Properties

Label 936.2.dg.c.829.1
Level $936$
Weight $2$
Character 936.829
Analytic conductor $7.474$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(829,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.829"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.dg (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.12960000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{6} + 8x^{4} - 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 829.1
Root \(-1.40126 + 0.809017i\) of defining polynomial
Character \(\chi\) \(=\) 936.829
Dual form 936.2.dg.c.901.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.40126 - 0.190983i) q^{2} +(1.92705 + 0.535233i) q^{4} +2.23607 q^{5} +(3.43649 + 1.98406i) q^{7} +(-2.59808 - 1.11803i) q^{8} +(-3.13331 - 0.427051i) q^{10} +(0.252009 + 0.436492i) q^{11} +(2.59808 + 2.50000i) q^{13} +(-4.43649 - 3.43649i) q^{14} +(3.42705 + 2.06284i) q^{16} +(2.93649 - 5.08615i) q^{17} +(0.252009 - 0.436492i) q^{19} +(4.30902 + 1.19682i) q^{20} +(-0.269767 - 0.659767i) q^{22} +(4.43649 + 7.68423i) q^{23} +(-3.16312 - 3.99933i) q^{26} +(5.56036 + 5.66271i) q^{28} +(-8.55025 + 4.93649i) q^{29} -4.47214i q^{31} +(-4.40822 - 3.54508i) q^{32} +(-5.08615 + 6.56619i) q^{34} +(7.68423 + 4.43649i) q^{35} +(-3.60611 - 6.24597i) q^{37} +(-0.436492 + 0.563508i) q^{38} +(-5.80948 - 2.50000i) q^{40} +(-1.06351 + 0.614017i) q^{41} +(-7.68423 - 4.43649i) q^{43} +(0.252009 + 0.976025i) q^{44} +(-4.74911 - 11.6149i) q^{46} +3.96812i q^{47} +(4.37298 + 7.57423i) q^{49} +(3.66854 + 6.20820i) q^{52} -7.87298i q^{53} +(0.563508 + 0.976025i) q^{55} +(-6.71002 - 8.99685i) q^{56} +(12.9239 - 5.28435i) q^{58} +(-1.22803 + 2.12702i) q^{59} +(-0.866025 - 0.500000i) q^{61} +(-0.854102 + 6.26662i) q^{62} +(5.50000 + 5.80948i) q^{64} +(5.80948 + 5.59017i) q^{65} +(-0.976025 - 1.69052i) q^{67} +(8.38105 - 8.22957i) q^{68} +(-9.92030 - 7.68423i) q^{70} +(4.30948 + 2.48808i) q^{71} +13.1324i q^{73} +(3.86022 + 9.44092i) q^{74} +(0.719258 - 0.706258i) q^{76} +2.00000i q^{77} +14.0000 q^{79} +(7.66312 + 4.61266i) q^{80} +(1.60752 - 0.657284i) q^{82} +2.96008 q^{83} +(6.56619 - 11.3730i) q^{85} +(9.92030 + 7.68423i) q^{86} +(-0.166725 - 1.41579i) q^{88} +(1.74597 - 1.00803i) q^{89} +(3.96812 + 13.7460i) q^{91} +(4.43649 + 17.1825i) q^{92} +(0.757843 - 5.56036i) q^{94} +(0.563508 - 0.976025i) q^{95} +(-15.0000 - 8.66025i) q^{97} +(-4.68113 - 11.4486i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{4} + 12 q^{7} - 20 q^{14} + 14 q^{16} + 8 q^{17} + 30 q^{20} - 6 q^{22} + 20 q^{23} + 6 q^{26} + 6 q^{28} + 12 q^{38} - 24 q^{41} - 30 q^{46} + 4 q^{49} + 20 q^{55} + 10 q^{56} + 36 q^{58} + 20 q^{62}+ \cdots - 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40126 0.190983i −0.990839 0.135045i
\(3\) 0 0
\(4\) 1.92705 + 0.535233i 0.963525 + 0.267617i
\(5\) 2.23607 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(6\) 0 0
\(7\) 3.43649 + 1.98406i 1.29887 + 0.749904i 0.980209 0.197964i \(-0.0634330\pi\)
0.318663 + 0.947868i \(0.396766\pi\)
\(8\) −2.59808 1.11803i −0.918559 0.395285i
\(9\) 0 0
\(10\) −3.13331 0.427051i −0.990839 0.135045i
\(11\) 0.252009 + 0.436492i 0.0759834 + 0.131607i 0.901514 0.432751i \(-0.142457\pi\)
−0.825530 + 0.564358i \(0.809124\pi\)
\(12\) 0 0
\(13\) 2.59808 + 2.50000i 0.720577 + 0.693375i
\(14\) −4.43649 3.43649i −1.18570 0.918441i
\(15\) 0 0
\(16\) 3.42705 + 2.06284i 0.856763 + 0.515711i
\(17\) 2.93649 5.08615i 0.712204 1.23357i −0.251824 0.967773i \(-0.581030\pi\)
0.964028 0.265800i \(-0.0856362\pi\)
\(18\) 0 0
\(19\) 0.252009 0.436492i 0.0578147 0.100138i −0.835669 0.549233i \(-0.814920\pi\)
0.893484 + 0.449095i \(0.148253\pi\)
\(20\) 4.30902 + 1.19682i 0.963525 + 0.267617i
\(21\) 0 0
\(22\) −0.269767 0.659767i −0.0575145 0.140663i
\(23\) 4.43649 + 7.68423i 0.925072 + 1.60227i 0.791445 + 0.611241i \(0.209329\pi\)
0.133628 + 0.991032i \(0.457337\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −3.16312 3.99933i −0.620339 0.784334i
\(27\) 0 0
\(28\) 5.56036 + 5.66271i 1.05081 + 1.07015i
\(29\) −8.55025 + 4.93649i −1.58774 + 0.916683i −0.594064 + 0.804418i \(0.702477\pi\)
−0.993678 + 0.112266i \(0.964189\pi\)
\(30\) 0 0
\(31\) 4.47214i 0.803219i −0.915811 0.401610i \(-0.868451\pi\)
0.915811 0.401610i \(-0.131549\pi\)
\(32\) −4.40822 3.54508i −0.779270 0.626688i
\(33\) 0 0
\(34\) −5.08615 + 6.56619i −0.872268 + 1.12609i
\(35\) 7.68423 + 4.43649i 1.29887 + 0.749904i
\(36\) 0 0
\(37\) −3.60611 6.24597i −0.592841 1.02683i −0.993848 0.110756i \(-0.964673\pi\)
0.401007 0.916075i \(-0.368660\pi\)
\(38\) −0.436492 + 0.563508i −0.0708083 + 0.0914131i
\(39\) 0 0
\(40\) −5.80948 2.50000i −0.918559 0.395285i
\(41\) −1.06351 + 0.614017i −0.166092 + 0.0958933i −0.580742 0.814088i \(-0.697237\pi\)
0.414650 + 0.909981i \(0.363904\pi\)
\(42\) 0 0
\(43\) −7.68423 4.43649i −1.17183 0.676559i −0.217723 0.976011i \(-0.569863\pi\)
−0.954111 + 0.299452i \(0.903196\pi\)
\(44\) 0.252009 + 0.976025i 0.0379917 + 0.147141i
\(45\) 0 0
\(46\) −4.74911 11.6149i −0.700219 1.71252i
\(47\) 3.96812i 0.578810i 0.957207 + 0.289405i \(0.0934574\pi\)
−0.957207 + 0.289405i \(0.906543\pi\)
