Properties

Label 936.2.dg.f.829.9
Level $936$
Weight $2$
Character 936.829
Analytic conductor $7.474$
Analytic rank $0$
Dimension $56$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(829,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.829"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.dg (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 829.9
Character \(\chi\) \(=\) 936.829
Dual form 936.2.dg.f.901.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.869780 - 1.11512i) q^{2} +(-0.486965 + 1.93981i) q^{4} +0.189692 q^{5} +(-1.84703 - 1.06638i) q^{7} +(2.58667 - 1.14419i) q^{8} +(-0.164990 - 0.211528i) q^{10} +(0.681249 + 1.17996i) q^{11} +(-0.163331 + 3.60185i) q^{13} +(0.417370 + 2.98717i) q^{14} +(-3.52573 - 1.88924i) q^{16} +(2.82570 - 4.89426i) q^{17} +(-2.09665 + 3.63151i) q^{19} +(-0.0923733 + 0.367966i) q^{20} +(0.723252 - 1.78597i) q^{22} +(2.99588 + 5.18901i) q^{23} -4.96402 q^{25} +(4.15854 - 2.95069i) q^{26} +(2.96802 - 3.06360i) q^{28} +(0.0901081 - 0.0520240i) q^{29} +2.73867i q^{31} +(0.959891 + 5.57482i) q^{32} +(-7.91540 + 1.10595i) q^{34} +(-0.350366 - 0.202284i) q^{35} +(1.06198 + 1.83940i) q^{37} +(5.87318 - 0.820605i) q^{38} +(0.490669 - 0.217043i) q^{40} +(8.00410 - 4.62117i) q^{41} +(6.06888 + 3.50387i) q^{43} +(-2.62064 + 0.746896i) q^{44} +(3.18059 - 7.85405i) q^{46} +6.80383i q^{47} +(-1.22566 - 2.12290i) q^{49} +(4.31760 + 5.53545i) q^{50} +(-6.90737 - 2.07080i) q^{52} +9.28824i q^{53} +(0.129227 + 0.223828i) q^{55} +(-5.99779 - 0.645029i) q^{56} +(-0.136387 - 0.0552316i) q^{58} +(-1.76132 + 3.05070i) q^{59} +(10.2886 + 5.94011i) q^{61} +(3.05394 - 2.38204i) q^{62} +(5.38167 - 5.91926i) q^{64} +(-0.0309825 + 0.683242i) q^{65} +(6.02495 + 10.4355i) q^{67} +(8.11792 + 7.86466i) q^{68} +(0.0791716 + 0.566642i) q^{70} +(-1.24609 - 0.719429i) q^{71} +7.83052i q^{73} +(1.12745 - 2.78410i) q^{74} +(-6.02344 - 5.83553i) q^{76} -2.90589i q^{77} +5.68079 q^{79} +(-0.668802 - 0.358373i) q^{80} +(-12.1149 - 4.90609i) q^{82} -12.8862 q^{83} +(0.536013 - 0.928401i) q^{85} +(-1.37137 - 9.81510i) q^{86} +(3.11225 + 2.27268i) q^{88} +(4.22833 - 2.44123i) q^{89} +(4.14263 - 6.47855i) q^{91} +(-11.5246 + 3.28457i) q^{92} +(7.58705 - 5.91783i) q^{94} +(-0.397718 + 0.688868i) q^{95} +(6.22643 + 3.59483i) q^{97} +(-1.30122 + 3.21320i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 4 q^{10} - 4 q^{16} + 64 q^{25} - 48 q^{28} - 48 q^{40} + 20 q^{49} - 12 q^{52} + 16 q^{55} + 12 q^{58} - 72 q^{64} - 84 q^{76} + 80 q^{79} - 12 q^{82} - 12 q^{88} - 24 q^{94} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.869780 1.11512i −0.615027 0.788506i
\(3\) 0 0
\(4\) −0.486965 + 1.93981i −0.243482 + 0.969905i
\(5\) 0.189692 0.0848328 0.0424164 0.999100i \(-0.486494\pi\)
0.0424164 + 0.999100i \(0.486494\pi\)
\(6\) 0 0
\(7\) −1.84703 1.06638i −0.698111 0.403055i 0.108532 0.994093i \(-0.465385\pi\)
−0.806644 + 0.591038i \(0.798718\pi\)
\(8\) 2.58667 1.14419i 0.914524 0.404531i
\(9\) 0 0
\(10\) −0.164990 0.211528i −0.0521745 0.0668911i
\(11\) 0.681249 + 1.17996i 0.205404 + 0.355770i 0.950261 0.311453i \(-0.100816\pi\)
−0.744857 + 0.667224i \(0.767482\pi\)
\(12\) 0 0
\(13\) −0.163331 + 3.60185i −0.0452998 + 0.998973i
\(14\) 0.417370 + 2.98717i 0.111547 + 0.798355i
\(15\) 0 0
\(16\) −3.52573 1.88924i −0.881433 0.472310i
\(17\) 2.82570 4.89426i 0.685333 1.18703i −0.287999 0.957631i \(-0.592990\pi\)
0.973332 0.229401i \(-0.0736768\pi\)
\(18\) 0 0
\(19\) −2.09665 + 3.63151i −0.481005 + 0.833125i −0.999762 0.0217961i \(-0.993062\pi\)
0.518757 + 0.854922i \(0.326395\pi\)
\(20\) −0.0923733 + 0.367966i −0.0206553 + 0.0822798i
\(21\) 0 0
\(22\) 0.723252 1.78597i 0.154198 0.380771i
\(23\) 2.99588 + 5.18901i 0.624683 + 1.08198i 0.988602 + 0.150553i \(0.0481053\pi\)
−0.363919 + 0.931431i \(0.618561\pi\)
\(24\) 0 0
\(25\) −4.96402 −0.992803
\(26\) 4.15854 2.95069i 0.815557 0.578677i
\(27\) 0 0
\(28\) 2.96802 3.06360i 0.560903 0.578965i
\(29\) 0.0901081 0.0520240i 0.0167327 0.00966061i −0.491610 0.870815i \(-0.663592\pi\)
0.508343 + 0.861155i \(0.330258\pi\)
\(30\) 0 0
\(31\) 2.73867i 0.491880i 0.969285 + 0.245940i \(0.0790967\pi\)
−0.969285 + 0.245940i \(0.920903\pi\)
\(32\) 0.959891 + 5.57482i 0.169686 + 0.985498i
\(33\) 0 0
\(34\) −7.91540 + 1.10595i −1.35748 + 0.189668i
\(35\) −0.350366 0.202284i −0.0592227 0.0341923i
\(36\) 0 0
\(37\) 1.06198 + 1.83940i 0.174588 + 0.302395i 0.940019 0.341123i \(-0.110807\pi\)
−0.765431 + 0.643518i \(0.777474\pi\)
\(38\) 5.87318 0.820605i 0.952756 0.133120i
\(39\) 0 0
\(40\) 0.490669 0.217043i 0.0775816 0.0343175i
\(41\) 8.00410 4.62117i 1.25003 0.721705i 0.278914 0.960316i \(-0.410025\pi\)
0.971115 + 0.238611i \(0.0766921\pi\)
\(42\) 0 0
\(43\) 6.06888 + 3.50387i 0.925496 + 0.534335i 0.885384 0.464860i \(-0.153895\pi\)
0.0401118 + 0.999195i \(0.487229\pi\)
\(44\) −2.62064 + 0.746896i −0.395076 + 0.112599i
\(45\) 0 0
\(46\) 3.18059 7.85405i 0.468953 1.15802i
\(47\) 6.80383i 0.992440i 0.868197 + 0.496220i \(0.165279\pi\)
−0.868197 + 0.496220i \(0.834721\pi\)
\(48\) 0 0
\(49\) −1.22566 2.12290i −0.175094 0.303271i
\(50\) 4.31760 + 5.53545i 0.610601 + 0.782831i
\(51\) 0 0
\(52\) −6.90737 2.07080i −0.957880 0.287169i
\(53\) 9.28824i 1.27584i 0.770103 + 0.637919i \(0.220205\pi\)
−0.770103 + 0.637919i \(0.779795\pi\)
\(54\) 0 0
\(55\) 0.129227 + 0.223828i 0.0174250 + 0.0301810i
\(56\) −5.99779 0.645029i −0.801488 0.0861956i
\(57\) 0 0
\(58\) −0.136387 0.0552316i −0.0179085 0.00725226i
\(59\) −1.76132 + 3.05070i −0.229305 + 0.397168i −0.957602 0.288093i \(-0.906979\pi\)
0.728297 + 0.685261i \(0.240312\pi\)
\(60\) 0 0
\(61\) 10.2886 + 5.94011i 1.31732 + 0.760554i 0.983296 0.182012i \(-0.0582610\pi\)
0.334021 + 0.942566i \(0.391594\pi\)
\(62\) 3.05394 2.38204i 0.387850 0.302520i
\(63\) 0 0
\(64\) 5.38167 5.91926i 0.672709 0.739907i
\(65\) −0.0309825 + 0.683242i −0.00384291 + 0.0847457i
\(66\) 0 0
\(67\) 6.02495 + 10.4355i 0.736065 + 1.27490i 0.954255 + 0.298995i \(0.0966514\pi\)
−0.218190 + 0.975906i \(0.570015\pi\)
\(68\) 8.11792 + 7.86466i 0.984442 + 0.953730i
\(69\) 0 0
\(70\) 0.0791716 + 0.566642i 0.00946282 + 0.0677266i
\(71\) −1.24609 0.719429i −0.147883 0.0853805i 0.424232 0.905553i \(-0.360544\pi\)
