Properties

Label 936.2.dg.e.901.10
Level $936$
Weight $2$
Character 936.901
Analytic conductor $7.474$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(829,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.829"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.dg (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 901.10
Character \(\chi\) \(=\) 936.901
Dual form 936.2.dg.e.829.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.660721 - 1.25038i) q^{2} +(-1.12690 + 1.65230i) q^{4} +0.230393 q^{5} +(-2.89019 + 1.66865i) q^{7} +(2.81057 + 0.317334i) q^{8} +(-0.152225 - 0.288078i) q^{10} +(1.57254 - 2.72371i) q^{11} +(-2.26472 - 2.80553i) q^{13} +(3.99606 + 2.51132i) q^{14} +(-1.46021 - 3.72395i) q^{16} +(0.791692 + 1.37125i) q^{17} +(4.02979 + 6.97979i) q^{19} +(-0.259629 + 0.380679i) q^{20} +(-4.44468 - 0.166652i) q^{22} +(3.40824 - 5.90325i) q^{23} -4.94692 q^{25} +(-2.01163 + 4.68544i) q^{26} +(0.499822 - 6.65587i) q^{28} +(-3.13808 - 1.81177i) q^{29} -9.62991i q^{31} +(-3.69155 + 4.28631i) q^{32} +(1.19150 - 1.89593i) q^{34} +(-0.665879 + 0.384445i) q^{35} +(0.568757 - 0.985115i) q^{37} +(6.06482 - 9.65046i) q^{38} +(0.647535 + 0.0731116i) q^{40} +(-9.84578 - 5.68446i) q^{41} +(5.40070 - 3.11810i) q^{43} +(2.72832 + 5.66765i) q^{44} +(-9.63320 - 0.361194i) q^{46} -8.90552i q^{47} +(2.06880 - 3.58326i) q^{49} +(3.26853 + 6.18552i) q^{50} +(7.18770 - 0.580470i) q^{52} -4.01765i q^{53} +(0.362301 - 0.627524i) q^{55} +(-8.65260 + 3.77270i) q^{56} +(-0.192005 + 5.12086i) q^{58} +(-3.63171 - 6.29031i) q^{59} +(-2.50714 + 1.44750i) q^{61} +(-12.0410 + 6.36268i) q^{62} +(7.79860 + 1.78378i) q^{64} +(-0.521776 - 0.646375i) q^{65} +(0.640338 - 1.10910i) q^{67} +(-3.15788 - 0.237140i) q^{68} +(0.920663 + 0.578590i) q^{70} +(0.987337 - 0.570039i) q^{71} +0.813566i q^{73} +(-1.60756 - 0.0602748i) q^{74} +(-16.0739 - 1.20707i) q^{76} +10.4961i q^{77} -15.4710 q^{79} +(-0.336423 - 0.857971i) q^{80} +(-0.602419 + 16.0668i) q^{82} +12.7265 q^{83} +(0.182400 + 0.315926i) q^{85} +(-7.46716 - 4.69273i) q^{86} +(5.28405 - 7.15616i) q^{88} +(-10.0707 - 5.81429i) q^{89} +(11.2269 + 4.32949i) q^{91} +(5.91323 + 12.2838i) q^{92} +(-11.1353 + 5.88406i) q^{94} +(0.928434 + 1.60809i) q^{95} +(6.94900 - 4.01201i) q^{97} +(-5.84733 - 0.219244i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{4} - 12 q^{7} - 4 q^{10} + 36 q^{14} - 2 q^{16} - 12 q^{17} - 54 q^{20} - 14 q^{22} - 20 q^{23} + 48 q^{25} + 42 q^{26} + 6 q^{28} + 28 q^{38} - 8 q^{40} + 12 q^{41} - 30 q^{46} + 16 q^{49}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.660721 1.25038i −0.467200 0.884151i
\(3\) 0 0
\(4\) −1.12690 + 1.65230i −0.563448 + 0.826152i
\(5\) 0.230393 0.103035 0.0515174 0.998672i \(-0.483594\pi\)
0.0515174 + 0.998672i \(0.483594\pi\)
\(6\) 0 0
\(7\) −2.89019 + 1.66865i −1.09239 + 0.630691i −0.934211 0.356720i \(-0.883895\pi\)
−0.158177 + 0.987411i \(0.550562\pi\)
\(8\) 2.81057 + 0.317334i 0.993686 + 0.112195i
\(9\) 0 0
\(10\) −0.152225 0.288078i −0.0481379 0.0910984i
\(11\) 1.57254 2.72371i 0.474138 0.821230i −0.525424 0.850841i \(-0.676093\pi\)
0.999562 + 0.0296102i \(0.00942660\pi\)
\(12\) 0 0
\(13\) −2.26472 2.80553i −0.628122 0.778115i
\(14\) 3.99606 + 2.51132i 1.06799 + 0.671178i
\(15\) 0 0
\(16\) −1.46021 3.72395i −0.365054 0.930987i
\(17\) 0.791692 + 1.37125i 0.192013 + 0.332577i 0.945917 0.324408i \(-0.105165\pi\)
−0.753904 + 0.656985i \(0.771832\pi\)
\(18\) 0 0
\(19\) 4.02979 + 6.97979i 0.924496 + 1.60127i 0.792369 + 0.610042i \(0.208847\pi\)
0.132127 + 0.991233i \(0.457819\pi\)
\(20\) −0.259629 + 0.380679i −0.0580547 + 0.0851224i
\(21\) 0 0
\(22\) −4.44468 0.166652i −0.947609 0.0355303i
\(23\) 3.40824 5.90325i 0.710668 1.23091i −0.253939 0.967220i \(-0.581726\pi\)
0.964607 0.263692i \(-0.0849404\pi\)
\(24\) 0 0
\(25\) −4.94692 −0.989384
\(26\) −2.01163 + 4.68544i −0.394513 + 0.918890i
\(27\) 0 0
\(28\) 0.499822 6.65587i 0.0944574 1.25784i
\(29\) −3.13808 1.81177i −0.582727 0.336437i 0.179490 0.983760i \(-0.442555\pi\)
−0.762216 + 0.647323i \(0.775889\pi\)
\(30\) 0 0
\(31\) 9.62991i 1.72958i −0.502132 0.864791i \(-0.667451\pi\)
0.502132 0.864791i \(-0.332549\pi\)
\(32\) −3.69155 + 4.28631i −0.652580 + 0.757720i
\(33\) 0 0
\(34\) 1.19150 1.89593i 0.204340 0.325149i
\(35\) −0.665879 + 0.384445i −0.112554 + 0.0649831i
\(36\) 0 0
\(37\) 0.568757 0.985115i 0.0935030 0.161952i −0.815480 0.578785i \(-0.803527\pi\)
0.908983 + 0.416834i \(0.136860\pi\)
\(38\) 6.06482 9.65046i 0.983844 1.56551i
\(39\) 0 0
\(40\) 0.647535 + 0.0731116i 0.102384 + 0.0115600i
\(41\) −9.84578 5.68446i −1.53765 0.887764i −0.998976 0.0452518i \(-0.985591\pi\)
−0.538677 0.842512i \(-0.681076\pi\)
\(42\) 0 0
\(43\) 5.40070 3.11810i 0.823599 0.475505i −0.0280568 0.999606i \(-0.508932\pi\)
0.851656 + 0.524101i \(0.175599\pi\)
\(44\) 2.72832 + 5.66765i 0.411309 + 0.854430i
\(45\) 0 0
\(46\) −9.63320 0.361194i −1.42034 0.0532551i
\(47\) 8.90552i 1.29900i −0.760360 0.649501i \(-0.774978\pi\)
0.760360 0.649501i \(-0.225022\pi\)
\(48\) 0 0
\(49\) 2.06880 3.58326i 0.295542 0.511894i
\(50\) 3.26853 + 6.18552i 0.462240 + 0.874765i
\(51\) 0 0
\(52\) 7.18770 0.580470i 0.996755 0.0804967i
\(53\) 4.01765i 0.551867i −0.961177 0.275933i \(-0.911013\pi\)
0.961177 0.275933i \(-0.0889869\pi\)
\(54\) 0 0
\(55\) 0.362301 0.627524i 0.0488527 0.0846153i
\(56\) −8.65260 + 3.77270i −1.15625 + 0.504149i
\(57\) 0 0
\(58\) −0.192005 + 5.12086i −0.0252115 + 0.672402i
\(59\) −3.63171 6.29031i −0.472809 0.818929i 0.526707 0.850047i \(-0.323426\pi\)
−0.999516 + 0.0311183i \(0.990093\pi\)
\(60\) 0 0
\(61\) −2.50714 + 1.44750i −0.321006 + 0.185333i −0.651841 0.758356i \(-0.726003\pi\)
0.330835 + 0.943689i \(0.392670\pi\)
\(62\) −12.0410 + 6.36268i −1.52921 + 0.808061i
\(63\) 0 0
\(64\) 7.79860 + 1.78378i 0.974825 + 0.222972i
\(65\) −0.521776 0.646375i −0.0647184 0.0801730i
\(66\) 0 0
\(67\) 0.640338 1.10910i 0.0782297 0.135498i −0.824257 0.566217i \(-0.808407\pi\)
0.902486 + 0.430719i \(0.141740\pi\)
\(68\) −3.15788 0.237140i −0.382949 0.0287575i
\(69\) 0 0
\(70\) 0.920663 + 0.578590i 0.110040 + 0.0691547i
\(71\) 0.987337 0.570039i 0.117175 0.0676512i −0.440267 0.897867i \(-0.645116\pi\)
0.557442 + 0.830216i \(0.311783\pi\)
