Properties

Label 1248.2.ca.b.49.7
Level $1248$
Weight $2$
Character 1248.49
Analytic conductor $9.965$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1248,2,Mod(49,1248)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1248, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1248.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1248 = 2^{5} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1248.ca (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.96533017226\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.7
Character \(\chi\) \(=\) 1248.49
Dual form 1248.2.ca.b.433.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{3} +0.230393 q^{5} +(2.89019 + 1.66865i) q^{7} +(0.500000 - 0.866025i) q^{9} +(-1.57254 - 2.72371i) q^{11} +(2.26472 - 2.80553i) q^{13} +(-0.199526 + 0.115196i) q^{15} +(-0.791692 + 1.37125i) q^{17} +(4.02979 - 6.97979i) q^{19} -3.33730 q^{21} +(3.40824 + 5.90325i) q^{23} -4.94692 q^{25} +1.00000i q^{27} +(-3.13808 + 1.81177i) q^{29} -9.62991i q^{31} +(2.72371 + 1.57254i) q^{33} +(0.665879 + 0.384445i) q^{35} +(-0.568757 - 0.985115i) q^{37} +(-0.558542 + 3.56203i) q^{39} +(9.84578 - 5.68446i) q^{41} +(5.40070 + 3.11810i) q^{43} +(0.115196 - 0.199526i) q^{45} +8.90552i q^{47} +(2.06880 + 3.58326i) q^{49} -1.58338i q^{51} +4.01765i q^{53} +(-0.362301 - 0.627524i) q^{55} +8.05957i q^{57} +(3.63171 - 6.29031i) q^{59} +(2.50714 + 1.44750i) q^{61} +(2.89019 - 1.66865i) q^{63} +(0.521776 - 0.646375i) q^{65} +(0.640338 + 1.10910i) q^{67} +(-5.90325 - 3.40824i) q^{69} +(0.987337 + 0.570039i) q^{71} -0.813566i q^{73} +(4.28416 - 2.47346i) q^{75} -10.4961i q^{77} +15.4710 q^{79} +(-0.500000 - 0.866025i) q^{81} -12.7265 q^{83} +(-0.182400 + 0.315926i) q^{85} +(1.81177 - 3.13808i) q^{87} +(10.0707 - 5.81429i) q^{89} +(11.2269 - 4.32949i) q^{91} +(4.81495 + 8.33974i) q^{93} +(0.928434 - 1.60809i) q^{95} +(6.94900 + 4.01201i) q^{97} -3.14507 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 12 q^{7} + 24 q^{9} + 12 q^{17} - 20 q^{23} + 48 q^{25} + 12 q^{33} - 28 q^{39} - 12 q^{41} + 16 q^{49} + 68 q^{55} + 12 q^{63} + 12 q^{65} + 12 q^{71} + 192 q^{79} - 24 q^{81} - 48 q^{89} + 20 q^{95}+ \cdots + 144 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1248\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.866025 + 0.500000i −0.500000 + 0.288675i
\(4\) 0 0
\(5\) 0.230393 0.103035 0.0515174 0.998672i \(-0.483594\pi\)
0.0515174 + 0.998672i \(0.483594\pi\)
\(6\) 0 0
\(7\) 2.89019 + 1.66865i 1.09239 + 0.630691i 0.934211 0.356720i \(-0.116105\pi\)
0.158177 + 0.987411i \(0.449438\pi\)
\(8\) 0 0
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0 0
\(11\) −1.57254 2.72371i −0.474138 0.821230i 0.525424 0.850841i \(-0.323907\pi\)
−0.999562 + 0.0296102i \(0.990573\pi\)
\(12\) 0 0
\(13\) 2.26472 2.80553i 0.628122 0.778115i
\(14\) 0 0
\(15\) −0.199526 + 0.115196i −0.0515174 + 0.0297436i
\(16\) 0 0
\(17\) −0.791692 + 1.37125i −0.192013 + 0.332577i −0.945917 0.324408i \(-0.894835\pi\)
0.753904 + 0.656985i \(0.228168\pi\)
\(18\) 0 0
\(19\) 4.02979 6.97979i 0.924496 1.60127i 0.132127 0.991233i \(-0.457819\pi\)
0.792369 0.610042i \(-0.208847\pi\)
\(20\) 0 0
\(21\) −3.33730 −0.728259
\(22\) 0 0
\(23\) 3.40824 + 5.90325i 0.710668 + 1.23091i 0.964607 + 0.263692i \(0.0849404\pi\)
−0.253939 + 0.967220i \(0.581726\pi\)
\(24\) 0 0
\(25\) −4.94692 −0.989384
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −3.13808 + 1.81177i −0.582727 + 0.336437i −0.762216 0.647323i \(-0.775889\pi\)
0.179490 + 0.983760i \(0.442555\pi\)
\(30\) 0 0
\(31\) 9.62991i 1.72958i −0.502132 0.864791i \(-0.667451\pi\)
0.502132 0.864791i \(-0.332549\pi\)
\(32\) 0 0
\(33\) 2.72371 + 1.57254i 0.474138 + 0.273743i
\(34\) 0 0
\(35\) 0.665879 + 0.384445i 0.112554 + 0.0649831i
\(36\) 0 0
\(37\) −0.568757 0.985115i −0.0935030 0.161952i 0.815480 0.578785i \(-0.196473\pi\)
−0.908983 + 0.416834i \(0.863140\pi\)
\(38\) 0 0
\(39\) −0.558542 + 3.56203i −0.0894383 + 0.570381i
\(40\) 0 0
\(41\) 9.84578 5.68446i 1.53765 0.887764i 0.538677 0.842512i \(-0.318924\pi\)
0.998976 0.0452518i \(-0.0144090\pi\)
\(42\) 0 0
\(43\) 5.40070 + 3.11810i 0.823599 + 0.475505i 0.851656 0.524101i \(-0.175599\pi\)
−0.0280568 + 0.999606i \(0.508932\pi\)
\(44\) 0 0
\(45\) 0.115196 0.199526i 0.0171725 0.0297436i
\(46\) 0 0
\(47\) 8.90552i 1.29900i 0.760360 + 0.649501i \(0.225022\pi\)
−0.760360 + 0.649501i \(0.774978\pi\)
\(48\) 0 0
\(49\) 2.06880 + 3.58326i 0.295542 + 0.511894i
\(50\) 0 0
\(51\) 1.58338i 0.221718i
\(52\) 0 0
\(53\) 4.01765i 0.551867i 0.961177 + 0.275933i \(0.0889869\pi\)
−0.961177 + 0.275933i \(0.911013\pi\)
\(54\) 0 0
\(55\) −0.362301 0.627524i −0.0488527 0.0846153i
\(56\) 0 0
\(57\) 8.05957i 1.06752i
\(58\) 0 0
\(59\) 3.63171 6.29031i 0.472809 0.818929i −0.526707 0.850047i \(-0.676574\pi\)
0.999516 + 0.0311183i \(0.00990686\pi\)
\(60\) 0 0
\(61\) 2.50714 + 1.44750i 0.321006 + 0.185333i 0.651841 0.758356i \(-0.273997\pi\)
−0.330835 + 0.943689i \(0.607330\pi\)
\(62\) 0 0
\(63\) 2.89019 1.66865i 0.364130 0.210230i
\(64\) 0 0
\(65\) 0.521776 0.646375i 0.0647184 0.0801730i
\(66\) 0 0
\(67\) 0.640338 + 1.10910i 0.0782297 + 0.135498i 0.902486 0.430719i \(-0.141740\pi\)
−0.824257 + 0.566217i \(0.808407\pi\)
\(68\) 0 0
\(69\) −5.90325 3.40824i −0.710668 0.410304i
\(70\) 0 0