\(48\) 0 0
\(49\) 4.37298 + 7.57423i 0.624712 + 1.08203i
\(50\) 0 0
\(51\) 0 0
\(52\) 3.66854 + 6.20820i 0.508735 + 0.860923i
\(53\) 7.87298i 1.08144i −0.841203 0.540719i \(-0.818152\pi\)
0.841203 0.540719i \(-0.181848\pi\)
\(54\) 0 0
\(55\) 0.563508 + 0.976025i 0.0759834 + 0.131607i
\(56\) −6.71002 8.99685i −0.896664 1.20225i
\(57\) 0 0
\(58\) 12.9239 5.28435i 1.69699 0.693869i
\(59\) −1.22803 + 2.12702i −0.159876 + 0.276914i −0.934824 0.355112i \(-0.884443\pi\)
0.774948 + 0.632026i \(0.217776\pi\)
\(60\) 0 0
\(61\) −0.866025 0.500000i −0.110883 0.0640184i 0.443533 0.896258i \(-0.353725\pi\)
−0.554416 + 0.832240i \(0.687058\pi\)
\(62\) −0.854102 + 6.26662i −0.108471 + 0.795861i
\(63\) 0 0
\(64\) 5.50000 + 5.80948i 0.687500 + 0.726184i
\(65\) 5.80948 + 5.59017i 0.720577 + 0.693375i
\(66\) 0 0
\(67\) −0.976025 1.69052i −0.119240 0.206530i 0.800226 0.599698i \(-0.204713\pi\)
−0.919467 + 0.393167i \(0.871379\pi\)
\(68\) 8.38105 8.22957i 1.01635 0.997982i
\(69\) 0 0
\(70\) −9.92030 7.68423i −1.18570 0.918441i
\(71\) 4.30948 + 2.48808i 0.511441 + 0.295280i 0.733426 0.679770i \(-0.237920\pi\)
−0.221985 + 0.975050i \(0.571254\pi\)
\(72\) 0 0
\(73\) 13.1324i 1.53703i 0.639832 + 0.768515i \(0.279004\pi\)
−0.639832 + 0.768515i \(0.720996\pi\)
\(74\) 3.86022 + 9.44092i 0.448741 + 1.09748i
\(75\) 0 0
\(76\) 0.719258 0.706258i 0.0825046 0.0810134i
\(77\) 2.00000i 0.227921i
\(78\) 0 0
\(79\) 14.0000 1.57512 0.787562 0.616236i \(-0.211343\pi\)
0.787562 + 0.616236i \(0.211343\pi\)
\(80\) 7.66312 + 4.61266i 0.856763 + 0.515711i
\(81\) 0 0
\(82\) 1.60752 0.657284i 0.177521 0.0725849i
\(83\) 2.96008 0.324911 0.162456 0.986716i \(-0.448059\pi\)
0.162456 + 0.986716i \(0.448059\pi\)
\(84\) 0 0
\(85\) 6.56619 11.3730i 0.712204 1.23357i
\(86\) 9.92030 + 7.68423i 1.06973 + 0.828612i
\(87\) 0 0
\(88\) −0.166725 1.41579i −0.0177729 0.150924i
\(89\) 1.74597 1.00803i 0.185072 0.106851i −0.404601 0.914493i \(-0.632590\pi\)
0.589674 + 0.807642i \(0.299256\pi\)
\(90\) 0 0
\(91\) 3.96812 + 13.7460i 0.415972 + 1.44097i
\(92\) 4.43649 + 17.1825i 0.462536 + 1.79140i
\(93\) 0 0
\(94\) 0.757843 5.56036i 0.0781656 0.573507i
\(95\) 0.563508 0.976025i 0.0578147 0.100138i
\(96\) 0 0
\(97\) −15.0000 8.66025i −1.52302 0.879316i −0.999629 0.0272222i \(-0.991334\pi\)
−0.523390 0.852093i \(-0.675333\pi\)
\(98\) −4.68113 11.4486i −0.472866 1.15649i
\(99\) 0 0
\(100\) 0 0
\(101\) 6.81820 3.93649i 0.678437 0.391696i −0.120829 0.992673i \(-0.538555\pi\)
0.799266 + 0.600978i \(0.205222\pi\)
\(102\) 0 0
\(103\) 10.6190 1.04632 0.523158 0.852236i \(-0.324754\pi\)
0.523158 + 0.852236i \(0.324754\pi\)
\(104\) −3.95492 9.39993i −0.387811 0.921739i
\(105\) 0 0
\(106\) −1.50361 + 11.0321i −0.146043 + 1.07153i
\(107\) −0.756026 + 0.436492i −0.0730878 + 0.0421972i −0.536099 0.844155i \(-0.680102\pi\)
0.463011 + 0.886353i \(0.346769\pi\)
\(108\) 0 0
\(109\) −2.45607 −0.235249 −0.117624 0.993058i \(-0.537528\pi\)
−0.117624 + 0.993058i \(0.537528\pi\)
\(110\) −0.603217 1.47528i −0.0575145 0.140663i
\(111\) 0 0
\(112\) 7.68423 + 13.8884i 0.726091 + 1.31233i
\(113\) 4.93649 8.55025i 0.464386 0.804340i −0.534788 0.844987i \(-0.679608\pi\)
0.999174 + 0.0406463i \(0.0129417\pi\)
\(114\) 0 0
\(115\) 9.92030 + 17.1825i 0.925072 + 1.60227i
\(116\) −19.1190 + 4.93649i −1.77515 + 0.458342i
\(117\) 0 0
\(118\) 2.12702 2.74597i 0.195808 0.252787i
\(119\) 20.1825 11.6523i 1.85012 1.06817i
\(120\) 0 0
\(121\) 5.37298 9.30628i 0.488453 0.846025i
\(122\) 1.11803 + 0.866025i 0.101222 + 0.0784063i
\(123\) 0 0
\(124\) 2.39364 8.61803i 0.214955 0.773922i
\(125\) −11.1803 −1.00000
\(126\) 0 0
\(127\) −1.12702 1.95205i −0.100007 0.173216i 0.811681 0.584102i \(-0.198553\pi\)
−0.911687 + 0.410885i \(0.865220\pi\)
\(128\) −6.59741 9.19098i −0.583134 0.812376i
\(129\) 0 0
\(130\) −7.07295 8.94278i −0.620339 0.784334i
\(131\) 11.7460i 1.02625i 0.858314 + 0.513125i \(0.171512\pi\)
−0.858314 + 0.513125i \(0.828488\pi\)
\(132\) 0 0
\(133\) 1.73205 1.00000i 0.150188 0.0867110i
\(134\) 1.04480 + 2.55527i 0.0902571 + 0.220741i
\(135\) 0 0
\(136\) −13.3157 + 9.93112i −1.14181 + 0.851586i
\(137\) 0.190525 + 0.110000i 0.0162776 + 0.00939790i 0.508117 0.861288i \(-0.330342\pi\)
−0.491839 + 0.870686i \(0.663675\pi\)
\(138\) 0 0
\(139\) 8.44025 + 4.87298i 0.715893 + 0.413321i 0.813239 0.581930i \(-0.197702\pi\)
−0.0973462 + 0.995251i \(0.531035\pi\)
\(140\) 12.4333 + 12.6622i 1.05081 + 1.07015i
\(141\) 0 0
\(142\) −5.56351 4.30948i −0.466879 0.361643i
\(143\) −0.436492 + 1.76406i −0.0365013 + 0.147518i
\(144\) 0 0
\(145\) −19.1190 + 11.0383i −1.58774 + 0.916683i
\(146\) 2.50806 18.4019i 0.207569 1.52295i
\(147\) 0 0
\(148\) −3.60611 13.9664i −0.296420 1.14803i
\(149\) 4.36214 7.55544i 0.357360 0.618966i −0.630159 0.776466i \(-0.717010\pi\)
0.987519 + 0.157500i \(0.0503436\pi\)
\(150\) 0 0
\(151\) 10.8963i 0.886730i −0.896341 0.443365i \(-0.853785\pi\)
0.896341 0.443365i \(-0.146215\pi\)
\(152\) −1.14275 + 0.852284i −0.0926893 + 0.0691294i
\(153\) 0 0
\(154\) 0.381966 2.80252i 0.0307797 0.225833i
\(155\) 10.0000i 0.803219i
\(156\) 0 0
\(157\) 1.25403i 0.100083i 0.998747 + 0.0500414i \(0.0159353\pi\)