\(72\) 0 0
\(73\) 0.813566i 0.0952207i 0.998866 + 0.0476104i \(0.0151606\pi\)
−0.998866 + 0.0476104i \(0.984839\pi\)
\(74\) −1.60756 0.0602748i −0.186875 0.00700681i
\(75\) 0 0
\(76\) −16.0739 1.20707i −1.84380 0.138460i
\(77\) 10.4961i 1.19614i
\(78\) 0 0
\(79\) −15.4710 −1.74062 −0.870309 0.492506i \(-0.836081\pi\)
−0.870309 + 0.492506i \(0.836081\pi\)
\(80\) −0.336423 0.857971i −0.0376132 0.0959240i
\(81\) 0 0
\(82\) −0.602419 + 16.0668i −0.0665261 + 1.77428i
\(83\) 12.7265 1.39691 0.698455 0.715654i \(-0.253871\pi\)
0.698455 + 0.715654i \(0.253871\pi\)
\(84\) 0 0
\(85\) 0.182400 + 0.315926i 0.0197841 + 0.0342670i
\(86\) −7.46716 4.69273i −0.805205 0.506030i
\(87\) 0 0
\(88\) 5.28405 7.15616i 0.563282 0.762850i
\(89\) −10.0707 5.81429i −1.06749 0.616314i −0.139993 0.990152i \(-0.544708\pi\)
−0.927494 + 0.373838i \(0.878041\pi\)
\(90\) 0 0
\(91\) 11.2269 + 4.32949i 1.17690 + 0.453854i
\(92\) 5.91323 + 12.2838i 0.616497 + 1.28067i
\(93\) 0 0
\(94\) −11.1353 + 5.88406i −1.14852 + 0.606895i
\(95\) 0.928434 + 1.60809i 0.0952553 + 0.164987i
\(96\) 0 0
\(97\) 6.94900 4.01201i 0.705564 0.407358i −0.103852 0.994593i \(-0.533117\pi\)
0.809416 + 0.587235i \(0.199784\pi\)
\(98\) −5.84733 0.219244i −0.590669 0.0221469i
\(99\) 0 0
\(100\) 5.57466 8.17381i 0.557466 0.817381i
\(101\) 9.97844 + 5.76105i 0.992892 + 0.573246i 0.906137 0.422983i \(-0.139017\pi\)
0.0867543 + 0.996230i \(0.472350\pi\)
\(102\) 0 0
\(103\) −0.570336 −0.0561969 −0.0280984 0.999605i \(-0.508945\pi\)
−0.0280984 + 0.999605i \(0.508945\pi\)
\(104\) −5.47487 8.60382i −0.536856 0.843674i
\(105\) 0 0
\(106\) −5.02359 + 2.65455i −0.487934 + 0.257832i
\(107\) 1.27986 + 0.738926i 0.123729 + 0.0714347i 0.560587 0.828096i \(-0.310576\pi\)
−0.436858 + 0.899530i \(0.643909\pi\)
\(108\) 0 0
\(109\) −1.50562 −0.144212 −0.0721062 0.997397i \(-0.522972\pi\)
−0.0721062 + 0.997397i \(0.522972\pi\)
\(110\) −1.02402 0.0383954i −0.0976368 0.00366086i
\(111\) 0 0
\(112\) 10.4343 + 8.32632i 0.985945 + 0.786763i
\(113\) 0.0381779 + 0.0661261i 0.00359148 + 0.00622062i 0.867816 0.496886i \(-0.165523\pi\)
−0.864224 + 0.503107i \(0.832190\pi\)
\(114\) 0 0
\(115\) 0.785235 1.36007i 0.0732235 0.126827i
\(116\) 6.52988 3.14338i 0.606284 0.291856i
\(117\) 0 0
\(118\) −5.46572 + 8.69716i −0.503161 + 0.800638i
\(119\) −4.57628 2.64211i −0.419507 0.242202i
\(120\) 0 0
\(121\) 0.554258 + 0.960004i 0.0503871 + 0.0872731i
\(122\) 3.46644 + 2.17848i 0.313837 + 0.197230i
\(123\) 0 0
\(124\) 15.9115 + 10.8519i 1.42890 + 0.974529i
\(125\) −2.29170 −0.204976
\(126\) 0 0
\(127\) 3.12007 5.40413i 0.276862 0.479539i −0.693741 0.720224i \(-0.744039\pi\)
0.970603 + 0.240686i \(0.0773723\pi\)
\(128\) −2.92230 10.9298i −0.258297 0.966066i
\(129\) 0 0
\(130\) −0.463465 + 1.07949i −0.0406486 + 0.0946777i
\(131\) 15.7714i 1.37795i 0.724783 + 0.688977i \(0.241940\pi\)
−0.724783 + 0.688977i \(0.758060\pi\)
\(132\) 0 0
\(133\) −23.2937 13.4486i −2.01982 1.16614i
\(134\) −1.80988 0.0678607i −0.156349 0.00586227i
\(135\) 0 0
\(136\) 1.78996 + 4.10522i 0.153488 + 0.352020i
\(137\) 4.42860 2.55686i 0.378361 0.218447i −0.298744 0.954333i \(-0.596568\pi\)
0.677105 + 0.735886i \(0.263234\pi\)
\(138\) 0 0
\(139\) −4.90809 + 2.83369i −0.416299 + 0.240350i −0.693492 0.720464i \(-0.743929\pi\)
0.277194 + 0.960814i \(0.410596\pi\)
\(140\) 0.115155 1.53346i 0.00973240 0.129601i
\(141\) 0 0
\(142\) −1.36512 0.857909i −0.114558 0.0719941i
\(143\) −11.2028 + 1.75666i −0.936828 + 0.146899i
\(144\) 0 0
\(145\) −0.722991 0.417419i −0.0600411 0.0346648i
\(146\) 1.01727 0.537540i 0.0841896 0.0444872i
\(147\) 0 0
\(148\) 0.986781 + 2.04988i 0.0811129 + 0.168499i
\(149\) −4.50412 7.80137i −0.368992 0.639113i 0.620416 0.784273i \(-0.286964\pi\)
−0.989408 + 0.145160i \(0.953630\pi\)
\(150\) 0 0
\(151\) 6.17629i 0.502619i −0.967907 0.251310i \(-0.919139\pi\)
0.967907 0.251310i \(-0.0808612\pi\)
\(152\) 9.11106 + 20.8960i 0.739005 + 1.69489i
\(153\) 0 0
\(154\) 13.1241 6.93497i 1.05757 0.558836i
\(155\) 2.21866i 0.178207i
\(156\) 0 0
\(157\) 10.0557i 0.802532i 0.915961 + 0.401266i \(0.131430\pi\)
−0.915961 + 0.401266i \(0.868570\pi\)
\(158\) 10.2220 + 19.3446i 0.813217 + 1.53897i
\(159\) 0 0
\(160\) −0.850507 + 0.987536i −0.0672385 + 0.0780715i
\(161\) 22.7487i 1.79285i
\(162\) 0 0
\(163\) −10.3005 17.8410i −0.806796 1.39741i −0.915072 0.403291i \(-0.867866\pi\)
0.108276 0.994121i \(-0.465467\pi\)
\(164\) 20.4876 9.86242i 1.59981 0.770126i
\(165\) 0 0
\(166\) −8.40864 15.9129i −0.652637 1.23508i
\(167\) 7.97855 + 4.60642i 0.617399 + 0.356455i 0.775856 0.630910i \(-0.217318\pi\)
−0.158457 + 0.987366i \(0.550652\pi\)
\(168\) 0 0
\(169\) −2.74204 + 12.7075i −0.210926 + 0.977502i
\(170\) 0.274512 0.436808i 0.0210541 0.0335017i
\(171\) 0 0
\(172\) −0.933983 + 12.4374i −0.0712155 + 0.948340i
\(173\) −1.65613 + 0.956165i −0.125913 + 0.0726959i −0.561634 0.827386i \(-0.689827\pi\)
0.435721 + 0.900082i \(0.356494\pi\)
\(174\) 0 0
\(175\) 14.2975 8.25468i 1.08079 0.623995i
\(176\) −12.4392 1.87884i −0.937640 0.141623i
\(177\) 0 0
\(178\) −0.616178 + 16.4338i −0.0461845 + 1.23176i
\(179\) 11.8443 + 6.83830i 0.885283 + 0.511118i 0.872397 0.488799i \(-0.162565\pi\)
0.0128863 + 0.999917i \(0.495898\pi\)
\(180\) 0 0
\(181\) 1.95106i 0.145021i 0.997368 + 0.0725105i \(0.0231011\pi\)
−0.997368 + 0.0725105i \(0.976899\pi\)
\(182\) −2.00438 16.8985i −0.148574 1.25260i
\(183\) 0 0
\(184\) 11.4524 15.5099i 0.844282 1.14341i
\(185\) 0.131037 0.226964i 0.00963407 0.0166867i
\(186\) 0 0
\(187\) 4.97986 0.364163
\(188\) 14.7146 + 10.0356i 1.07317 + 0.731920i
\(189\) 0 0
\(190\) 1.39729 2.22340i 0.101370 0.161302i
\(191\) −8.22747 14.2504i −0.595318 1.03112i −0.993502 0.113816i \(-0.963693\pi\)
0.398183 0.917306i \(-0.369641\pi\)
\(192\) 0 0
\(193\) −5.14440 2.97012i −0.370302 0.213794i 0.303288 0.952899i \(-0.401915\pi\)
−0.673590 + 0.739105i \(0.735249\pi\)
\(194\) −9.60788 6.03806i −0.689805 0.433508i
\(195\) 0 0
\(196\) 3.58932 + 7.45623i 0.256380 + 0.532588i
\(197\) 3.94646 6.83547i 0.281174 0.487007i −0.690500 0.723332i \(-0.742610\pi\)
0.971674 + 0.236325i \(0.0759430\pi\)
\(198\) 0 0
\(199\) 8.18855 + 14.1830i 0.580471 + 1.00541i 0.995423 + 0.0955625i \(0.0304650\pi\)
