(-0.00681085\pi\)
\(240\) 0 0
\(241\) 8.42049 + 4.86157i 0.542411 + 0.313161i 0.746056 0.665884i \(-0.231945\pi\)
−0.203644 + 0.979045i \(0.565279\pi\)
\(242\) 12.8066 1.78935i 0.823240 0.115024i
\(243\) 0 0
\(244\) −16.5329 + 17.0653i −1.05841 + 1.09249i
\(245\) 0.232497 + 0.402696i 0.0148537 + 0.0257273i
\(246\) 0 0
\(247\) −12.7377 8.14497i −0.810481 0.518252i
\(248\) −3.13356 7.08403i −0.198981 0.449837i
\(249\) 0 0
\(250\) 1.64397 + 2.10767i 0.103973 + 0.133301i
\(251\) 16.7178 + 9.65204i 1.05522 + 0.609232i 0.924106 0.382136i \(-0.124811\pi\)
0.131114 + 0.991367i \(0.458145\pi\)
\(252\) 0 0
\(253\) −4.08187 + 7.07001i −0.256625 + 0.444488i
\(254\) 1.06847 2.63845i 0.0670420 0.165551i
\(255\) 0 0
\(256\) 8.86155 + 13.3219i 0.553847 + 0.832618i
\(257\) 5.38456 + 9.32633i 0.335879 + 0.581760i 0.983653 0.180072i \(-0.0576332\pi\)
−0.647774 + 0.761833i \(0.724300\pi\)
\(258\) 0 0
\(259\) 4.52990i 0.281474i
\(260\) 1.31027 + 0.392815i 0.0812596 + 0.0243613i
\(261\) 0 0
\(262\) 2.99005 2.33221i 0.184726 0.144084i
\(263\) −14.1235 24.4626i −0.870892 1.50843i −0.861075 0.508478i \(-0.830208\pi\)
−0.00981755 0.999952i \(-0.503125\pi\)
\(264\) 0 0
\(265\) 1.76190i 0.108233i
\(266\) 11.7230 + 4.74738i 0.718784 + 0.291080i
\(267\) 0 0
\(268\) −23.1769 + 6.60553i −1.41575 + 0.403497i
\(269\) −18.6043 10.7412i −1.13432 0.654902i −0.189305 0.981918i \(-0.560623\pi\)
−0.945019 + 0.327017i \(0.893957\pi\)
\(270\) 0 0
\(271\) −3.77766 + 2.18103i −0.229476 + 0.132488i −0.610330 0.792147i \(-0.708963\pi\)
0.380854 + 0.924635i \(0.375630\pi\)
\(272\) 19.2091 11.9174i 1.16472 0.722599i
\(273\) 0 0
\(274\) 1.70690 + 12.2165i 0.103118 + 0.738026i
\(275\) 3.38173 + 5.85733i 0.203926 + 0.353210i
\(276\) 0 0
\(277\) 8.44257 + 4.87432i 0.507265 + 0.292870i 0.731709 0.681617i \(-0.238723\pi\)
−0.224444 + 0.974487i \(0.572056\pi\)
\(278\) −1.06460 7.61949i −0.0638505 0.456987i
\(279\) 0 0
\(280\) −1.13773 0.122357i −0.0679925 0.00731221i
\(281\) 22.3245i 1.33177i 0.746055 + 0.665884i \(0.231945\pi\)
−0.746055 + 0.665884i \(0.768055\pi\)
\(282\) 0 0
\(283\) −3.69872 + 2.13546i −0.219866 + 0.126940i −0.605888 0.795550i \(-0.707182\pi\)
0.386022 + 0.922489i \(0.373849\pi\)
\(284\) −2.00236 + 2.06684i −0.118818 + 0.122644i
\(285\) 0 0
\(286\) 6.31468 + 2.89675i 0.373395 + 0.171288i
\(287\) 19.7117 1.16355
\(288\) 0 0
\(289\) −7.46918 12.9370i −0.439363 0.761000i
\(290\) 0.0258715 + 0.0104770i 0.00151923 + 0.000615229i
\(291\) 0 0
\(292\) −15.1897 3.81319i −0.888911 0.223150i
\(293\) −4.86107 + 8.41962i −0.283987 + 0.491880i −0.972363 0.233474i \(-0.924991\pi\)
0.688376 + 0.725354i \(0.258324\pi\)
\(294\) 0 0
\(295\) −0.334109 + 0.578694i −0.0194526 + 0.0336928i
\(296\) −4.85159 3.54281i −0.281993 0.205921i
\(297\) 0 0
\(298\) 12.1951 1.70391i 0.706445 0.0987050i
\(299\) 19.1794 9.94317i 1.10917 0.575028i
\(300\) 0 0
\(301\) −7.47294 12.9435i −0.430733 0.746051i
\(302\) −12.9094 + 10.0692i −0.742853 + 0.579419i
\(303\) 0 0
\(304\) 14.2530 8.84265i 0.817467 0.507161i
\(305\) −1.95166 1.12679i −0.111752 0.0645199i
\(306\) 0 0
\(307\) −10.9126 −0.622813 −0.311407 0.950277i \(-0.600800\pi\)
−0.311407 + 0.950277i \(0.600800\pi\)
\(308\) −5.63687 1.41506i −0.321191 0.0806308i
\(309\) 0 0
\(310\) 0.579307 0.451854i 0.0329024 0.0256636i
\(311\) 5.20379 0.295080 0.147540 0.989056i \(-0.452864\pi\)
0.147540 + 0.989056i \(0.452864\pi\)
\(312\) 0 0
\(313\) 24.5947 1.39017 0.695086 0.718926i \(-0.255366\pi\)
0.695086 + 0.718926i \(0.255366\pi\)
\(314\) −19.8841 + 15.5094i −1.12213 + 0.875248i
\(315\) 0 0
\(316\) −2.76634 + 11.0197i −0.155619 + 0.619904i
\(317\) 5.59568 0.314285 0.157142 0.987576i \(-0.449772\pi\)
0.157142 + 0.987576i \(0.449772\pi\)
\(318\) 0 0
\(319\) 0.122772 + 0.0708825i 0.00687392 + 0.00396866i
\(320\) −1.02086 + 1.12283i −0.0570678 + 0.0627684i
\(321\) 0 0
\(322\) −14.2501 + 11.1149i −0.794125 + 0.619411i
\(323\) −11.8490 20.5231i −0.659298 1.14194i
\(324\) 0 0
\(325\) 0.810776 17.8796i 0.0449738 0.991784i
\(326\) −5.41371 + 0.756408i −0.299838 + 0.0418936i
\(327\) 0 0
\(328\) 15.4164 21.1116i 0.851230 1.16569i
\(329\) −7.25548 + 12.5669i −0.400008 + 0.692834i
\(330\) 0 0
\(331\) 8.64559 14.9746i 0.475205 0.823078i −0.524392 0.851477i \(-0.675707\pi\)
0.999597 + 0.0283984i \(0.00904072\pi\)
\(332\) −6.27512 + 24.9968i −0.344392 + 1.37188i
\(333\) 0 0
\(334\) 26.0554 + 10.5514i 1.42569 + 0.577349i