−0.998747 + 0.0500414i \(0.984065\pi\)
\(158\) −19.6176 2.67376i −1.56069 0.212713i
\(159\) 0 0
\(160\) −9.85707 7.92705i −0.779270 0.626688i
\(161\) 35.2091i 2.77486i
\(162\) 0 0
\(163\) −8.44025 + 14.6190i −0.661092 + 1.14504i 0.319237 + 0.947675i \(0.396573\pi\)
−0.980329 + 0.197370i \(0.936760\pi\)
\(164\) −2.37808 + 0.614017i −0.185697 + 0.0479467i
\(165\) 0 0
\(166\) −4.14784 0.565326i −0.321935 0.0438778i
\(167\) −8.12702 + 4.69214i −0.628887 + 0.363088i −0.780321 0.625379i \(-0.784944\pi\)
0.151434 + 0.988467i \(0.451611\pi\)
\(168\) 0 0
\(169\) 0.500000 + 12.9904i 0.0384615 + 0.999260i
\(170\) −11.3730 + 14.6825i −0.872268 + 1.12609i
\(171\) 0 0
\(172\) −12.4333 12.6622i −0.948034 0.965484i
\(173\) −15.1485 8.74597i −1.15172 0.664944i −0.202411 0.979301i \(-0.564878\pi\)
−0.949305 + 0.314357i \(0.898211\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −0.0367676 + 2.01573i −0.00277146 + 0.151942i
\(177\) 0 0
\(178\) −2.63907 + 1.07907i −0.197807 + 0.0808795i
\(179\) 4.44013 2.56351i 0.331871 0.191606i −0.324801 0.945782i \(-0.605297\pi\)
0.656671 + 0.754177i \(0.271964\pi\)
\(180\) 0 0
\(181\) 0.745967i 0.0554473i −0.999616 0.0277236i \(-0.991174\pi\)
0.999616 0.0277236i \(-0.00882584\pi\)
\(182\) −2.93511 20.0195i −0.217565 1.48394i
\(183\) 0 0
\(184\) −2.93511 24.9244i −0.216379 1.83745i
\(185\) −8.06351 13.9664i −0.592841 1.02683i
\(186\) 0 0
\(187\) 2.96008 0.216463
\(188\) −2.12387 + 7.64677i −0.154899 + 0.557698i
\(189\) 0 0
\(190\) −0.976025 + 1.26004i −0.0708083 + 0.0914131i
\(191\) 9.87298 17.1005i 0.714384 1.23735i −0.248813 0.968552i \(-0.580040\pi\)
0.963197 0.268798i \(-0.0866263\pi\)
\(192\) 0 0
\(193\) 7.11895 4.11013i 0.512433 0.295853i −0.221400 0.975183i \(-0.571063\pi\)
0.733833 + 0.679330i \(0.237729\pi\)
\(194\) 19.3649 + 15.0000i 1.39032 + 1.07694i
\(195\) 0 0
\(196\) 4.37298 + 16.9365i 0.312356 + 1.20975i
\(197\) −1.22803 2.12702i −0.0874938 0.151544i 0.818957 0.573854i \(-0.194552\pi\)
−0.906451 + 0.422311i \(0.861219\pi\)
\(198\) 0 0
\(199\) 3.43649 5.95218i 0.243606 0.421939i −0.718132 0.695906i \(-0.755003\pi\)
0.961739 + 0.273968i \(0.0883361\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −10.3059 + 4.21388i −0.725118 + 0.296488i
\(203\) −39.1772 −2.74970
\(204\) 0 0
\(205\) −2.37808 + 1.37298i −0.166092 + 0.0958933i
\(206\) −14.8799 2.02804i −1.03673 0.141300i
\(207\) 0 0
\(208\) 3.74663 + 13.9271i 0.259782 + 0.965667i
\(209\) 0.254033 0.0175719
\(210\) 0 0
\(211\) 12.1244 7.00000i 0.834675 0.481900i −0.0207756 0.999784i \(-0.506614\pi\)
0.855451 + 0.517884i \(0.173280\pi\)
\(212\) 4.21388 15.1716i 0.289411 1.04199i
\(213\) 0 0
\(214\) 1.14275 0.467250i 0.0781168 0.0319405i
\(215\) −17.1825 9.92030i −1.17183 0.676559i
\(216\) 0 0
\(217\) 8.87298 15.3685i 0.602337 1.04328i
\(218\) 3.44159 + 0.469067i 0.233094 + 0.0317692i
\(219\) 0 0
\(220\) 0.563508 + 2.18246i 0.0379917 + 0.147141i
\(221\) 20.3446 5.87298i 1.36853 0.395060i
\(222\) 0 0
\(223\) −12.4919 + 7.21222i −0.836522 + 0.482966i −0.856080 0.516843i \(-0.827107\pi\)
0.0195587 + 0.999809i \(0.493774\pi\)
\(224\) −8.11514 20.9288i −0.542216 1.39837i
\(225\) 0 0
\(226\) −8.55025 + 11.0383i −0.568754 + 0.734259i
\(227\) −0.976025 + 1.69052i −0.0647811 + 0.112204i −0.896597 0.442848i \(-0.853968\pi\)
0.831816 + 0.555052i \(0.187302\pi\)
\(228\) 0 0
\(229\) −15.8725 −1.04888 −0.524441 0.851447i \(-0.675726\pi\)
−0.524441 + 0.851447i \(0.675726\pi\)
\(230\) −10.6193 25.9717i −0.700219 1.71252i
\(231\) 0 0
\(232\) 27.7334 3.26591i 1.82079 0.214417i
\(233\) −22.0000 −1.44127 −0.720634 0.693316i \(-0.756149\pi\)
−0.720634 + 0.693316i \(0.756149\pi\)
\(234\) 0 0
\(235\) 8.87298i 0.578810i
\(236\) −3.50493 + 3.44159i −0.228152 + 0.224028i
\(237\) 0 0
\(238\) −30.5062 + 12.4734i −1.97743 + 0.808533i
\(239\) 1.51205i 0.0978065i −0.998804 0.0489032i \(-0.984427\pi\)
0.998804 0.0489032i \(-0.0155726\pi\)
\(240\) 0 0
\(241\) −13.5000 7.79423i −0.869611 0.502070i −0.00239235 0.999997i \(-0.500762\pi\)
−0.867219 + 0.497927i \(0.834095\pi\)
\(242\) −9.30628 + 12.0144i −0.598230 + 0.772312i
\(243\) 0 0
\(244\) −1.40126 1.42705i −0.0897064 0.0913576i
\(245\) 9.77829 + 16.9365i 0.624712 + 1.08203i
\(246\) 0 0
\(247\) 1.74597 0.504017i 0.111093 0.0320698i
\(248\) −5.00000 + 11.6190i −0.317500 + 0.737804i
\(249\) 0 0
\(250\) 15.6665 + 2.13525i 0.990839 + 0.135045i
\(251\) 13.1964 + 7.61895i 0.832950 + 0.480904i 0.854862 0.518856i \(-0.173642\pi\)
−0.0219117 + 0.999760i \(0.506975\pi\)
\(252\) 0 0
\(253\) −2.23607 + 3.87298i −0.140580 + 0.243492i
\(254\) 1.20643 + 2.95057i 0.0756984 + 0.185135i
\(255\) 0 0
\(256\) 7.48936 + 14.1389i 0.468085 + 0.883684i
\(257\) −7.68246 13.3064i −0.479219 0.830031i 0.520497 0.853863i \(-0.325747\pi\)
−0.999716 + 0.0238323i \(0.992413\pi\)
\(258\) 0 0
\(259\) 28.6190i 1.77830i
\(260\) 8.20311 + 13.8820i 0.508735 + 0.860923i
\(261\) 0 0
\(262\) 2.24328 16.4591i 0.138590 1.01685i
\(263\) 0.563508 + 0.976025i 0.0347474 + 0.0601843i 0.882876 0.469606i \(-0.155604\pi\)
−0.848129 + 0.529790i \(0.822271\pi\)
\(264\) 0 0
\(265\) 17.6045i 1.08144i