−0.572116 + 0.820173i \(0.693877\pi\)
\(72\) 0 0
\(73\) 7.83052i 0.916493i 0.888825 + 0.458246i \(0.151522\pi\)
−0.888825 + 0.458246i \(0.848478\pi\)
\(74\) 1.12745 2.78410i 0.131064 0.323645i
\(75\) 0 0
\(76\) −6.02344 5.83553i −0.690937 0.669381i
\(77\) 2.90589i 0.331157i
\(78\) 0 0
\(79\) 5.68079 0.639138 0.319569 0.947563i \(-0.396462\pi\)
0.319569 + 0.947563i \(0.396462\pi\)
\(80\) −0.668802 0.358373i −0.0747744 0.0400673i
\(81\) 0 0
\(82\) −12.1149 4.90609i −1.33787 0.541787i
\(83\) −12.8862 −1.41444 −0.707222 0.706992i \(-0.750052\pi\)
−0.707222 + 0.706992i \(0.750052\pi\)
\(84\) 0 0
\(85\) 0.536013 0.928401i 0.0581387 0.100699i
\(86\) −1.37137 9.81510i −0.147879 1.05839i
\(87\) 0 0
\(88\) 3.11225 + 2.27268i 0.331767 + 0.242268i
\(89\) 4.22833 2.44123i 0.448202 0.258770i −0.258868 0.965913i \(-0.583350\pi\)
0.707071 + 0.707143i \(0.250016\pi\)
\(90\) 0 0
\(91\) 4.14263 6.47855i 0.434265 0.679136i
\(92\) −11.5246 + 3.28457i −1.20152 + 0.342440i
\(93\) 0 0
\(94\) 7.58705 5.91783i 0.782545 0.610378i
\(95\) −0.397718 + 0.688868i −0.0408050 + 0.0706763i
\(96\) 0 0
\(97\) 6.22643 + 3.59483i 0.632198 + 0.365000i 0.781603 0.623776i \(-0.214402\pi\)
−0.149405 + 0.988776i \(0.547736\pi\)
\(98\) −1.30122 + 3.21320i −0.131444 + 0.324582i
\(99\) 0 0
\(100\) 2.41730 9.62925i 0.241730 0.962925i
\(101\) 11.2612 6.50163i 1.12053 0.646937i 0.178992 0.983851i \(-0.442716\pi\)
0.941535 + 0.336914i \(0.109383\pi\)
\(102\) 0 0
\(103\) −12.8045 −1.26167 −0.630834 0.775918i \(-0.717287\pi\)
−0.630834 + 0.775918i \(0.717287\pi\)
\(104\) 3.69871 + 9.50366i 0.362688 + 0.931911i
\(105\) 0 0
\(106\) 10.3575 8.07873i 1.00601 0.784676i
\(107\) 15.6901 9.05871i 1.51682 0.875738i 0.517018 0.855974i \(-0.327042\pi\)
0.999805 0.0197640i \(-0.00629150\pi\)
\(108\) 0 0
\(109\) −5.50733 −0.527507 −0.263753 0.964590i \(-0.584961\pi\)
−0.263753 + 0.964590i \(0.584961\pi\)
\(110\) 0.137195 0.338785i 0.0130810 0.0323019i
\(111\) 0 0
\(112\) 4.49748 + 7.24926i 0.424971 + 0.684991i
\(113\) 5.96077 10.3244i 0.560742 0.971234i −0.436690 0.899612i \(-0.643849\pi\)
0.997432 0.0716216i \(-0.0228174\pi\)
\(114\) 0 0
\(115\) 0.568293 + 0.984313i 0.0529936 + 0.0917876i
\(116\) 0.0570371 + 0.200127i 0.00529576 + 0.0185813i
\(117\) 0 0
\(118\) 4.93385 0.689361i 0.454198 0.0634609i
\(119\) −10.4383 + 6.02656i −0.956878 + 0.552454i
\(120\) 0 0
\(121\) 4.57180 7.91859i 0.415618 0.719872i
\(122\) −2.32489 16.6395i −0.210486 1.50647i
\(123\) 0 0
\(124\) −5.31251 1.33364i −0.477077 0.119764i
\(125\) −1.89009 −0.169055
\(126\) 0 0
\(127\) −1.00642 1.74317i −0.0893055 0.154682i 0.817912 0.575343i \(-0.195131\pi\)
−0.907218 + 0.420661i \(0.861798\pi\)
\(128\) −11.2815 0.852734i −0.997156 0.0753718i
\(129\) 0 0
\(130\) 0.788841 0.559721i 0.0691859 0.0490908i
\(131\) 2.68138i 0.234273i 0.993116 + 0.117137i \(0.0373715\pi\)
−0.993116 + 0.117137i \(0.962628\pi\)
\(132\) 0 0
\(133\) 7.74516 4.47167i 0.671590 0.387743i
\(134\) 6.39643 15.7951i 0.552567 1.36449i
\(135\) 0 0
\(136\) 1.70920 15.8929i 0.146562 1.36281i
\(137\) −7.55372 4.36114i −0.645358 0.372598i 0.141317 0.989964i \(-0.454866\pi\)
−0.786676 + 0.617367i \(0.788200\pi\)
\(138\) 0 0
\(139\) −4.71129 2.72007i −0.399607 0.230713i 0.286708 0.958018i \(-0.407439\pi\)
−0.686314 + 0.727305i \(0.740773\pi\)
\(140\) 0.563009 0.581139i 0.0475829 0.0491152i
\(141\) 0 0
\(142\) 0.281576 + 2.01528i 0.0236293 + 0.169118i
\(143\) −4.36130 + 2.26103i −0.364710 + 0.189077i
\(144\) 0 0
\(145\) 0.0170928 0.00986852i 0.00141948 0.000819536i
\(146\) 8.73193 6.81083i 0.722660 0.563668i
\(147\) 0 0
\(148\) −4.08523 + 1.16431i −0.335804 + 0.0957058i
\(149\) −4.35351 + 7.54051i −0.356654 + 0.617742i −0.987400 0.158247i \(-0.949416\pi\)
0.630746 + 0.775989i \(0.282749\pi\)
\(150\) 0 0
\(151\) 11.5767i 0.942102i 0.882106 + 0.471051i \(0.156125\pi\)
−0.882106 + 0.471051i \(0.843875\pi\)
\(152\) −1.26821 + 11.7925i −0.102866 + 0.956495i
\(153\) 0 0
\(154\) −3.24040 + 2.52748i −0.261119 + 0.203670i
\(155\) 0.519504i 0.0417276i
\(156\) 0 0
\(157\) 17.8314i 1.42310i 0.702634 + 0.711552i \(0.252007\pi\)
−0.702634 + 0.711552i \(0.747993\pi\)
\(158\) −4.94104 6.33473i −0.393088 0.503964i
\(159\) 0 0
\(160\) 0.182083 + 1.05750i 0.0143950 + 0.0836025i
\(161\) 12.7790i 1.00713i
\(162\) 0 0
\(163\) −1.93263 + 3.34741i −0.151375 + 0.262189i −0.931733 0.363143i \(-0.881703\pi\)
0.780358 + 0.625333i \(0.215037\pi\)
\(164\) 5.06648 + 17.7768i 0.395625 + 1.38813i
\(165\) 0 0
\(166\) 11.2082 + 14.3696i 0.869922 + 1.11530i
\(167\) −17.2142 + 9.93865i −1.33208 + 0.769076i −0.985618 0.168989i \(-0.945950\pi\)
−0.346461 + 0.938065i \(0.612617\pi\)
\(168\) 0 0
\(169\) −12.9466 1.17659i −0.995896 0.0905066i
\(170\) −1.50149 + 0.209789i −0.115159 + 0.0160901i
\(171\) 0 0
\(172\) −9.75218 + 10.0662i −0.743597 + 0.767542i
\(173\) −11.8468 6.83976i −0.900696 0.520017i −0.0232702 0.999729i \(-0.507408\pi\)
−0.877426 + 0.479712i \(0.840741\pi\)
\(174\) 0 0
\(175\) 9.16868 + 5.29354i 0.693087 + 0.400154i
\(176\) −0.172678 5.44725i −0.0130161 0.410602i
\(177\) 0 0
\(178\) −6.39997 2.59175i −0.479698 0.194260i
\(179\) −3.06137 + 1.76748i −0.228817 + 0.132108i −0.610026 0.792381i \(-0.708841\pi\)
0.381209 + 0.924489i \(0.375508\pi\)
\(180\) 0 0
\(181\) 5.66016i 0.420717i −0.977624 0.210358i \(-0.932537\pi\)
0.977624 0.210358i \(-0.0674631\pi\)
\(182\) −10.8275 + 1.01541i −0.802588 + 0.0752669i
\(183\) 0 0
\(184\) 13.6865 + 9.99439i 1.00898 + 0.736796i
\(185\) 0.201448 + 0.348919i 0.0148108 + 0.0256530i
\(186\) 0 0
\(187\) 7.70002 0.563081
\(188\) −13.1981 3.31322i −0.962573 0.241642i
\(189\) 0 0
\(190\) 1.11409 0.155662i 0.0808249 0.0112929i
\(191\) −10.2536 + 17.7597i −0.741923 + 1.28505i 0.209695 + 0.977767i \(0.432753\pi\)
−0.951619 + 0.307282i \(0.900581\pi\)
\(192\) 0 0
\(193\) −9.93758 + 5.73747i −0.715323 + 0.412992i −0.813029 0.582224i \(-0.802183\pi\)
0.0977060 + 0.995215i \(0.468850\pi\)
\(194\) −1.40697 10.0699i −0.101015 0.722977i
\(195\) 0 0
\(196\) 4.71487 1.34376i 0.336776 0.0959831i
\(197\) −8.30543 14.3854i −0.591737 1.02492i −0.993998 0.109394i \(-0.965109\pi\)
0.402261 0.915525i \(-0.368224\pi\)
\(198\) 0 0