\(71\) 0.987337 + 0.570039i 0.117175 + 0.0676512i 0.557442 0.830216i \(-0.311783\pi\)
−0.440267 + 0.897867i \(0.645116\pi\)
\(72\) 0 0
\(73\) 0.813566i 0.0952207i −0.998866 0.0476104i \(-0.984839\pi\)
0.998866 0.0476104i \(-0.0151606\pi\)
\(74\) 0 0
\(75\) 4.28416 2.47346i 0.494692 0.285611i
\(76\) 0 0
\(77\) 10.4961i 1.19614i
\(78\) 0 0
\(79\) 15.4710 1.74062 0.870309 0.492506i \(-0.163919\pi\)
0.870309 + 0.492506i \(0.163919\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) −12.7265 −1.39691 −0.698455 0.715654i \(-0.746129\pi\)
−0.698455 + 0.715654i \(0.746129\pi\)
\(84\) 0 0
\(85\) −0.182400 + 0.315926i −0.0197841 + 0.0342670i
\(86\) 0 0
\(87\) 1.81177 3.13808i 0.194242 0.336437i
\(88\) 0 0
\(89\) 10.0707 5.81429i 1.06749 0.616314i 0.139993 0.990152i \(-0.455292\pi\)
0.927494 + 0.373838i \(0.121959\pi\)
\(90\) 0 0
\(91\) 11.2269 4.32949i 1.17690 0.453854i
\(92\) 0 0
\(93\) 4.81495 + 8.33974i 0.499287 + 0.864791i
\(94\) 0 0
\(95\) 0.928434 1.60809i 0.0952553 0.164987i
\(96\) 0 0
\(97\) 6.94900 + 4.01201i 0.705564 + 0.407358i 0.809416 0.587235i \(-0.199784\pi\)
−0.103852 + 0.994593i \(0.533117\pi\)
\(98\) 0 0
\(99\) −3.14507 −0.316092
\(100\) 0 0
\(101\) 9.97844 5.76105i 0.992892 0.573246i 0.0867543 0.996230i \(-0.472350\pi\)
0.906137 + 0.422983i \(0.139017\pi\)
\(102\) 0 0
\(103\) 0.570336 0.0561969 0.0280984 0.999605i \(-0.491055\pi\)
0.0280984 + 0.999605i \(0.491055\pi\)
\(104\) 0 0
\(105\) −0.768891 −0.0750361
\(106\) 0 0
\(107\) −1.27986 + 0.738926i −0.123729 + 0.0714347i −0.560587 0.828096i \(-0.689424\pi\)
0.436858 + 0.899530i \(0.356091\pi\)
\(108\) 0 0
\(109\) 1.50562 0.144212 0.0721062 0.997397i \(-0.477028\pi\)
0.0721062 + 0.997397i \(0.477028\pi\)
\(110\) 0 0
\(111\) 0.985115 + 0.568757i 0.0935030 + 0.0539840i
\(112\) 0 0
\(113\) −0.0381779 + 0.0661261i −0.00359148 + 0.00622062i −0.867816 0.496886i \(-0.834477\pi\)
0.864224 + 0.503107i \(0.167810\pi\)
\(114\) 0 0
\(115\) 0.785235 + 1.36007i 0.0732235 + 0.126827i
\(116\) 0 0
\(117\) −1.29730 3.36408i −0.119936 0.311009i
\(118\) 0 0
\(119\) −4.57628 + 2.64211i −0.419507 + 0.242202i
\(120\) 0 0
\(121\) 0.554258 0.960004i 0.0503871 0.0872731i
\(122\) 0 0
\(123\) −5.68446 + 9.84578i −0.512551 + 0.887764i
\(124\) 0 0
\(125\) −2.29170 −0.204976
\(126\) 0 0
\(127\) −3.12007 5.40413i −0.276862 0.479539i 0.693741 0.720224i \(-0.255961\pi\)
−0.970603 + 0.240686i \(0.922628\pi\)
\(128\) 0 0
\(129\) −6.23619 −0.549066
\(130\) 0 0
\(131\) 15.7714i 1.37795i 0.724783 + 0.688977i \(0.241940\pi\)
−0.724783 + 0.688977i \(0.758060\pi\)
\(132\) 0 0
\(133\) 23.2937 13.4486i 2.01982 1.16614i
\(134\) 0 0
\(135\) 0.230393i 0.0198291i
\(136\) 0 0
\(137\) −4.42860 2.55686i −0.378361 0.218447i 0.298744 0.954333i \(-0.403432\pi\)
−0.677105 + 0.735886i \(0.736766\pi\)
\(138\) 0 0
\(139\) −4.90809 2.83369i −0.416299 0.240350i 0.277194 0.960814i \(-0.410596\pi\)
−0.693492 + 0.720464i \(0.743929\pi\)
\(140\) 0 0
\(141\) −4.45276 7.71240i −0.374990 0.649501i
\(142\) 0 0
\(143\) −11.2028 1.75666i −0.936828 0.146899i
\(144\) 0 0
\(145\) −0.722991 + 0.417419i −0.0600411 + 0.0346648i
\(146\) 0 0
\(147\) −3.58326 2.06880i −0.295542 0.170631i
\(148\) 0 0
\(149\) −4.50412 + 7.80137i −0.368992 + 0.639113i −0.989408 0.145160i \(-0.953630\pi\)
0.620416 + 0.784273i \(0.286964\pi\)
\(150\) 0 0
\(151\) 6.17629i 0.502619i −0.967907 0.251310i \(-0.919139\pi\)
0.967907 0.251310i \(-0.0808612\pi\)
\(152\) 0 0
\(153\) 0.791692 + 1.37125i 0.0640045 + 0.110859i
\(154\) 0 0
\(155\) 2.21866i 0.178207i
\(156\) 0 0
\(157\) 10.0557i 0.802532i 0.915961 + 0.401266i \(0.131430\pi\)
−0.915961 + 0.401266i \(0.868570\pi\)
\(158\) 0 0
\(159\) −2.00883 3.47939i −0.159310 0.275933i
\(160\) 0 0
\(161\) 22.7487i 1.79285i
\(162\) 0 0
\(163\) −10.3005 + 17.8410i −0.806796 + 1.39741i 0.108276 + 0.994121i \(0.465467\pi\)
−0.915072 + 0.403291i \(0.867866\pi\)
\(164\) 0 0
\(165\) 0.627524 + 0.362301i 0.0488527 + 0.0282051i
\(166\) 0 0
\(167\) 7.97855 4.60642i 0.617399 0.356455i −0.158457 0.987366i \(-0.550652\pi\)
0.775856 + 0.630910i \(0.217318\pi\)
\(168\) 0 0
\(169\) −2.74204 12.7075i −0.210926 0.977502i
\(170\) 0 0
\(171\) −4.02979 6.97979i −0.308165 0.533758i
\(172\) 0 0
\(173\) −1.65613 0.956165i −0.125913 0.0726959i 0.435721 0.900082i \(-0.356494\pi\)
−0.561634 + 0.827386i \(0.689827\pi\)
\(174\) 0 0
\(175\) −14.2975 8.25468i −1.08079 0.623995i
\(176\) 0 0
\(177\) 7.26342i 0.545952i
\(178\) 0 0
\(179\) −11.8443 + 6.83830i −0.885283 + 0.511118i −0.872397 0.488799i \(-0.837435\pi\)
−0.0128863 + 0.999917i \(0.504102\pi\)
\(180\) 0 0
\(181\) 1.95106i 0.145021i 0.997368 + 0.0725105i \(0.0231011\pi\)
−0.997368 + 0.0725105i \(0.976899\pi\)
\(182\) 0 0
\(183\) −2.89499 −0.214004
\(184\) 0 0
\(185\) −0.131037 0.226964i −0.00963407 0.0166867i
\(186\) 0 0
\(187\) 4.97986 0.364163
\(188\) 0 0
\(189\) −1.66865 + 2.89019i −0.121377 + 0.210230i
\(190\) 0 0
\(191\) −8.22747 + 14.2504i −0.595318 + 1.03112i 0.398183 + 0.917306i \(0.369641\pi\)
−0.993502 + 0.113816i \(0.963693\pi\)
\(192\) 0 0
\(193\) −5.14440 + 2.97012i −0.370302 + 0.213794i −0.673590 0.739105i \(-0.735249\pi\)
0.303288 + 0.952899i \(0.401915\pi\)
\(194\) 0 0
\(195\) −0.128684 + 0.820665i −0.00921526 + 0.0587691i
\(196\) 0 0
\(197\) 3.94646 + 6.83547i 0.281174 + 0.487007i 0.971674 0.236325i \(-0.0759430\pi\)