\(266\) −2.61803 + 1.07047i −0.160522 + 0.0656345i
\(267\) 0 0
\(268\) −0.976025 3.78013i −0.0596202 0.230908i
\(269\) 17.1005 + 9.87298i 1.04264 + 0.601966i 0.920579 0.390557i \(-0.127717\pi\)
0.122058 + 0.992523i \(0.461051\pi\)
\(270\) 0 0
\(271\) −26.2379 + 15.1485i −1.59384 + 0.920203i −0.601199 + 0.799099i \(0.705310\pi\)
−0.992640 + 0.121104i \(0.961357\pi\)
\(272\) 20.5554 11.3730i 1.24636 0.689588i
\(273\) 0 0
\(274\) −0.245967 0.190525i −0.0148594 0.0115100i
\(275\) 0 0
\(276\) 0 0
\(277\) 0.646026 + 0.372983i 0.0388159 + 0.0224104i 0.519282 0.854603i \(-0.326199\pi\)
−0.480466 + 0.877013i \(0.659533\pi\)
\(278\) −10.8963 8.44025i −0.653518 0.506213i
\(279\) 0 0
\(280\) −15.0041 20.1176i −0.896664 1.20225i
\(281\) 12.1884i 0.727097i 0.931575 + 0.363549i \(0.118435\pi\)
−0.931575 + 0.363549i \(0.881565\pi\)
\(282\) 0 0
\(283\) −17.8565 + 10.3095i −1.06146 + 0.612835i −0.925836 0.377926i \(-0.876638\pi\)
−0.135625 + 0.990760i \(0.543304\pi\)
\(284\) 6.97288 + 7.10122i 0.413764 + 0.421380i
\(285\) 0 0
\(286\) 0.948543 2.38854i 0.0560885 0.141237i
\(287\) −4.87298 −0.287643
\(288\) 0 0
\(289\) −8.74597 15.1485i −0.514469 0.891086i
\(290\) 28.8987 11.8162i 1.69699 0.693869i
\(291\) 0 0
\(292\) −7.02889 + 25.3068i −0.411335 + 1.48097i
\(293\) 3.07008 5.31754i 0.179356 0.310654i −0.762304 0.647219i \(-0.775932\pi\)
0.941660 + 0.336565i \(0.109265\pi\)
\(294\) 0 0
\(295\) −2.74597 + 4.75615i −0.159876 + 0.276914i
\(296\) 2.38575 + 20.2593i 0.138669 + 1.17755i
\(297\) 0 0
\(298\) −7.55544 + 9.75403i −0.437675 + 0.565036i
\(299\) −7.68423 + 31.0554i −0.444390 + 1.79598i
\(300\) 0 0
\(301\) −17.6045 30.4919i −1.01471 1.75753i
\(302\) −2.08101 + 15.2686i −0.119749 + 0.878607i
\(303\) 0 0
\(304\) 1.76406 0.976025i 0.101176 0.0559789i
\(305\) −1.93649 1.11803i −0.110883 0.0640184i
\(306\) 0 0
\(307\) −18.8326 −1.07483 −0.537415 0.843318i \(-0.680599\pi\)
−0.537415 + 0.843318i \(0.680599\pi\)
\(308\) −1.07047 + 3.85410i −0.0609955 + 0.219608i
\(309\) 0 0
\(310\) −1.90983 + 14.0126i −0.108471 + 0.795861i
\(311\) −12.6190 −0.715555 −0.357778 0.933807i \(-0.616465\pi\)
−0.357778 + 0.933807i \(0.616465\pi\)
\(312\) 0 0
\(313\) 4.00000 0.226093 0.113047 0.993590i \(-0.463939\pi\)
0.113047 + 0.993590i \(0.463939\pi\)
\(314\) 0.239499 1.75722i 0.0135157 0.0991659i
\(315\) 0 0
\(316\) 26.9787 + 7.49326i 1.51767 + 0.421529i
\(317\) −18.5485 −1.04179 −0.520895 0.853621i \(-0.674402\pi\)
−0.520895 + 0.853621i \(0.674402\pi\)
\(318\) 0 0
\(319\) −4.30948 2.48808i −0.241284 0.139306i
\(320\) 12.2984 + 12.9904i 0.687500 + 0.726184i
\(321\) 0 0
\(322\) 6.72433 49.3370i 0.374732 2.74944i
\(323\) −1.48004 2.56351i −0.0823518 0.142637i
\(324\) 0 0
\(325\) 0 0
\(326\) 14.6190 18.8730i 0.809669 1.04528i
\(327\) 0 0
\(328\) 3.44957 0.406224i 0.190470 0.0224300i
\(329\) −7.87298 + 13.6364i −0.434052 + 0.751799i
\(330\) 0 0
\(331\) 4.97615 8.61895i 0.273514 0.473740i −0.696245 0.717804i \(-0.745147\pi\)
0.969759 + 0.244064i \(0.0784806\pi\)
\(332\) 5.70423 + 1.58434i 0.313060 + 0.0869517i
\(333\) 0 0
\(334\) 12.2842 5.02277i 0.672160 0.274834i
\(335\) −2.18246 3.78013i −0.119240 0.206530i
\(336\) 0 0
\(337\) −13.0000 −0.708155 −0.354078 0.935216i \(-0.615205\pi\)
−0.354078 + 0.935216i \(0.615205\pi\)
\(338\) 1.78031 18.2984i 0.0968362 0.995300i
\(339\) 0 0
\(340\) 18.7406 18.4019i 1.01635 0.997982i
\(341\) 1.95205 1.12702i 0.105709 0.0610314i
\(342\) 0 0
\(343\) 6.92820i 0.374088i
\(344\) 15.0041 + 20.1176i 0.808965 + 1.08467i
\(345\) 0 0
\(346\) 19.5566 + 15.1485i 1.05137 + 0.814386i
\(347\) −6.17218 3.56351i −0.331340 0.191299i 0.325096 0.945681i \(-0.394603\pi\)
−0.656436 + 0.754382i \(0.727937\pi\)
\(348\) 0 0
\(349\) −13.6364 23.6190i −0.729940 1.26429i −0.956908 0.290391i \(-0.906215\pi\)
0.226968 0.973902i \(-0.427119\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0.436492 2.81754i 0.0232651 0.150175i
\(353\) 23.8095 13.7464i 1.26725 0.731647i 0.292784 0.956179i \(-0.405418\pi\)
0.974467 + 0.224531i \(0.0720851\pi\)
\(354\) 0 0
\(355\) 9.63628 + 5.56351i 0.511441 + 0.295280i
\(356\) 3.90410 1.00803i 0.206917 0.0534257i
\(357\) 0 0
\(358\) −6.71135 + 2.74415i −0.354706 + 0.145033i
\(359\) 13.9204i 0.734692i −0.930084 0.367346i \(-0.880267\pi\)
0.930084 0.367346i \(-0.119733\pi\)
\(360\) 0 0
\(361\) 9.37298 + 16.2345i 0.493315 + 0.854446i
\(362\) −0.142467 + 1.04529i −0.00748790 + 0.0549393i
\(363\) 0 0
\(364\) 0.289470 + 28.6130i 0.0151724 + 1.49973i
\(365\) 29.3649i 1.53703i
\(366\) 0 0
\(367\) −0.309475 0.536026i −0.0161545 0.0279804i 0.857835 0.513925i \(-0.171809\pi\)
−0.873990 + 0.485945i \(0.838476\pi\)
\(368\) −0.647275 + 35.4860i −0.0337416 + 1.84984i
\(369\) 0 0
\(370\) 8.63171 + 21.1105i 0.448741 + 1.09748i
\(371\) 15.6205 27.0554i 0.810974 1.40465i
\(372\) 0 0
\(373\) 26.4068 + 15.2460i 1.36729 + 0.789406i 0.990581 0.136925i \(-0.0437219\pi\)
0.376710 + 0.926331i \(0.377055\pi\)
\(374\) −4.14784 0.565326i −0.214480 0.0292323i
\(375\) 0 0
\(376\) 4.43649 10.3095i 0.228795 0.531671i
\(377\) −34.5554 8.55025i −1.77970 0.440361i
\(378\) 0 0
\(379\) 5.48017 + 9.49193i 0.281497 + 0.487568i 0.971754 0.235997i \(-0.0758356\pi\)