\(335\) −1.14288 1.97953i −0.0624424 0.108153i
\(336\) 0 0
\(337\) −13.5143 −0.736168 −0.368084 0.929792i \(-0.619986\pi\)
−0.368084 + 0.929792i \(0.619986\pi\)
\(338\) −9.94871 15.4604i −0.541138 0.840934i
\(339\) 0 0
\(340\) 1.53990 + 1.49186i 0.0835130 + 0.0809075i
\(341\) 3.23152 1.86572i 0.174997 0.101034i
\(342\) 0 0
\(343\) 20.1574i 1.08840i
\(344\) −19.7073 2.11941i −1.06254 0.114271i
\(345\) 0 0
\(346\) 2.67700 + 19.1596i 0.143916 + 1.03003i
\(347\) 0.739226 + 0.426792i 0.0396837 + 0.0229114i 0.519711 0.854342i \(-0.326040\pi\)
−0.480027 + 0.877254i \(0.659373\pi\)
\(348\) 0 0
\(349\) −7.04582 12.2037i −0.377154 0.653250i 0.613493 0.789700i \(-0.289764\pi\)
−0.990647 + 0.136450i \(0.956431\pi\)
\(350\) 2.07183 + 14.8284i 0.110744 + 0.792609i
\(351\) 0 0
\(352\) −5.92412 + 4.93047i −0.315757 + 0.262795i
\(353\) −2.37214 + 1.36955i −0.126256 + 0.0728940i −0.561798 0.827275i \(-0.689890\pi\)
0.435542 + 0.900169i \(0.356557\pi\)
\(354\) 0 0
\(355\) −0.236373 0.136470i −0.0125454 0.00724307i
\(356\) −2.67647 9.39096i −0.141853 0.497720i
\(357\) 0 0
\(358\) 4.63366 + 1.87646i 0.244897 + 0.0991739i
\(359\) 14.5013i 0.765350i 0.923883 + 0.382675i \(0.124997\pi\)
−0.923883 + 0.382675i \(0.875003\pi\)
\(360\) 0 0
\(361\) 0.708092 + 1.22645i 0.0372680 + 0.0645500i
\(362\) 6.31174 4.92310i 0.331738 0.258752i
\(363\) 0 0
\(364\) 10.5498 + 11.1907i 0.552962 + 0.586554i
\(365\) 1.48539i 0.0777486i
\(366\) 0 0
\(367\) −7.28507 12.6181i −0.380277 0.658660i 0.610824 0.791766i \(-0.290838\pi\)
−0.991102 + 0.133106i \(0.957505\pi\)
\(368\) 0.759372 + 23.9550i 0.0395850 + 1.24874i
\(369\) 0 0
\(370\) 0.213869 0.528121i 0.0111185 0.0274557i
\(371\) −9.90482 + 17.1557i −0.514233 + 0.890677i
\(372\) 0 0
\(373\) −26.5637 15.3365i −1.37541 0.794096i −0.383811 0.923412i \(-0.625389\pi\)
−0.991603 + 0.129316i \(0.958722\pi\)
\(374\) 6.69733 + 8.58641i 0.346310 + 0.443993i
\(375\) 0 0
\(376\) 7.78485 + 17.5992i 0.401473 + 0.907610i
\(377\) −0.172665 0.333053i −0.00889270 0.0171531i
\(378\) 0 0
\(379\) −14.8941 25.7974i −0.765059 1.32512i −0.940215 0.340581i \(-0.889376\pi\)
0.175156 0.984541i \(-0.443957\pi\)
\(380\) 1.14260 + 1.10695i 0.0586141 + 0.0567854i
\(381\) 0 0
\(382\) 28.7225 4.01313i 1.46957 0.205330i
\(383\) −5.15086 2.97385i −0.263197 0.151957i 0.362595 0.931947i \(-0.381891\pi\)
−0.625792 + 0.779990i \(0.715224\pi\)
\(384\) 0 0
\(385\) 0.551223i 0.0280929i
\(386\) −15.0414 6.09122i −0.765590 0.310035i
\(387\) 0 0
\(388\) −10.0053 + 10.3275i −0.507944 + 0.524301i
\(389\) 5.39933i 0.273757i 0.990588 + 0.136878i \(0.0437070\pi\)
−0.990588 + 0.136878i \(0.956293\pi\)
\(390\) 0 0
\(391\) 33.8618 1.71247
\(392\) 5.59935 + 4.08885i 0.282810 + 0.206518i
\(393\) 0 0
\(394\) −8.81751 + 21.7737i −0.444220 + 1.09694i
\(395\) −1.07760 −0.0542199
\(396\) 0 0
\(397\) 5.09195 8.81952i 0.255558 0.442639i −0.709489 0.704716i \(-0.751074\pi\)
0.965047 + 0.262077i \(0.0844076\pi\)
\(398\) 32.9996 4.61073i 1.65412 0.231115i
\(399\) 0 0
\(400\) 17.5018 + 9.37821i 0.875089 + 0.468911i
\(401\) 2.13475 1.23250i 0.106604 0.0615481i −0.445750 0.895158i \(-0.647063\pi\)
0.552354 + 0.833609i \(0.313730\pi\)
\(402\) 0 0
\(403\) −9.86429 0.447310i −0.491375 0.0222821i
\(404\) −7.12815 25.0106i −0.354639 1.24432i
\(405\) 0 0
\(406\) 0.193013 + 0.247455i 0.00957906 + 0.0122810i
\(407\) 1.44694 2.50617i 0.0717222 0.124226i
\(408\) 0 0
\(409\) 21.2131 + 12.2474i 1.04892 + 0.605595i 0.922347 0.386362i \(-0.126269\pi\)
0.126574 + 0.991957i \(0.459602\pi\)
\(410\) 2.29810 + 0.930645i 0.113495 + 0.0459613i
\(411\) 0 0
\(412\) 6.23536 24.8384i 0.307194 1.22370i
\(413\) −6.50644 + 3.75649i −0.320161 + 0.184845i
\(414\) 0 0
\(415\) −2.44441 −0.119991
\(416\) 20.2364 2.54684i 0.992173 0.124869i
\(417\) 0 0
\(418\) 4.96937 + 6.37106i 0.243060 + 0.311619i
\(419\) −34.2729 + 19.7874i −1.67434 + 0.966680i −0.709175 + 0.705032i \(0.750932\pi\)
−0.965164 + 0.261647i \(0.915734\pi\)
\(420\) 0 0
\(421\) 5.17255 0.252095 0.126047 0.992024i \(-0.459771\pi\)
0.126047 + 0.992024i \(0.459771\pi\)
\(422\) −13.1524 5.32622i −0.640249 0.259276i
\(423\) 0 0
\(424\) 10.6275 + 24.0256i 0.516116 + 1.16679i
\(425\) 14.0268 24.2952i 0.680401 1.17849i
\(426\) 0 0
\(427\) −12.6689 21.9431i −0.613090 1.06190i
\(428\) −9.93163 34.8472i −0.480063 1.68440i
\(429\) 0 0
\(430\) −0.260138 1.86185i −0.0125450 0.0897862i
\(431\) −20.9732 + 12.1089i −1.01025 + 0.583265i −0.911263 0.411824i \(-0.864892\pi\)