\(199\) 11.7805 20.4043i 0.835094 1.44643i −0.0588595 0.998266i \(-0.518746\pi\)
0.893954 0.448159i \(-0.147920\pi\)
\(200\) −12.8402 + 5.67976i −0.907943 + 0.401620i
\(201\) 0 0
\(202\) −17.0448 6.90250i −1.19927 0.485658i
\(203\) −0.221910 −0.0155750
\(204\) 0 0
\(205\) 1.51831 0.876598i 0.106043 0.0612242i
\(206\) 11.1371 + 14.2785i 0.775961 + 0.994833i
\(207\) 0 0
\(208\) 7.38062 12.3906i 0.511754 0.859132i
\(209\) −5.71337 −0.395202
\(210\) 0 0
\(211\) −8.68952 + 5.01690i −0.598212 + 0.345378i −0.768338 0.640045i \(-0.778916\pi\)
0.170126 + 0.985422i \(0.445582\pi\)
\(212\) −18.0174 4.52305i −1.23744 0.310644i
\(213\) 0 0
\(214\) −23.7485 9.61723i −1.62341 0.657421i
\(215\) 1.15122 + 0.664656i 0.0785124 + 0.0453292i
\(216\) 0 0
\(217\) 2.92048 5.05841i 0.198255 0.343387i
\(218\) 4.79017 + 6.14131i 0.324431 + 0.415942i
\(219\) 0 0
\(220\) −0.497114 + 0.141680i −0.0335154 + 0.00955206i
\(221\) 17.1669 + 10.9771i 1.15477 + 0.738402i
\(222\) 0 0
\(223\) −5.39103 + 3.11251i −0.361010 + 0.208429i −0.669524 0.742791i \(-0.733502\pi\)
0.308514 + 0.951220i \(0.400168\pi\)
\(224\) 4.17194 11.3205i 0.278750 0.756380i
\(225\) 0 0
\(226\) −16.6974 + 2.33297i −1.11070 + 0.155187i
\(227\) 6.07319 10.5191i 0.403092 0.698175i −0.591006 0.806667i \(-0.701269\pi\)
0.994097 + 0.108492i \(0.0346022\pi\)
\(228\) 0 0
\(229\) −11.8639 −0.783987 −0.391994 0.919968i \(-0.628215\pi\)
−0.391994 + 0.919968i \(0.628215\pi\)
\(230\) 0.603332 1.48985i 0.0397825 0.0982377i
\(231\) 0 0
\(232\) 0.173554 0.237669i 0.0113944 0.0156037i
\(233\) 7.14863 0.468322 0.234161 0.972198i \(-0.424766\pi\)
0.234161 + 0.972198i \(0.424766\pi\)
\(234\) 0 0
\(235\) 1.29063i 0.0841914i
\(236\) −5.06008 4.90222i −0.329383 0.319107i
\(237\) 0 0
\(238\) 15.7993 + 6.39814i 1.02412 + 0.414729i
\(239\) 0.661526i 0.0427906i 0.999771 + 0.0213953i \(0.00681085\pi\)
−0.999771 + 0.0213953i \(0.993189\pi\)
\(240\) 0 0
\(241\) 8.42049 + 4.86157i 0.542411 + 0.313161i 0.746056 0.665884i \(-0.231945\pi\)
−0.203644 + 0.979045i \(0.565279\pi\)
\(242\) −12.8066 + 1.78935i −0.823240 + 0.115024i
\(243\) 0 0
\(244\) −16.5329 + 17.0653i −1.05841 + 1.09249i
\(245\) −0.232497 0.402696i −0.0148537 0.0257273i
\(246\) 0 0
\(247\) −12.7377 8.14497i −0.810481 0.518252i
\(248\) 3.13356 + 7.08403i 0.198981 + 0.449837i
\(249\) 0 0
\(250\) 1.64397 + 2.10767i 0.103973 + 0.133301i
\(251\) −16.7178 9.65204i −1.05522 0.609232i −0.131114 0.991367i \(-0.541855\pi\)
−0.924106 + 0.382136i \(0.875189\pi\)
\(252\) 0 0
\(253\) −4.08187 + 7.07001i −0.256625 + 0.444488i
\(254\) −1.06847 + 2.63845i −0.0670420 + 0.165551i
\(255\) 0 0
\(256\) 8.86155 + 13.3219i 0.553847 + 0.832618i
\(257\) −5.38456 9.32633i −0.335879 0.581760i 0.647774 0.761833i \(-0.275700\pi\)
−0.983653 + 0.180072i \(0.942367\pi\)
\(258\) 0 0
\(259\) 4.52990i 0.281474i
\(260\) −1.31027 0.392815i −0.0812596 0.0243613i
\(261\) 0 0
\(262\) 2.99005 2.33221i 0.184726 0.144084i
\(263\) 14.1235 + 24.4626i 0.870892 + 1.50843i 0.861075 + 0.508478i \(0.169792\pi\)
0.00981755 + 0.999952i \(0.496875\pi\)
\(264\) 0 0
\(265\) 1.76190i 0.108233i
\(266\) −11.7230 4.74738i −0.718784 0.291080i
\(267\) 0 0
\(268\) −23.1769 + 6.60553i −1.41575 + 0.403497i
\(269\) 18.6043 + 10.7412i 1.13432 + 0.654902i 0.945019 0.327017i \(-0.106043\pi\)
0.189305 + 0.981918i \(0.439377\pi\)
\(270\) 0 0
\(271\) −3.77766 + 2.18103i −0.229476 + 0.132488i −0.610330 0.792147i \(-0.708963\pi\)
0.380854 + 0.924635i \(0.375630\pi\)
\(272\) −19.2091 + 11.9174i −1.16472 + 0.722599i
\(273\) 0 0
\(274\) 1.70690 + 12.2165i 0.103118 + 0.738026i
\(275\) −3.38173 5.85733i −0.203926 0.353210i
\(276\) 0 0
\(277\) 8.44257 + 4.87432i 0.507265 + 0.292870i 0.731709 0.681617i \(-0.238723\pi\)
−0.224444 + 0.974487i \(0.572056\pi\)
\(278\) 1.06460 + 7.61949i 0.0638505 + 0.456987i
\(279\) 0 0
\(280\) −1.13773 0.122357i −0.0679925 0.00731221i
\(281\) 22.3245i 1.33177i −0.746055 0.665884i \(-0.768055\pi\)
0.746055 0.665884i \(-0.231945\pi\)
\(282\) 0 0
\(283\) −3.69872 + 2.13546i −0.219866 + 0.126940i −0.605888 0.795550i \(-0.707182\pi\)
0.386022 + 0.922489i \(0.373849\pi\)
\(284\) 2.00236 2.06684i 0.118818 0.122644i
\(285\) 0 0
\(286\) 6.31468 + 2.89675i 0.373395 + 0.171288i
\(287\) −19.7117 −1.16355
\(288\) 0 0
\(289\) −7.46918 12.9370i −0.439363 0.761000i
\(290\) −0.0258715 0.0104770i −0.00151923 0.000615229i
\(291\) 0 0
\(292\) −15.1897 3.81319i −0.888911 0.223150i
\(293\) 4.86107 8.41962i 0.283987 0.491880i −0.688376 0.725354i \(-0.741676\pi\)
0.972363 + 0.233474i \(0.0750095\pi\)
\(294\) 0 0
\(295\) −0.334109 + 0.578694i −0.0194526 + 0.0336928i
\(296\) 4.85159 + 3.54281i 0.281993 + 0.205921i
\(297\) 0 0
\(298\) 12.1951 1.70391i 0.706445 0.0987050i
\(299\) −19.1794 + 9.94317i −1.10917 + 0.575028i
\(300\) 0 0
\(301\) −7.47294 12.9435i −0.430733 0.746051i
\(302\) 12.9094 10.0692i 0.742853 0.579419i
\(303\) 0 0
\(304\) 14.2530 8.84265i 0.817467 0.507161i
\(305\) 1.95166 + 1.12679i 0.111752 + 0.0645199i
\(306\) 0 0
\(307\) −10.9126 −0.622813 −0.311407 0.950277i \(-0.600800\pi\)
−0.311407 + 0.950277i \(0.600800\pi\)
\(308\) 5.63687 + 1.41506i 0.321191 + 0.0806308i
\(309\) 0 0
\(310\) 0.579307 0.451854i 0.0329024 0.0256636i
\(311\) −5.20379 −0.295080 −0.147540 0.989056i \(-0.547136\pi\)
−0.147540 + 0.989056i \(0.547136\pi\)
\(312\) 0 0
\(313\) 24.5947 1.39017 0.695086 0.718926i \(-0.255366\pi\)
0.695086 + 0.718926i \(0.255366\pi\)
\(314\) 19.8841 15.5094i 1.12213 0.875248i
\(315\) 0 0
\(316\) −2.76634 + 11.0197i −0.155619 + 0.619904i
\(317\) −5.59568 −0.314285 −0.157142 0.987576i \(-0.550228\pi\)
−0.157142 + 0.987576i \(0.550228\pi\)
\(318\) 0 0
\(319\) 0.122772 + 0.0708825i 0.00687392 + 0.00396866i
\(320\) 1.02086 1.12283i 0.0570678 0.0627684i
\(321\) 0 0
\(322\) −14.2501 + 11.1149i −0.794125 + 0.619411i
\(323\) 11.8490 + 20.5231i 0.659298 + 1.14194i
\(324\) 0 0
\(325\) 0.810776 17.8796i 0.0449738 0.991784i
\(326\) 5.41371 0.756408i 0.299838 0.0418936i
\(327\) 0 0
\(328\) 15.4164 21.1116i 0.851230 1.16569i
\(329\) 7.25548 12.5669i 0.400008 0.692834i
\(330\) 0 0
\(331\) 8.64559 14.9746i 0.475205 0.823078i −0.524392 0.851477i \(-0.675707\pi\)
0.999597 + 0.0283984i \(0.00904072\pi\)
\(332\) 6.27512 24.9968i 0.344392 1.37188i
\(333\) 0 0