−0.690256 + 0.723565i \(0.742502\pi\)
\(380\) 1.60831 1.57924i 0.0825046 0.0810134i
\(381\) 0 0
\(382\) −17.1005 + 22.0767i −0.874938 + 1.12954i
\(383\) 19.7460 + 11.4003i 1.00897 + 0.582530i 0.910890 0.412648i \(-0.135396\pi\)
0.0980813 + 0.995178i \(0.468729\pi\)
\(384\) 0 0
\(385\) 4.47214i 0.227921i
\(386\) −10.7605 + 4.39975i −0.547693 + 0.223942i
\(387\) 0 0
\(388\) −24.2705 24.7172i −1.23215 1.25483i
\(389\) 11.6190i 0.589104i −0.955635 0.294552i \(-0.904830\pi\)
0.955635 0.294552i \(-0.0951704\pi\)
\(390\) 0 0
\(391\) 52.1109 2.63536
\(392\) −2.89310 24.5676i −0.146124 1.24085i
\(393\) 0 0
\(394\) 1.31457 + 3.21503i 0.0662270 + 0.161971i
\(395\) 31.3050 1.57512
\(396\) 0 0
\(397\) 3.74812 6.49193i 0.188113 0.325821i −0.756508 0.653984i \(-0.773096\pi\)
0.944621 + 0.328163i \(0.106430\pi\)
\(398\) −5.95218 + 7.68423i −0.298356 + 0.385176i
\(399\) 0 0
\(400\) 0 0
\(401\) 3.19052 1.84205i 0.159327 0.0919876i −0.418216 0.908347i \(-0.637345\pi\)
0.577544 + 0.816360i \(0.304011\pi\)
\(402\) 0 0
\(403\) 11.1803 11.6190i 0.556932 0.578781i
\(404\) 15.2460 3.93649i 0.758515 0.195848i
\(405\) 0 0
\(406\) 54.8973 + 7.48217i 2.72451 + 0.371334i
\(407\) 1.81754 3.14807i 0.0900922 0.156044i
\(408\) 0 0
\(409\) 4.88105 + 2.81808i 0.241352 + 0.139345i 0.615798 0.787904i \(-0.288834\pi\)
−0.374446 + 0.927249i \(0.622167\pi\)
\(410\) 3.59452 1.46973i 0.177521 0.0725849i
\(411\) 0 0
\(412\) 20.4633 + 5.68361i 1.00815 + 0.280012i
\(413\) −8.44025 + 4.87298i −0.415318 + 0.239784i
\(414\) 0 0
\(415\) 6.61895 0.324911
\(416\) −2.59017 20.2309i −0.126994 0.991904i
\(417\) 0 0
\(418\) −0.355966 0.0485160i −0.0174109 0.00237300i
\(419\) 22.5167 13.0000i 1.10001 0.635092i 0.163787 0.986496i \(-0.447629\pi\)
0.936224 + 0.351404i \(0.114296\pi\)
\(420\) 0 0
\(421\) −12.1244 −0.590905 −0.295452 0.955357i \(-0.595470\pi\)
−0.295452 + 0.955357i \(0.595470\pi\)
\(422\) −18.3262 + 7.49326i −0.892107 + 0.364766i
\(423\) 0 0
\(424\) −8.80226 + 20.4546i −0.427476 + 0.993364i
\(425\) 0 0
\(426\) 0 0
\(427\) −1.98406 3.43649i −0.0960154 0.166303i
\(428\) −1.69052 + 0.436492i −0.0817146 + 0.0210986i
\(429\) 0 0
\(430\) 22.1825 + 17.1825i 1.06973 + 0.828612i
\(431\) −13.6905 + 7.90423i −0.659449 + 0.380733i −0.792067 0.610434i \(-0.790995\pi\)
0.132618 + 0.991167i \(0.457662\pi\)
\(432\) 0 0
\(433\) 13.3730 23.1627i 0.642665 1.11313i −0.342171 0.939638i \(-0.611162\pi\)
0.984836 0.173490i \(-0.0555044\pi\)
\(434\) −15.3685 + 19.8406i −0.737710 + 0.952379i
\(435\) 0 0
\(436\) −4.73297 1.31457i −0.226668 0.0629564i
\(437\) 4.47214 0.213931
\(438\) 0 0
\(439\) 8.43649 + 14.6124i 0.402652 + 0.697413i 0.994045 0.108970i \(-0.0347552\pi\)
−0.591393 + 0.806383i \(0.701422\pi\)
\(440\) −0.372808 3.16581i −0.0177729 0.150924i
\(441\) 0 0
\(442\) −29.6297 + 4.34409i −1.40934 + 0.206627i
\(443\) 40.7298i 1.93513i −0.252617 0.967566i \(-0.581291\pi\)
0.252617 0.967566i \(-0.418709\pi\)
\(444\) 0 0
\(445\) 3.90410 2.25403i 0.185072 0.106851i
\(446\) 18.8818 7.72044i 0.894081 0.365573i
\(447\) 0 0
\(448\) 7.37436 + 30.8765i 0.348406 + 1.45878i
\(449\) 4.25403 + 2.45607i 0.200760 + 0.115909i 0.597010 0.802234i \(-0.296355\pi\)
−0.396250 + 0.918143i \(0.629689\pi\)
\(450\) 0 0
\(451\) −0.536026 0.309475i −0.0252405 0.0145726i
\(452\) 14.0893 13.8346i 0.662703 0.650725i
\(453\) 0 0
\(454\) 1.69052 2.18246i 0.0793403 0.102428i
\(455\) 8.87298 + 30.7369i 0.415972 + 1.44097i
\(456\) 0 0
\(457\) −33.3569 + 19.2586i −1.56037 + 0.900879i −0.563148 + 0.826356i \(0.690410\pi\)
−0.997219 + 0.0745228i \(0.976257\pi\)
\(458\) 22.2414 + 3.03137i 1.03927 + 0.141647i
\(459\) 0 0
\(460\) 9.92030 + 38.4211i 0.462536 + 1.79140i
\(461\) 18.2185 31.5554i 0.848522 1.46968i −0.0340048 0.999422i \(-0.510826\pi\)
0.882527 0.470262i \(-0.155841\pi\)
\(462\) 0 0
\(463\) 18.3926i 0.854775i −0.904069 0.427387i \(-0.859434\pi\)
0.904069 0.427387i \(-0.140566\pi\)
\(464\) −39.4854 0.720224i −1.83306 0.0334356i
\(465\) 0 0
\(466\) 30.8277 + 4.20163i 1.42807 + 0.194637i
\(467\) 12.3649i 0.572180i 0.958203 + 0.286090i \(0.0923557\pi\)
−0.958203 + 0.286090i \(0.907644\pi\)
\(468\) 0 0
\(469\) 7.74597i 0.357676i
\(470\) 1.69459 12.4333i 0.0781656 0.573507i
\(471\) 0 0
\(472\) 5.56860 4.15317i 0.256316 0.191165i
\(473\) 4.47214i 0.205629i
\(474\) 0 0
\(475\) 0 0
\(476\) 45.1293 11.6523i 2.06850 0.534084i
\(477\) 0 0
\(478\) −0.288776 + 2.11878i −0.0132083 + 0.0969105i
\(479\) −36.1109 + 20.8486i −1.64995 + 0.952598i −0.672858 + 0.739771i \(0.734934\pi\)
−0.977090 + 0.212827i \(0.931733\pi\)
\(480\) 0 0
\(481\) 6.24597 25.2428i 0.284792 1.15097i
\(482\) 17.4284 + 13.5000i 0.793843 + 0.614908i
\(483\) 0 0
\(484\) 15.3350 15.0579i 0.697047 0.684449i
\(485\) −33.5410 19.3649i −1.52302 0.879316i
\(486\) 0 0
\(487\) −27.9284 16.1245i −1.26556 0.730670i −0.291414 0.956597i \(-0.594126\pi\)
−0.974144 + 0.225927i \(0.927459\pi\)
\(488\) 1.69098 + 2.26728i 0.0765472 + 0.102635i
\(489\) 0 0
\(490\) −10.4673 25.5999i −0.472866 1.15649i
\(491\) −32.7850 + 18.9284i −1.47957 + 0.854228i −0.999732 0.0231316i \(-0.992636\pi\)
−0.479834 + 0.877359i \(0.659303\pi\)