−0.0989818 + 0.995089i \(0.531559\pi\)
\(432\) 0 0
\(433\) 16.2179 28.0903i 0.779385 1.34993i −0.152912 0.988240i \(-0.548865\pi\)
0.932297 0.361694i \(-0.117802\pi\)
\(434\) 8.18088 1.14304i 0.392695 0.0548676i
\(435\) 0 0
\(436\) 2.68188 10.6832i 0.128439 0.511632i
\(437\) 25.1253 1.20190
\(438\) 0 0
\(439\) 1.43286 + 2.48179i 0.0683868 + 0.118449i 0.898191 0.439605i \(-0.144881\pi\)
−0.829805 + 0.558054i \(0.811548\pi\)
\(440\) −0.590369 0.431109i −0.0281447 0.0205523i
\(441\) 0 0
\(442\) −2.69062 28.6907i −0.127980 1.36468i
\(443\) 16.2626i 0.772659i −0.922361 0.386329i \(-0.873743\pi\)
0.922361 0.386329i \(-0.126257\pi\)
\(444\) 0 0
\(445\) 0.802080 0.463081i 0.0380223 0.0219522i
\(446\) −8.15982 3.30442i −0.386379 0.156469i
\(447\) 0 0
\(448\) −16.2523 + 5.19412i −0.767849 + 0.245399i
\(449\) −33.7388 19.4791i −1.59223 0.919277i −0.992923 0.118760i \(-0.962108\pi\)
−0.599311 0.800516i \(-0.704559\pi\)
\(450\) 0 0
\(451\) 10.9056 + 6.29633i 0.513523 + 0.296482i
\(452\) −17.1246 16.5904i −0.805474 0.780345i
\(453\) 0 0
\(454\) −17.0123 + 2.37697i −0.798428 + 0.111557i
\(455\) −0.785823 + 1.22893i −0.0368399 + 0.0576130i
\(456\) 0 0
\(457\) −11.6025 + 6.69870i −0.542742 + 0.313352i −0.746189 0.665734i \(-0.768119\pi\)
0.203448 + 0.979086i \(0.434785\pi\)
\(458\) −10.3190 13.2296i −0.482174 0.618179i
\(459\) 0 0
\(460\) −2.18612 + 0.623056i −0.101928 + 0.0290501i
\(461\) 13.6463 23.6361i 0.635571 1.10084i −0.350823 0.936442i \(-0.614098\pi\)
0.986394 0.164399i \(-0.0525686\pi\)
\(462\) 0 0
\(463\) 28.3889i 1.31934i −0.751555 0.659671i \(-0.770696\pi\)
0.751555 0.659671i \(-0.229304\pi\)
\(464\) 0.415983 0.0131866i 0.0193115 0.000612174i
\(465\) 0 0
\(466\) −6.21773 7.97154i −0.288031 0.369275i
\(467\) 34.7603i 1.60852i −0.594280 0.804258i \(-0.702563\pi\)
0.594280 0.804258i \(-0.297437\pi\)
\(468\) 0 0
\(469\) 25.6996i 1.18670i
\(470\) −1.43920 + 1.12256i −0.0663854 + 0.0517800i
\(471\) 0 0
\(472\) −1.06538 + 9.90643i −0.0490382 + 0.455981i
\(473\) 9.54803i 0.439019i
\(474\) 0 0
\(475\) 10.4078 18.0269i 0.477544 0.827130i
\(476\) 6.60730 + 23.1831i 0.302845 + 1.06259i
\(477\) 0 0
\(478\) 0.737678 0.575382i 0.0337406 0.0263174i
\(479\) −29.7344 + 17.1671i −1.35860 + 0.784387i −0.989435 0.144978i \(-0.953689\pi\)
−0.369163 + 0.929365i \(0.620356\pi\)
\(480\) 0 0
\(481\) −6.79869 + 3.52465i −0.309994 + 0.160710i
\(482\) 1.90276 + 13.6183i 0.0866684 + 0.620297i
\(483\) 0 0
\(484\) 13.1343 + 12.7245i 0.597012 + 0.578386i
\(485\) −1.18110 0.681910i −0.0536311 0.0309639i
\(486\) 0 0
\(487\) 19.0115 + 10.9763i 0.861494 + 0.497384i 0.864512 0.502612i \(-0.167627\pi\)
−0.00301815 + 0.999995i \(0.500961\pi\)
\(488\) −33.4097 3.59303i −1.51239 0.162649i
\(489\) 0 0
\(490\) −0.246832 + 0.609518i −0.0111507 + 0.0275352i
\(491\) 16.3189 9.42172i 0.736462 0.425196i −0.0843196 0.996439i \(-0.526872\pi\)
0.820781 + 0.571242i \(0.193538\pi\)
\(492\) 0 0
\(493\) 0.588017i 0.0264829i
\(494\) −1.99643 21.2883i −0.0898234 0.957808i
\(495\) 0 0
\(496\) 5.17401 9.65583i 0.232320 0.433559i
\(497\) −1.53437 2.65761i −0.0688261 0.119210i
\(498\) 0 0
\(499\) −39.7400 −1.77900 −0.889502 0.456931i \(-0.848949\pi\)
−0.889502 + 0.456931i \(0.848949\pi\)
\(500\) −0.920409 + 3.66642i −0.0411619 + 0.163967i
\(501\) 0 0
\(502\) 3.77769 + 27.0375i 0.168607 + 1.20674i
\(503\) −14.7001 + 25.4614i −0.655447 + 1.13527i 0.326335 + 0.945254i \(0.394186\pi\)
−0.981782 + 0.190013i \(0.939147\pi\)
\(504\) 0 0
\(505\) 2.13615 1.23331i 0.0950574 0.0548814i
\(506\) −11.4342 + 1.59760i −0.508313 + 0.0710218i
\(507\) 0 0
\(508\) 3.87152 1.10340i 0.171771 0.0489556i
\(509\) 19.7550 + 34.2167i 0.875626 + 1.51663i 0.856094 + 0.516820i \(0.172884\pi\)
0.0195318 + 0.999809i \(0.493782\pi\)
\(510\) 0 0
\(511\) 8.35033 14.4632i 0.369397 0.639814i
\(512\) −7.14785 + 21.4688i −0.315893 + 0.948795i
\(513\) 0 0
\(514\) −5.71655 + 14.1163i −0.252146 + 0.622641i
\(515\) 2.42892 0.107031
\(516\) 0 0
\(517\) −8.02822 + 4.63510i −0.353081 + 0.203851i
\(518\) 5.05136 3.94001i 0.221944 0.173114i
\(519\) 0 0
\(520\) 0.701615 + 1.80277i 0.0307678 + 0.0790566i
\(521\) −9.39408 −0.411562 −0.205781 0.978598i \(-0.565973\pi\)
−0.205781 + 0.978598i \(0.565973\pi\)
\(522\) 0 0
\(523\) 33.5910 19.3938i 1.46883 0.848031i 0.469443 0.882963i \(-0.344455\pi\)
0.999390 + 0.0349315i \(0.0111213\pi\)
\(524\) 5.20137 + 1.30574i 0.227223 + 0.0570414i