−0.414952 + 0.909843i \(0.636202\pi\)
\(200\) −13.9037 1.56983i −0.983137 0.111004i
\(201\) 0 0
\(202\) 0.610536 16.2833i 0.0429572 1.14569i
\(203\) 12.0929 0.848752
\(204\) 0 0
\(205\) −2.26840 1.30966i −0.158432 0.0914706i
\(206\) 0.376833 + 0.713136i 0.0262552 + 0.0496866i
\(207\) 0 0
\(208\) −7.14067 + 12.5304i −0.495117 + 0.868826i
\(209\) 25.3479 1.75335
\(210\) 0 0
\(211\) 12.5801 + 7.26314i 0.866052 + 0.500016i 0.866034 0.499984i \(-0.166661\pi\)
1.79224e−5 1.00000i \(0.499994\pi\)
\(212\) 6.63838 + 4.52747i 0.455926 + 0.310948i
\(213\) 0 0
\(214\) 0.0783088 2.08853i 0.00535308 0.142769i
\(215\) 1.24428 0.718387i 0.0848594 0.0489936i
\(216\) 0 0
\(217\) 16.0690 + 27.8322i 1.09083 + 1.88938i
\(218\) 0.994795 + 1.88260i 0.0673760 + 0.127506i
\(219\) 0 0
\(220\) 0.628585 + 1.30579i 0.0423792 + 0.0880360i
\(221\) 2.05413 5.32662i 0.138175 0.358307i
\(222\) 0 0
\(223\) 20.0347 + 11.5670i 1.34162 + 0.774585i 0.987045 0.160442i \(-0.0512919\pi\)
0.354576 + 0.935027i \(0.384625\pi\)
\(224\) 3.51692 18.5482i 0.234984 1.23930i
\(225\) 0 0
\(226\) 0.0574577 0.0914278i 0.00382203 0.00608169i
\(227\) −10.2158 17.6943i −0.678048 1.17441i −0.975568 0.219699i \(-0.929493\pi\)
0.297519 0.954716i \(-0.403841\pi\)
\(228\) 0 0
\(229\) 6.70980 0.443396 0.221698 0.975115i \(-0.428840\pi\)
0.221698 + 0.975115i \(0.428840\pi\)
\(230\) −2.21942 0.0832164i −0.146344 0.00548713i
\(231\) 0 0
\(232\) −8.24485 6.08793i −0.541301 0.399692i
\(233\) 9.35304 0.612738 0.306369 0.951913i \(-0.400886\pi\)
0.306369 + 0.951913i \(0.400886\pi\)
\(234\) 0 0
\(235\) 2.05177i 0.133843i
\(236\) 14.4861 + 1.08783i 0.942962 + 0.0708117i
\(237\) 0 0
\(238\) −0.280002 + 7.46778i −0.0181498 + 0.484064i
\(239\) 8.79465i 0.568879i 0.958694 + 0.284439i \(0.0918074\pi\)
−0.958694 + 0.284439i \(0.908193\pi\)
\(240\) 0 0
\(241\) −16.6492 + 9.61245i −1.07247 + 0.619192i −0.928856 0.370441i \(-0.879206\pi\)
−0.143616 + 0.989633i \(0.545873\pi\)
\(242\) 0.834158 1.32733i 0.0536217 0.0853238i
\(243\) 0 0
\(244\) 0.433578 5.77373i 0.0277570 0.369625i
\(245\) 0.476636 0.825557i 0.0304511 0.0527429i
\(246\) 0 0
\(247\) 10.4557 27.1130i 0.665280 1.72516i
\(248\) 3.05590 27.0655i 0.194050 1.71866i
\(249\) 0 0
\(250\) 1.51417 + 2.86549i 0.0957648 + 0.181230i
\(251\) 18.3517 10.5953i 1.15835 0.668772i 0.207440 0.978248i \(-0.433487\pi\)
0.950907 + 0.309476i \(0.100154\pi\)
\(252\) 0 0
\(253\) −10.7192 18.5661i −0.673909 1.16724i
\(254\) −8.81870 0.330654i −0.553335 0.0207471i
\(255\) 0 0
\(256\) −11.7355 + 10.8755i −0.733472 + 0.679720i
\(257\) −2.53390 + 4.38885i −0.158061 + 0.273769i −0.934169 0.356830i \(-0.883857\pi\)
0.776109 + 0.630599i \(0.217191\pi\)
\(258\) 0 0
\(259\) 3.79623i 0.235886i
\(260\) 1.65600 0.133736i 0.102700 0.00829396i
\(261\) 0 0
\(262\) 19.7202 10.4205i 1.21832 0.643781i
\(263\) −2.69479 + 4.66751i −0.166168 + 0.287811i −0.937069 0.349143i \(-0.886473\pi\)
0.770902 + 0.636954i \(0.219806\pi\)
\(264\) 0 0
\(265\) 0.925638i 0.0568615i
\(266\) −1.42524 + 38.0117i −0.0873869 + 2.33065i
\(267\) 0 0
\(268\) 1.11097 + 2.30787i 0.0678634 + 0.140975i
\(269\) −13.0916 + 7.55845i −0.798210 + 0.460847i −0.842845 0.538156i \(-0.819121\pi\)
0.0446347 + 0.999003i \(0.485788\pi\)
\(270\) 0 0
\(271\) 1.44092 + 0.831915i 0.0875296 + 0.0505352i 0.543126 0.839651i \(-0.317241\pi\)
−0.455596 + 0.890186i \(0.650574\pi\)
\(272\) 3.95042 4.95054i 0.239530 0.300170i
\(273\) 0 0
\(274\) −6.12311 3.84806i −0.369911 0.232470i
\(275\) −7.77921 + 13.4740i −0.469104 + 0.812512i
\(276\) 0 0
\(277\) 13.9650 8.06272i 0.839078 0.484442i −0.0178730 0.999840i \(-0.505689\pi\)
0.856951 + 0.515399i \(0.172356\pi\)
\(278\) 6.78606 + 4.26469i 0.407001 + 0.255779i
\(279\) 0 0
\(280\) −1.99350 + 0.869204i −0.119134 + 0.0519449i
\(281\) 23.9271i 1.42737i −0.700466 0.713686i \(-0.747024\pi\)
0.700466 0.713686i \(-0.252976\pi\)
\(282\) 0 0
\(283\) 7.67135 + 4.42906i 0.456015 + 0.263280i 0.710367 0.703831i \(-0.248529\pi\)
−0.254352 + 0.967112i \(0.581862\pi\)
\(284\) −0.170747 + 2.27376i −0.0101320 + 0.134923i
\(285\) 0 0
\(286\) 9.59843 + 12.8471i 0.567567 + 0.759666i
\(287\) 37.9416 2.23962
\(288\) 0 0
\(289\) 7.24645 12.5512i 0.426262 0.738307i
\(290\) −0.0442366 + 1.17981i −0.00259766 + 0.0692808i
\(291\) 0 0
\(292\) −1.34426 0.916804i −0.0786668 0.0536519i
\(293\) −12.1437 21.0335i −0.709441 1.22879i −0.965065 0.262012i \(-0.915614\pi\)
0.255623 0.966776i \(-0.417719\pi\)
\(294\) 0 0
\(295\) −0.836721 1.44924i −0.0487158 0.0843782i
\(296\) 1.91114 2.58825i 0.111083 0.150439i
\(297\) 0 0
\(298\) −6.77870 + 10.7864i −0.392680 + 0.624839i
\(299\) −24.2805 + 3.80729i −1.40418 + 0.220182i
\(300\) 0 0
\(301\) −10.4060 + 18.0238i −0.599794 + 1.03887i
\(302\) −7.72270 + 4.08080i −0.444391 + 0.234824i
\(303\) 0 0
\(304\) 20.1080 25.1987i 1.15327 1.44524i
\(305\) −0.577627 + 0.333493i −0.0330748 + 0.0190957i
\(306\) 0 0
\(307\) 32.3797 1.84801 0.924004 0.382383i \(-0.124897\pi\)
0.924004 + 0.382383i \(0.124897\pi\)
\(308\) −17.3427 11.8280i −0.988191 0.673961i
\(309\) 0 0
\(310\) −2.77417 + 1.46592i −0.157562 + 0.0832585i
\(311\) −16.7587 −0.950298 −0.475149 0.879905i \(-0.657606\pi\)
−0.475149 + 0.879905i \(0.657606\pi\)
\(312\) 0 0
\(313\) −12.2059 −0.689921 −0.344960 0.938617i \(-0.612108\pi\)
−0.344960 + 0.938617i \(0.612108\pi\)
\(314\) 12.5734 6.64401i 0.709560 0.374943i
\(315\) 0 0
\(316\) 17.4341 25.5627i 0.980747 1.43801i
\(317\) −30.0086 −1.68545 −0.842725 0.538345i \(-0.819050\pi\)
−0.842725 + 0.538345i \(0.819050\pi\)
\(318\) 0 0
\(319\) −9.86948 + 5.69815i −0.552585 + 0.319035i
\(320\) 1.79674 + 0.410970i 0.100441 + 0.0229739i
\(321\) 0 0
\(322\) 28.4445 15.0305i 1.58515 0.837619i
\(323\) −6.38070 + 11.0517i −0.355031 + 0.614932i
\(324\) 0 0
\(325\) 11.2034 + 13.8788i 0.621453 + 0.769855i
\(326\) −15.5022 + 24.6674i −0.858588 + 1.36620i
\(327\) 0 0
\(328\) −25.8684 19.1010i −1.42834 1.05468i
\(329\) 14.8602 + 25.7386i 0.819269 + 1.41902i
\(330\) 0 0
\(331\) 2.48978 + 4.31242i 0.136851 + 0.237032i 0.926303 0.376780i \(-0.122969\pi\)
−0.789452 + 0.613812i \(0.789635\pi\)
\(332\) −14.3414 + 21.0280i −0.787086 + 1.15406i
\(333\) 0 0
\(334\) 0.488172 13.0198i 0.0267116 0.712410i