−0.690500 + 0.723332i \(0.742610\pi\)
\(198\) 0 0
\(199\) −8.18855 + 14.1830i −0.580471 + 1.00541i 0.414952 + 0.909843i \(0.363798\pi\)
−0.995423 + 0.0955625i \(0.969535\pi\)
\(200\) 0 0
\(201\) −1.10910 0.640338i −0.0782297 0.0451659i
\(202\) 0 0
\(203\) −12.0929 −0.848752
\(204\) 0 0
\(205\) 2.26840 1.30966i 0.158432 0.0914706i
\(206\) 0 0
\(207\) 6.81649 0.473778
\(208\) 0 0
\(209\) −25.3479 −1.75335
\(210\) 0 0
\(211\) 12.5801 7.26314i 0.866052 0.500016i 1.79224e−5 1.00000i \(-0.499994\pi\)
0.866034 + 0.499984i \(0.166661\pi\)
\(212\) 0 0
\(213\) −1.14008 −0.0781169
\(214\) 0 0
\(215\) 1.24428 + 0.718387i 0.0848594 + 0.0489936i
\(216\) 0 0
\(217\) 16.0690 27.8322i 1.09083 1.88938i
\(218\) 0 0
\(219\) 0.406783 + 0.704569i 0.0274879 + 0.0476104i
\(220\) 0 0
\(221\) 2.05413 + 5.32662i 0.138175 + 0.358307i
\(222\) 0 0
\(223\) −20.0347 + 11.5670i −1.34162 + 0.774585i −0.987045 0.160442i \(-0.948708\pi\)
−0.354576 + 0.935027i \(0.615375\pi\)
\(224\) 0 0
\(225\) −2.47346 + 4.28416i −0.164897 + 0.285611i
\(226\) 0 0
\(227\) 10.2158 17.6943i 0.678048 1.17441i −0.297519 0.954716i \(-0.596159\pi\)
0.975568 0.219699i \(-0.0705074\pi\)
\(228\) 0 0
\(229\) −6.70980 −0.443396 −0.221698 0.975115i \(-0.571160\pi\)
−0.221698 + 0.975115i \(0.571160\pi\)
\(230\) 0 0
\(231\) 5.24803 + 9.08986i 0.345295 + 0.598069i
\(232\) 0 0
\(233\) −9.35304 −0.612738 −0.306369 0.951913i \(-0.599114\pi\)
−0.306369 + 0.951913i \(0.599114\pi\)
\(234\) 0 0
\(235\) 2.05177i 0.133843i
\(236\) 0 0
\(237\) −13.3982 + 7.73548i −0.870309 + 0.502473i
\(238\) 0 0
\(239\) 8.79465i 0.568879i −0.958694 0.284439i \(-0.908193\pi\)
0.958694 0.284439i \(-0.0918074\pi\)
\(240\) 0 0
\(241\) −16.6492 9.61245i −1.07247 0.619192i −0.143616 0.989633i \(-0.545873\pi\)
−0.928856 + 0.370441i \(0.879206\pi\)
\(242\) 0 0
\(243\) 0.866025 + 0.500000i 0.0555556 + 0.0320750i
\(244\) 0 0
\(245\) 0.476636 + 0.825557i 0.0304511 + 0.0527429i
\(246\) 0 0
\(247\) −10.4557 27.1130i −0.665280 1.72516i
\(248\) 0 0
\(249\) 11.0214 6.36323i 0.698455 0.403253i
\(250\) 0 0
\(251\) −18.3517 10.5953i −1.15835 0.668772i −0.207440 0.978248i \(-0.566513\pi\)
−0.950907 + 0.309476i \(0.899846\pi\)
\(252\) 0 0
\(253\) 10.7192 18.5661i 0.673909 1.16724i
\(254\) 0 0
\(255\) 0.364800i 0.0228447i
\(256\) 0 0
\(257\) 2.53390 + 4.38885i 0.158061 + 0.273769i 0.934169 0.356830i \(-0.116143\pi\)
−0.776109 + 0.630599i \(0.782809\pi\)
\(258\) 0 0
\(259\) 3.79623i 0.235886i
\(260\) 0 0
\(261\) 3.62354i 0.224292i
\(262\) 0 0
\(263\) −2.69479 4.66751i −0.166168 0.287811i 0.770902 0.636954i \(-0.219806\pi\)
−0.937069 + 0.349143i \(0.886473\pi\)
\(264\) 0 0
\(265\) 0.925638i 0.0568615i
\(266\) 0 0
\(267\) −5.81429 + 10.0707i −0.355829 + 0.616314i
\(268\) 0 0
\(269\) −13.0916 7.55845i −0.798210 0.460847i 0.0446347 0.999003i \(-0.485788\pi\)
−0.842845 + 0.538156i \(0.819121\pi\)
\(270\) 0 0
\(271\) −1.44092 + 0.831915i −0.0875296 + 0.0505352i −0.543126 0.839651i \(-0.682759\pi\)
0.455596 + 0.890186i \(0.349426\pi\)
\(272\) 0 0
\(273\) −7.55807 + 9.36292i −0.457435 + 0.566670i
\(274\) 0 0
\(275\) 7.77921 + 13.4740i 0.469104 + 0.812512i
\(276\) 0 0
\(277\) −13.9650 8.06272i −0.839078 0.484442i 0.0178730 0.999840i \(-0.494311\pi\)
−0.856951 + 0.515399i \(0.827644\pi\)
\(278\) 0 0
\(279\) −8.33974 4.81495i −0.499287 0.288264i
\(280\) 0 0
\(281\) 23.9271i 1.42737i −0.700466 0.713686i \(-0.747024\pi\)
0.700466 0.713686i \(-0.252976\pi\)
\(282\) 0 0
\(283\) 7.67135 4.42906i 0.456015 0.263280i −0.254352 0.967112i \(-0.581862\pi\)
0.710367 + 0.703831i \(0.248529\pi\)
\(284\) 0 0
\(285\) 1.85687i 0.109991i
\(286\) 0 0
\(287\) 37.9416 2.23962
\(288\) 0 0
\(289\) 7.24645 + 12.5512i 0.426262 + 0.738307i
\(290\) 0 0
\(291\) −8.02401 −0.470376
\(292\) 0 0
\(293\) −12.1437 + 21.0335i −0.709441 + 1.22879i 0.255623 + 0.966776i \(0.417719\pi\)
−0.965065 + 0.262012i \(0.915614\pi\)
\(294\) 0 0
\(295\) 0.836721 1.44924i 0.0487158 0.0843782i
\(296\) 0 0
\(297\) 2.72371 1.57254i 0.158046 0.0912478i
\(298\) 0 0
\(299\) 24.2805 + 3.80729i 1.40418 + 0.220182i
\(300\) 0 0
\(301\) 10.4060 + 18.0238i 0.599794 + 1.03887i
\(302\) 0 0
\(303\) −5.76105 + 9.97844i −0.330964 + 0.573246i
\(304\) 0 0
\(305\) 0.577627 + 0.333493i 0.0330748 + 0.0190957i
\(306\) 0 0
\(307\) 32.3797 1.84801 0.924004 0.382383i \(-0.124897\pi\)
0.924004 + 0.382383i \(0.124897\pi\)
\(308\) 0 0
\(309\) −0.493925 + 0.285168i −0.0280984 + 0.0162226i
\(310\) 0 0
\(311\) −16.7587 −0.950298 −0.475149 0.879905i \(-0.657606\pi\)
−0.475149 + 0.879905i \(0.657606\pi\)
\(312\) 0 0
\(313\) −12.2059 −0.689921 −0.344960 0.938617i \(-0.612108\pi\)
−0.344960 + 0.938617i \(0.612108\pi\)
\(314\) 0 0
\(315\) 0.665879 0.384445i 0.0375180 0.0216610i
\(316\) 0 0
\(317\) −30.0086 −1.68545 −0.842725 0.538345i \(-0.819050\pi\)
−0.842725 + 0.538345i \(0.819050\pi\)
\(318\) 0 0
\(319\) 9.86948 + 5.69815i 0.552585 + 0.319035i
\(320\) 0 0
\(321\) 0.738926 1.27986i 0.0412428 0.0714347i
\(322\) 0 0
\(323\) 6.38070 + 11.0517i 0.355031 + 0.614932i
\(324\) 0 0
\(325\) −11.2034 + 13.8788i −0.621453 + 0.769855i
\(326\) 0 0
\(327\) −1.30391 + 0.752810i −0.0721062 + 0.0416305i
\(328\) 0 0
\(329\) −14.8602 + 25.7386i −0.819269 + 1.41902i
\(330\) 0 0
\(331\) 2.48978 4.31242i 0.136851 0.237032i −0.789452 0.613812i \(-0.789635\pi\)