\(334\) 26.0554 + 10.5514i 1.42569 + 0.577349i
\(335\) 1.14288 + 1.97953i 0.0624424 + 0.108153i
\(336\) 0 0
\(337\) −13.5143 −0.736168 −0.368084 0.929792i \(-0.619986\pi\)
−0.368084 + 0.929792i \(0.619986\pi\)
\(338\) 9.94871 + 15.4604i 0.541138 + 0.840934i
\(339\) 0 0
\(340\) 1.53990 + 1.49186i 0.0835130 + 0.0809075i
\(341\) −3.23152 + 1.86572i −0.174997 + 0.101034i
\(342\) 0 0
\(343\) 20.1574i 1.08840i
\(344\) 19.7073 + 2.11941i 1.06254 + 0.114271i
\(345\) 0 0
\(346\) 2.67700 + 19.1596i 0.143916 + 1.03003i
\(347\) −0.739226 0.426792i −0.0396837 0.0229114i 0.480027 0.877254i \(-0.340627\pi\)
−0.519711 + 0.854342i \(0.673960\pi\)
\(348\) 0 0
\(349\) −7.04582 12.2037i −0.377154 0.653250i 0.613493 0.789700i \(-0.289764\pi\)
−0.990647 + 0.136450i \(0.956431\pi\)
\(350\) −2.07183 14.8284i −0.110744 0.792609i
\(351\) 0 0
\(352\) −5.92412 + 4.93047i −0.315757 + 0.262795i
\(353\) 2.37214 1.36955i 0.126256 0.0728940i −0.435542 0.900169i \(-0.643443\pi\)
0.561798 + 0.827275i \(0.310110\pi\)
\(354\) 0 0
\(355\) −0.236373 0.136470i −0.0125454 0.00724307i
\(356\) 2.67647 + 9.39096i 0.141853 + 0.497720i
\(357\) 0 0
\(358\) 4.63366 + 1.87646i 0.244897 + 0.0991739i
\(359\) 14.5013i 0.765350i −0.923883 0.382675i \(-0.875003\pi\)
0.923883 0.382675i \(-0.124997\pi\)
\(360\) 0 0
\(361\) 0.708092 + 1.22645i 0.0372680 + 0.0645500i
\(362\) −6.31174 + 4.92310i −0.331738 + 0.258752i
\(363\) 0 0
\(364\) 10.5498 + 11.1907i 0.552962 + 0.586554i
\(365\) 1.48539i 0.0777486i
\(366\) 0 0
\(367\) −7.28507 12.6181i −0.380277 0.658660i 0.610824 0.791766i \(-0.290838\pi\)
−0.991102 + 0.133106i \(0.957505\pi\)
\(368\) −0.759372 23.9550i −0.0395850 1.24874i
\(369\) 0 0
\(370\) 0.213869 0.528121i 0.0111185 0.0274557i
\(371\) 9.90482 17.1557i 0.514233 0.890677i
\(372\) 0 0
\(373\) −26.5637 15.3365i −1.37541 0.794096i −0.383811 0.923412i \(-0.625389\pi\)
−0.991603 + 0.129316i \(0.958722\pi\)
\(374\) −6.69733 8.58641i −0.346310 0.443993i
\(375\) 0 0
\(376\) 7.78485 + 17.5992i 0.401473 + 0.907610i
\(377\) 0.172665 + 0.333053i 0.00889270 + 0.0171531i
\(378\) 0 0
\(379\) −14.8941 25.7974i −0.765059 1.32512i −0.940215 0.340581i \(-0.889376\pi\)
0.175156 0.984541i \(-0.443957\pi\)
\(380\) −1.14260 1.10695i −0.0586141 0.0567854i
\(381\) 0 0
\(382\) 28.7225 4.01313i 1.46957 0.205330i
\(383\) 5.15086 + 2.97385i 0.263197 + 0.151957i 0.625792 0.779990i \(-0.284776\pi\)
−0.362595 + 0.931947i \(0.618109\pi\)
\(384\) 0 0
\(385\) 0.551223i 0.0280929i
\(386\) 15.0414 + 6.09122i 0.765590 + 0.310035i
\(387\) 0 0
\(388\) −10.0053 + 10.3275i −0.507944 + 0.524301i
\(389\) 5.39933i 0.273757i −0.990588 0.136878i \(-0.956293\pi\)
0.990588 0.136878i \(-0.0437070\pi\)
\(390\) 0 0
\(391\) 33.8618 1.71247
\(392\) −5.59935 4.08885i −0.282810 0.206518i
\(393\) 0 0
\(394\) −8.81751 + 21.7737i −0.444220 + 1.09694i
\(395\) 1.07760 0.0542199
\(396\) 0 0
\(397\) 5.09195 8.81952i 0.255558 0.442639i −0.709489 0.704716i \(-0.751074\pi\)
0.965047 + 0.262077i \(0.0844076\pi\)
\(398\) −32.9996 + 4.61073i −1.65412 + 0.231115i
\(399\) 0 0
\(400\) 17.5018 + 9.37821i 0.875089 + 0.468911i
\(401\) −2.13475 + 1.23250i −0.106604 + 0.0615481i −0.552354 0.833609i \(-0.686270\pi\)
0.445750 + 0.895158i \(0.352937\pi\)
\(402\) 0 0
\(403\) −9.86429 0.447310i −0.491375 0.0222821i
\(404\) 7.12815 + 25.0106i 0.354639 + 1.24432i
\(405\) 0 0
\(406\) 0.193013 + 0.247455i 0.00957906 + 0.0122810i
\(407\) −1.44694 + 2.50617i −0.0717222 + 0.124226i
\(408\) 0 0
\(409\) 21.2131 + 12.2474i 1.04892 + 0.605595i 0.922347 0.386362i \(-0.126269\pi\)
0.126574 + 0.991957i \(0.459602\pi\)
\(410\) −2.29810 0.930645i −0.113495 0.0459613i
\(411\) 0 0
\(412\) 6.23536 24.8384i 0.307194 1.22370i
\(413\) 6.50644 3.75649i 0.320161 0.184845i
\(414\) 0 0
\(415\) −2.44441 −0.119991
\(416\) −20.2364 + 2.54684i −0.992173 + 0.124869i
\(417\) 0 0
\(418\) 4.96937 + 6.37106i 0.243060 + 0.311619i
\(419\) 34.2729 19.7874i 1.67434 0.966680i 0.709175 0.705032i \(-0.249068\pi\)
0.965164 0.261647i \(-0.0842658\pi\)
\(420\) 0 0
\(421\) 5.17255 0.252095 0.126047 0.992024i \(-0.459771\pi\)
0.126047 + 0.992024i \(0.459771\pi\)
\(422\) 13.1524 + 5.32622i 0.640249 + 0.259276i
\(423\) 0 0
\(424\) 10.6275 + 24.0256i 0.516116 + 1.16679i
\(425\) −14.0268 + 24.2952i −0.680401 + 1.17849i
\(426\) 0 0
\(427\) −12.6689 21.9431i −0.613090 1.06190i
\(428\) 9.93163 + 34.8472i 0.480063 + 1.68440i
\(429\) 0 0
\(430\) −0.260138 1.86185i −0.0125450 0.0897862i
\(431\) 20.9732 12.1089i 1.01025 0.583265i 0.0989818 0.995089i \(-0.468441\pi\)
0.911263 + 0.411824i \(0.135108\pi\)
\(432\) 0 0
\(433\) 16.2179 28.0903i 0.779385 1.34993i −0.152912 0.988240i \(-0.548865\pi\)
0.932297 0.361694i \(-0.117802\pi\)
\(434\) −8.18088 + 1.14304i −0.392695 + 0.0548676i
\(435\) 0 0
\(436\) 2.68188 10.6832i 0.128439 0.511632i
\(437\) −25.1253 −1.20190
\(438\) 0 0
\(439\) 1.43286 + 2.48179i 0.0683868 + 0.118449i 0.898191 0.439605i \(-0.144881\pi\)
−0.829805 + 0.558054i \(0.811548\pi\)
\(440\) 0.590369 + 0.431109i 0.0281447 + 0.0205523i
\(441\) 0 0
\(442\) −2.69062 28.6907i −0.127980 1.36468i
\(443\) 16.2626i 0.772659i 0.922361 + 0.386329i \(0.126257\pi\)
−0.922361 + 0.386329i \(0.873743\pi\)
\(444\) 0 0
\(445\) 0.802080 0.463081i 0.0380223 0.0219522i
\(446\) 8.15982 + 3.30442i 0.386379 + 0.156469i
\(447\) 0 0
\(448\) −16.2523 + 5.19412i −0.767849 + 0.245399i
\(449\) 33.7388 + 19.4791i 1.59223 + 0.919277i 0.992923 + 0.118760i \(0.0378919\pi\)
0.599311 + 0.800516i \(0.295441\pi\)
\(450\) 0 0
\(451\) 10.9056 + 6.29633i 0.513523 + 0.296482i
\(452\) 17.1246 + 16.5904i 0.805474 + 0.780345i
\(453\) 0 0
\(454\) −17.0123 + 2.37697i −0.798428 + 0.111557i
\(455\) 0.785823 1.22893i 0.0368399 0.0576130i
\(456\) 0 0
\(457\) −11.6025 + 6.69870i −0.542742 + 0.313352i −0.746189 0.665734i \(-0.768119\pi\)
0.203448 + 0.979086i \(0.434785\pi\)
\(458\) 10.3190 + 13.2296i 0.482174 + 0.618179i
\(459\) 0 0
\(460\) −2.18612 + 0.623056i −0.101928 + 0.0290501i
\(461\) −13.6463 + 23.6361i −0.635571 + 1.10084i 0.350823 + 0.936442i \(0.385902\pi\)
−0.986394 + 0.164399i \(0.947431\pi\)
\(462\) 0 0
\(463\) 28.3889i 1.31934i −0.751555 0.659671i \(-0.770696\pi\)
0.751555 0.659671i \(-0.229304\pi\)
\(464\) −0.415983 + 0.0131866i −0.0193115 + 0.000612174i