\(492\) 0 0
\(493\) 57.9839i 2.61146i
\(494\) −2.54281 + 0.372808i −0.114406 + 0.0167734i
\(495\) 0 0
\(496\) 9.22531 15.3262i 0.414229 0.688168i
\(497\) 9.87298 + 17.1005i 0.442864 + 0.767063i
\(498\) 0 0
\(499\) −2.01607 −0.0902516 −0.0451258 0.998981i \(-0.514369\pi\)
−0.0451258 + 0.998981i \(0.514369\pi\)
\(500\) −21.5451 5.98409i −0.963525 0.267617i
\(501\) 0 0
\(502\) −17.0365 13.1964i −0.760376 0.588985i
\(503\) 10.3095 17.8565i 0.459677 0.796184i −0.539267 0.842135i \(-0.681299\pi\)
0.998944 + 0.0459514i \(0.0146319\pi\)
\(504\) 0 0
\(505\) 15.2460 8.80226i 0.678437 0.391696i
\(506\) 3.87298 5.00000i 0.172175 0.222277i
\(507\) 0 0
\(508\) −1.12702 4.36492i −0.0500033 0.193662i
\(509\) 4.36214 + 7.55544i 0.193348 + 0.334889i 0.946358 0.323121i \(-0.104732\pi\)
−0.753010 + 0.658010i \(0.771399\pi\)
\(510\) 0 0
\(511\) −26.0554 + 45.1293i −1.15262 + 1.99640i
\(512\) −7.79423 21.2426i −0.344459 0.938801i
\(513\) 0 0
\(514\) 8.22381 + 20.1129i 0.362737 + 0.887144i
\(515\) 23.7447 1.04632
\(516\) 0 0
\(517\) −1.73205 + 1.00000i −0.0761755 + 0.0439799i
\(518\) −5.46573 + 40.1025i −0.240151 + 1.76200i
\(519\) 0 0
\(520\) −8.84346 21.0189i −0.387811 0.921739i
\(521\) −5.61895 −0.246171 −0.123085 0.992396i \(-0.539279\pi\)
−0.123085 + 0.992396i \(0.539279\pi\)
\(522\) 0 0
\(523\) 29.7609 17.1825i 1.30135 0.751336i 0.320717 0.947175i \(-0.396076\pi\)
0.980636 + 0.195839i \(0.0627429\pi\)
\(524\) −6.28683 + 22.6351i −0.274641 + 0.988818i
\(525\) 0 0
\(526\) −0.603217 1.47528i −0.0263015 0.0643254i
\(527\) −22.7460 13.1324i −0.990830 0.572056i
\(528\) 0 0
\(529\) −27.8649 + 48.2635i −1.21152 + 2.09841i
\(530\) −3.36217 + 24.6685i −0.146043 + 1.07153i
\(531\) 0 0
\(532\) 3.87298 1.00000i 0.167915 0.0433555i
\(533\) −4.29812 1.06351i −0.186172 0.0460657i
\(534\) 0 0
\(535\) −1.69052 + 0.976025i −0.0730878 + 0.0421972i
\(536\) 0.645723 + 5.48334i 0.0278910 + 0.236844i
\(537\) 0 0
\(538\) −22.0767 17.1005i −0.951792 0.737255i
\(539\) −2.20406 + 3.81754i −0.0949355 + 0.164433i
\(540\) 0 0
\(541\) 29.4449 1.26593 0.632967 0.774179i \(-0.281837\pi\)
0.632967 + 0.774179i \(0.281837\pi\)
\(542\) 39.6592 16.2159i 1.70351 0.696533i
\(543\) 0 0
\(544\) −30.9755 + 12.0107i −1.32807 + 0.514957i
\(545\) −5.49193 −0.235249
\(546\) 0 0
\(547\) 24.3649i 1.04177i 0.853627 + 0.520884i \(0.174398\pi\)
−0.853627 + 0.520884i \(0.825602\pi\)
\(548\) 0.308276 + 0.313950i 0.0131689 + 0.0134113i
\(549\) 0 0
\(550\) 0 0
\(551\) 4.97615i 0.211991i
\(552\) 0 0
\(553\) 48.1109 + 27.7768i 2.04588 + 1.18119i
\(554\) −0.834016 0.646026i −0.0354339 0.0274470i
\(555\) 0 0
\(556\) 13.6566 + 13.9080i 0.579170 + 0.589830i
\(557\) −2.85008 4.93649i −0.120762 0.209166i 0.799306 0.600924i \(-0.205200\pi\)
−0.920068 + 0.391758i \(0.871867\pi\)
\(558\) 0 0
\(559\) −8.87298 30.7369i −0.375287 1.30003i
\(560\) 17.1825 + 31.0554i 0.726091 + 1.31233i
\(561\) 0 0
\(562\) 2.32777 17.0791i 0.0981911 0.720437i
\(563\) −21.6367 12.4919i −0.911877 0.526472i −0.0308422 0.999524i \(-0.509819\pi\)
−0.881034 + 0.473052i \(0.843152\pi\)
\(564\) 0 0
\(565\) 11.0383 19.1190i 0.464386 0.804340i
\(566\) 26.9906 11.0359i 1.13450 0.463875i
\(567\) 0 0
\(568\) −8.41459 11.2824i −0.353068 0.473397i
\(569\) −19.4919 33.7610i −0.817144 1.41534i −0.907778 0.419451i \(-0.862223\pi\)
0.0906335 0.995884i \(-0.471111\pi\)
\(570\) 0 0
\(571\) 16.6190i 0.695481i 0.937591 + 0.347741i \(0.113051\pi\)
−0.937591 + 0.347741i \(0.886949\pi\)
\(572\) −1.78533 + 3.16581i −0.0746482 + 0.132369i
\(573\) 0 0
\(574\) 6.82831 + 0.930657i 0.285008 + 0.0388449i
\(575\) 0 0
\(576\) 0 0
\(577\) 18.6126i 0.774851i 0.921901 + 0.387426i \(0.126636\pi\)
−0.921901 + 0.387426i \(0.873364\pi\)
\(578\) 9.36226 + 22.8972i 0.389419 + 0.952400i
\(579\) 0 0
\(580\) −42.7513 + 11.0383i −1.77515 + 0.458342i
\(581\) 10.1723 + 5.87298i 0.422018 + 0.243652i
\(582\) 0 0
\(583\) 3.43649 1.98406i 0.142325 0.0821713i
\(584\) 14.6825 34.1190i 0.607564 1.41185i
\(585\) 0 0
\(586\) −5.31754 + 6.86492i −0.219666 + 0.283587i
\(587\) 4.47214 + 7.74597i 0.184585 + 0.319710i 0.943437 0.331553i \(-0.107573\pi\)
−0.758852 + 0.651263i \(0.774239\pi\)
\(588\) 0 0
\(589\) −1.95205 1.12702i −0.0804328 0.0464379i
\(590\) 4.75615 6.14017i 0.195808 0.252787i
\(591\) 0 0
\(592\) 0.526124 28.8441i 0.0216236 1.18548i
\(593\) 19.5566i 0.803092i 0.915839 + 0.401546i \(0.131527\pi\)
−0.915839 + 0.401546i \(0.868473\pi\)
\(594\) 0 0
\(595\) 45.1293 26.0554i 1.85012 1.06817i
\(596\) 12.4500 12.2250i 0.509971 0.500754i
\(597\) 0 0
\(598\) 16.6987 42.0491i 0.682859 1.71952i
\(599\) 10.0000 0.408589 0.204294 0.978909i \(-0.434510\pi\)
0.204294 + 0.978909i \(0.434510\pi\)
\(600\) 0 0
\(601\) 8.24597 + 14.2824i 0.336360 + 0.582593i 0.983745 0.179570i \(-0.0574708\pi\)
−0.647385 + 0.762163i \(0.724137\pi\)
\(602\) 18.8451 + 46.0892i 0.768067 + 1.87846i
\(603\) 0 0
\(604\) 5.83207 20.9978i 0.237304 0.854387i
\(605\) 12.0144 20.8095i 0.488453 0.846025i
\(606\) 0 0
\(607\) 9.74597 16.8805i 0.395577 0.685159i −0.597598 0.801796i \(-0.703878\pi\)
0.993175 + 0.116637i \(0.0372114\pi\)
\(608\) −2.65831 + 1.03076i −0.107809 + 0.0418028i