0.926303 + 0.376780i \(0.122969\pi\)
\(332\) 0 0
\(333\) −1.13751 −0.0623353
\(334\) 0 0
\(335\) 0.147529 + 0.255528i 0.00806038 + 0.0139610i
\(336\) 0 0
\(337\) −14.3686 −0.782707 −0.391353 0.920240i \(-0.627993\pi\)
−0.391353 + 0.920240i \(0.627993\pi\)
\(338\) 0 0
\(339\) 0.0763558i 0.00414708i
\(340\) 0 0
\(341\) −26.2291 + 15.1434i −1.42039 + 0.820060i
\(342\) 0 0
\(343\) 9.55273i 0.515799i
\(344\) 0 0
\(345\) −1.36007 0.785235i −0.0732235 0.0422756i
\(346\) 0 0
\(347\) −5.35002 3.08884i −0.287204 0.165817i 0.349476 0.936945i \(-0.386360\pi\)
−0.636680 + 0.771128i \(0.719693\pi\)
\(348\) 0 0
\(349\) 12.8064 + 22.1813i 0.685510 + 1.18734i 0.973276 + 0.229638i \(0.0737542\pi\)
−0.287766 + 0.957701i \(0.592912\pi\)
\(350\) 0 0
\(351\) 2.80553 + 2.26472i 0.149748 + 0.120882i
\(352\) 0 0
\(353\) 6.78643 3.91815i 0.361205 0.208542i −0.308404 0.951255i \(-0.599795\pi\)
0.669609 + 0.742713i \(0.266462\pi\)
\(354\) 0 0
\(355\) 0.227475 + 0.131333i 0.0120731 + 0.00697043i
\(356\) 0 0
\(357\) 2.64211 4.57628i 0.139836 0.242202i
\(358\) 0 0
\(359\) 27.9638i 1.47587i −0.674870 0.737937i \(-0.735800\pi\)
0.674870 0.737937i \(-0.264200\pi\)
\(360\) 0 0
\(361\) −22.9783 39.7997i −1.20939 2.09472i
\(362\) 0 0
\(363\) 1.10852i 0.0581820i
\(364\) 0 0
\(365\) 0.187440i 0.00981105i
\(366\) 0 0
\(367\) 11.9144 + 20.6364i 0.621929 + 1.07721i 0.989126 + 0.147069i \(0.0469840\pi\)
−0.367198 + 0.930143i \(0.619683\pi\)
\(368\) 0 0
\(369\) 11.3689i 0.591843i
\(370\) 0 0
\(371\) −6.70406 + 11.6118i −0.348057 + 0.602853i
\(372\) 0 0
\(373\) 10.4787 + 6.04988i 0.542567 + 0.313251i 0.746118 0.665813i \(-0.231915\pi\)
−0.203552 + 0.979064i \(0.565249\pi\)
\(374\) 0 0
\(375\) 1.98467 1.14585i 0.102488 0.0591714i
\(376\) 0 0
\(377\) −2.02390 + 12.9071i −0.104236 + 0.664752i
\(378\) 0 0
\(379\) 7.11999 + 12.3322i 0.365729 + 0.633462i 0.988893 0.148630i \(-0.0474862\pi\)
−0.623164 + 0.782092i \(0.714153\pi\)
\(380\) 0 0
\(381\) 5.40413 + 3.12007i 0.276862 + 0.159846i
\(382\) 0 0
\(383\) −20.4692 11.8179i −1.04593 0.603866i −0.124421 0.992230i \(-0.539707\pi\)
−0.921506 + 0.388363i \(0.873041\pi\)
\(384\) 0 0
\(385\) 2.41822i 0.123244i
\(386\) 0 0
\(387\) 5.40070 3.11810i 0.274533 0.158502i
\(388\) 0 0
\(389\) 16.4521i 0.834152i −0.908872 0.417076i \(-0.863055\pi\)
0.908872 0.417076i \(-0.136945\pi\)
\(390\) 0 0
\(391\) −10.7931 −0.545831
\(392\) 0 0
\(393\) −7.88570 13.6584i −0.397781 0.688977i
\(394\) 0 0
\(395\) 3.56440 0.179344
\(396\) 0 0
\(397\) 2.08064 3.60378i 0.104424 0.180868i −0.809078 0.587701i \(-0.800033\pi\)
0.913503 + 0.406832i \(0.133367\pi\)
\(398\) 0 0
\(399\) −13.4486 + 23.2937i −0.673273 + 1.16614i
\(400\) 0 0
\(401\) −9.32403 + 5.38323i −0.465620 + 0.268826i −0.714404 0.699733i \(-0.753302\pi\)
0.248785 + 0.968559i \(0.419969\pi\)
\(402\) 0 0
\(403\) −27.0170 21.8091i −1.34581 1.08639i
\(404\) 0 0
\(405\) −0.115196 0.199526i −0.00572416 0.00991453i
\(406\) 0 0
\(407\) −1.78878 + 3.09826i −0.0886666 + 0.153575i
\(408\) 0 0
\(409\) 26.0298 + 15.0283i 1.28709 + 0.743103i 0.978135 0.207972i \(-0.0666864\pi\)
0.308958 + 0.951076i \(0.400020\pi\)
\(410\) 0 0
\(411\) 5.11371 0.252241
\(412\) 0 0
\(413\) 20.9927 12.1201i 1.03298 0.596392i
\(414\) 0 0
\(415\) −2.93209 −0.143930
\(416\) 0 0
\(417\) 5.66737 0.277532
\(418\) 0 0
\(419\) 13.7149 7.91829i 0.670016 0.386834i −0.126067 0.992022i \(-0.540235\pi\)
0.796083 + 0.605188i \(0.206902\pi\)
\(420\) 0 0
\(421\) −23.2913 −1.13515 −0.567574 0.823322i \(-0.692118\pi\)
−0.567574 + 0.823322i \(0.692118\pi\)
\(422\) 0 0
\(423\) 7.71240 + 4.45276i 0.374990 + 0.216500i
\(424\) 0 0
\(425\) 3.91643 6.78346i 0.189975 0.329046i
\(426\) 0 0
\(427\) 4.83073 + 8.36708i 0.233776 + 0.404911i
\(428\) 0 0
\(429\) 10.5803 4.08011i 0.510820 0.196989i
\(430\) 0 0
\(431\) −6.94958 + 4.01234i −0.334750 + 0.193268i −0.657948 0.753064i \(-0.728575\pi\)
0.323198 + 0.946331i \(0.395242\pi\)
\(432\) 0 0
\(433\) −15.2699 + 26.4483i −0.733825 + 1.27102i 0.221412 + 0.975180i \(0.428934\pi\)
−0.955237 + 0.295842i \(0.904400\pi\)
\(434\) 0 0
\(435\) 0.417419 0.722991i 0.0200137 0.0346648i
\(436\) 0 0
\(437\) 54.9379 2.62804
\(438\) 0 0
\(439\) 5.57038 + 9.64818i 0.265860 + 0.460482i 0.967788 0.251765i \(-0.0810109\pi\)
−0.701929 + 0.712247i \(0.747678\pi\)
\(440\) 0 0
\(441\) 4.13759 0.197028
\(442\) 0 0
\(443\) 1.48868i 0.0707295i −0.999374 0.0353647i \(-0.988741\pi\)
0.999374 0.0353647i \(-0.0112593\pi\)
\(444\) 0 0
\(445\) 2.32021 1.33957i 0.109988 0.0635018i
\(446\) 0 0
\(447\) 9.00825i 0.426076i
\(448\) 0 0
\(449\) 23.5031 + 13.5695i 1.10918 + 0.640384i 0.938616 0.344963i \(-0.112109\pi\)
0.170561 + 0.985347i \(0.445442\pi\)
\(450\) 0 0
\(451\) −30.9657 17.8781i −1.45812 0.841845i
\(452\) 0 0
\(453\) 3.08814 + 5.34882i 0.145094 + 0.251310i
\(454\) 0 0
\(455\) 2.58661 0.997483i 0.121262 0.0467627i
\(456\) 0 0
\(457\) 21.3528 12.3281i 0.998843 0.576682i 0.0909374 0.995857i \(-0.471014\pi\)
0.907906 + 0.419174i \(0.137680\pi\)
\(458\) 0 0
\(459\) −1.37125 0.791692i −0.0640045 0.0369530i
\(460\) 0 0
\(461\) −3.67379 + 6.36319i −0.171105 + 0.296363i −0.938807 0.344445i \(-0.888067\pi\)
0.767701 + 0.640808i \(0.221401\pi\)
\(462\) 0 0
\(463\) 13.6798i 0.635756i −0.948132 0.317878i \(-0.897030\pi\)
0.948132 0.317878i \(-0.102970\pi\)