\(465\) 0 0
\(466\) −6.21773 7.97154i −0.288031 0.369275i
\(467\) 34.7603i 1.60852i 0.594280 + 0.804258i \(0.297437\pi\)
−0.594280 + 0.804258i \(0.702563\pi\)
\(468\) 0 0
\(469\) 25.6996i 1.18670i
\(470\) 1.43920 1.12256i 0.0663854 0.0517800i
\(471\) 0 0
\(472\) −1.06538 + 9.90643i −0.0490382 + 0.455981i
\(473\) 9.54803i 0.439019i
\(474\) 0 0
\(475\) 10.4078 18.0269i 0.477544 0.827130i
\(476\) −6.60730 23.1831i −0.302845 1.06259i
\(477\) 0 0
\(478\) 0.737678 0.575382i 0.0337406 0.0263174i
\(479\) 29.7344 17.1671i 1.35860 0.784387i 0.369163 0.929365i \(-0.379644\pi\)
0.989435 + 0.144978i \(0.0463110\pi\)
\(480\) 0 0
\(481\) −6.79869 + 3.52465i −0.309994 + 0.160710i
\(482\) −1.90276 13.6183i −0.0866684 0.620297i
\(483\) 0 0
\(484\) 13.1343 + 12.7245i 0.597012 + 0.578386i
\(485\) 1.18110 + 0.681910i 0.0536311 + 0.0309639i
\(486\) 0 0
\(487\) 19.0115 + 10.9763i 0.861494 + 0.497384i 0.864512 0.502612i \(-0.167627\pi\)
−0.00301815 + 0.999995i \(0.500961\pi\)
\(488\) 33.4097 + 3.59303i 1.51239 + 0.162649i
\(489\) 0 0
\(490\) −0.246832 + 0.609518i −0.0111507 + 0.0275352i
\(491\) −16.3189 + 9.42172i −0.736462 + 0.425196i −0.820781 0.571242i \(-0.806462\pi\)
0.0843196 + 0.996439i \(0.473128\pi\)
\(492\) 0 0
\(493\) 0.588017i 0.0264829i
\(494\) 1.99643 + 21.2883i 0.0898234 + 0.957808i
\(495\) 0 0
\(496\) 5.17401 9.65583i 0.232320 0.433559i
\(497\) 1.53437 + 2.65761i 0.0688261 + 0.119210i
\(498\) 0 0
\(499\) −39.7400 −1.77900 −0.889502 0.456931i \(-0.848949\pi\)
−0.889502 + 0.456931i \(0.848949\pi\)
\(500\) 0.920409 3.66642i 0.0411619 0.163967i
\(501\) 0 0
\(502\) 3.77769 + 27.0375i 0.168607 + 1.20674i
\(503\) 14.7001 25.4614i 0.655447 1.13527i −0.326335 0.945254i \(-0.605814\pi\)
0.981782 0.190013i \(-0.0608530\pi\)
\(504\) 0 0
\(505\) 2.13615 1.23331i 0.0950574 0.0548814i
\(506\) 11.4342 1.59760i 0.508313 0.0710218i
\(507\) 0 0
\(508\) 3.87152 1.10340i 0.171771 0.0489556i
\(509\) −19.7550 34.2167i −0.875626 1.51663i −0.856094 0.516820i \(-0.827116\pi\)
−0.0195318 0.999809i \(-0.506218\pi\)
\(510\) 0 0
\(511\) 8.35033 14.4632i 0.369397 0.639814i
\(512\) 7.14785 21.4688i 0.315893 0.948795i
\(513\) 0 0
\(514\) −5.71655 + 14.1163i −0.252146 + 0.622641i
\(515\) −2.42892 −0.107031
\(516\) 0 0
\(517\) −8.02822 + 4.63510i −0.353081 + 0.203851i
\(518\) −5.05136 + 3.94001i −0.221944 + 0.173114i
\(519\) 0 0
\(520\) 0.701615 + 1.80277i 0.0307678 + 0.0790566i
\(521\) 9.39408 0.411562 0.205781 0.978598i \(-0.434027\pi\)
0.205781 + 0.978598i \(0.434027\pi\)
\(522\) 0 0
\(523\) 33.5910 19.3938i 1.46883 0.848031i 0.469443 0.882963i \(-0.344455\pi\)
0.999390 + 0.0349315i \(0.0111213\pi\)
\(524\) −5.20137 1.30574i −0.227223 0.0570414i
\(525\) 0 0
\(526\) 14.9943 37.0264i 0.653783 1.61443i
\(527\) 13.4038 + 7.73868i 0.583878 + 0.337102i
\(528\) 0 0
\(529\) −6.45055 + 11.1727i −0.280459 + 0.485769i
\(530\) 1.96473 1.53247i 0.0853423 0.0665662i
\(531\) 0 0
\(532\) 4.90257 + 17.2017i 0.212553 + 0.745788i
\(533\) 15.3374 + 29.5843i 0.664338 + 1.28144i
\(534\) 0 0
\(535\) 2.97629 1.71836i 0.128676 0.0742913i
\(536\) 27.5247 + 20.0995i 1.18889 + 0.868167i
\(537\) 0 0
\(538\) −4.20397 30.0884i −0.181246 1.29720i
\(539\) 1.66995 2.89244i 0.0719299 0.124586i
\(540\) 0 0
\(541\) 4.35170 0.187094 0.0935471 0.995615i \(-0.470179\pi\)
0.0935471 + 0.995615i \(0.470179\pi\)
\(542\) 5.71783 + 2.31551i 0.245602 + 0.0994595i
\(543\) 0 0
\(544\) 29.9970 + 11.0548i 1.28611 + 0.473972i
\(545\) −1.04470 −0.0447499
\(546\) 0 0
\(547\) 37.5399i 1.60509i 0.596591 + 0.802546i \(0.296522\pi\)
−0.596591 + 0.802546i \(0.703478\pi\)
\(548\) 12.1382 12.5291i 0.518518 0.535215i
\(549\) 0 0
\(550\) −3.59023 + 8.86561i −0.153088 + 0.378031i
\(551\) 0.436305i 0.0185872i
\(552\) 0 0
\(553\) −10.4926 6.05789i −0.446190 0.257608i
\(554\) −1.90775 13.6540i −0.0810526 0.580104i
\(555\) 0 0
\(556\) 7.57065 7.81444i 0.321067 0.331406i
\(557\) 4.81938 + 8.34741i 0.204204 + 0.353691i 0.949879 0.312619i \(-0.101206\pi\)
−0.745675 + 0.666310i \(0.767873\pi\)
\(558\) 0 0
\(559\) −13.6117 + 21.2869i −0.575712 + 0.900341i
\(560\) 0.853134 + 1.37513i 0.0360515 + 0.0581096i
\(561\) 0 0
\(562\) −24.8944 + 19.4174i −1.05011 + 0.819074i
\(563\) −10.7740 6.22039i −0.454071 0.262158i 0.255477 0.966815i \(-0.417768\pi\)
−0.709548 + 0.704657i \(0.751101\pi\)
\(564\) 0 0
\(565\) 1.13071 1.95845i 0.0475693 0.0823925i
\(566\) 5.59835 + 2.26712i 0.235316 + 0.0952942i
\(567\) 0 0
\(568\) −4.04637 0.435165i −0.169782 0.0182591i
\(569\) 18.1774 + 31.4841i 0.762034 + 1.31988i 0.941800 + 0.336173i \(0.109133\pi\)
−0.179766 + 0.983709i \(0.557534\pi\)
\(570\) 0 0
\(571\) 28.0964i 1.17580i −0.808934 0.587899i \(-0.799955\pi\)
0.808934 0.587899i \(-0.200045\pi\)
\(572\) −2.26218 9.56113i −0.0945863 0.399771i
\(573\) 0 0
\(574\) 17.1449 + 21.9809i 0.715613 + 0.917463i
\(575\) −14.8716 25.7583i −0.620188 1.07420i
\(576\) 0 0
\(577\) 30.9511i 1.28851i 0.764811 + 0.644255i \(0.222832\pi\)
−0.764811 + 0.644255i \(0.777168\pi\)
\(578\) −7.92970 + 19.5813i −0.329832 + 0.814476i
\(579\) 0 0
\(580\) 0.0108195 + 0.0379624i 0.000449254 + 0.00157630i
\(581\) 23.8012 + 13.7416i 0.987439 + 0.570098i
\(582\) 0 0
\(583\) −10.9597 + 6.32760i −0.453906 + 0.262063i
\(584\) 8.95958 + 20.2549i 0.370750 + 0.838155i
\(585\) 0 0
\(586\) −13.6169 + 1.90257i −0.562510 + 0.0785943i
\(587\) −0.0914707 0.158432i −0.00377540 0.00653919i 0.864132 0.503266i \(-0.167868\pi\)
−0.867907 + 0.496727i \(0.834535\pi\)
\(588\) 0 0
\(589\) −9.94552 5.74205i −0.409798 0.236597i
\(590\) 0.935911 0.130766i 0.0385309 0.00538356i
\(591\) 0 0
\(592\) −0.269182 8.49155i −0.0110633 0.349001i
\(593\) 26.1358i 1.07327i 0.843815 + 0.536634i \(0.180305\pi\)
−0.843815 + 0.536634i \(0.819695\pi\)
\(594\) 0 0
\(595\) −1.98006 + 1.14319i −0.0811746 + 0.0468662i
\(596\) −12.5071 12.1170i −0.512313 0.496330i
\(597\) 0 0
\(598\) 27.7696 + 12.7388i 1.13558 + 0.520929i
\(599\) 29.3928 1.20096 0.600479 0.799641i \(-0.294977\pi\)
0.600479 + 0.799641i \(0.294977\pi\)
\(600\) 0 0
\(601\) −6.85899 11.8801i −0.279784 0.484600i 0.691547 0.722332i \(-0.256930\pi\)
−0.971331 + 0.237731i \(0.923596\pi\)
\(602\) −7.93369 + 19.5912i −0.323353 + 0.798478i