\(525\) 0 0
\(526\) 14.9943 37.0264i 0.653783 1.61443i
\(527\) −13.4038 7.73868i −0.583878 0.337102i
\(528\) 0 0
\(529\) −6.45055 + 11.1727i −0.280459 + 0.485769i
\(530\) −1.96473 + 1.53247i −0.0853423 + 0.0665662i
\(531\) 0 0
\(532\) 4.90257 + 17.2017i 0.212553 + 0.745788i
\(533\) −15.3374 29.5843i −0.664338 1.28144i
\(534\) 0 0
\(535\) 2.97629 1.71836i 0.128676 0.0742913i
\(536\) −27.5247 20.0995i −1.18889 0.868167i
\(537\) 0 0
\(538\) −4.20397 30.0884i −0.181246 1.29720i
\(539\) −1.66995 + 2.89244i −0.0719299 + 0.124586i
\(540\) 0 0
\(541\) 4.35170 0.187094 0.0935471 0.995615i \(-0.470179\pi\)
0.0935471 + 0.995615i \(0.470179\pi\)
\(542\) −5.71783 2.31551i −0.245602 0.0994595i
\(543\) 0 0
\(544\) 29.9970 + 11.0548i 1.28611 + 0.473972i
\(545\) 1.04470 0.0447499
\(546\) 0 0
\(547\) 37.5399i 1.60509i 0.596591 + 0.802546i \(0.296522\pi\)
−0.596591 + 0.802546i \(0.703478\pi\)
\(548\) −12.1382 + 12.5291i −0.518518 + 0.535215i
\(549\) 0 0
\(550\) −3.59023 + 8.86561i −0.153088 + 0.378031i
\(551\) 0.436305i 0.0185872i
\(552\) 0 0
\(553\) −10.4926 6.05789i −0.446190 0.257608i
\(554\) 1.90775 + 13.6540i 0.0810526 + 0.580104i
\(555\) 0 0
\(556\) 7.57065 7.81444i 0.321067 0.331406i
\(557\) −4.81938 8.34741i −0.204204 0.353691i 0.745675 0.666310i \(-0.232127\pi\)
−0.949879 + 0.312619i \(0.898794\pi\)
\(558\) 0 0
\(559\) −13.6117 + 21.2869i −0.575712 + 0.900341i
\(560\) −0.853134 1.37513i −0.0360515 0.0581096i
\(561\) 0 0
\(562\) −24.8944 + 19.4174i −1.05011 + 0.819074i
\(563\) 10.7740 + 6.22039i 0.454071 + 0.262158i 0.709548 0.704657i \(-0.248899\pi\)
−0.255477 + 0.966815i \(0.582232\pi\)
\(564\) 0 0
\(565\) 1.13071 1.95845i 0.0475693 0.0823925i
\(566\) −5.59835 2.26712i −0.235316 0.0952942i
\(567\) 0 0
\(568\) −4.04637 0.435165i −0.169782 0.0182591i
\(569\) −18.1774 31.4841i −0.762034 1.31988i −0.941800 0.336173i \(-0.890867\pi\)
0.179766 0.983709i \(-0.442466\pi\)
\(570\) 0 0
\(571\) 28.0964i 1.17580i −0.808934 0.587899i \(-0.799955\pi\)
0.808934 0.587899i \(-0.200045\pi\)
\(572\) 2.26218 + 9.56113i 0.0945863 + 0.399771i
\(573\) 0 0
\(574\) 17.1449 + 21.9809i 0.715613 + 0.917463i
\(575\) 14.8716 + 25.7583i 0.620188 + 1.07420i
\(576\) 0 0
\(577\) 30.9511i 1.28851i 0.764811 + 0.644255i \(0.222832\pi\)
−0.764811 + 0.644255i \(0.777168\pi\)
\(578\) 7.92970 19.5813i 0.329832 0.814476i
\(579\) 0 0
\(580\) 0.0108195 + 0.0379624i 0.000449254 + 0.00157630i
\(581\) −23.8012 13.7416i −0.987439 0.570098i
\(582\) 0 0
\(583\) −10.9597 + 6.32760i −0.453906 + 0.262063i
\(584\) −8.95958 20.2549i −0.370750 0.838155i
\(585\) 0 0
\(586\) −13.6169 + 1.90257i −0.562510 + 0.0785943i
\(587\) 0.0914707 + 0.158432i 0.00377540 + 0.00653919i 0.867907 0.496727i \(-0.165465\pi\)
−0.864132 + 0.503266i \(0.832132\pi\)
\(588\) 0 0
\(589\) −9.94552 5.74205i −0.409798 0.236597i
\(590\) −0.935911 + 0.130766i −0.0385309 + 0.00538356i
\(591\) 0 0
\(592\) −0.269182 8.49155i −0.0110633 0.349001i
\(593\) 26.1358i 1.07327i −0.843815 0.536634i \(-0.819695\pi\)
0.843815 0.536634i \(-0.180305\pi\)
\(594\) 0 0
\(595\) −1.98006 + 1.14319i −0.0811746 + 0.0468662i
\(596\) 12.5071 + 12.1170i 0.512313 + 0.496330i
\(597\) 0 0
\(598\) 27.7696 + 12.7388i 1.13558 + 0.520929i
\(599\) −29.3928 −1.20096 −0.600479 0.799641i \(-0.705023\pi\)
−0.600479 + 0.799641i \(0.705023\pi\)
\(600\) 0 0
\(601\) −6.85899 11.8801i −0.279784 0.484600i 0.691547 0.722332i \(-0.256930\pi\)
−0.971331 + 0.237731i \(0.923596\pi\)
\(602\) 7.93369 19.5912i 0.323353 0.798478i
\(603\) 0 0
\(604\) −22.4567 5.63747i −0.913750 0.229385i
\(605\) −0.867233 + 1.50209i −0.0352580 + 0.0610687i
\(606\) 0 0
\(607\) −11.6750 + 20.2216i −0.473872 + 0.820771i −0.999553 0.0299112i \(-0.990478\pi\)
0.525680 + 0.850682i \(0.323811\pi\)
\(608\) 22.2576 + 8.20261i 0.902664 + 0.332660i
\(609\) 0 0
\(610\) −0.441013 3.15639i −0.0178561 0.127798i
\(611\) 24.5064 + 1.11127i 0.991421 + 0.0449573i
\(612\) 0 0
\(613\) 22.6961 + 39.3108i 0.916688 + 1.58775i 0.804411 + 0.594073i \(0.202481\pi\)
0.112277 + 0.993677i \(0.464186\pi\)
\(614\) −9.49154 12.1688i −0.383047 0.491092i
\(615\) 0 0
\(616\) −3.32488 7.51656i −0.133963 0.302851i
\(617\) 29.6144 + 17.0979i 1.19223 + 0.688334i 0.958812 0.284043i \(-0.0916759\pi\)
0.233417 + 0.972377i \(0.425009\pi\)
\(618\) 0 0
\(619\) 15.8251 0.636065 0.318033 0.948080i \(-0.396978\pi\)
0.318033 + 0.948080i \(0.396978\pi\)
\(620\) 1.00774 + 0.252980i 0.0404718 + 0.0101599i