\(464\) 0 0
\(465\) 1.10933 + 1.92142i 0.0514440 + 0.0891036i
\(466\) 0 0
\(467\) 29.4078i 1.36083i 0.732826 + 0.680416i \(0.238201\pi\)
−0.732826 + 0.680416i \(0.761799\pi\)
\(468\) 0 0
\(469\) 4.27400i 0.197355i
\(470\) 0 0
\(471\) −5.02785 8.70849i −0.231671 0.401266i
\(472\) 0 0
\(473\) 19.6133i 0.901820i
\(474\) 0 0
\(475\) −19.9350 + 34.5285i −0.914682 + 1.58428i
\(476\) 0 0
\(477\) 3.47939 + 2.00883i 0.159310 + 0.0919778i
\(478\) 0 0
\(479\) 3.66802 2.11773i 0.167596 0.0967616i −0.413856 0.910342i \(-0.635818\pi\)
0.581452 + 0.813581i \(0.302485\pi\)
\(480\) 0 0
\(481\) −4.05185 0.635349i −0.184749 0.0289694i
\(482\) 0 0
\(483\) −11.3743 19.7009i −0.517550 0.896423i
\(484\) 0 0
\(485\) 1.60100 + 0.924338i 0.0726977 + 0.0419720i
\(486\) 0 0
\(487\) 34.5579 + 19.9520i 1.56597 + 0.904112i 0.996632 + 0.0820078i \(0.0261332\pi\)
0.569337 + 0.822104i \(0.307200\pi\)
\(488\) 0 0
\(489\) 20.6010i 0.931608i
\(490\) 0 0
\(491\) 23.5208 13.5798i 1.06148 0.612846i 0.135639 0.990758i \(-0.456691\pi\)
0.925841 + 0.377913i \(0.123358\pi\)
\(492\) 0 0
\(493\) 5.73745i 0.258402i
\(494\) 0 0
\(495\) −0.724602 −0.0325685
\(496\) 0 0
\(497\) 1.90239 + 3.29504i 0.0853340 + 0.147803i
\(498\) 0 0
\(499\) −12.6803 −0.567649 −0.283825 0.958876i \(-0.591603\pi\)
−0.283825 + 0.958876i \(0.591603\pi\)
\(500\) 0 0
\(501\) −4.60642 + 7.97855i −0.205800 + 0.356455i
\(502\) 0 0
\(503\) 3.49953 6.06136i 0.156036 0.270263i −0.777400 0.629007i \(-0.783462\pi\)
0.933436 + 0.358744i \(0.116795\pi\)
\(504\) 0 0
\(505\) 2.29896 1.32731i 0.102302 0.0590643i
\(506\) 0 0
\(507\) 8.72844 + 9.63402i 0.387644 + 0.427862i
\(508\) 0 0
\(509\) −7.65922 13.2662i −0.339489 0.588012i 0.644848 0.764311i \(-0.276921\pi\)
−0.984337 + 0.176299i \(0.943587\pi\)
\(510\) 0 0
\(511\) 1.35756 2.35136i 0.0600549 0.104018i
\(512\) 0 0
\(513\) 6.97979 + 4.02979i 0.308165 + 0.177919i
\(514\) 0 0
\(515\) 0.131401 0.00579024
\(516\) 0 0
\(517\) 24.2561 14.0042i 1.06678 0.615906i
\(518\) 0 0
\(519\) 1.91233 0.0839420
\(520\) 0 0
\(521\) 30.3448 1.32943 0.664715 0.747097i \(-0.268553\pi\)
0.664715 + 0.747097i \(0.268553\pi\)
\(522\) 0 0
\(523\) −19.0473 + 10.9970i −0.832879 + 0.480863i −0.854837 0.518896i \(-0.826343\pi\)
0.0219582 + 0.999759i \(0.493010\pi\)
\(524\) 0 0
\(525\) 16.5094 0.720528
\(526\) 0 0
\(527\) 13.2050 + 7.62392i 0.575219 + 0.332103i
\(528\) 0 0
\(529\) −11.7322 + 20.3208i −0.510097 + 0.883514i
\(530\) 0 0
\(531\) −3.63171 6.29031i −0.157603 0.272976i
\(532\) 0 0
\(533\) 6.35003 40.4964i 0.275050 1.75409i
\(534\) 0 0
\(535\) −0.294870 + 0.170243i −0.0127483 + 0.00736026i
\(536\) 0 0
\(537\) 6.83830 11.8443i 0.295094 0.511118i
\(538\) 0 0
\(539\) 6.50651 11.2696i 0.280255 0.485416i
\(540\) 0 0
\(541\) 1.38788 0.0596694 0.0298347 0.999555i \(-0.490502\pi\)
0.0298347 + 0.999555i \(0.490502\pi\)
\(542\) 0 0
\(543\) −0.975528 1.68966i −0.0418639 0.0725105i
\(544\) 0 0
\(545\) 0.346884 0.0148589
\(546\) 0 0
\(547\) 2.42593i 0.103725i −0.998654 0.0518626i \(-0.983484\pi\)
0.998654 0.0518626i \(-0.0165158\pi\)
\(548\) 0 0
\(549\) 2.50714 1.44750i 0.107002 0.0617777i
\(550\) 0 0
\(551\) 29.2042i 1.24414i
\(552\) 0 0
\(553\) 44.7140 + 25.8156i 1.90143 + 1.09779i
\(554\) 0 0
\(555\) 0.226964 + 0.131037i 0.00963407 + 0.00556223i
\(556\) 0 0
\(557\) 15.3441 + 26.5767i 0.650148 + 1.12609i 0.983087 + 0.183141i \(0.0586266\pi\)
−0.332938 + 0.942949i \(0.608040\pi\)
\(558\) 0 0
\(559\) 20.9790 8.09022i 0.887318 0.342180i
\(560\) 0 0
\(561\) −4.31268 + 2.48993i −0.182082 + 0.105125i
\(562\) 0 0
\(563\) −34.3455 19.8294i −1.44749 0.835709i −0.449159 0.893452i \(-0.648276\pi\)
−0.998331 + 0.0577430i \(0.981610\pi\)
\(564\) 0 0
\(565\) −0.00879592 + 0.0152350i −0.000370047 + 0.000640941i
\(566\) 0 0
\(567\) 3.33730i 0.140154i
\(568\) 0 0
\(569\) −4.59173 7.95311i −0.192495 0.333412i 0.753581 0.657355i \(-0.228325\pi\)
−0.946077 + 0.323943i \(0.894991\pi\)
\(570\) 0 0
\(571\) 12.4846i 0.522463i −0.965276 0.261232i \(-0.915871\pi\)
0.965276 0.261232i \(-0.0841286\pi\)
\(572\) 0 0
\(573\) 16.4549i 0.687415i
\(574\) 0 0
\(575\) −16.8603 29.2029i −0.703123 1.21784i
\(576\) 0 0
\(577\) 29.8603i 1.24310i 0.783375 + 0.621550i \(0.213497\pi\)
−0.783375 + 0.621550i \(0.786503\pi\)
\(578\) 0 0
\(579\) 2.97012 5.14440i 0.123434 0.213794i
\(580\) 0 0
\(581\) −36.7819 21.2360i −1.52597 0.881019i
\(582\) 0 0
\(583\) 10.9429 6.31790i 0.453210 0.261661i
\(584\) 0 0
\(585\) −0.298889 0.775059i −0.0123575 0.0320448i
\(586\) 0 0
\(587\) −18.2451 31.6014i −0.753054 1.30433i −0.946336 0.323185i \(-0.895246\pi\)
0.193282 0.981143i \(-0.438087\pi\)
\(588\) 0 0
\(589\) −67.2148 38.8065i −2.76954 1.59899i
\(590\) 0 0
\(591\) −6.83547 3.94646i −0.281174 0.162336i
\(592\) 0 0
\(593\) 26.4261i 1.08519i 0.839995 + 0.542594i \(0.182558\pi\)
−0.839995 + 0.542594i \(0.817442\pi\)
\(594\) 0 0
\(595\) −1.05434 + 0.608724i −0.0432238 + 0.0249553i
\(596\) 0 0
\(597\) 16.3771i 0.670270i
\(598\) 0 0
\(599\) −7.29146 −0.297921 −0.148960 0.988843i \(-0.547593\pi\)
−0.148960 + 0.988843i \(0.547593\pi\)
\(600\) 0 0
\(601\) 0.117332 + 0.203224i 0.00478606 + 0.00828970i 0.868409 0.495849i \(-0.165143\pi\)
−0.863622 + 0.504139i \(0.831810\pi\)
\(602\) 0 0
\(603\) 1.28068 0.0521531
\(604\) 0 0
\(605\) 0.127697 0.221178i 0.00519163 0.00899216i