\(603\) 0 0
\(604\) −22.4567 5.63747i −0.913750 0.229385i
\(605\) 0.867233 1.50209i 0.0352580 0.0610687i
\(606\) 0 0
\(607\) −11.6750 + 20.2216i −0.473872 + 0.820771i −0.999553 0.0299112i \(-0.990478\pi\)
0.525680 + 0.850682i \(0.323811\pi\)
\(608\) −22.2576 8.20261i −0.902664 0.332660i
\(609\) 0 0
\(610\) −0.441013 3.15639i −0.0178561 0.127798i
\(611\) −24.5064 1.11127i −0.991421 0.0449573i
\(612\) 0 0
\(613\) 22.6961 + 39.3108i 0.916688 + 1.58775i 0.804411 + 0.594073i \(0.202481\pi\)
0.112277 + 0.993677i \(0.464186\pi\)
\(614\) 9.49154 + 12.1688i 0.383047 + 0.491092i
\(615\) 0 0
\(616\) −3.32488 7.51656i −0.133963 0.302851i
\(617\) −29.6144 17.0979i −1.19223 0.688334i −0.233417 0.972377i \(-0.574991\pi\)
−0.958812 + 0.284043i \(0.908324\pi\)
\(618\) 0 0
\(619\) 15.8251 0.636065 0.318033 0.948080i \(-0.396978\pi\)
0.318033 + 0.948080i \(0.396978\pi\)
\(620\) −1.00774 0.252980i −0.0404718 0.0101599i
\(621\) 0 0
\(622\) 4.52615 + 5.80283i 0.181482 + 0.232672i
\(623\) −10.4131 −0.417194
\(624\) 0 0
\(625\) 24.4615 0.978462
\(626\) −21.3920 27.4259i −0.854994 1.09616i
\(627\) 0 0
\(628\) −34.5896 8.68328i −1.38028 0.346501i
\(629\) 12.0033 0.478604
\(630\) 0 0
\(631\) −8.68918 5.01670i −0.345911 0.199712i 0.316972 0.948435i \(-0.397334\pi\)
−0.662883 + 0.748723i \(0.730667\pi\)
\(632\) 14.6943 6.49988i 0.584508 0.258551i
\(633\) 0 0
\(634\) 4.86701 + 6.23983i 0.193294 + 0.247815i
\(635\) −0.190910 0.330666i −0.00757603 0.0131221i
\(636\) 0 0
\(637\) 7.84654 4.06789i 0.310891 0.161176i
\(638\) −0.0277426 0.198557i −0.00109834 0.00786096i
\(639\) 0 0
\(640\) −2.14001 0.161757i −0.0845915 0.00639400i
\(641\) −10.9247 + 18.9221i −0.431498 + 0.747376i −0.997003 0.0773688i \(-0.975348\pi\)
0.565505 + 0.824745i \(0.308681\pi\)
\(642\) 0 0
\(643\) −22.1023 + 38.2824i −0.871631 + 1.50971i −0.0113225 + 0.999936i \(0.503604\pi\)
−0.860309 + 0.509774i \(0.829729\pi\)
\(644\) 24.7888 + 6.22293i 0.976817 + 0.245218i
\(645\) 0 0
\(646\) 12.5796 31.0636i 0.494938 1.22218i
\(647\) −20.6785 35.8163i −0.812957 1.40808i −0.910785 0.412880i \(-0.864523\pi\)
0.0978282 0.995203i \(-0.468810\pi\)
\(648\) 0 0
\(649\) −4.79960 −0.188401
\(650\) −20.6431 + 14.6473i −0.809688 + 0.574512i
\(651\) 0 0
\(652\) −5.55222 5.37901i −0.217442 0.210658i
\(653\) 3.58215 2.06815i 0.140180 0.0809331i −0.428270 0.903651i \(-0.640877\pi\)
0.568450 + 0.822718i \(0.307543\pi\)
\(654\) 0 0
\(655\) 0.508636i 0.0198740i
\(656\) −36.9508 + 1.17134i −1.44269 + 0.0457331i
\(657\) 0 0
\(658\) −20.3242 + 2.83971i −0.792319 + 0.110703i
\(659\) 17.3575 + 10.0214i 0.676153 + 0.390377i 0.798404 0.602122i \(-0.205678\pi\)
−0.122251 + 0.992499i \(0.539011\pi\)
\(660\) 0 0
\(661\) −0.306645 0.531125i −0.0119271 0.0206584i 0.860000 0.510294i \(-0.170463\pi\)
−0.871927 + 0.489635i \(0.837130\pi\)
\(662\) −24.2182 + 3.38378i −0.941266 + 0.131514i
\(663\) 0 0
\(664\) −33.3323 + 14.7442i −1.29354 + 0.572187i
\(665\) 1.46919 0.848239i 0.0569729 0.0328933i
\(666\) 0 0
\(667\) 0.539906 + 0.311715i 0.0209052 + 0.0120696i
\(668\) −10.8964 38.2322i −0.421593 1.47925i
\(669\) 0 0
\(670\) 1.21335 2.99621i 0.0468758 0.115754i
\(671\) 16.1868i 0.624884i
\(672\) 0 0
\(673\) −10.3246 17.8828i −0.397985 0.689330i 0.595492 0.803361i \(-0.296957\pi\)
−0.993477 + 0.114031i \(0.963624\pi\)
\(674\) 11.7544 + 15.0700i 0.452764 + 0.580473i
\(675\) 0 0
\(676\) 8.58691 24.5411i 0.330266 0.943888i
\(677\) 14.9377i 0.574101i −0.957915 0.287051i \(-0.907325\pi\)
0.957915 0.287051i \(-0.0926748\pi\)
\(678\) 0 0
\(679\) −7.66693 13.2795i −0.294230 0.509621i
\(680\) 0.324221 3.01476i 0.0124333 0.115611i
\(681\) 0 0
\(682\) 4.89120 + 1.98075i 0.187294 + 0.0758469i
\(683\) 22.2218 38.4892i 0.850292 1.47275i −0.0306521 0.999530i \(-0.509758\pi\)
0.880945 0.473220i \(-0.156908\pi\)
\(684\) 0 0
\(685\) −1.43288 0.827273i −0.0547475 0.0316085i
\(686\) 22.4779 17.5325i 0.858209 0.669395i
\(687\) 0 0
\(688\) −14.7776 23.8193i −0.563391 0.908102i
\(689\) −33.4549 1.51706i −1.27453 0.0577952i
\(690\) 0 0
\(691\) −0.557929 0.966361i −0.0212246 0.0367621i 0.855218 0.518268i \(-0.173423\pi\)
−0.876443 + 0.481506i \(0.840090\pi\)
\(692\) 19.0368 19.6498i 0.723671 0.746975i
\(693\) 0 0
\(694\) 0.167041 + 1.19554i 0.00634080 + 0.0453820i
\(695\) −0.893694 0.515974i −0.0338997 0.0195720i
\(696\) 0 0
\(697\) 52.2322i 1.97843i
\(698\) −7.48024 + 18.4714i −0.283131 + 0.699154i
\(699\) 0 0
\(700\) −14.7333 + 15.2077i −0.556866 + 0.574799i
\(701\) 37.1382i 1.40269i −0.712821 0.701346i \(-0.752583\pi\)
0.712821 0.701346i \(-0.247417\pi\)
\(702\) 0 0
\(703\) −8.90639 −0.335911
\(704\) 10.6507 + 2.31766i 0.401414 + 0.0873500i
\(705\) 0 0
\(706\) −3.59045 1.45400i −0.135128 0.0547218i
\(707\) −27.7329 −1.04300
\(708\) 0 0
\(709\) −14.9752 + 25.9378i −0.562404 + 0.974113i 0.434882 + 0.900488i \(0.356790\pi\)
−0.997286 + 0.0736252i \(0.976543\pi\)
\(710\) 0.0534127 + 0.382282i 0.00200454 + 0.0143468i
\(711\) 0 0
\(712\) 8.14406 11.1526i 0.305212 0.417963i
\(713\) −14.2110 + 8.20473i −0.532206 + 0.307270i
\(714\) 0 0
\(715\) −0.827303 + 0.428899i −0.0309394 + 0.0160399i
\(716\) −1.93780 6.79918i −0.0724190 0.254097i
\(717\) 0 0
\(718\) −16.1706 + 12.6130i −0.603483 + 0.470711i
\(719\) 17.4176 30.1682i 0.649568 1.12508i −0.333658 0.942694i \(-0.608283\pi\)
0.983226 0.182391i \(-0.0583835\pi\)
\(720\) 0 0
\(721\) 23.6504 + 13.6545i 0.880785 + 0.508522i
\(722\) 0.751750 1.85635i 0.0279772 0.0690860i
\(723\) 0 0
\(724\) 10.9796 + 2.75630i 0.408055 + 0.102437i
\(725\) −0.447298 + 0.258248i −0.0166122 + 0.00959108i
\(726\) 0 0
\(727\) 10.7252 0.397776 0.198888 0.980022i \(-0.436267\pi\)
0.198888 + 0.980022i \(0.436267\pi\)
\(728\) 3.30292 21.4978i 0.122414 0.796761i
\(729\) 0 0
\(730\) 1.65638 1.29196i 0.0613052 0.0478175i
\(731\) 34.2977 19.8018i 1.26855 0.732396i
\(732\) 0 0
\(733\) −5.20872 −0.192388 −0.0961942 0.995363i \(-0.530667\pi\)
−0.0961942 + 0.995363i \(0.530667\pi\)
\(734\) −7.73424 + 19.0987i −0.285476 + 0.704945i
\(735\) 0 0
\(736\) −26.0521 + 21.6824i −0.960292 + 0.799222i
\(737\) −8.20898 + 14.2184i −0.302382 + 0.523740i
\(738\) 0 0
\(739\) 14.2025 + 24.5995i 0.522448 + 0.904907i 0.999659 + 0.0261179i \(0.00831454\pi\)