\(621\) 0 0
\(622\) 4.52615 + 5.80283i 0.181482 + 0.232672i
\(623\) 10.4131 0.417194
\(624\) 0 0
\(625\) 24.4615 0.978462
\(626\) 21.3920 + 27.4259i 0.854994 + 1.09616i
\(627\) 0 0
\(628\) −34.5896 8.68328i −1.38028 0.346501i
\(629\) −12.0033 −0.478604
\(630\) 0 0
\(631\) −8.68918 5.01670i −0.345911 0.199712i 0.316972 0.948435i \(-0.397334\pi\)
−0.662883 + 0.748723i \(0.730667\pi\)
\(632\) −14.6943 + 6.49988i −0.584508 + 0.258551i
\(633\) 0 0
\(634\) 4.86701 + 6.23983i 0.193294 + 0.247815i
\(635\) 0.190910 + 0.330666i 0.00757603 + 0.0131221i
\(636\) 0 0
\(637\) 7.84654 4.06789i 0.310891 0.161176i
\(638\) 0.0277426 + 0.198557i 0.00109834 + 0.00786096i
\(639\) 0 0
\(640\) −2.14001 0.161757i −0.0845915 0.00639400i
\(641\) 10.9247 18.9221i 0.431498 0.747376i −0.565505 0.824745i \(-0.691319\pi\)
0.997003 + 0.0773688i \(0.0246519\pi\)
\(642\) 0 0
\(643\) −22.1023 + 38.2824i −0.871631 + 1.50971i −0.0113225 + 0.999936i \(0.503604\pi\)
−0.860309 + 0.509774i \(0.829729\pi\)
\(644\) −24.7888 6.22293i −0.976817 0.245218i
\(645\) 0 0
\(646\) 12.5796 31.0636i 0.494938 1.22218i
\(647\) 20.6785 + 35.8163i 0.812957 + 1.40808i 0.910785 + 0.412880i \(0.135477\pi\)
−0.0978282 + 0.995203i \(0.531190\pi\)
\(648\) 0 0
\(649\) −4.79960 −0.188401
\(650\) 20.6431 14.6473i 0.809688 0.574512i
\(651\) 0 0
\(652\) −5.55222 5.37901i −0.217442 0.210658i
\(653\) −3.58215 + 2.06815i −0.140180 + 0.0809331i −0.568450 0.822718i \(-0.692457\pi\)
0.428270 + 0.903651i \(0.359123\pi\)
\(654\) 0 0
\(655\) 0.508636i 0.0198740i
\(656\) 36.9508 1.17134i 1.44269 0.0457331i
\(657\) 0 0
\(658\) −20.3242 + 2.83971i −0.792319 + 0.110703i
\(659\) −17.3575 10.0214i −0.676153 0.390377i 0.122251 0.992499i \(-0.460989\pi\)
−0.798404 + 0.602122i \(0.794322\pi\)
\(660\) 0 0
\(661\) −0.306645 0.531125i −0.0119271 0.0206584i 0.860000 0.510294i \(-0.170463\pi\)
−0.871927 + 0.489635i \(0.837130\pi\)
\(662\) 24.2182 3.38378i 0.941266 0.131514i
\(663\) 0 0
\(664\) −33.3323 + 14.7442i −1.29354 + 0.572187i
\(665\) −1.46919 + 0.848239i −0.0569729 + 0.0328933i
\(666\) 0 0
\(667\) 0.539906 + 0.311715i 0.0209052 + 0.0120696i
\(668\) 10.8964 + 38.2322i 0.421593 + 1.47925i
\(669\) 0 0
\(670\) 1.21335 2.99621i 0.0468758 0.115754i
\(671\) 16.1868i 0.624884i
\(672\) 0 0
\(673\) −10.3246 17.8828i −0.397985 0.689330i 0.595492 0.803361i \(-0.296957\pi\)
−0.993477 + 0.114031i \(0.963624\pi\)
\(674\) −11.7544 15.0700i −0.452764 0.580473i
\(675\) 0 0
\(676\) 8.58691 24.5411i 0.330266 0.943888i
\(677\) 14.9377i 0.574101i 0.957915 + 0.287051i \(0.0926748\pi\)
−0.957915 + 0.287051i \(0.907325\pi\)
\(678\) 0 0
\(679\) −7.66693 13.2795i −0.294230 0.509621i
\(680\) −0.324221 + 3.01476i −0.0124333 + 0.115611i
\(681\) 0 0
\(682\) 4.89120 + 1.98075i 0.187294 + 0.0758469i
\(683\) −22.2218 + 38.4892i −0.850292 + 1.47275i 0.0306521 + 0.999530i \(0.490242\pi\)
−0.880945 + 0.473220i \(0.843092\pi\)
\(684\) 0 0
\(685\) −1.43288 0.827273i −0.0547475 0.0316085i
\(686\) −22.4779 + 17.5325i −0.858209 + 0.669395i
\(687\) 0 0
\(688\) −14.7776 23.8193i −0.563391 0.908102i
\(689\) 33.4549 + 1.51706i 1.27453 + 0.0577952i
\(690\) 0 0
\(691\) −0.557929 0.966361i −0.0212246 0.0367621i 0.855218 0.518268i \(-0.173423\pi\)
−0.876443 + 0.481506i \(0.840090\pi\)
\(692\) −19.0368 + 19.6498i −0.723671 + 0.746975i
\(693\) 0 0
\(694\) 0.167041 + 1.19554i 0.00634080 + 0.0453820i
\(695\) 0.893694 + 0.515974i 0.0338997 + 0.0195720i
\(696\) 0 0
\(697\) 52.2322i 1.97843i
\(698\) 7.48024 18.4714i 0.283131 0.699154i
\(699\) 0 0
\(700\) −14.7333 + 15.2077i −0.556866 + 0.574799i
\(701\) 37.1382i 1.40269i 0.712821 + 0.701346i \(0.247417\pi\)
−0.712821 + 0.701346i \(0.752583\pi\)
\(702\) 0 0
\(703\) −8.90639 −0.335911
\(704\) −10.6507 2.31766i −0.401414 0.0873500i
\(705\) 0 0
\(706\) −3.59045 1.45400i −0.135128 0.0547218i
\(707\) 27.7329 1.04300
\(708\) 0 0
\(709\) −14.9752 + 25.9378i −0.562404 + 0.974113i 0.434882 + 0.900488i \(0.356790\pi\)
−0.997286 + 0.0736252i \(0.976543\pi\)
\(710\) −0.0534127 0.382282i −0.00200454 0.0143468i
\(711\) 0 0
\(712\) 8.14406 11.1526i 0.305212 0.417963i
\(713\) 14.2110 8.20473i 0.532206 0.307270i
\(714\) 0 0
\(715\) −0.827303 + 0.428899i −0.0309394 + 0.0160399i
\(716\) 1.93780 + 6.79918i 0.0724190 + 0.254097i
\(717\) 0 0
\(718\) −16.1706 + 12.6130i −0.603483 + 0.470711i
\(719\) −17.4176 + 30.1682i −0.649568 + 1.12508i 0.333658 + 0.942694i \(0.391717\pi\)