\(606\) 0 0
\(607\) −7.42041 + 12.8525i −0.301185 + 0.521668i −0.976405 0.215949i \(-0.930715\pi\)
0.675220 + 0.737617i \(0.264049\pi\)
\(608\) 0 0
\(609\) 10.4727 6.04643i 0.424376 0.245014i
\(610\) 0 0
\(611\) 24.9847 + 20.1685i 1.01077 + 0.815932i
\(612\) 0 0
\(613\) −0.235744 0.408321i −0.00952163 0.0164919i 0.861225 0.508223i \(-0.169698\pi\)
−0.870747 + 0.491731i \(0.836364\pi\)
\(614\) 0 0
\(615\) −1.30966 + 2.26840i −0.0528106 + 0.0914706i
\(616\) 0 0
\(617\) −28.2097 16.2869i −1.13568 0.655685i −0.190323 0.981721i \(-0.560954\pi\)
−0.945357 + 0.326036i \(0.894287\pi\)
\(618\) 0 0
\(619\) 9.28369 0.373143 0.186571 0.982441i \(-0.440262\pi\)
0.186571 + 0.982441i \(0.440262\pi\)
\(620\) 0 0
\(621\) −5.90325 + 3.40824i −0.236889 + 0.136768i
\(622\) 0 0
\(623\) 38.8081 1.55481
\(624\) 0 0
\(625\) 24.2066 0.968264
\(626\) 0 0
\(627\) 21.9520 12.6740i 0.876677 0.506150i
\(628\) 0 0
\(629\) 1.80112 0.0718153
\(630\) 0 0
\(631\) −3.76004 2.17086i −0.149685 0.0864205i 0.423287 0.905996i \(-0.360876\pi\)
−0.572972 + 0.819575i \(0.694210\pi\)
\(632\) 0 0
\(633\) −7.26314 + 12.5801i −0.288684 + 0.500016i
\(634\) 0 0
\(635\) −0.718843 1.24507i −0.0285264 0.0494092i
\(636\) 0 0
\(637\) 14.7382 + 2.31102i 0.583949 + 0.0915659i
\(638\) 0 0
\(639\) 0.987337 0.570039i 0.0390585 0.0225504i
\(640\) 0 0
\(641\) −16.3563 + 28.3299i −0.646035 + 1.11897i 0.338026 + 0.941137i \(0.390241\pi\)
−0.984061 + 0.177829i \(0.943093\pi\)
\(642\) 0 0
\(643\) 3.40535 5.89823i 0.134294 0.232604i −0.791034 0.611773i \(-0.790457\pi\)
0.925327 + 0.379169i \(0.123790\pi\)
\(644\) 0 0
\(645\) −1.43677 −0.0565729
\(646\) 0 0
\(647\) 12.5284 + 21.6999i 0.492543 + 0.853110i 0.999963 0.00858905i \(-0.00273401\pi\)
−0.507420 + 0.861699i \(0.669401\pi\)
\(648\) 0 0
\(649\) −22.8440 −0.896705
\(650\) 0 0
\(651\) 32.1379i 1.25958i
\(652\) 0 0
\(653\) 41.6685 24.0573i 1.63062 0.941436i 0.646712 0.762734i \(-0.276144\pi\)
0.983903 0.178702i \(-0.0571898\pi\)
\(654\) 0 0
\(655\) 3.63362i 0.141977i
\(656\) 0 0
\(657\) −0.704569 0.406783i −0.0274879 0.0158701i
\(658\) 0 0
\(659\) 18.7319 + 10.8148i 0.729690 + 0.421287i 0.818309 0.574779i \(-0.194912\pi\)
−0.0886189 + 0.996066i \(0.528245\pi\)
\(660\) 0 0
\(661\) 10.4554 + 18.1092i 0.406666 + 0.704366i 0.994514 0.104605i \(-0.0333579\pi\)
−0.587848 + 0.808972i \(0.700025\pi\)
\(662\) 0 0
\(663\) −4.44224 3.58593i −0.172522 0.139266i
\(664\) 0 0
\(665\) 5.36670 3.09847i 0.208112 0.120153i
\(666\) 0 0
\(667\) −21.3907 12.3499i −0.828250 0.478190i
\(668\) 0 0
\(669\) 11.5670 20.0347i 0.447207 0.774585i
\(670\) 0 0
\(671\) 9.10496i 0.351493i
\(672\) 0 0
\(673\) −8.64625 14.9757i −0.333288 0.577272i 0.649866 0.760049i \(-0.274825\pi\)
−0.983155 + 0.182776i \(0.941492\pi\)
\(674\) 0 0
\(675\) 4.94692i 0.190407i
\(676\) 0 0
\(677\) 5.72652i 0.220088i 0.993927 + 0.110044i \(0.0350992\pi\)
−0.993927 + 0.110044i \(0.964901\pi\)
\(678\) 0 0
\(679\) 13.3893 + 23.1909i 0.513833 + 0.889986i
\(680\) 0 0
\(681\) 20.4317i 0.782943i
\(682\) 0 0
\(683\) −17.8037 + 30.8369i −0.681238 + 1.17994i 0.293365 + 0.956001i \(0.405225\pi\)
−0.974603 + 0.223939i \(0.928108\pi\)
\(684\) 0 0
\(685\) −1.02032 0.589081i −0.0389844 0.0225076i
\(686\) 0 0
\(687\) 5.81086 3.35490i 0.221698 0.127997i
\(688\) 0 0
\(689\) 11.2717 + 9.09887i 0.429416 + 0.346639i
\(690\) 0 0
\(691\) 14.8409 + 25.7052i 0.564575 + 0.977873i 0.997089 + 0.0762454i \(0.0242933\pi\)
−0.432514 + 0.901627i \(0.642373\pi\)
\(692\) 0 0
\(693\) −9.08986 5.24803i −0.345295 0.199356i
\(694\) 0 0
\(695\) −1.13079 0.652861i −0.0428933 0.0247644i
\(696\) 0 0
\(697\) 18.0014i 0.681851i
\(698\) 0 0
\(699\) 8.09997 4.67652i 0.306369 0.176882i
\(700\) 0 0
\(701\) 23.7944i 0.898704i 0.893355 + 0.449352i \(0.148345\pi\)
−0.893355 + 0.449352i \(0.851655\pi\)
\(702\) 0 0
\(703\) −9.16787 −0.345773
\(704\) 0 0
\(705\) −1.02588 1.77688i −0.0386370 0.0669213i
\(706\) 0 0
\(707\) 38.4528 1.44617
\(708\) 0 0
\(709\) 4.26282 7.38342i 0.160093 0.277290i −0.774809 0.632196i \(-0.782154\pi\)
0.934902 + 0.354906i \(0.115487\pi\)
\(710\) 0 0
\(711\) 7.73548 13.3982i 0.290103 0.502473i
\(712\) 0 0
\(713\) 56.8477 32.8211i 2.12896 1.22916i
\(714\) 0 0
\(715\) −2.58105 0.404721i −0.0965259 0.0151357i
\(716\) 0 0
\(717\) 4.39732 + 7.61639i 0.164221 + 0.284439i
\(718\) 0 0
\(719\) 6.37676 11.0449i 0.237813 0.411904i −0.722273 0.691608i \(-0.756903\pi\)
0.960086 + 0.279703i \(0.0902361\pi\)
\(720\) 0 0
\(721\) 1.64838 + 0.951692i 0.0613888 + 0.0354429i
\(722\) 0 0
\(723\) 19.2249 0.714981
\(724\) 0 0
\(725\) 15.5238 8.96268i 0.576540 0.332866i
\(726\) 0 0
\(727\) −28.1255 −1.04312 −0.521559 0.853216i \(-0.674649\pi\)
−0.521559 + 0.853216i \(0.674649\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −8.55138 + 4.93714i −0.316284 + 0.182607i
\(732\) 0 0
\(733\) −49.4380 −1.82604 −0.913018 0.407920i \(-0.866254\pi\)
−0.913018 + 0.407920i \(0.866254\pi\)
\(734\) 0 0
\(735\) −0.825557 0.476636i −0.0304511 0.0175810i
\(736\) 0 0
\(737\) 2.01391 3.48819i 0.0741833 0.128489i
\(738\) 0 0
\(739\) −14.0277 24.2967i −0.516018 0.893769i −0.999827 0.0185956i \(-0.994081\pi\)
0.483809 0.875173i \(-0.339253\pi\)
\(740\) 0 0
\(741\) 22.6114 + 18.2527i 0.830651 + 0.670530i
\(742\) 0 0
\(743\) 2.05615 1.18712i 0.0754328 0.0435512i −0.461809 0.886979i \(-0.652800\pi\)