−0.477211 + 0.878789i \(0.658352\pi\)
\(740\) −0.774935 + 0.220860i −0.0284872 + 0.00811899i
\(741\) 0 0
\(742\) −27.7456 + 3.87663i −1.01857 + 0.142316i
\(743\) 30.9116 17.8468i 1.13404 0.654737i 0.189090 0.981960i \(-0.439446\pi\)
0.944947 + 0.327223i \(0.106113\pi\)
\(744\) 0 0
\(745\) −0.825826 + 1.43037i −0.0302559 + 0.0524048i
\(746\) 6.00254 + 42.9610i 0.219769 + 1.57291i
\(747\) 0 0
\(748\) −3.74964 + 14.9366i −0.137100 + 0.546136i
\(749\) −38.6402 −1.41188
\(750\) 0 0
\(751\) −14.8764 25.7667i −0.542849 0.940242i −0.998739 0.0502058i \(-0.984012\pi\)
0.455890 0.890036i \(-0.349321\pi\)
\(752\) 12.8541 23.9885i 0.468739 0.874769i
\(753\) 0 0
\(754\) 0.221212 0.482224i 0.00805607 0.0175616i
\(755\) 2.19601i 0.0799211i
\(756\) 0 0
\(757\) −31.1859 + 18.0052i −1.13347 + 0.654409i −0.944805 0.327633i \(-0.893749\pi\)
−0.188664 + 0.982042i \(0.560416\pi\)
\(758\) −15.8124 + 39.0467i −0.574333 + 1.41824i
\(759\) 0 0
\(760\) −0.240570 + 2.23693i −0.00872638 + 0.0811421i
\(761\) −22.4482 12.9605i −0.813747 0.469817i 0.0345084 0.999404i \(-0.489013\pi\)
−0.848255 + 0.529587i \(0.822347\pi\)
\(762\) 0 0
\(763\) 10.1722 + 5.87293i 0.368259 + 0.212614i
\(764\) −29.4574 28.5384i −1.06573 1.03248i
\(765\) 0 0
\(766\) −1.16393 8.33040i −0.0420545 0.300989i
\(767\) −10.7005 6.84230i −0.386373 0.247061i
\(768\) 0 0
\(769\) 6.38308 3.68527i 0.230180 0.132894i −0.380475 0.924791i \(-0.624240\pi\)
0.610655 + 0.791897i \(0.290906\pi\)
\(770\) −0.614677 + 0.479443i −0.0221514 + 0.0172779i
\(771\) 0 0
\(772\) −6.29034 22.0710i −0.226394 0.794352i
\(773\) −13.3741 + 23.1646i −0.481032 + 0.833171i −0.999763 0.0217661i \(-0.993071\pi\)
0.518732 + 0.854937i \(0.326404\pi\)
\(774\) 0 0
\(775\) 13.5948i 0.488341i
\(776\) 20.2188 + 2.17442i 0.725814 + 0.0780573i
\(777\) 0 0
\(778\) −6.02087 + 4.69623i −0.215859 + 0.168368i
\(779\) 38.7559i 1.38858i
\(780\) 0 0
\(781\) 1.96044i 0.0701501i
\(782\) −29.4523 37.7598i −1.05321 1.35029i
\(783\) 0 0
\(784\) 0.310670 + 9.80032i 0.0110954 + 0.350011i
\(785\) 3.38248i 0.120726i
\(786\) 0 0
\(787\) −15.3334 + 26.5583i −0.546578 + 0.946701i 0.451927 + 0.892055i \(0.350737\pi\)
−0.998506 + 0.0546467i \(0.982597\pi\)
\(788\) 31.9495 9.10576i 1.13815 0.324379i
\(789\) 0 0
\(790\) −0.937274 1.20165i −0.0333467 0.0427527i
\(791\) −22.0194 + 12.7129i −0.782921 + 0.452020i
\(792\) 0 0
\(793\) −23.0758 + 36.0877i −0.819447 + 1.28151i
\(794\) −14.2637 + 1.99293i −0.506198 + 0.0707264i
\(795\) 0 0
\(796\) 33.8439 + 32.7880i 1.19957 + 1.16214i
\(797\) 18.8596 + 10.8886i 0.668043 + 0.385695i 0.795335 0.606171i \(-0.207295\pi\)
−0.127292 + 0.991865i \(0.540628\pi\)
\(798\) 0 0
\(799\) 33.2997 + 19.2256i 1.17806 + 0.680152i
\(800\) −4.76492 27.6735i −0.168465 0.978406i
\(801\) 0 0
\(802\) 3.23114 + 1.30849i 0.114096 + 0.0462044i
\(803\) −9.23968 + 5.33453i −0.326061 + 0.188251i
\(804\) 0 0
\(805\) 2.42407i 0.0854373i
\(806\) 8.08097 + 11.3889i 0.284640 + 0.401156i
\(807\) 0 0
\(808\) 21.6898 29.7024i 0.763043 1.04493i
\(809\) 13.9705 + 24.1975i 0.491175 + 0.850740i 0.999948 0.0101606i \(-0.00323427\pi\)
−0.508774 + 0.860900i \(0.669901\pi\)
\(810\) 0 0
\(811\) 4.37189 0.153518 0.0767588 0.997050i \(-0.475543\pi\)
0.0767588 + 0.997050i \(0.475543\pi\)
\(812\) 0.108062 0.430463i 0.00379224 0.0151063i
\(813\) 0 0
\(814\) 4.05319 0.566315i 0.142064 0.0198493i
\(815\) −0.366604 + 0.634977i −0.0128416 + 0.0222423i
\(816\) 0 0
\(817\) −25.4487 + 14.6928i −0.890337 + 0.514036i
\(818\) −4.79349 34.3076i −0.167600 1.19954i
\(819\) 0 0
\(820\) 0.961069 + 3.37211i 0.0335620 + 0.117759i
\(821\) −17.3163 29.9928i −0.604344 1.04675i −0.992155 0.125016i \(-0.960102\pi\)
0.387811 0.921739i \(-0.373231\pi\)
\(822\) 0 0
\(823\) 8.89278 15.4027i 0.309983 0.536906i −0.668375 0.743824i \(-0.733010\pi\)
0.978358 + 0.206918i \(0.0663434\pi\)
\(824\) −33.1211 + 14.6508i −1.15383 + 0.510384i
\(825\) 0 0
\(826\) −9.84809 3.98810i −0.342659 0.138764i
\(827\) 36.6583 1.27473 0.637367 0.770560i \(-0.280023\pi\)
0.637367 + 0.770560i \(0.280023\pi\)
\(828\) 0 0
\(829\) 12.5682 7.25623i 0.436510 0.252019i −0.265606 0.964082i \(-0.585572\pi\)
0.702116 + 0.712062i \(0.252239\pi\)
\(830\) 2.12610 + 2.72580i 0.0737979 + 0.0946137i
\(831\) 0 0
\(832\) 20.4413 + 20.3508i 0.708674 + 0.705536i
\(833\) −13.8533 −0.479990
\(834\) 0 0
\(835\) −3.26540 + 1.88528i −0.113004 + 0.0652428i
\(836\) 2.78221 11.0829i 0.0962247 0.383308i
\(837\) 0 0
\(838\) −51.8751 21.0075i −1.79200 0.725691i
\(839\) −11.5480 6.66727i −0.398683 0.230180i 0.287233 0.957861i \(-0.407265\pi\)
−0.685915 + 0.727681i \(0.740598\pi\)
\(840\) 0 0
\(841\) −14.4946 + 25.1054i −0.499813 + 0.865702i
\(842\) −4.49898 5.76799i −0.155045 0.198778i
\(843\) 0 0
\(844\) −5.50034 19.2991i −0.189330 0.664302i
\(845\) −2.45587 0.223189i −0.0844846 0.00767792i
\(846\) 0 0
\(847\) −16.8885 + 9.75058i −0.580296 + 0.335034i
\(848\) 17.5477 32.7478i 0.602591 1.12457i
\(849\) 0 0
\(850\) 39.2922 5.48993i 1.34771 0.188303i
\(851\) −6.36310 + 11.0212i −0.218124 + 0.377802i
\(852\) 0 0
\(853\) 44.5742 1.52619 0.763095 0.646286i \(-0.223679\pi\)
0.763095 + 0.646286i \(0.223679\pi\)
\(854\) −13.4500 + 33.2130i −0.460249 + 1.13652i
\(855\) 0 0
\(856\) 30.2203 41.3843i 1.03291 1.41449i
\(857\) −33.8713 −1.15702 −0.578510 0.815675i \(-0.696366\pi\)
−0.578510 + 0.815675i \(0.696366\pi\)
\(858\) 0 0
\(859\) 40.8552i 1.39396i −0.717090 0.696981i \(-0.754526\pi\)
0.717090 0.696981i \(-0.245474\pi\)
\(860\) −1.84991 + 1.90948i −0.0630814 + 0.0651127i
\(861\) 0 0
\(862\) −31.7449 12.8555i −1.08124 0.437860i
\(863\) 28.3678i 0.965652i −0.875716 0.482826i \(-0.839610\pi\)
0.875716 0.482826i \(-0.160390\pi\)
\(864\) 0 0
\(865\) −2.24724 1.29745i −0.0764086 0.0441145i
\(866\) −45.4300 + 6.34751i −1.54377 + 0.215697i
\(867\) 0 0
\(868\) 8.39019 + 8.12844i 0.284782 + 0.275897i
\(869\) 3.87003 + 6.70309i 0.131282 + 0.227387i
\(870\) 0 0
\(871\) −38.5712 + 19.9965i −1.30694 + 0.677556i
\(872\) −14.2456 + 6.30142i −0.482418 + 0.213393i
\(873\) 0 0
\(874\) 21.8534 + 28.0176i 0.739204 + 0.947708i
\(875\) 3.49106 + 2.01556i 0.118019 + 0.0681384i
\(876\) 0 0
\(877\) −8.76923 + 15.1888i −0.296116 + 0.512888i −0.975244 0.221132i \(-0.929025\pi\)