−0.983226 + 0.182391i \(0.941616\pi\)
\(720\) 0 0
\(721\) 23.6504 + 13.6545i 0.880785 + 0.508522i
\(722\) −0.751750 + 1.85635i −0.0279772 + 0.0690860i
\(723\) 0 0
\(724\) 10.9796 + 2.75630i 0.408055 + 0.102437i
\(725\) 0.447298 0.258248i 0.0166122 0.00959108i
\(726\) 0 0
\(727\) 10.7252 0.397776 0.198888 0.980022i \(-0.436267\pi\)
0.198888 + 0.980022i \(0.436267\pi\)
\(728\) −3.30292 + 21.4978i −0.122414 + 0.796761i
\(729\) 0 0
\(730\) 1.65638 1.29196i 0.0613052 0.0478175i
\(731\) −34.2977 + 19.8018i −1.26855 + 0.732396i
\(732\) 0 0
\(733\) −5.20872 −0.192388 −0.0961942 0.995363i \(-0.530667\pi\)
−0.0961942 + 0.995363i \(0.530667\pi\)
\(734\) 7.73424 19.0987i 0.285476 0.704945i
\(735\) 0 0
\(736\) −26.0521 + 21.6824i −0.960292 + 0.799222i
\(737\) 8.20898 14.2184i 0.302382 0.523740i
\(738\) 0 0
\(739\) 14.2025 + 24.5995i 0.522448 + 0.904907i 0.999659 + 0.0261179i \(0.00831454\pi\)
−0.477211 + 0.878789i \(0.658352\pi\)
\(740\) 0.774935 0.220860i 0.0284872 0.00811899i
\(741\) 0 0
\(742\) −27.7456 + 3.87663i −1.01857 + 0.142316i
\(743\) −30.9116 + 17.8468i −1.13404 + 0.654737i −0.944947 0.327223i \(-0.893887\pi\)
−0.189090 + 0.981960i \(0.560554\pi\)
\(744\) 0 0
\(745\) −0.825826 + 1.43037i −0.0302559 + 0.0524048i
\(746\) −6.00254 42.9610i −0.219769 1.57291i
\(747\) 0 0
\(748\) −3.74964 + 14.9366i −0.137100 + 0.546136i
\(749\) 38.6402 1.41188
\(750\) 0 0
\(751\) −14.8764 25.7667i −0.542849 0.940242i −0.998739 0.0502058i \(-0.984012\pi\)
0.455890 0.890036i \(-0.349321\pi\)
\(752\) −12.8541 + 23.9885i −0.468739 + 0.874769i
\(753\) 0 0
\(754\) 0.221212 0.482224i 0.00805607 0.0175616i
\(755\) 2.19601i 0.0799211i
\(756\) 0 0
\(757\) −31.1859 + 18.0052i −1.13347 + 0.654409i −0.944805 0.327633i \(-0.893749\pi\)
−0.188664 + 0.982042i \(0.560416\pi\)
\(758\) 15.8124 39.0467i 0.574333 1.41824i
\(759\) 0 0
\(760\) −0.240570 + 2.23693i −0.00872638 + 0.0811421i
\(761\) 22.4482 + 12.9605i 0.813747 + 0.469817i 0.848255 0.529587i \(-0.177653\pi\)
−0.0345084 + 0.999404i \(0.510987\pi\)
\(762\) 0 0
\(763\) 10.1722 + 5.87293i 0.368259 + 0.212614i
\(764\) 29.4574 + 28.5384i 1.06573 + 1.03248i
\(765\) 0 0
\(766\) −1.16393 8.33040i −0.0420545 0.300989i
\(767\) 10.7005 + 6.84230i 0.386373 + 0.247061i
\(768\) 0 0
\(769\) 6.38308 3.68527i 0.230180 0.132894i −0.380475 0.924791i \(-0.624240\pi\)
0.610655 + 0.791897i \(0.290906\pi\)
\(770\) 0.614677 0.479443i 0.0221514 0.0172779i
\(771\) 0 0
\(772\) −6.29034 22.0710i −0.226394 0.794352i
\(773\) 13.3741 23.1646i 0.481032 0.833171i −0.518732 0.854937i \(-0.673596\pi\)
0.999763 + 0.0217661i \(0.00692893\pi\)
\(774\) 0 0
\(775\) 13.5948i 0.488341i
\(776\) −20.2188 2.17442i −0.725814 0.0780573i
\(777\) 0 0
\(778\) −6.02087 + 4.69623i −0.215859 + 0.168368i
\(779\) 38.7559i 1.38858i
\(780\) 0 0
\(781\) 1.96044i 0.0701501i
\(782\) 29.4523 + 37.7598i 1.05321 + 1.35029i
\(783\) 0 0
\(784\) 0.310670 + 9.80032i 0.0110954 + 0.350011i
\(785\) 3.38248i 0.120726i
\(786\) 0 0
\(787\) −15.3334 + 26.5583i −0.546578 + 0.946701i 0.451927 + 0.892055i \(0.350737\pi\)
−0.998506 + 0.0546467i \(0.982597\pi\)
\(788\) −31.9495 + 9.10576i −1.13815 + 0.324379i
\(789\) 0 0
\(790\) −0.937274 1.20165i −0.0333467 0.0427527i
\(791\) 22.0194 12.7129i 0.782921 0.452020i
\(792\) 0 0
\(793\) −23.0758 + 36.0877i −0.819447 + 1.28151i
\(794\) 14.2637 1.99293i 0.506198 0.0707264i
\(795\) 0 0
\(796\) 33.8439 + 32.7880i 1.19957 + 1.16214i
\(797\) −18.8596 10.8886i −0.668043 0.385695i 0.127292 0.991865i \(-0.459372\pi\)
−0.795335 + 0.606171i \(0.792705\pi\)
\(798\) 0 0
\(799\) 33.2997 + 19.2256i 1.17806 + 0.680152i
\(800\) 4.76492 + 27.6735i 0.168465 + 0.978406i
\(801\) 0 0
\(802\) 3.23114 + 1.30849i 0.114096 + 0.0462044i
\(803\) 9.23968 5.33453i 0.326061 0.188251i
\(804\) 0 0
\(805\) 2.42407i 0.0854373i
\(806\) −8.08097 11.3889i −0.284640 0.401156i
\(807\) 0 0
\(808\) 21.6898 29.7024i 0.763043 1.04493i
\(809\) −13.9705 24.1975i −0.491175 0.850740i 0.508774 0.860900i \(-0.330099\pi\)
−0.999948 + 0.0101606i \(0.996766\pi\)
\(810\) 0 0
\(811\) 4.37189 0.153518 0.0767588 0.997050i \(-0.475543\pi\)
0.0767588 + 0.997050i \(0.475543\pi\)
\(812\) −0.108062 + 0.430463i −0.00379224 + 0.0151063i
\(813\) 0 0
\(814\) 4.05319 0.566315i 0.142064 0.0198493i
\(815\) 0.366604 0.634977i 0.0128416 0.0222423i
\(816\) 0 0
\(817\) −25.4487 + 14.6928i −0.890337 + 0.514036i
\(818\) 4.79349 + 34.3076i 0.167600 + 1.19954i
\(819\) 0 0