0.537242 + 0.843428i \(0.319466\pi\)
\(744\) 0 0
\(745\) −1.03772 + 1.79738i −0.0380191 + 0.0658509i
\(746\) 0 0
\(747\) −6.36323 + 11.0214i −0.232818 + 0.403253i
\(748\) 0 0
\(749\) −4.93204 −0.180213
\(750\) 0 0
\(751\) −2.48319 4.30101i −0.0906130 0.156946i 0.817156 0.576416i \(-0.195549\pi\)
−0.907769 + 0.419470i \(0.862216\pi\)
\(752\) 0 0
\(753\) 21.1907 0.772231
\(754\) 0 0
\(755\) 1.42297i 0.0517873i
\(756\) 0 0
\(757\) −3.10991 + 1.79551i −0.113032 + 0.0652589i −0.555450 0.831550i \(-0.687454\pi\)
0.442418 + 0.896809i \(0.354121\pi\)
\(758\) 0 0
\(759\) 21.4383i 0.778163i
\(760\) 0 0
\(761\) −30.1976 17.4346i −1.09466 0.632004i −0.159849 0.987142i \(-0.551101\pi\)
−0.934814 + 0.355138i \(0.884434\pi\)
\(762\) 0 0
\(763\) 4.35153 + 2.51236i 0.157536 + 0.0909534i
\(764\) 0 0
\(765\) 0.182400 + 0.315926i 0.00659469 + 0.0114223i
\(766\) 0 0
\(767\) −9.42285 24.4347i −0.340239 0.882286i
\(768\) 0 0
\(769\) −3.53352 + 2.04008i −0.127422 + 0.0735670i −0.562356 0.826895i \(-0.690105\pi\)
0.434934 + 0.900462i \(0.356772\pi\)
\(770\) 0 0
\(771\) −4.38885 2.53390i −0.158061 0.0912563i
\(772\) 0 0
\(773\) −7.40633 + 12.8281i −0.266387 + 0.461396i −0.967926 0.251235i \(-0.919163\pi\)
0.701539 + 0.712631i \(0.252497\pi\)
\(774\) 0 0
\(775\) 47.6384i 1.71122i
\(776\) 0 0
\(777\) 1.89811 + 3.28763i 0.0680944 + 0.117943i
\(778\) 0 0
\(779\) 91.6287i 3.28294i
\(780\) 0 0
\(781\) 3.58563i 0.128304i
\(782\) 0 0
\(783\) −1.81177 3.13808i −0.0647474 0.112146i
\(784\) 0 0
\(785\) 2.31676i 0.0826888i
\(786\) 0 0
\(787\) 18.0243 31.2189i 0.642496 1.11283i −0.342378 0.939562i \(-0.611232\pi\)
0.984874 0.173273i \(-0.0554342\pi\)
\(788\) 0 0
\(789\) 4.66751 + 2.69479i 0.166168 + 0.0959370i
\(790\) 0 0
\(791\) −0.220683 + 0.127411i −0.00784658 + 0.00453022i
\(792\) 0 0
\(793\) 9.73898 3.75568i 0.345841 0.133368i
\(794\) 0 0
\(795\) −0.462819 0.801626i −0.0164145 0.0284307i
\(796\) 0 0
\(797\) −11.3573 6.55713i −0.402295 0.232265i 0.285179 0.958474i \(-0.407947\pi\)
−0.687474 + 0.726209i \(0.741280\pi\)
\(798\) 0 0
\(799\) −12.2117 7.05042i −0.432019 0.249426i
\(800\) 0 0
\(801\) 11.6286i 0.410876i
\(802\) 0 0
\(803\) −2.21592 + 1.27936i −0.0781982 + 0.0451477i
\(804\) 0 0
\(805\) 5.24113i 0.184726i
\(806\) 0 0
\(807\) 15.1169 0.532140
\(808\) 0 0
\(809\) 7.48145 + 12.9583i 0.263034 + 0.455588i 0.967047 0.254599i \(-0.0819436\pi\)
−0.704013 + 0.710187i \(0.748610\pi\)
\(810\) 0 0
\(811\) −20.9684 −0.736299 −0.368150 0.929767i \(-0.620009\pi\)
−0.368150 + 0.929767i \(0.620009\pi\)
\(812\) 0 0
\(813\) 0.831915 1.44092i 0.0291765 0.0505352i
\(814\) 0 0
\(815\) −2.37316 + 4.11043i −0.0831281 + 0.143982i
\(816\) 0 0
\(817\) 43.5273 25.1305i 1.52283 0.879206i
\(818\) 0 0
\(819\) 1.86402 11.8876i 0.0651343 0.415385i
\(820\) 0 0
\(821\) 12.5793 + 21.7880i 0.439021 + 0.760407i 0.997614 0.0690347i \(-0.0219919\pi\)
−0.558593 + 0.829442i \(0.688659\pi\)
\(822\) 0 0
\(823\) 4.64806 8.05068i 0.162021 0.280629i −0.773572 0.633708i \(-0.781532\pi\)
0.935593 + 0.353079i \(0.114865\pi\)
\(824\) 0 0
\(825\) −13.4740 7.77921i −0.469104 0.270837i
\(826\) 0 0
\(827\) −22.5483 −0.784080 −0.392040 0.919948i \(-0.628231\pi\)
−0.392040 + 0.919948i \(0.628231\pi\)
\(828\) 0 0
\(829\) −4.07023 + 2.34995i −0.141365 + 0.0816171i −0.569014 0.822328i \(-0.692675\pi\)
0.427649 + 0.903945i \(0.359342\pi\)
\(830\) 0 0
\(831\) 16.1254 0.559385
\(832\) 0 0
\(833\) −6.55139 −0.226992
\(834\) 0 0
\(835\) 1.83820 1.06129i 0.0636136 0.0367273i
\(836\) 0 0
\(837\) 9.62991 0.332858
\(838\) 0 0
\(839\) 38.2396 + 22.0776i 1.32018 + 0.762205i 0.983757 0.179507i \(-0.0574503\pi\)
0.336421 + 0.941712i \(0.390784\pi\)
\(840\) 0 0
\(841\) −7.93498 + 13.7438i −0.273620 + 0.473924i
\(842\) 0 0
\(843\) 11.9636 + 20.7215i 0.412047 + 0.713686i
\(844\) 0 0
\(845\) −0.631747 2.92772i −0.0217328 0.100717i
\(846\) 0 0
\(847\) 3.20382 1.84973i 0.110085 0.0635574i
\(848\) 0 0
\(849\) −4.42906 + 7.67135i −0.152005 + 0.263280i
\(850\) 0 0
\(851\) 3.87692 6.71502i 0.132899 0.230188i
\(852\) 0 0
\(853\) 2.24836 0.0769825 0.0384912 0.999259i \(-0.487745\pi\)
0.0384912 + 0.999259i \(0.487745\pi\)
\(854\) 0 0
\(855\) −0.928434 1.60809i −0.0317518 0.0549957i
\(856\) 0 0
\(857\) 23.3922 0.799062 0.399531 0.916720i \(-0.369173\pi\)
0.399531 + 0.916720i \(0.369173\pi\)
\(858\) 0 0
\(859\) 23.3254i 0.795854i 0.917417 + 0.397927i \(0.130270\pi\)
−0.917417 + 0.397927i \(0.869730\pi\)
\(860\) 0 0
\(861\) −32.8584 + 18.9708i −1.11981 + 0.646522i
\(862\) 0 0
\(863\) 51.3259i 1.74715i 0.486687 + 0.873577i \(0.338205\pi\)
−0.486687 + 0.873577i \(0.661795\pi\)
\(864\) 0 0
\(865\) −0.381560 0.220294i −0.0129734 0.00749021i
\(866\) 0 0
\(867\) −12.5512 7.24645i −0.426262 0.246102i
\(868\) 0 0
\(869\) −24.3286 42.1384i −0.825292 1.42945i
\(870\) 0 0
\(871\) 4.56180 + 0.715311i 0.154571 + 0.0242374i
\(872\) 0 0
\(873\) 6.94900 4.01201i 0.235188 0.135786i
\(874\) 0 0
\(875\) −6.62344 3.82405i −0.223913 0.129276i
\(876\) 0 0
\(877\) 5.20754 9.01972i 0.175846 0.304574i −0.764608 0.644496i \(-0.777067\pi\)
0.940454 + 0.339922i \(0.110401\pi\)
\(878\) 0 0
\(879\) 24.2874i 0.819192i
\(880\) 0 0
\(881\) −20.8219 36.0645i −0.701507 1.21505i −0.967938 0.251191i \(-0.919178\pi\)
0.266431 0.963854i \(-0.414156\pi\)
\(882\) 0 0