\(335\) 0.147529 0.255528i 0.00806038 0.0139610i
\(336\) 0 0
\(337\) −14.3686 −0.782707 −0.391353 0.920240i \(-0.627993\pi\)
−0.391353 + 0.920240i \(0.627993\pi\)
\(338\) 17.7009 4.96754i 0.962805 0.270198i
\(339\) 0 0
\(340\) −0.727552 0.0546354i −0.0394570 0.00296302i
\(341\) −26.2291 15.1434i −1.42039 0.820060i
\(342\) 0 0
\(343\) 9.55273i 0.515799i
\(344\) 16.1685 7.04980i 0.871748 0.380100i
\(345\) 0 0
\(346\) 2.28981 + 1.43903i 0.123101 + 0.0773626i
\(347\) 5.35002 3.08884i 0.287204 0.165817i −0.349476 0.936945i \(-0.613640\pi\)
0.636680 + 0.771128i \(0.280307\pi\)
\(348\) 0 0
\(349\) −12.8064 + 22.1813i −0.685510 + 1.18734i 0.287766 + 0.957701i \(0.407088\pi\)
−0.973276 + 0.229638i \(0.926246\pi\)
\(350\) −19.7682 12.4233i −1.05665 0.664053i
\(351\) 0 0
\(352\) 5.86958 + 16.7951i 0.312850 + 0.895182i
\(353\) −6.78643 3.91815i −0.361205 0.208542i 0.308404 0.951255i \(-0.400205\pi\)
−0.669609 + 0.742713i \(0.733538\pi\)
\(354\) 0 0
\(355\) 0.227475 0.131333i 0.0120731 0.00697043i
\(356\) 20.9556 10.0877i 1.11064 0.534646i
\(357\) 0 0
\(358\) 0.724699 19.3280i 0.0383015 1.02152i
\(359\) 27.9638i 1.47587i 0.674870 + 0.737937i \(0.264200\pi\)
−0.674870 + 0.737937i \(0.735800\pi\)
\(360\) 0 0
\(361\) −22.9783 + 39.7997i −1.20939 + 2.09472i
\(362\) 2.43956 1.28910i 0.128220 0.0677538i
\(363\) 0 0
\(364\) −19.8052 + 13.6714i −1.03808 + 0.716578i
\(365\) 0.187440i 0.00981105i
\(366\) 0 0
\(367\) −11.9144 + 20.6364i −0.621929 + 1.07721i 0.367198 + 0.930143i \(0.380317\pi\)
−0.989126 + 0.147069i \(0.953016\pi\)
\(368\) −26.9601 4.07210i −1.40539 0.212273i
\(369\) 0 0
\(370\) −0.370370 0.0138869i −0.0192546 0.000721945i
\(371\) 6.70406 + 11.6118i 0.348057 + 0.602853i
\(372\) 0 0
\(373\) −10.4787 + 6.04988i −0.542567 + 0.313251i −0.746118 0.665813i \(-0.768085\pi\)
0.203552 + 0.979064i \(0.434751\pi\)
\(374\) −3.29030 6.22671i −0.170137 0.321975i
\(375\) 0 0
\(376\) 2.82603 25.0296i 0.145741 1.29080i
\(377\) 2.02390 + 12.9071i 0.104236 + 0.664752i
\(378\) 0 0
\(379\) 7.11999 12.3322i 0.365729 0.633462i −0.623164 0.782092i \(-0.714153\pi\)
0.988893 + 0.148630i \(0.0474862\pi\)
\(380\) −3.70331 0.278100i −0.189976 0.0142662i
\(381\) 0 0
\(382\) −12.3823 + 19.7030i −0.633535 + 1.00809i
\(383\) −20.4692 + 11.8179i −1.04593 + 0.603866i −0.921506 0.388363i \(-0.873041\pi\)
−0.124421 + 0.992230i \(0.539707\pi\)
\(384\) 0 0
\(385\) 2.41822i 0.123244i
\(386\) −0.314763 + 8.39487i −0.0160210 + 0.427288i
\(387\) 0 0
\(388\) −1.20174 + 16.0030i −0.0610092 + 0.812427i
\(389\) 16.4521i 0.834152i 0.908872 + 0.417076i \(0.136945\pi\)
−0.908872 + 0.417076i \(0.863055\pi\)
\(390\) 0 0
\(391\) 10.7931 0.545831
\(392\) 6.95158 9.41450i 0.351108 0.475504i
\(393\) 0 0
\(394\) −11.1544 0.418232i −0.561952 0.0210702i
\(395\) −3.56440 −0.179344
\(396\) 0 0
\(397\) −2.08064 3.60378i −0.104424 0.180868i 0.809078 0.587701i \(-0.199967\pi\)
−0.913503 + 0.406832i \(0.866633\pi\)
\(398\) 12.3238 19.6098i 0.617735 0.982950i
\(399\) 0 0
\(400\) 7.22356 + 18.4221i 0.361178 + 0.921103i
\(401\) 9.32403 + 5.38323i 0.465620 + 0.268826i 0.714404 0.699733i \(-0.246698\pi\)
−0.248785 + 0.968559i \(0.580031\pi\)
\(402\) 0 0
\(403\) −27.0170 + 21.8091i −1.34581 + 1.08639i
\(404\) −20.7637 + 9.99531i −1.03303 + 0.497285i
\(405\) 0 0
\(406\) −7.99000 15.1206i −0.396537 0.750425i
\(407\) −1.78878 3.09826i −0.0886666 0.153575i
\(408\) 0 0
\(409\) 26.0298 15.0283i 1.28709 0.743103i 0.308958 0.951076i \(-0.400020\pi\)
0.978135 + 0.207972i \(0.0666864\pi\)
\(410\) −0.138793 + 3.70168i −0.00685450 + 0.182813i
\(411\) 0 0
\(412\) 0.642709 0.942368i 0.0316640 0.0464272i
\(413\) 20.9927 + 12.1201i 1.03298 + 0.596392i
\(414\) 0 0
\(415\) 2.93209 0.143930
\(416\) 20.3857 + 0.649453i 0.999493 + 0.0318421i
\(417\) 0 0
\(418\) −16.7479 31.6945i −0.819167 1.55023i
\(419\) −13.7149 7.91829i −0.670016 0.386834i 0.126067 0.992022i \(-0.459765\pi\)
−0.796083 + 0.605188i \(0.793098\pi\)
\(420\) 0 0
\(421\) 23.2913 1.13515 0.567574 0.823322i \(-0.307882\pi\)
0.567574 + 0.823322i \(0.307882\pi\)
\(422\) 0.769722 20.5289i 0.0374695 0.999329i
\(423\) 0 0
\(424\) 1.27494 11.2919i 0.0619165 0.548382i
\(425\) −3.91643 6.78346i −0.189975 0.329046i
\(426\) 0 0
\(427\) 4.83073 8.36708i 0.233776 0.404911i
\(428\) −2.66320 + 1.28202i −0.128730 + 0.0619688i
\(429\) 0 0
\(430\) −1.72038 1.08117i −0.0829641 0.0521387i
\(431\) −6.94958 4.01234i −0.334750 0.193268i 0.323198 0.946331i \(-0.395242\pi\)
−0.657948 + 0.753064i \(0.728575\pi\)
\(432\) 0 0
\(433\) −15.2699 26.4483i −0.733825 1.27102i −0.955237 0.295842i \(-0.904400\pi\)
0.221412 0.975180i \(-0.428934\pi\)
\(434\) 24.1838 38.4816i 1.16086 1.84718i
\(435\) 0 0
\(436\) 1.69668 2.48774i 0.0812561 0.119141i
\(437\) 54.9379 2.62804
\(438\) 0 0
\(439\) −5.57038 + 9.64818i −0.265860 + 0.460482i −0.967788 0.251765i \(-0.918989\pi\)
0.701929 + 0.712247i \(0.252322\pi\)
\(440\) 1.21741 1.64873i 0.0580376 0.0786001i
\(441\) 0 0
\(442\) −8.01750 + 0.950977i −0.381354 + 0.0452333i
\(443\) 1.48868i 0.0707295i −0.999374 0.0353647i \(-0.988741\pi\)
0.999374 0.0353647i \(-0.0112593\pi\)
\(444\) 0 0
\(445\) −2.32021 1.33957i −0.109988 0.0635018i
\(446\) 1.22583 32.6935i 0.0580449 1.54808i
\(447\) 0 0
\(448\) −25.5159 + 7.85768i −1.20551 + 0.371241i
\(449\) −23.5031 + 13.5695i −1.10918 + 0.640384i −0.938616 0.344963i \(-0.887891\pi\)
−0.170561 + 0.985347i \(0.554558\pi\)
\(450\) 0 0
\(451\) −30.9657 + 17.8781i −1.45812 + 0.841845i
\(452\) −0.152283 0.0114357i −0.00716279 0.000537889i
\(453\) 0 0
\(454\) −15.3748 + 24.4647i −0.721576 + 1.14818i
\(455\) 2.58661 + 0.997483i 0.121262 + 0.0467627i
\(456\) 0 0
\(457\) 21.3528 + 12.3281i 0.998843 + 0.576682i 0.907906 0.419174i \(-0.137680\pi\)
0.0909374 + 0.995857i \(0.471014\pi\)
\(458\) −4.43331 8.38979i −0.207155 0.392029i
\(459\) 0 0
\(460\) 1.36237 + 2.83010i 0.0635206 + 0.131954i
\(461\) −3.67379 6.36319i −0.171105 0.296363i 0.767701 0.640808i \(-0.221401\pi\)
−0.938807 + 0.344445i \(0.888067\pi\)
\(462\) 0 0
\(463\) 13.6798i 0.635756i −0.948132 0.317878i \(-0.897030\pi\)
0.948132 0.317878i \(-0.102970\pi\)
\(464\) −2.16467 + 14.3316i −0.100492 + 0.665328i
\(465\) 0 0
\(466\) −6.17975 11.6948i −0.286271 0.541753i
\(467\) 29.4078i 1.36083i 0.732826 + 0.680416i \(0.238201\pi\)