\(820\) 0.961069 + 3.37211i 0.0335620 + 0.117759i
\(821\) 17.3163 + 29.9928i 0.604344 + 1.04675i 0.992155 + 0.125016i \(0.0398981\pi\)
−0.387811 + 0.921739i \(0.626769\pi\)
\(822\) 0 0
\(823\) 8.89278 15.4027i 0.309983 0.536906i −0.668375 0.743824i \(-0.733010\pi\)
0.978358 + 0.206918i \(0.0663434\pi\)
\(824\) 33.1211 14.6508i 1.15383 0.510384i
\(825\) 0 0
\(826\) −9.84809 3.98810i −0.342659 0.138764i
\(827\) −36.6583 −1.27473 −0.637367 0.770560i \(-0.719977\pi\)
−0.637367 + 0.770560i \(0.719977\pi\)
\(828\) 0 0
\(829\) 12.5682 7.25623i 0.436510 0.252019i −0.265606 0.964082i \(-0.585572\pi\)
0.702116 + 0.712062i \(0.252239\pi\)
\(830\) −2.12610 2.72580i −0.0737979 0.0946137i
\(831\) 0 0
\(832\) 20.4413 + 20.3508i 0.708674 + 0.705536i
\(833\) 13.8533 0.479990
\(834\) 0 0
\(835\) −3.26540 + 1.88528i −0.113004 + 0.0652428i
\(836\) −2.78221 + 11.0829i −0.0962247 + 0.383308i
\(837\) 0 0
\(838\) −51.8751 21.0075i −1.79200 0.725691i
\(839\) 11.5480 + 6.66727i 0.398683 + 0.230180i 0.685915 0.727681i \(-0.259402\pi\)
−0.287233 + 0.957861i \(0.592735\pi\)
\(840\) 0 0
\(841\) −14.4946 + 25.1054i −0.499813 + 0.865702i
\(842\) 4.49898 + 5.76799i 0.155045 + 0.198778i
\(843\) 0 0
\(844\) −5.50034 19.2991i −0.189330 0.664302i
\(845\) 2.45587 + 0.223189i 0.0844846 + 0.00767792i
\(846\) 0 0
\(847\) −16.8885 + 9.75058i −0.580296 + 0.335034i
\(848\) −17.5477 + 32.7478i −0.602591 + 1.12457i
\(849\) 0 0
\(850\) 39.2922 5.48993i 1.34771 0.188303i
\(851\) 6.36310 11.0212i 0.218124 0.377802i
\(852\) 0 0
\(853\) 44.5742 1.52619 0.763095 0.646286i \(-0.223679\pi\)
0.763095 + 0.646286i \(0.223679\pi\)
\(854\) 13.4500 33.2130i 0.460249 1.13652i
\(855\) 0 0
\(856\) 30.2203 41.3843i 1.03291 1.41449i
\(857\) 33.8713 1.15702 0.578510 0.815675i \(-0.303634\pi\)
0.578510 + 0.815675i \(0.303634\pi\)
\(858\) 0 0
\(859\) 40.8552i 1.39396i −0.717090 0.696981i \(-0.754526\pi\)
0.717090 0.696981i \(-0.245474\pi\)
\(860\) 1.84991 1.90948i 0.0630814 0.0651127i
\(861\) 0 0
\(862\) −31.7449 12.8555i −1.08124 0.437860i
\(863\) 28.3678i 0.965652i 0.875716 + 0.482826i \(0.160390\pi\)
−0.875716 + 0.482826i \(0.839610\pi\)
\(864\) 0 0
\(865\) −2.24724 1.29745i −0.0764086 0.0441145i
\(866\) 45.4300 6.34751i 1.54377 0.215697i
\(867\) 0 0
\(868\) 8.39019 + 8.12844i 0.284782 + 0.275897i
\(869\) −3.87003 6.70309i −0.131282 0.227387i
\(870\) 0 0
\(871\) −38.5712 + 19.9965i −1.30694 + 0.677556i
\(872\) 14.2456 6.30142i 0.482418 0.213393i
\(873\) 0 0
\(874\) 21.8534 + 28.0176i 0.739204 + 0.947708i
\(875\) −3.49106 2.01556i −0.118019 0.0681384i
\(876\) 0 0
\(877\) −8.76923 + 15.1888i −0.296116 + 0.512888i −0.975244 0.221132i \(-0.929025\pi\)
0.679128 + 0.734020i \(0.262358\pi\)
\(878\) −1.52121 + 3.75642i −0.0513383 + 0.126773i
\(879\) 0 0
\(880\) −0.0327556 1.03330i −0.00110419 0.0348325i
\(881\) −5.35079 9.26785i −0.180273 0.312242i 0.761701 0.647929i \(-0.224365\pi\)
−0.941973 + 0.335688i \(0.891031\pi\)
\(882\) 0 0
\(883\) 57.4333i 1.93278i 0.257072 + 0.966392i \(0.417242\pi\)
−0.257072 + 0.966392i \(0.582758\pi\)
\(884\) 29.6532 27.9550i 0.997346 0.940228i
\(885\) 0 0
\(886\) 18.1347 14.1449i 0.609246 0.475206i
\(887\) −17.7688 30.7765i −0.596618 1.03337i −0.993316 0.115424i \(-0.963177\pi\)
0.396698 0.917949i \(-0.370156\pi\)
\(888\) 0 0
\(889\) 4.29292i 0.143980i
\(890\) 1.21402 + 0.491633i 0.0406941 + 0.0164796i
\(891\) 0 0
\(892\) −3.41244 11.9733i −0.114257 0.400894i
\(893\) 24.7082 + 14.2653i 0.826827 + 0.477369i
\(894\) 0 0
\(895\) −0.580717 + 0.335277i −0.0194112 + 0.0112071i
\(896\) −19.9280 13.6055i −0.665747 0.454526i
\(897\) 0 0
\(898\) −7.62390 54.5652i −0.254413 1.82087i
\(899\) −0.142477 0.246777i −0.00475186 0.00823047i
\(900\) 0 0
\(901\) 45.4591 + 26.2458i 1.51446 + 0.874374i
\(902\) 2.46431 + 17.6374i 0.0820525 + 0.587260i
\(903\) 0 0
\(904\) 3.60552 33.5259i 0.119918 1.11505i
\(905\) 1.07369i 0.0356906i
\(906\) 0 0
\(907\) 44.9702 25.9636i 1.49321 0.862106i 0.493241 0.869893i \(-0.335812\pi\)
0.999970 + 0.00778704i \(0.00247872\pi\)
\(908\) −17.4476 16.9033i −0.579018 0.560954i
\(909\) 0 0
\(910\) −2.05389 + 0.192614i −0.0680858 + 0.00638510i
\(911\) 8.53527 0.282786 0.141393 0.989954i \(-0.454842\pi\)
0.141393 + 0.989954i \(0.454842\pi\)
\(912\) 0 0
\(913\) −8.77870 15.2052i −0.290533 0.503217i
\(914\) −17.5614 7.11172i −0.580881 0.235235i
\(915\) 0 0
\(916\) 5.77729 23.0137i 0.190887 0.760394i
\(917\) −2.85938 + 4.95259i −0.0944249 + 0.163549i