\(883\) 20.2048i 0.679945i 0.940435 + 0.339972i \(0.110418\pi\)
−0.940435 + 0.339972i \(0.889582\pi\)
\(884\) 0 0
\(885\) 1.67344i 0.0562521i
\(886\) 0 0
\(887\) −12.6955 21.9892i −0.426273 0.738326i 0.570265 0.821460i \(-0.306840\pi\)
−0.996538 + 0.0831341i \(0.973507\pi\)
\(888\) 0 0
\(889\) 20.8253i 0.698457i
\(890\) 0 0
\(891\) −1.57254 + 2.72371i −0.0526820 + 0.0912478i
\(892\) 0 0
\(893\) 62.1587 + 35.8873i 2.08006 + 1.20092i
\(894\) 0 0
\(895\) −2.72884 + 1.57550i −0.0912150 + 0.0526630i
\(896\) 0 0
\(897\) −22.9312 + 8.84304i −0.765650 + 0.295260i
\(898\) 0 0
\(899\) 17.4472 + 30.2194i 0.581896 + 1.00787i
\(900\) 0 0
\(901\) −5.50920 3.18074i −0.183538 0.105966i
\(902\) 0 0
\(903\) −18.0238 10.4060i −0.599794 0.346291i
\(904\) 0 0
\(905\) 0.449510i 0.0149422i
\(906\) 0 0
\(907\) −19.8890 + 11.4829i −0.660405 + 0.381285i −0.792431 0.609961i \(-0.791185\pi\)
0.132027 + 0.991246i \(0.457852\pi\)
\(908\) 0 0
\(909\) 11.5221i 0.382164i
\(910\) 0 0
\(911\) −25.4657 −0.843717 −0.421859 0.906662i \(-0.638622\pi\)
−0.421859 + 0.906662i \(0.638622\pi\)
\(912\) 0 0
\(913\) 20.0128 + 34.6632i 0.662328 + 1.14719i
\(914\) 0 0
\(915\) −0.666986 −0.0220499
\(916\) 0 0
\(917\) −26.3170 + 45.5823i −0.869063 + 1.50526i
\(918\) 0 0
\(919\) 10.3095 17.8566i 0.340079 0.589034i −0.644368 0.764715i \(-0.722880\pi\)
0.984447 + 0.175682i \(0.0562129\pi\)
\(920\) 0 0
\(921\) −28.0417 + 16.1899i −0.924004 + 0.533474i
\(922\) 0 0
\(923\) 3.83531 1.47903i 0.126241 0.0486827i
\(924\) 0 0
\(925\) 2.81359 + 4.87329i 0.0925104 + 0.160233i
\(926\) 0 0
\(927\) 0.285168 0.493925i 0.00936615 0.0162226i
\(928\) 0 0
\(929\) −13.2006 7.62136i −0.433097 0.250049i 0.267568 0.963539i \(-0.413780\pi\)
−0.700665 + 0.713490i \(0.747113\pi\)
\(930\) 0 0
\(931\) 33.3472 1.09291
\(932\) 0 0
\(933\) 14.5134 8.37934i 0.475149 0.274327i
\(934\) 0 0
\(935\) 1.14732 0.0375215
\(936\) 0 0
\(937\) 44.7527 1.46201 0.731004 0.682373i \(-0.239052\pi\)
0.731004 + 0.682373i \(0.239052\pi\)
\(938\) 0 0
\(939\) 10.5707 6.10297i 0.344960 0.199163i
\(940\) 0 0
\(941\) 20.4855 0.667807 0.333904 0.942607i \(-0.391634\pi\)
0.333904 + 0.942607i \(0.391634\pi\)
\(942\) 0 0
\(943\) 67.1136 + 38.7481i 2.18552 + 1.26181i
\(944\) 0 0
\(945\) −0.384445 + 0.665879i −0.0125060 + 0.0216610i
\(946\) 0 0
\(947\) 17.4837 + 30.2826i 0.568143 + 0.984052i 0.996750 + 0.0805608i \(0.0256711\pi\)
−0.428607 + 0.903491i \(0.640996\pi\)
\(948\) 0 0
\(949\) −2.28249 1.84250i −0.0740927 0.0598102i
\(950\) 0 0
\(951\) 25.9882 15.0043i 0.842725 0.486547i
\(952\) 0 0
\(953\) 16.0909 27.8703i 0.521236 0.902808i −0.478459 0.878110i \(-0.658804\pi\)
0.999695 0.0246977i \(-0.00786233\pi\)
\(954\) 0 0
\(955\) −1.89555 + 3.28319i −0.0613385 + 0.106241i
\(956\) 0 0
\(957\) −11.3963 −0.368390
\(958\) 0 0
\(959\) −8.53300 14.7796i −0.275545 0.477258i
\(960\) 0 0
\(961\) −61.7351 −1.99145
\(962\) 0 0
\(963\) 1.47785i 0.0476231i
\(964\) 0 0
\(965\) −1.18523 + 0.684295i −0.0381540 + 0.0220282i
\(966\) 0 0
\(967\) 20.7493i 0.667251i 0.942706 + 0.333626i \(0.108272\pi\)
−0.942706 + 0.333626i \(0.891728\pi\)
\(968\) 0 0
\(969\) −11.0517 6.38070i −0.355031 0.204977i
\(970\) 0 0
\(971\) 16.3626 + 9.44693i 0.525099 + 0.303166i 0.739019 0.673685i \(-0.235290\pi\)
−0.213919 + 0.976851i \(0.568623\pi\)
\(972\) 0 0
\(973\) −9.45687 16.3798i −0.303173 0.525112i
\(974\) 0 0
\(975\) 2.76306 17.6211i 0.0884888 0.564325i
\(976\) 0 0
\(977\) 31.6318 18.2627i 1.01199 0.584274i 0.100218 0.994966i \(-0.468046\pi\)
0.911774 + 0.410691i \(0.134713\pi\)
\(978\) 0 0
\(979\) −31.6729 18.2864i −1.01227 0.584435i
\(980\) 0 0
\(981\) 0.752810 1.30391i 0.0240354 0.0416305i
\(982\) 0 0
\(983\) 38.2418i 1.21972i −0.792508 0.609862i \(-0.791225\pi\)
0.792508 0.609862i \(-0.208775\pi\)
\(984\) 0 0
\(985\) 0.909236 + 1.57484i 0.0289707 + 0.0501787i
\(986\) 0 0
\(987\) 29.7204i 0.946011i
\(988\) 0 0
\(989\) 42.5089i 1.35170i
\(990\) 0 0
\(991\) −16.1451 27.9641i −0.512866 0.888309i −0.999889 0.0149201i \(-0.995251\pi\)
0.487023 0.873389i \(-0.338083\pi\)
\(992\) 0 0
\(993\) 4.97955i 0.158021i
\(994\) 0 0
\(995\) −1.88658 + 3.26766i −0.0598088 + 0.103592i
\(996\) 0 0
\(997\) −18.9701 10.9524i −0.600789 0.346866i 0.168563 0.985691i \(-0.446087\pi\)
−0.769352 + 0.638825i \(0.779421\pi\)
\(998\) 0 0
\(999\) 0.985115 0.568757i 0.0311677 0.0179947i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1248.2.ca.b.49.7 48
4.3 odd 2 312.2.bk.b.205.23 yes 48
8.3 odd 2 312.2.bk.b.205.15 48
8.5 even 2 inner 1248.2.ca.b.49.18 48
12.11 even 2 936.2.dg.e.829.2 48
13.4 even 6 inner 1248.2.ca.b.433.18 48
24.11 even 2 936.2.dg.e.829.10 48
52.43 odd 6 312.2.bk.b.277.15 yes 48
104.43 odd 6 312.2.bk.b.277.23 yes 48
104.69 even 6 inner 1248.2.ca.b.433.7 48
156.95 even 6 936.2.dg.e.901.10 48
312.251 even 6 936.2.dg.e.901.2 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bk.b.205.15 48 8.3 odd 2
312.2.bk.b.205.23 yes 48 4.3 odd 2
312.2.bk.b.277.15 yes 48 52.43 odd 6
312.2.bk.b.277.23 yes 48 104.43 odd 6
936.2.dg.e.829.2 48 12.11 even 2
936.2.dg.e.829.10 48 24.11 even 2
936.2.dg.e.901.2 48 312.251 even 6
936.2.dg.e.901.10 48 156.95 even 6
1248.2.ca.b.49.7 48 1.1 even 1 trivial
1248.2.ca.b.49.18 48 8.5 even 2 inner
1248.2.ca.b.433.7 48 104.69 even 6 inner
1248.2.ca.b.433.18 48 13.4 even 6 inner