−0.732826 + 0.680416i \(0.761799\pi\)
\(468\) 0 0
\(469\) 4.27400i 0.197355i
\(470\) −2.56549 + 1.35565i −0.118337 + 0.0625313i
\(471\) 0 0
\(472\) −8.21105 18.8318i −0.377944 0.866805i
\(473\) 19.6133i 0.901820i
\(474\) 0 0
\(475\) −19.9350 34.5285i −0.914682 1.58428i
\(476\) 9.52256 4.58401i 0.436466 0.210108i
\(477\) 0 0
\(478\) 10.9966 5.81081i 0.502975 0.265780i
\(479\) 3.66802 + 2.11773i 0.167596 + 0.0967616i 0.581452 0.813581i \(-0.302485\pi\)
−0.413856 + 0.910342i \(0.635818\pi\)
\(480\) 0 0
\(481\) −4.05185 + 0.635349i −0.184749 + 0.0289694i
\(482\) 23.0197 + 14.4667i 1.04852 + 0.658941i
\(483\) 0 0
\(484\) −2.21081 0.166020i −0.100491 0.00754638i
\(485\) 1.60100 0.924338i 0.0726977 0.0419720i
\(486\) 0 0
\(487\) −34.5579 + 19.9520i −1.56597 + 0.904112i −0.569337 + 0.822104i \(0.692800\pi\)
−0.996632 + 0.0820078i \(0.973867\pi\)
\(488\) −7.50582 + 3.27269i −0.339773 + 0.148148i
\(489\) 0 0
\(490\) −1.34718 0.0505122i −0.0608595 0.00228191i
\(491\) −23.5208 13.5798i −1.06148 0.612846i −0.135639 0.990758i \(-0.543309\pi\)
−0.925841 + 0.377913i \(0.876642\pi\)
\(492\) 0 0
\(493\) 5.73745i 0.258402i
\(494\) −40.8098 + 4.84056i −1.83612 + 0.217787i
\(495\) 0 0
\(496\) −35.8612 + 14.0617i −1.61022 + 0.631390i
\(497\) −1.90239 + 3.29504i −0.0853340 + 0.147803i
\(498\) 0 0
\(499\) −12.6803 −0.567649 −0.283825 0.958876i \(-0.591603\pi\)
−0.283825 + 0.958876i \(0.591603\pi\)
\(500\) 2.58251 3.78658i 0.115493 0.169341i
\(501\) 0 0
\(502\) −25.3735 15.9460i −1.13248 0.711704i
\(503\) 3.49953 + 6.06136i 0.156036 + 0.270263i 0.933436 0.358744i \(-0.116795\pi\)
−0.777400 + 0.629007i \(0.783462\pi\)
\(504\) 0 0
\(505\) 2.29896 + 1.32731i 0.102302 + 0.0590643i
\(506\) −16.1323 + 25.6701i −0.717170 + 1.14117i
\(507\) 0 0
\(508\) 5.41326 + 11.2452i 0.240175 + 0.498925i
\(509\) −7.65922 + 13.2662i −0.339489 + 0.588012i −0.984337 0.176299i \(-0.943587\pi\)
0.644848 + 0.764311i \(0.276921\pi\)
\(510\) 0 0
\(511\) −1.35756 2.35136i −0.0600549 0.104018i
\(512\) 21.3524 + 7.48820i 0.943654 + 0.330935i
\(513\) 0 0
\(514\) 7.16193 + 0.268534i 0.315899 + 0.0118445i
\(515\) −0.131401 −0.00579024
\(516\) 0 0
\(517\) −24.2561 14.0042i −1.06678 0.615906i
\(518\) 4.74672 2.50825i 0.208559 0.110206i
\(519\) 0 0
\(520\) −1.26137 1.98226i −0.0553148 0.0869278i
\(521\) −30.3448 −1.32943 −0.664715 0.747097i \(-0.731447\pi\)
−0.664715 + 0.747097i \(0.731447\pi\)
\(522\) 0 0
\(523\) −19.0473 10.9970i −0.832879 0.480863i 0.0219582 0.999759i \(-0.493010\pi\)
−0.854837 + 0.518896i \(0.826343\pi\)
\(524\) −26.0591 17.7727i −1.13840 0.776405i
\(525\) 0 0
\(526\) 7.61666 + 0.285584i 0.332102 + 0.0124521i
\(527\) 13.2050 7.62392i 0.575219 0.332103i
\(528\) 0 0
\(529\) −11.7322 20.3208i −0.510097 0.883514i
\(530\) −1.15740 + 0.611589i −0.0502742 + 0.0265657i
\(531\) 0 0
\(532\) 48.4707 23.3331i 2.10147 1.01162i
\(533\) 6.35003 + 40.4964i 0.275050 + 1.75409i
\(534\) 0 0
\(535\) 0.294870 + 0.170243i 0.0127483 + 0.00736026i
\(536\) 2.15167 2.91399i 0.0929379 0.125865i
\(537\) 0 0
\(538\) 18.1008 + 11.3755i 0.780383 + 0.490431i
\(539\) −6.50651 11.2696i −0.280255 0.485416i
\(540\) 0 0
\(541\) −1.38788 −0.0596694 −0.0298347 0.999555i \(-0.509498\pi\)
−0.0298347 + 0.999555i \(0.509498\pi\)
\(542\) 0.0881634 2.35136i 0.00378694 0.100999i
\(543\) 0 0
\(544\) −8.80017 1.66860i −0.377304 0.0715407i
\(545\) −0.346884 −0.0148589
\(546\) 0 0
\(547\) 2.42593i 0.103725i 0.998654 + 0.0518626i \(0.0165158\pi\)
−0.998654 + 0.0518626i \(0.983484\pi\)
\(548\) −0.765871 + 10.1987i −0.0327164 + 0.435667i
\(549\) 0 0
\(550\) 21.9875 + 0.824413i 0.937549 + 0.0351531i
\(551\) 29.2042i 1.24414i
\(552\) 0 0
\(553\) 44.7140 25.8156i 1.90143 1.09779i
\(554\) −19.3084 12.1344i −0.820337 0.515540i
\(555\) 0 0
\(556\) 0.848792 11.3029i 0.0359968 0.479351i
\(557\) 15.3441 26.5767i 0.650148 1.12609i −0.332938 0.942949i \(-0.608040\pi\)
0.983087 0.183141i \(-0.0586266\pi\)
\(558\) 0 0
\(559\) −20.9790 8.09022i −0.887318 0.342180i
\(560\) 2.40398 + 1.91832i 0.101587 + 0.0810640i
\(561\) 0 0
\(562\) −29.9180 + 15.8092i −1.26201 + 0.666869i
\(563\) 34.3455 19.8294i 1.44749 0.835709i 0.449159 0.893452i \(-0.351724\pi\)
0.998331 + 0.0577430i \(0.0183904\pi\)
\(564\) 0 0
\(565\) 0.00879592 + 0.0152350i 0.000370047 + 0.000640941i
\(566\) 0.469376 12.5185i 0.0197293 0.526191i
\(567\) 0 0
\(568\) 2.95587 1.28882i 0.124026 0.0540776i
\(569\) 4.59173 7.95311i 0.192495 0.333412i −0.753581 0.657355i \(-0.771675\pi\)
0.946077 + 0.323943i \(0.105009\pi\)
\(570\) 0 0
\(571\) 12.4846i 0.522463i 0.965276 + 0.261232i \(0.0841286\pi\)
−0.965276 + 0.261232i \(0.915871\pi\)
\(572\) 9.72189 20.4900i 0.406493 0.856732i
\(573\) 0 0
\(574\) −25.0688 47.4413i −1.04635 1.98016i
\(575\) −16.8603 + 29.2029i −0.703123 + 1.21784i
\(576\) 0 0
\(577\) 29.8603i 1.24310i −0.783375 0.621550i \(-0.786503\pi\)
0.783375 0.621550i \(-0.213497\pi\)
\(578\) −20.4817 0.767953i −0.851925 0.0319426i
\(579\) 0 0
\(580\) 1.50444 0.724213i 0.0624684 0.0300713i
\(581\) −36.7819 + 21.2360i −1.52597 + 0.881019i
\(582\) 0 0
\(583\) −10.9429 6.31790i −0.453210 0.261661i
\(584\) −0.258173 + 2.28658i −0.0106833 + 0.0946195i
\(585\) 0 0
\(586\) −18.2762 + 29.0815i −0.754984 + 1.20134i
\(587\) 18.2451 31.6014i 0.753054 1.30433i −0.193282 0.981143i \(-0.561913\pi\)
0.946336 0.323185i \(-0.104754\pi\)
\(588\) 0 0
\(589\) 67.2148 38.8065i 2.76954 1.59899i
\(590\) −1.25926 + 2.00376i −0.0518431 + 0.0824936i
\(591\) 0 0
\(592\) −4.49902 0.679540i −0.184909 0.0279289i
\(593\) 26.4261i 1.08519i 0.839995 + 0.542594i \(0.182558\pi\)
−0.839995 + 0.542594i \(0.817442\pi\)
\(594\) 0 0
\(595\) −1.05434 0.608724i −0.0432238 0.0249553i
\(596\) 17.9659 + 1.34915i 0.735912 + 0.0552633i
\(597\) 0 0
\(598\) 20.8032 + 27.8443i 0.850706 + 1.13864i
\(599\) −7.29146 −0.297921 −0.148960 0.988843i \(-0.547593\pi\)
−0.148960 + 0.988843i \(0.547593\pi\)
\(600\) 0 0
\(601\) 0.117332 0.203224i 0.00478606 0.00828970i −0.863622 0.504139i \(-0.831810\pi\)
0.868409 + 0.495849i \(0.165143\pi\)
\(602\) 29.4120 + 1.10279i 1.19875 + 0.0449466i
\(603\) 0 0
\(604\) 10.2051 + 6.96003i 0.415240 + 0.283200i
\(605\) 0.127697 + 0.221178i 0.00519163 + 0.00899216i
\(606\) 0 0