\(609\) 0 0
\(610\) 2.50000 + 1.93649i 0.101222 + 0.0784063i
\(611\) −9.92030 + 10.3095i −0.401332 + 0.417077i
\(612\) 0 0
\(613\) 7.35423 + 12.7379i 0.297035 + 0.514479i 0.975456 0.220194i \(-0.0706690\pi\)
−0.678422 + 0.734673i \(0.737336\pi\)
\(614\) 26.3893 + 3.59670i 1.06498 + 0.145151i
\(615\) 0 0
\(616\) 2.23607 5.19615i 0.0900937 0.209359i
\(617\) 5.42843 + 3.13410i 0.218540 + 0.126174i 0.605274 0.796017i \(-0.293063\pi\)
−0.386734 + 0.922191i \(0.626397\pi\)
\(618\) 0 0
\(619\) −22.2326 −0.893605 −0.446803 0.894633i \(-0.647437\pi\)
−0.446803 + 0.894633i \(0.647437\pi\)
\(620\) 5.35233 19.2705i 0.214955 0.773922i
\(621\) 0 0
\(622\) 17.6824 + 2.41001i 0.709000 + 0.0966324i
\(623\) 8.00000 0.320513
\(624\) 0 0
\(625\) −25.0000 −1.00000
\(626\) −5.60503 0.763932i −0.224022 0.0305329i
\(627\) 0 0
\(628\) −0.671200 + 2.41659i −0.0267838 + 0.0964323i
\(629\) −42.3573 −1.68889
\(630\) 0 0
\(631\) 12.0000 + 6.92820i 0.477712 + 0.275807i 0.719463 0.694531i \(-0.244388\pi\)
−0.241750 + 0.970339i \(0.577721\pi\)
\(632\) −36.3731 15.6525i −1.44684 0.622622i
\(633\) 0 0
\(634\) 25.9913 + 3.54246i 1.03225 + 0.140689i
\(635\) −2.52009 4.36492i −0.100007 0.173216i
\(636\) 0 0
\(637\) −7.57423 + 30.6109i −0.300102 + 1.21285i
\(638\) 5.56351 + 4.30948i 0.220261 + 0.170614i
\(639\) 0 0
\(640\) −14.7523 20.5517i −0.583134 0.812376i
\(641\) 9.68246 16.7705i 0.382434 0.662395i −0.608975 0.793189i \(-0.708419\pi\)
0.991410 + 0.130794i \(0.0417526\pi\)
\(642\) 0 0
\(643\) −2.67607 + 4.63508i −0.105534 + 0.182790i −0.913956 0.405813i \(-0.866988\pi\)
0.808422 + 0.588603i \(0.200322\pi\)
\(644\) −18.8451 + 67.8496i −0.742599 + 2.67365i
\(645\) 0 0
\(646\) 1.58434 + 3.87480i 0.0623348 + 0.152452i
\(647\) −8.12702 14.0764i −0.319506 0.553401i 0.660879 0.750492i \(-0.270184\pi\)
−0.980385 + 0.197092i \(0.936850\pi\)
\(648\) 0 0
\(649\) −1.23790 −0.0485918
\(650\) 0 0
\(651\) 0 0
\(652\) −24.0893 + 23.6540i −0.943412 + 0.926360i
\(653\) 16.6605 9.61895i 0.651976 0.376419i −0.137237 0.990538i \(-0.543822\pi\)
0.789213 + 0.614120i \(0.210489\pi\)
\(654\) 0 0
\(655\) 26.2648i 1.02625i
\(656\) −4.91132 0.0895838i −0.191755 0.00349766i
\(657\) 0 0
\(658\) 13.6364 17.6045i 0.531602 0.686296i
\(659\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(660\) 0 0
\(661\) 16.2345 + 28.1190i 0.631448 + 1.09370i 0.987256 + 0.159141i \(0.0508725\pi\)
−0.355808 + 0.934559i \(0.615794\pi\)
\(662\) −8.61895 + 11.1270i −0.334985 + 0.432464i
\(663\) 0 0
\(664\) −7.69052 3.30948i −0.298450 0.128433i
\(665\) 3.87298 2.23607i 0.150188 0.0867110i
\(666\) 0 0
\(667\) −75.8663 43.8014i −2.93755 1.69600i
\(668\) −18.1726 + 4.69214i −0.703118 + 0.181544i
\(669\) 0 0
\(670\) 2.33625 + 5.71375i 0.0902571 + 0.220741i
\(671\) 0.504017i 0.0194574i
\(672\) 0 0
\(673\) −11.1190 19.2586i −0.428604 0.742364i 0.568145 0.822928i \(-0.307661\pi\)
−0.996749 + 0.0805642i \(0.974328\pi\)
\(674\) 18.2164 + 2.48278i 0.701668 + 0.0956331i
\(675\) 0 0
\(676\) −5.98936 + 25.3007i −0.230360 + 0.973106i
\(677\) 15.7460i 0.605167i 0.953123 + 0.302583i \(0.0978491\pi\)
−0.953123 + 0.302583i \(0.902151\pi\)
\(678\) 0 0
\(679\) −34.3649 59.5218i −1.31880 2.28424i
\(680\) −29.7749 + 22.2066i −1.14181 + 0.851586i
\(681\) 0 0
\(682\) −2.95057 + 1.20643i −0.112983 + 0.0461967i
\(683\) 4.25214 7.36492i 0.162703 0.281811i −0.773134 0.634243i \(-0.781312\pi\)
0.935837 + 0.352432i \(0.114645\pi\)
\(684\) 0 0
\(685\) 0.426027 + 0.245967i 0.0162776 + 0.00939790i
\(686\) 1.32317 9.70820i 0.0505188 0.370661i
\(687\) 0 0
\(688\) −17.1825 31.0554i −0.655075 1.18398i
\(689\) 19.6825 20.4546i 0.749842 0.779259i
\(690\) 0 0
\(691\) −21.3206 36.9284i −0.811075 1.40482i −0.912112 0.409941i \(-0.865549\pi\)
0.101037 0.994883i \(-0.467784\pi\)
\(692\) −24.5107 24.9619i −0.931758 0.948908i
\(693\) 0 0
\(694\) 7.96825 + 6.17218i 0.302471 + 0.234293i
\(695\) 18.8730 + 10.8963i 0.715893 + 0.413321i
\(696\) 0 0
\(697\) 7.21222i 0.273182i
\(698\) 14.5973 + 35.7006i 0.552516 + 1.35129i
\(699\) 0 0
\(700\) 0 0
\(701\) 43.7460i 1.65226i 0.563478 + 0.826131i \(0.309463\pi\)
−0.563478 + 0.826131i \(0.690537\pi\)
\(702\) 0 0
\(703\) −3.63508 −0.137100
\(704\) −1.14974 + 3.86474i −0.0433325 + 0.145658i
\(705\) 0 0
\(706\) −35.9886 + 14.7151i −1.35445 + 0.553809i
\(707\) 31.2409 1.17494
\(708\) 0 0
\(709\) 24.8947 43.1190i 0.934941 1.61937i 0.160203 0.987084i \(-0.448785\pi\)
0.774738 0.632282i \(-0.217882\pi\)
\(710\) −12.4404 9.63628i −0.466879 0.361643i
\(711\) 0 0
\(712\) −5.66317 + 0.666900i −0.212236 + 0.0249931i
\(713\) 34.3649 19.8406i 1.28698 0.743036i
\(714\) 0 0
\(715\) −0.976025 + 3.94456i −0.0365013 + 0.147518i
\(716\) 9.92843 2.56351i 0.371043 0.0958028i
\(717\) 0 0
\(718\) −2.65856 + 19.5061i −0.0992168 + 0.727962i
\(719\) −6.49193 + 11.2444i −0.242108 + 0.419344i −0.961315 0.275453i \(-0.911172\pi\)
0.719206 + 0.694797i \(0.244506\pi\)
\(720\) 0 0
\(721\) 36.4919 + 21.0686i 1.35903 + 0.784637i
\(722\) −10.0335 24.5388i −0.373407 0.913239i
\(723\) 0 0
\(724\) 0.399266 1.43752i 0.0148386 0.0534249i
\(725\) 0 0
\(726\) 0 0