0.679128 + 0.734020i \(0.262358\pi\)
\(878\) 1.52121 3.75642i 0.0513383 0.126773i
\(879\) 0 0
\(880\) −0.0327556 1.03330i −0.00110419 0.0348325i
\(881\) 5.35079 + 9.26785i 0.180273 + 0.312242i 0.941973 0.335688i \(-0.108969\pi\)
−0.761701 + 0.647929i \(0.775635\pi\)
\(882\) 0 0
\(883\) 57.4333i 1.93278i 0.257072 + 0.966392i \(0.417242\pi\)
−0.257072 + 0.966392i \(0.582758\pi\)
\(884\) −29.6532 + 27.9550i −0.997346 + 0.940228i
\(885\) 0 0
\(886\) 18.1347 14.1449i 0.609246 0.475206i
\(887\) 17.7688 + 30.7765i 0.596618 + 1.03337i 0.993316 + 0.115424i \(0.0368227\pi\)
−0.396698 + 0.917949i \(0.629844\pi\)
\(888\) 0 0
\(889\) 4.29292i 0.143980i
\(890\) −1.21402 0.491633i −0.0406941 0.0164796i
\(891\) 0 0
\(892\) −3.41244 11.9733i −0.114257 0.400894i
\(893\) −24.7082 14.2653i −0.826827 0.477369i
\(894\) 0 0
\(895\) −0.580717 + 0.335277i −0.0194112 + 0.0112071i
\(896\) 19.9280 + 13.6055i 0.665747 + 0.454526i
\(897\) 0 0
\(898\) −7.62390 54.5652i −0.254413 1.82087i
\(899\) 0.142477 + 0.246777i 0.00475186 + 0.00823047i
\(900\) 0 0
\(901\) 45.4591 + 26.2458i 1.51446 + 0.874374i
\(902\) −2.46431 17.6374i −0.0820525 0.587260i
\(903\) 0 0
\(904\) 3.60552 33.5259i 0.119918 1.11505i
\(905\) 1.07369i 0.0356906i
\(906\) 0 0
\(907\) 44.9702 25.9636i 1.49321 0.862106i 0.493241 0.869893i \(-0.335812\pi\)
0.999970 + 0.00778704i \(0.00247872\pi\)
\(908\) 17.4476 + 16.9033i 0.579018 + 0.560954i
\(909\) 0 0
\(910\) −2.05389 + 0.192614i −0.0680858 + 0.00638510i
\(911\) −8.53527 −0.282786 −0.141393 0.989954i \(-0.545158\pi\)
−0.141393 + 0.989954i \(0.545158\pi\)
\(912\) 0 0
\(913\) −8.77870 15.2052i −0.290533 0.503217i
\(914\) 17.5614 + 7.11172i 0.580881 + 0.235235i
\(915\) 0 0
\(916\) 5.77729 23.0137i 0.190887 0.760394i
\(917\) 2.85938 4.95259i 0.0944249 0.163549i
\(918\) 0 0
\(919\) 5.95251 10.3101i 0.196355 0.340097i −0.750989 0.660315i \(-0.770423\pi\)
0.947344 + 0.320218i \(0.103756\pi\)
\(920\) 2.59622 + 1.89585i 0.0855949 + 0.0625045i
\(921\) 0 0
\(922\) 38.2262 5.34099i 1.25891 0.175896i
\(923\) 2.79480 4.37072i 0.0919920 0.143864i
\(924\) 0 0
\(925\) −5.27167 9.13080i −0.173331 0.300219i
\(926\) −31.6568 + 24.6921i −1.04031 + 0.811432i
\(927\) 0 0
\(928\) 0.376518 + 0.452399i 0.0123598 + 0.0148507i
\(929\) 7.68193 + 4.43517i 0.252036 + 0.145513i 0.620696 0.784051i \(-0.286850\pi\)
−0.368660 + 0.929564i \(0.620183\pi\)
\(930\) 0 0
\(931\) 10.2791 0.336884
\(932\) −3.48113 + 13.8670i −0.114028 + 0.454228i
\(933\) 0 0
\(934\) 38.7618 30.2338i 1.26832 0.989282i
\(935\) 1.46063 0.0477677
\(936\) 0 0
\(937\) −10.6970 −0.349455 −0.174728 0.984617i \(-0.555905\pi\)
−0.174728 + 0.984617i \(0.555905\pi\)
\(938\) −28.6580 + 22.3530i −0.935718 + 0.729852i
\(939\) 0 0
\(940\) −2.50358 0.628492i −0.0816577 0.0204991i
\(941\) 15.6042 0.508683 0.254341 0.967115i \(-0.418141\pi\)
0.254341 + 0.967115i \(0.418141\pi\)
\(942\) 0 0
\(943\) 47.9586 + 27.6889i 1.56175 + 0.901674i
\(944\) 11.9735 7.42840i 0.389703 0.241774i
\(945\) 0 0
\(946\) 10.6472 8.30469i 0.346169 0.270009i
\(947\) −27.2869 47.2622i −0.886704 1.53582i −0.843749 0.536739i \(-0.819656\pi\)
−0.0429551 0.999077i \(-0.513677\pi\)
\(948\) 0 0
\(949\) −28.2044 1.27896i −0.915552 0.0415169i
\(950\) −29.1546 + 4.07350i −0.945899 + 0.132162i
\(951\) 0 0
\(952\) −20.1049 + 27.5321i −0.651603 + 0.892319i
\(953\) −16.3520 + 28.3224i −0.529692 + 0.917454i 0.469708 + 0.882822i \(0.344359\pi\)
−0.999400 + 0.0346321i \(0.988974\pi\)
\(954\) 0 0
\(955\) −1.94502 + 3.36888i −0.0629394 + 0.109014i
\(956\) −1.28324 0.322140i −0.0415028 0.0104187i
\(957\) 0 0
\(958\) −45.0057 18.2256i −1.45407 0.588843i
\(959\) 9.30130 + 16.1103i 0.300355 + 0.520229i
\(960\) 0 0
\(961\) 23.4997 0.758054
\(962\) 9.84376 + 4.51565i 0.317375 + 0.145590i
\(963\) 0 0
\(964\) −13.5310 + 13.9667i −0.435804 + 0.449838i
\(965\) −1.88508 + 1.08835i −0.0606828 + 0.0350352i
\(966\) 0 0
\(967\) 39.1298i 1.25833i 0.777272 + 0.629165i \(0.216603\pi\)
−0.777272 + 0.629165i \(0.783397\pi\)
\(968\) 2.76537 25.7137i 0.0888823 0.826471i
\(969\) 0 0
\(970\) −0.266891 1.91018i −0.00856937 0.0613321i
\(971\) −3.02789 1.74815i −0.0971697 0.0561009i 0.450628 0.892712i \(-0.351200\pi\)
−0.547797 + 0.836611i \(0.684534\pi\)
\(972\) 0 0
\(973\) 5.80126 + 10.0481i 0.185980 + 0.322127i
\(974\) −4.29600 30.7470i −0.137653 0.985198i
\(975\) 0 0
\(976\) −25.0525 40.3808i −0.801910 1.29256i
\(977\) −14.9605 + 8.63745i −0.478629 + 0.276337i −0.719845 0.694135i \(-0.755787\pi\)
0.241216 + 0.970471i \(0.422454\pi\)
\(978\) 0 0
\(979\) 5.76109 + 3.32617i 0.184125 + 0.106305i
\(980\) 0.894372 0.254901i 0.0285697 0.00814251i
\(981\) 0 0
\(982\) 24.7002 + 10.0026i 0.788214 + 0.319197i
\(983\) 39.4265i 1.25751i −0.777604 0.628755i \(-0.783565\pi\)
0.777604 0.628755i \(-0.216435\pi\)
\(984\) 0 0
\(985\) −1.57547 2.72880i −0.0501987 0.0869467i
\(986\) −0.655706 + 0.511445i −0.0208819 + 0.0162877i
\(987\) 0 0
\(988\) 22.0025 20.7424i 0.699993 0.659904i
\(989\) 41.9887i 1.33516i
\(990\) 0 0
\(991\) −0.265640 0.460102i −0.00843833 0.0146156i 0.861775 0.507290i \(-0.169353\pi\)
−0.870214 + 0.492674i \(0.836019\pi\)
\(992\) −15.2676 + 2.62883i −0.484747 + 0.0834654i
\(993\) 0 0
\(994\) 1.62898 4.02254i 0.0516680 0.127587i
\(995\) 2.23466 3.87054i 0.0708434 0.122704i
\(996\) 0 0
\(997\) 32.7700 + 18.9198i 1.03784 + 0.599195i 0.919220 0.393745i \(-0.128821\pi\)
0.118617 + 0.992940i \(0.462154\pi\)
\(998\) 34.5650 + 44.3146i 1.09414 + 1.40276i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.dg.f.829.9 56
3.2 odd 2 inner 936.2.dg.f.829.20 yes 56
8.5 even 2 inner 936.2.dg.f.829.18 yes 56
13.4 even 6 inner 936.2.dg.f.901.18 yes 56
24.5 odd 2 inner 936.2.dg.f.829.11 yes 56
39.17 odd 6 inner 936.2.dg.f.901.11 yes 56
104.69 even 6 inner 936.2.dg.f.901.9 yes 56
312.173 odd 6 inner 936.2.dg.f.901.20 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.dg.f.829.9 56 1.1 even 1 trivial
936.2.dg.f.829.11 yes 56 24.5 odd 2 inner
936.2.dg.f.829.18 yes 56 8.5 even 2 inner
936.2.dg.f.829.20 yes 56 3.2 odd 2 inner
936.2.dg.f.901.9 yes 56 104.69 even 6 inner
936.2.dg.f.901.11 yes 56 39.17 odd 6 inner
936.2.dg.f.901.18 yes 56 13.4 even 6 inner
936.2.dg.f.901.20 yes 56 312.173 odd 6 inner