\(607\) 7.42041 + 12.8525i 0.301185 + 0.521668i 0.976405 0.215949i \(-0.0692845\pi\)
−0.675220 + 0.737617i \(0.735951\pi\)
\(608\) −44.7937 8.49334i −1.81663 0.344450i
\(609\) 0 0
\(610\) 0.798643 + 0.501906i 0.0323361 + 0.0203216i
\(611\) −24.9847 + 20.1685i −1.01077 + 0.815932i
\(612\) 0 0
\(613\) 0.235744 0.408321i 0.00952163 0.0164919i −0.861225 0.508223i \(-0.830302\pi\)
0.870747 + 0.491731i \(0.163636\pi\)
\(614\) −21.3940 40.4869i −0.863390 1.63392i
\(615\) 0 0
\(616\) −3.33076 + 29.4999i −0.134200 + 1.18859i
\(617\) 28.2097 16.2869i 1.13568 0.655685i 0.190323 0.981721i \(-0.439046\pi\)
0.945357 + 0.326036i \(0.105713\pi\)
\(618\) 0 0
\(619\) 9.28369 0.373143 0.186571 0.982441i \(-0.440262\pi\)
0.186571 + 0.982441i \(0.440262\pi\)
\(620\) 3.66590 + 2.50020i 0.147226 + 0.100410i
\(621\) 0 0
\(622\) 11.0728 + 20.9547i 0.443979 + 0.840207i
\(623\) 38.8081 1.55481
\(624\) 0 0
\(625\) 24.2066 0.968264
\(626\) 8.06473 + 15.2621i 0.322331 + 0.609995i
\(627\) 0 0
\(628\) −16.6151 11.3317i −0.663014 0.452185i
\(629\) 1.80112 0.0718153
\(630\) 0 0
\(631\) 3.76004 2.17086i 0.149685 0.0864205i −0.423287 0.905996i \(-0.639124\pi\)
0.572972 + 0.819575i \(0.305790\pi\)
\(632\) −43.4822 4.90946i −1.72963 0.195288i
\(633\) 0 0
\(634\) 19.8273 + 37.5221i 0.787443 + 1.49019i
\(635\) 0.718843 1.24507i 0.0285264 0.0494092i
\(636\) 0 0
\(637\) −14.7382 + 2.31102i −0.583949 + 0.0915659i
\(638\) 13.6458 + 8.57571i 0.540243 + 0.339516i
\(639\) 0 0
\(640\) −0.673276 2.51814i −0.0266136 0.0995384i
\(641\) 16.3563 + 28.3299i 0.646035 + 1.11897i 0.984061 + 0.177829i \(0.0569073\pi\)
−0.338026 + 0.941137i \(0.609759\pi\)
\(642\) 0 0
\(643\) 3.40535 + 5.89823i 0.134294 + 0.232604i 0.925327 0.379169i \(-0.123790\pi\)
−0.791034 + 0.611773i \(0.790457\pi\)
\(644\) −37.5877 25.6354i −1.48116 1.01018i
\(645\) 0 0
\(646\) 18.0347 + 0.676204i 0.709564 + 0.0266049i
\(647\) 12.5284 21.6999i 0.492543 0.853110i −0.507420 0.861699i \(-0.669401\pi\)
0.999963 + 0.00858905i \(0.00273401\pi\)
\(648\) 0 0
\(649\) −22.8440 −0.896705
\(650\) 9.95137 23.1785i 0.390325 0.909135i
\(651\) 0 0
\(652\) 41.0863 + 3.08537i 1.60906 + 0.120832i
\(653\) 41.6685 + 24.0573i 1.63062 + 0.941436i 0.983903 + 0.178702i \(0.0571898\pi\)
0.646712 + 0.762734i \(0.276144\pi\)
\(654\) 0 0
\(655\) 3.63362i 0.141977i
\(656\) −6.79169 + 44.9657i −0.265171 + 1.75562i
\(657\) 0 0
\(658\) 22.3646 35.5869i 0.871862 1.38732i
\(659\) −18.7319 + 10.8148i −0.729690 + 0.421287i −0.818309 0.574779i \(-0.805088\pi\)
0.0886189 + 0.996066i \(0.471755\pi\)
\(660\) 0 0
\(661\) −10.4554 + 18.1092i −0.406666 + 0.704366i −0.994514 0.104605i \(-0.966642\pi\)
0.587848 + 0.808972i \(0.299975\pi\)
\(662\) 3.74711 5.96247i 0.145636 0.231738i
\(663\) 0 0
\(664\) 35.7686 + 4.03854i 1.38809 + 0.156726i
\(665\) −5.36670 3.09847i −0.208112 0.120153i
\(666\) 0 0
\(667\) −21.3907 + 12.3499i −0.828250 + 0.478190i
\(668\) −16.6022 + 7.99204i −0.642358 + 0.309221i
\(669\) 0 0
\(670\) −0.416983 0.0156346i −0.0161094 0.000604018i
\(671\) 9.10496i 0.351493i
\(672\) 0 0
\(673\) −8.64625 + 14.9757i −0.333288 + 0.577272i −0.983155 0.182776i \(-0.941492\pi\)
0.649866 + 0.760049i \(0.274825\pi\)
\(674\) 9.49363 + 17.9662i 0.365681 + 0.692031i
\(675\) 0 0
\(676\) −17.9067 18.8507i −0.688719 0.725028i
\(677\) 5.72652i 0.220088i −0.993927 0.110044i \(-0.964901\pi\)
0.993927 0.110044i \(-0.0350992\pi\)
\(678\) 0 0
\(679\) −13.3893 + 23.1909i −0.513833 + 0.889986i
\(680\) 0.412394 + 0.945814i 0.0158146 + 0.0362703i
\(681\) 0 0
\(682\) −1.60484 + 42.8019i −0.0614526 + 1.63897i
\(683\) 17.8037 + 30.8369i 0.681238 + 1.17994i 0.974603 + 0.223939i \(0.0718917\pi\)
−0.293365 + 0.956001i \(0.594775\pi\)
\(684\) 0 0
\(685\) 1.02032 0.589081i 0.0389844 0.0225076i
\(686\) −11.9445 + 6.31169i −0.456044 + 0.240981i
\(687\) 0 0
\(688\) −19.4978 15.5588i −0.743347 0.593175i
\(689\) −11.2717 + 9.09887i −0.429416 + 0.346639i
\(690\) 0 0
\(691\) 14.8409 25.7052i 0.564575 0.977873i −0.432514 0.901627i \(-0.642373\pi\)
0.997089 0.0762454i \(-0.0242933\pi\)
\(692\) 0.286406 3.81392i 0.0108875 0.144984i
\(693\) 0 0
\(694\) −7.39709 4.64869i −0.280790 0.176462i
\(695\) −1.13079 + 0.652861i −0.0428933 + 0.0247644i
\(696\) 0 0
\(697\) 18.0014i 0.681851i
\(698\) 36.1965 + 1.35718i 1.37006 + 0.0513699i
\(699\) 0 0
\(700\) −2.47258 + 32.9260i −0.0934546 + 1.24449i
\(701\) 23.7944i 0.898704i −0.893355 0.449352i \(-0.851655\pi\)
0.893355 0.449352i \(-0.148345\pi\)
\(702\) 0 0
\(703\) 9.16787 0.345773
\(704\) 17.1221 18.4361i 0.645313 0.694836i
\(705\) 0 0
\(706\) −0.415232 + 11.0744i −0.0156274 + 0.416791i
\(707\) −38.4528 −1.44617
\(708\) 0 0
\(709\) −4.26282 7.38342i −0.160093 0.277290i 0.774809 0.632196i \(-0.217846\pi\)
−0.934902 + 0.354906i \(0.884513\pi\)
\(710\) −0.314514 0.197656i −0.0118035 0.00741790i
\(711\) 0 0
\(712\) −26.4592 19.5372i −0.991600 0.732189i
\(713\) −56.8477 32.8211i −2.12896 1.22916i
\(714\) 0 0
\(715\) −2.58105 + 0.404721i −0.0965259 + 0.0151357i
\(716\) −24.6462 + 11.8643i −0.921072 + 0.443390i
\(717\) 0 0
\(718\) 34.9654 18.4763i 1.30490 0.689529i
\(719\) 6.37676 + 11.0449i 0.237813 + 0.411904i 0.960086 0.279703i \(-0.0902361\pi\)
−0.722273 + 0.691608i \(0.756903\pi\)
\(720\) 0 0
\(721\) 1.64838 0.951692i 0.0613888 0.0354429i
\(722\) 64.9469 + 2.43516i 2.41707 + 0.0906274i
\(723\) 0 0
\(724\) −3.22374 2.19864i −0.119809 0.0817117i
\(725\) 15.5238 + 8.96268i 0.576540 + 0.332866i
\(726\) 0 0
\(727\) 28.1255 1.04312 0.521559 0.853216i \(-0.325351\pi\)
0.521559 + 0.853216i \(0.325351\pi\)
\(728\) 30.1802 + 15.7310i 1.11855 + 0.583030i
\(729\) 0 0
\(730\) 0.234371 0.123845i 0.00867446 0.00458373i
\(731\) 8.55138 + 4.93714i 0.316284 + 0.182607i
\(732\) 0 0
\(733\) 49.4380 1.82604 0.913018 0.407920i \(-0.133746\pi\)
0.913018 + 0.407920i \(0.133746\pi\)
\(734\) 33.6755 + 1.26265i 1.24298 + 0.0466053i
\(735\) 0 0
\(736\) 12.7215 + 36.4009i 0.468919 + 1.34176i
\(737\) −2.01391 3.48819i −0.0741833 0.128489i
\(738\) 0 0
\(739\) −14.0277 + 24.2967i −0.516018 + 0.893769i 0.483809 + 0.875173i \(0.339253\pi\)
−0.999827 + 0.0185956i \(0.994081\pi\)
\(740\) 0.227347 + 0.472278i 0.00835745 + 0.0173613i
\(741\) 0 0
\(742\) 10.0896 16.0548i 0.370401 0.589389i