\(918\) 0 0
\(919\) 5.95251 10.3101i 0.196355 0.340097i −0.750989 0.660315i \(-0.770423\pi\)
0.947344 + 0.320218i \(0.103756\pi\)
\(920\) −2.59622 1.89585i −0.0855949 0.0625045i
\(921\) 0 0
\(922\) 38.2262 5.34099i 1.25891 0.175896i
\(923\) −2.79480 + 4.37072i −0.0919920 + 0.143864i
\(924\) 0 0
\(925\) −5.27167 9.13080i −0.173331 0.300219i
\(926\) 31.6568 24.6921i 1.04031 0.811432i
\(927\) 0 0
\(928\) 0.376518 + 0.452399i 0.0123598 + 0.0148507i
\(929\) −7.68193 4.43517i −0.252036 0.145513i 0.368660 0.929564i \(-0.379817\pi\)
−0.620696 + 0.784051i \(0.713150\pi\)
\(930\) 0 0
\(931\) 10.2791 0.336884
\(932\) 3.48113 13.8670i 0.114028 0.454228i
\(933\) 0 0
\(934\) 38.7618 30.2338i 1.26832 0.989282i
\(935\) −1.46063 −0.0477677
\(936\) 0 0
\(937\) −10.6970 −0.349455 −0.174728 0.984617i \(-0.555905\pi\)
−0.174728 + 0.984617i \(0.555905\pi\)
\(938\) 28.6580 22.3530i 0.935718 0.729852i
\(939\) 0 0
\(940\) −2.50358 0.628492i −0.0816577 0.0204991i
\(941\) −15.6042 −0.508683 −0.254341 0.967115i \(-0.581859\pi\)
−0.254341 + 0.967115i \(0.581859\pi\)
\(942\) 0 0
\(943\) 47.9586 + 27.6889i 1.56175 + 0.901674i
\(944\) −11.9735 + 7.42840i −0.389703 + 0.241774i
\(945\) 0 0
\(946\) 10.6472 8.30469i 0.346169 0.270009i
\(947\) 27.2869 + 47.2622i 0.886704 + 1.53582i 0.843749 + 0.536739i \(0.180344\pi\)
0.0429551 + 0.999077i \(0.486323\pi\)
\(948\) 0 0
\(949\) −28.2044 1.27896i −0.915552 0.0415169i
\(950\) 29.1546 4.07350i 0.945899 0.132162i
\(951\) 0 0
\(952\) −20.1049 + 27.5321i −0.651603 + 0.892319i
\(953\) 16.3520 28.3224i 0.529692 0.917454i −0.469708 0.882822i \(-0.655641\pi\)
0.999400 0.0346321i \(-0.0110260\pi\)
\(954\) 0 0
\(955\) −1.94502 + 3.36888i −0.0629394 + 0.109014i
\(956\) 1.28324 + 0.322140i 0.0415028 + 0.0104187i
\(957\) 0 0
\(958\) −45.0057 18.2256i −1.45407 0.588843i
\(959\) −9.30130 16.1103i −0.300355 0.520229i
\(960\) 0 0
\(961\) 23.4997 0.758054
\(962\) −9.84376 4.51565i −0.317375 0.145590i
\(963\) 0 0
\(964\) −13.5310 + 13.9667i −0.435804 + 0.449838i
\(965\) 1.88508 1.08835i 0.0606828 0.0350352i
\(966\) 0 0
\(967\) 39.1298i 1.25833i 0.777272 + 0.629165i \(0.216603\pi\)
−0.777272 + 0.629165i \(0.783397\pi\)
\(968\) −2.76537 + 25.7137i −0.0888823 + 0.826471i
\(969\) 0 0
\(970\) −0.266891 1.91018i −0.00856937 0.0613321i
\(971\) 3.02789 + 1.74815i 0.0971697 + 0.0561009i 0.547797 0.836611i \(-0.315466\pi\)
−0.450628 + 0.892712i \(0.648800\pi\)
\(972\) 0 0
\(973\) 5.80126 + 10.0481i 0.185980 + 0.322127i
\(974\) 4.29600 + 30.7470i 0.137653 + 0.985198i
\(975\) 0 0
\(976\) −25.0525 40.3808i −0.801910 1.29256i
\(977\) 14.9605 8.63745i 0.478629 0.276337i −0.241216 0.970471i \(-0.577546\pi\)
0.719845 + 0.694135i \(0.244213\pi\)
\(978\) 0 0
\(979\) 5.76109 + 3.32617i 0.184125 + 0.106305i
\(980\) −0.894372 + 0.254901i −0.0285697 + 0.00814251i
\(981\) 0 0
\(982\) 24.7002 + 10.0026i 0.788214 + 0.319197i
\(983\) 39.4265i 1.25751i 0.777604 + 0.628755i \(0.216435\pi\)
−0.777604 + 0.628755i \(0.783565\pi\)
\(984\) 0 0
\(985\) −1.57547 2.72880i −0.0501987 0.0869467i
\(986\) 0.655706 0.511445i 0.0208819 0.0162877i
\(987\) 0 0
\(988\) 22.0025 20.7424i 0.699993 0.659904i
\(989\) 41.9887i 1.33516i
\(990\) 0 0
\(991\) −0.265640 0.460102i −0.00843833 0.0146156i 0.861775 0.507290i \(-0.169353\pi\)
−0.870214 + 0.492674i \(0.836019\pi\)
\(992\) 15.2676 2.62883i 0.484747 0.0834654i
\(993\) 0 0
\(994\) 1.62898 4.02254i 0.0516680 0.127587i
\(995\) −2.23466 + 3.87054i −0.0708434 + 0.122704i
\(996\) 0 0
\(997\) 32.7700 + 18.9198i 1.03784 + 0.599195i 0.919220 0.393745i \(-0.128821\pi\)
0.118617 + 0.992940i \(0.462154\pi\)
\(998\) −34.5650 44.3146i −1.09414 1.40276i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.dg.f.829.20 yes 56
3.2 odd 2 inner 936.2.dg.f.829.9 56
8.5 even 2 inner 936.2.dg.f.829.11 yes 56
13.4 even 6 inner 936.2.dg.f.901.11 yes 56
24.5 odd 2 inner 936.2.dg.f.829.18 yes 56
39.17 odd 6 inner 936.2.dg.f.901.18 yes 56
104.69 even 6 inner 936.2.dg.f.901.20 yes 56
312.173 odd 6 inner 936.2.dg.f.901.9 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.dg.f.829.9 56 3.2 odd 2 inner
936.2.dg.f.829.11 yes 56 8.5 even 2 inner
936.2.dg.f.829.18 yes 56 24.5 odd 2 inner
936.2.dg.f.829.20 yes 56 1.1 even 1 trivial
936.2.dg.f.901.9 yes 56 312.173 odd 6 inner
936.2.dg.f.901.11 yes 56 13.4 even 6 inner
936.2.dg.f.901.18 yes 56 39.17 odd 6 inner
936.2.dg.f.901.20 yes 56 104.69 even 6 inner