\(743\) 2.05615 + 1.18712i 0.0754328 + 0.0435512i 0.537242 0.843428i \(-0.319466\pi\)
−0.461809 + 0.886979i \(0.652800\pi\)
\(744\) 0 0
\(745\) −1.03772 1.79738i −0.0380191 0.0658509i
\(746\) 14.4881 + 9.10506i 0.530449 + 0.333360i
\(747\) 0 0
\(748\) −5.61178 + 8.22823i −0.205187 + 0.300854i
\(749\) −4.93204 −0.180213
\(750\) 0 0
\(751\) 2.48319 4.30101i 0.0906130 0.156946i −0.817156 0.576416i \(-0.804451\pi\)
0.907769 + 0.419470i \(0.137784\pi\)
\(752\) −33.1637 + 13.0040i −1.20935 + 0.474206i
\(753\) 0 0
\(754\) 14.8016 11.0587i 0.539042 0.402733i
\(755\) 1.42297i 0.0517873i
\(756\) 0 0
\(757\) 3.10991 + 1.79551i 0.113032 + 0.0652589i 0.555450 0.831550i \(-0.312546\pi\)
−0.442418 + 0.896809i \(0.645879\pi\)
\(758\) −20.1242 0.754551i −0.730945 0.0274065i
\(759\) 0 0
\(760\) 2.09912 + 4.81429i 0.0761432 + 0.174632i
\(761\) 30.1976 17.4346i 1.09466 0.632004i 0.159849 0.987142i \(-0.448899\pi\)
0.934814 + 0.355138i \(0.115566\pi\)
\(762\) 0 0
\(763\) 4.35153 2.51236i 0.157536 0.0909534i
\(764\) 32.8175 + 2.46442i 1.18729 + 0.0891597i
\(765\) 0 0
\(766\) 28.3013 + 17.7859i 1.02257 + 0.642631i
\(767\) −9.42285 + 24.4347i −0.340239 + 0.882286i
\(768\) 0 0
\(769\) −3.53352 2.04008i −0.127422 0.0735670i 0.434934 0.900462i \(-0.356772\pi\)
−0.562356 + 0.826895i \(0.690105\pi\)
\(770\) 3.02369 1.59777i 0.108966 0.0575795i
\(771\) 0 0
\(772\) 10.7047 5.15310i 0.385272 0.185464i
\(773\) −7.40633 12.8281i −0.266387 0.461396i 0.701539 0.712631i \(-0.252497\pi\)
−0.967926 + 0.251235i \(0.919163\pi\)
\(774\) 0 0
\(775\) 47.6384i 1.71122i
\(776\) 20.8038 9.07087i 0.746812 0.325625i
\(777\) 0 0
\(778\) 20.5713 10.8702i 0.737517 0.389716i
\(779\) 91.6287i 3.28294i
\(780\) 0 0
\(781\) 3.58563i 0.128304i
\(782\) −7.13123 13.4955i −0.255012 0.482597i
\(783\) 0 0
\(784\) −16.3647 2.47176i −0.584455 0.0882770i
\(785\) 2.31676i 0.0826888i
\(786\) 0 0
\(787\) 18.0243 + 31.2189i 0.642496 + 1.11283i 0.984874 + 0.173273i \(0.0554342\pi\)
−0.342378 + 0.939562i \(0.611232\pi\)
\(788\) 6.84702 + 14.2236i 0.243915 + 0.506695i
\(789\) 0 0
\(790\) 2.35507 + 4.45685i 0.0837897 + 0.158568i
\(791\) −0.220683 0.127411i −0.00784658 0.00453022i
\(792\) 0 0
\(793\) 9.73898 + 3.75568i 0.345841 + 0.133368i
\(794\) −3.13136 + 4.98268i −0.111128 + 0.176829i
\(795\) 0 0
\(796\) −32.6623 2.45277i −1.15768 0.0869361i
\(797\) −11.3573 + 6.55713i −0.402295 + 0.232265i −0.687474 0.726209i \(-0.741280\pi\)
0.285179 + 0.958474i \(0.407947\pi\)
\(798\) 0 0
\(799\) 12.2117 7.05042i 0.432019 0.249426i
\(800\) 18.2618 21.2040i 0.645652 0.749676i
\(801\) 0 0
\(802\) 0.570496 15.2154i 0.0201449 0.537274i
\(803\) 2.21592 + 1.27936i 0.0781982 + 0.0451477i
\(804\) 0 0
\(805\) 5.24113i 0.184726i
\(806\) 45.1203 + 19.3718i 1.58930 + 0.682343i
\(807\) 0 0
\(808\) 26.2169 + 19.3583i 0.922308 + 0.681024i
\(809\) −7.48145 + 12.9583i −0.263034 + 0.455588i −0.967047 0.254599i \(-0.918056\pi\)
0.704013 + 0.710187i \(0.251390\pi\)
\(810\) 0 0
\(811\) −20.9684 −0.736299 −0.368150 0.929767i \(-0.620009\pi\)
−0.368150 + 0.929767i \(0.620009\pi\)
\(812\) −13.6274 + 19.9811i −0.478227 + 0.701198i
\(813\) 0 0
\(814\) −2.69211 + 4.28374i −0.0943585 + 0.150145i
\(815\) −2.37316 4.11043i −0.0831281 0.143982i
\(816\) 0 0
\(817\) 43.5273 + 25.1305i 1.52283 + 0.879206i
\(818\) −35.9896 22.6176i −1.25835 0.790807i
\(819\) 0 0
\(820\) 4.72020 2.27223i 0.164837 0.0793498i
\(821\) 12.5793 21.7880i 0.439021 0.760407i −0.558593 0.829442i \(-0.688659\pi\)
0.997614 + 0.0690347i \(0.0219919\pi\)
\(822\) 0 0
\(823\) −4.64806 8.05068i −0.162021 0.280629i 0.773572 0.633708i \(-0.218468\pi\)
−0.935593 + 0.353079i \(0.885135\pi\)
\(824\) −1.60297 0.180987i −0.0558421 0.00630499i
\(825\) 0 0
\(826\) 1.28445 34.2568i 0.0446917 1.19195i
\(827\) 22.5483 0.784080 0.392040 0.919948i \(-0.371769\pi\)
0.392040 + 0.919948i \(0.371769\pi\)
\(828\) 0 0
\(829\) 4.07023 + 2.34995i 0.141365 + 0.0816171i 0.569014 0.822328i \(-0.307325\pi\)
−0.427649 + 0.903945i \(0.640658\pi\)
\(830\) −1.93729 3.66622i −0.0672444 0.127256i
\(831\) 0 0
\(832\) −12.6572 25.9190i −0.438810 0.898580i
\(833\) 6.55139 0.226992
\(834\) 0 0
\(835\) 1.83820 + 1.06129i 0.0636136 + 0.0367273i
\(836\) −28.5645 + 41.8825i −0.987923 + 1.44854i
\(837\) 0 0
\(838\) −0.839152 + 22.3806i −0.0289880 + 0.773124i
\(839\) 38.2396 22.0776i 1.32018 0.762205i 0.336421 0.941712i \(-0.390784\pi\)
0.983757 + 0.179507i \(0.0574503\pi\)
\(840\) 0 0
\(841\) −7.93498 13.7438i −0.273620 0.473924i
\(842\) −15.3890 29.1229i −0.530341 1.00364i
\(843\) 0 0
\(844\) −26.1774 + 12.6014i −0.901064 + 0.433758i
\(845\) −0.631747 + 2.92772i −0.0217328 + 0.100717i
\(846\) 0 0
\(847\) −3.20382 1.84973i −0.110085 0.0635574i
\(848\) −14.9615 + 5.86663i −0.513780 + 0.201461i
\(849\) 0 0
\(850\) −5.89423 + 9.37901i −0.202170 + 0.321697i
\(851\) −3.87692 6.71502i −0.132899 0.230188i
\(852\) 0 0
\(853\) −2.24836 −0.0769825 −0.0384912 0.999259i \(-0.512255\pi\)
−0.0384912 + 0.999259i \(0.512255\pi\)
\(854\) −13.6538 0.511944i −0.467223 0.0175184i
\(855\) 0 0
\(856\) 3.36264 + 2.48295i 0.114933 + 0.0848654i
\(857\) −23.3922 −0.799062 −0.399531 0.916720i \(-0.630827\pi\)
−0.399531 + 0.916720i \(0.630827\pi\)
\(858\) 0 0
\(859\) 23.3254i 0.795854i −0.917417 0.397927i \(-0.869730\pi\)
0.917417 0.397927i \(-0.130270\pi\)
\(860\) −0.215183 + 2.86548i −0.00733768 + 0.0977121i
\(861\) 0 0
\(862\) −0.425214 + 11.3406i −0.0144828 + 0.386264i
\(863\) 51.3259i 1.74715i −0.486687 0.873577i \(-0.661795\pi\)
0.486687 0.873577i \(-0.338205\pi\)
\(864\) 0 0
\(865\) −0.381560 + 0.220294i −0.0129734 + 0.00749021i
\(866\) −22.9812 + 36.5681i −0.780933 + 1.24263i
\(867\) 0 0
\(868\) −64.0954 4.81323i −2.17554 0.163372i
\(869\) −24.3286 + 42.1384i −0.825292 + 1.42945i
\(870\) 0 0
\(871\) −4.56180 + 0.715311i −0.154571 + 0.0242374i
\(872\) −4.23165 0.477785i −0.143302 0.0161798i
\(873\) 0 0
\(874\) −36.2987 68.6933i −1.22782 2.32358i
\(875\) 6.62344 3.82405i 0.223913 0.129276i
\(876\) 0 0
\(877\) −5.20754 9.01972i −0.175846 0.304574i 0.764608 0.644496i \(-0.222933\pi\)
−0.940454 + 0.339922i \(0.889599\pi\)
\(878\) 15.7443 + 0.590329i 0.531346 + 0.0199226i
\(879\) 0 0
\(880\) −2.86590 0.432871i −0.0966096 0.0145921i
\(881\) 20.8219 36.0645i 0.701507 1.21505i −0.266431 0.963854i \(-0.585844\pi\)
0.967938 0.251191i \(-0.0808222\pi\)
\(882\) 0 0
\(883\) 20.2048i 0.679945i −0.940435 0.339972i \(-0.889582\pi\)
0.940435 0.339972i \(-0.110418\pi\)
\(884\) 6.48641 + 9.39658i 0.218162 + 0.316041i
\(885\) 0 0
\(886\) −1.86142 + 0.983604i −0.0625356 + 0.0330448i
\(887\) −12.6955 + 21.9892i −0.426273 + 0.738326i −0.996538 0.0831341i \(-0.973507\pi\)
0.570265 + 0.821460i \(0.306840\pi\)
\(888\) 0 0
\(889\) 20.8253i 0.698457i
\(890\) −0.141963 + 3.78622i −0.00475861 + 0.126914i
\(891\) 0 0
\(892\) −41.6892 + 20.0685i −1.39586 + 0.671945i
\(893\) 62.1587 35.8873i 2.08006 1.20092i
\(894\) 0 0
\(895\) 2.72884 + 1.57550i 0.0912150 + 0.0526630i
\(896\) 26.6840 + 26.7128i 0.891450 + 0.892414i
\(897\) 0 0
\(898\) 32.4960 + 20.4221i 1.08440 + 0.681493i
\(899\) −17.4472 + 30.2194i −0.581896 + 1.00787i
\(900\) 0 0
\(901\) 5.50920 3.18074i 0.183538 0.105966i
\(902\) 42.8140 + 26.9065i 1.42555 + 0.895887i
\(903\) 0 0
\(904\) 0.0863176 + 0.197967i 0.00287088 + 0.00658429i
\(905\) 0.449510i 0.0149422i
\(906\) 0 0
\(907\) −19.8890 11.4829i −0.660405 0.381285i 0.132027 0.991246i \(-0.457852\pi\)
−0.792431 + 0.609961i \(0.791185\pi\)
\(908\) 40.7486 + 3.06001i 1.35229 + 0.101550i
\(909\) 0 0
\(910\) −0.461794 3.89330i −0.0153083 0.129062i
\(911\) −25.4657 −0.843717 −0.421859 0.906662i \(-0.638622\pi\)
−0.421859 + 0.906662i \(0.638622\pi\)
\(912\) 0 0
\(913\) 20.0128 34.6632i 0.662328 1.14719i
\(914\) 1.30648 34.8445i 0.0432147 1.15255i
\(915\) 0 0
\(916\) −7.56124 + 11.0866i −0.249831 + 0.366313i
\(917\) −26.3170 45.5823i −0.869063 1.50526i
\(918\) 0 0
\(919\) −10.3095 17.8566i −0.340079 0.589034i 0.644368 0.764715i \(-0.277120\pi\)
−0.984447 + 0.175682i \(0.943787\pi\)
\(920\) 2.63855 3.57338i 0.0869905 0.117811i
\(921\) 0 0
\(922\) −5.52905 + 8.79792i −0.182090 + 0.289744i
\(923\) −3.83531 1.47903i −0.126241 0.0486827i
\(924\) 0 0
\(925\) −2.81359 + 4.87329i −0.0925104 + 0.160233i
\(926\) −17.1050 + 9.03856i −0.562105 + 0.297026i
\(927\) 0 0
\(928\) 19.3502 6.76254i 0.635201 0.221991i
\(929\) 13.2006 7.62136i 0.433097 0.250049i −0.267568 0.963539i \(-0.586220\pi\)
0.700665 + 0.713490i \(0.252887\pi\)
\(930\) 0 0
\(931\) 33.3472 1.09291
\(932\) −10.5399 + 15.4541i −0.345246 + 0.506215i
\(933\) 0 0
\(934\) 36.7709 19.4304i 1.20318 0.635781i
\(935\) 1.14732 0.0375215
\(936\) 0 0
\(937\) 44.7527 1.46201 0.731004 0.682373i \(-0.239052\pi\)
0.731004 + 0.682373i \(0.239052\pi\)
\(938\) 5.34412 2.82392i 0.174492 0.0922043i
\(939\) 0 0
\(940\) 3.39014 + 2.31213i 0.110574 + 0.0754133i
\(941\) 20.4855 0.667807 0.333904 0.942607i \(-0.391634\pi\)
0.333904 + 0.942607i \(0.391634\pi\)
\(942\) 0 0
\(943\) −67.1136 + 38.7481i −2.18552 + 1.26181i
\(944\) −18.1217 + 22.7095i −0.589811 + 0.739131i
\(945\) 0 0
\(946\) −24.5240 + 12.9589i −0.797345 + 0.421330i
\(947\) −17.4837 + 30.2826i −0.568143 + 0.984052i 0.428607 + 0.903491i \(0.359004\pi\)
−0.996750 + 0.0805608i \(0.974329\pi\)
\(948\) 0 0
\(949\) 2.28249 1.84250i 0.0740927 0.0598102i
\(950\) −30.0022 + 47.7400i −0.973400 + 1.54889i
\(951\) 0 0
\(952\) −12.0235 8.87806i −0.389684 0.287739i
\(953\) −16.0909 27.8703i −0.521236 0.902808i −0.999695 0.0246977i \(-0.992138\pi\)
0.478459 0.878110i \(-0.341196\pi\)
\(954\) 0 0
\(955\) −1.89555 3.28319i −0.0613385 0.106241i
\(956\) −14.5314 9.91065i −0.469980 0.320533i
\(957\) 0 0
\(958\) 0.224430 5.98564i 0.00725099 0.193387i
\(959\) −8.53300 + 14.7796i −0.275545 + 0.477258i
\(960\) 0 0
\(961\) −61.7351 −1.99145
\(962\) 3.47157 + 4.64656i 0.111928 + 0.149811i
\(963\) 0 0
\(964\) 2.87928 38.3418i 0.0927352 1.23491i
\(965\) −1.18523 0.684295i −0.0381540 0.0220282i
\(966\) 0 0
\(967\) 20.7493i 0.667251i 0.942706 + 0.333626i \(0.108272\pi\)
−0.942706 + 0.333626i \(0.891728\pi\)
\(968\) 1.25314 + 2.87404i 0.0402774 + 0.0923752i
\(969\) 0 0
\(970\) −2.21359 1.39113i −0.0710740 0.0446664i
\(971\) −16.3626 + 9.44693i −0.525099 + 0.303166i −0.739019 0.673685i \(-0.764710\pi\)
0.213919 + 0.976851i \(0.431377\pi\)
\(972\) 0 0
\(973\) 9.45687 16.3798i 0.303173 0.525112i
\(974\) 47.7807 + 30.0278i 1.53099 + 0.962152i
\(975\) 0 0
\(976\) 9.05136 + 7.22279i 0.289727 + 0.231196i
\(977\) −31.6318 18.2627i −1.01199 0.584274i −0.100218 0.994966i \(-0.531954\pi\)
−0.911774 + 0.410691i \(0.865287\pi\)
\(978\) 0 0
\(979\) −31.6729 + 18.2864i −1.01227 + 0.584435i
\(980\) 0.826953 + 1.71786i 0.0264160 + 0.0548751i
\(981\) 0 0
\(982\) −1.43913 + 38.3824i −0.0459246 + 1.22483i
\(983\) 38.2418i 1.21972i 0.792508 + 0.609862i \(0.208775\pi\)
−0.792508 + 0.609862i \(0.791225\pi\)
\(984\) 0 0
\(985\) 0.909236 1.57484i 0.0289707 0.0501787i
\(986\) −7.17399 + 3.79086i −0.228466 + 0.120725i
\(987\) 0 0
\(988\) 33.0165 + 47.8295i 1.05039 + 1.52166i
\(989\) 42.5089i 1.35170i
\(990\) 0 0
\(991\) 16.1451 27.9641i 0.512866 0.888309i −0.487023 0.873389i \(-0.661917\pi\)
0.999889 0.0149201i \(-0.00474939\pi\)
\(992\) 41.2768 + 35.5493i 1.31054 + 1.12869i
\(993\) 0 0
\(994\) 5.37700 + 0.201609i 0.170548 + 0.00639465i
\(995\) 1.88658 + 3.26766i 0.0598088 + 0.103592i
\(996\) 0 0
\(997\) 18.9701 10.9524i 0.600789 0.346866i −0.168563 0.985691i \(-0.553913\pi\)
0.769352 + 0.638825i \(0.220579\pi\)
\(998\) 8.37816 + 15.8552i 0.265206 + 0.501888i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.dg.e.901.10 48
3.2 odd 2 312.2.bk.b.277.15 yes 48
8.5 even 2 inner 936.2.dg.e.901.2 48
12.11 even 2 1248.2.ca.b.433.18 48
13.10 even 6 inner 936.2.dg.e.829.2 48
24.5 odd 2 312.2.bk.b.277.23 yes 48
24.11 even 2 1248.2.ca.b.433.7 48
39.23 odd 6 312.2.bk.b.205.23 yes 48
104.101 even 6 inner 936.2.dg.e.829.10 48
156.23 even 6 1248.2.ca.b.49.7 48
312.101 odd 6 312.2.bk.b.205.15 48
312.179 even 6 1248.2.ca.b.49.18 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bk.b.205.15 48 312.101 odd 6
312.2.bk.b.205.23 yes 48 39.23 odd 6
312.2.bk.b.277.15 yes 48 3.2 odd 2
312.2.bk.b.277.23 yes 48 24.5 odd 2
936.2.dg.e.829.2 48 13.10 even 6 inner
936.2.dg.e.829.10 48 104.101 even 6 inner
936.2.dg.e.901.2 48 8.5 even 2 inner
936.2.dg.e.901.10 48 1.1 even 1 trivial
1248.2.ca.b.49.7 48 156.23 even 6
1248.2.ca.b.49.18 48 312.179 even 6
1248.2.ca.b.433.7 48 24.11 even 2
1248.2.ca.b.433.18 48 12.11 even 2