\(727\) −25.1270 −0.931909 −0.465955 0.884809i \(-0.654289\pi\)
−0.465955 + 0.884809i \(0.654289\pi\)
\(728\) 5.05898 40.1496i 0.187498 1.48804i
\(729\) 0 0
\(730\) 5.60820 41.1478i 0.207569 1.52295i
\(731\) −45.1293 + 26.0554i −1.66917 + 0.963695i
\(732\) 0 0
\(733\) 30.5809 1.12953 0.564766 0.825251i \(-0.308966\pi\)
0.564766 + 0.825251i \(0.308966\pi\)
\(734\) 0.331283 + 0.810216i 0.0122279 + 0.0299056i
\(735\) 0 0
\(736\) 7.68423 49.6015i 0.283244 1.82833i
\(737\) 0.491933 0.852054i 0.0181206 0.0313858i
\(738\) 0 0
\(739\) 16.3765 + 28.3649i 0.602419 + 1.04342i 0.992454 + 0.122620i \(0.0391297\pi\)
−0.390035 + 0.920800i \(0.627537\pi\)
\(740\) −8.06351 31.2298i −0.296420 1.14803i
\(741\) 0 0
\(742\) −27.0554 + 34.9284i −0.993237 + 1.28226i
\(743\) −30.0000 + 17.3205i −1.10059 + 0.635428i −0.936377 0.350997i \(-0.885843\pi\)
−0.164216 + 0.986424i \(0.552510\pi\)
\(744\) 0 0
\(745\) 9.75403 16.8945i 0.357360 0.618966i
\(746\) −34.0910 26.4068i −1.24816 0.966821i
\(747\) 0 0
\(748\) 5.70423 + 1.58434i 0.208567 + 0.0579290i
\(749\) −3.46410 −0.126576
\(750\) 0 0
\(751\) −9.56351 16.5645i −0.348977 0.604447i 0.637091 0.770789i \(-0.280138\pi\)
−0.986068 + 0.166342i \(0.946804\pi\)
\(752\) −8.18561 + 13.5989i −0.298498 + 0.495903i
\(753\) 0 0
\(754\) 46.7882 + 18.5806i 1.70392 + 0.676666i
\(755\) 24.3649i 0.886730i
\(756\) 0 0
\(757\) 2.39205 1.38105i 0.0869405 0.0501951i −0.455899 0.890031i \(-0.650682\pi\)
0.542840 + 0.839836i \(0.317349\pi\)
\(758\) −5.86634 14.3473i −0.213075 0.521116i
\(759\) 0 0
\(760\) −2.55527 + 1.90577i −0.0926893 + 0.0691294i
\(761\) −5.12702 2.96008i −0.185854 0.107303i 0.404186 0.914677i \(-0.367555\pi\)
−0.590040 + 0.807374i \(0.700888\pi\)
\(762\) 0 0
\(763\) −8.44025 4.87298i −0.305558 0.176414i
\(764\) 28.1785 27.6692i 1.01946 1.00104i
\(765\) 0 0
\(766\) −25.4919 19.7460i −0.921061 0.713451i
\(767\) −8.50807 + 2.45607i −0.307208 + 0.0886834i
\(768\) 0 0
\(769\) 24.4919 14.1404i 0.883202 0.509917i 0.0114890 0.999934i \(-0.496343\pi\)
0.871713 + 0.490017i \(0.163010\pi\)
\(770\) 0.854102 6.26662i 0.0307797 0.225833i
\(771\) 0 0
\(772\) 15.9185 4.11013i 0.572918 0.147927i
\(773\) 1.51205 2.61895i 0.0543847 0.0941971i −0.837551 0.546359i \(-0.816014\pi\)
0.891936 + 0.452161i \(0.149347\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 29.2887 + 39.2705i 1.05140 + 1.40973i
\(777\) 0 0
\(778\) −2.21902 + 16.2812i −0.0795558 + 0.583708i
\(779\) 0.618950i 0.0221762i
\(780\) 0 0
\(781\) 2.50807i 0.0897457i
\(782\) −73.0208 9.95229i −2.61122 0.355893i
\(783\) 0 0
\(784\) −0.638010 + 34.9780i −0.0227861 + 1.24922i
\(785\) 2.80410i 0.100083i
\(786\) 0 0
\(787\) −3.24410 + 5.61895i −0.115640 + 0.200294i −0.918035 0.396499i \(-0.870225\pi\)
0.802396 + 0.596793i \(0.203558\pi\)
\(788\) −1.22803 4.75615i −0.0437469 0.169431i
\(789\) 0 0
\(790\) −43.8663 5.97871i −1.56069 0.212713i
\(791\) 33.9284 19.5886i 1.20636 0.696490i
\(792\) 0 0
\(793\) −1.00000 3.46410i −0.0355110 0.123014i
\(794\) −6.49193 + 8.38105i −0.230390 + 0.297432i
\(795\) 0 0
\(796\) 9.80810 9.63083i 0.347639 0.341356i
\(797\) −27.2728 15.7460i −0.966053 0.557751i −0.0680221 0.997684i \(-0.521669\pi\)
−0.898031 + 0.439933i \(0.855002\pi\)
\(798\) 0 0
\(799\) 20.1825 + 11.6523i 0.714004 + 0.412230i
\(800\) 0 0
\(801\) 0 0
\(802\) −4.82255 + 1.97185i −0.170290 + 0.0696285i
\(803\) −5.73218 + 3.30948i −0.202284 + 0.116789i
\(804\) 0 0
\(805\) 78.7298i 2.77486i
\(806\) −17.8856 + 14.1459i −0.629992 + 0.498268i
\(807\) 0 0
\(808\) −22.1153 + 2.60432i −0.778015 + 0.0916197i
\(809\) 13.9365 + 24.1387i 0.489981 + 0.848672i 0.999934 0.0115306i \(-0.00367039\pi\)
−0.509953 + 0.860203i \(0.670337\pi\)
\(810\) 0 0
\(811\) −36.2171 −1.27175 −0.635877 0.771790i \(-0.719361\pi\)
−0.635877 + 0.771790i \(0.719361\pi\)
\(812\) −75.4964 20.9689i −2.64940 0.735865i
\(813\) 0 0
\(814\) −3.14807 + 4.06415i −0.110340 + 0.142448i
\(815\) −18.8730 + 32.6890i −0.661092 + 1.14504i
\(816\) 0 0
\(817\) −3.87298 + 2.23607i −0.135499 + 0.0782301i
\(818\) −6.30141 4.88105i −0.220324 0.170662i
\(819\) 0 0
\(820\) −5.31754 + 1.37298i −0.185697 + 0.0479467i
\(821\) 26.3288 + 45.6028i 0.918881 + 1.59155i 0.801117 + 0.598508i \(0.204239\pi\)
0.117764 + 0.993042i \(0.462427\pi\)
\(822\) 0 0
\(823\) −23.8730 + 41.3492i −0.832160 + 1.44134i 0.0641621 + 0.997939i \(0.479563\pi\)
−0.896322 + 0.443404i \(0.853771\pi\)
\(824\) −27.5888 11.8723i −0.961103 0.413593i
\(825\) 0 0
\(826\) 12.7576 5.21636i 0.443895 0.181501i
\(827\) −35.2091 −1.22434 −0.612169 0.790727i \(-0.709703\pi\)
−0.612169 + 0.790727i \(0.709703\pi\)
\(828\) 0 0
\(829\) −26.1868 + 15.1190i −0.909505 + 0.525103i −0.880272 0.474470i \(-0.842640\pi\)
−0.0292330 + 0.999573i \(0.509306\pi\)
\(830\) −9.27486 1.26411i −0.321935 0.0438778i
\(831\) 0 0
\(832\) −0.234268 + 28.8435i −0.00812179 + 0.999967i
\(833\) 51.3649 1.77969
\(834\) 0 0
\(835\) −18.1726 + 10.4919i −0.628887 + 0.363088i
\(836\) 0.489535 + 0.135967i 0.0169309 + 0.00470252i
\(837\) 0 0
\(838\) −34.0344 + 13.9161i −1.17570 + 0.480722i
\(839\) −6.00000 3.46410i −0.207143 0.119594i 0.392840 0.919607i \(-0.371493\pi\)
−0.599983 + 0.800013i \(0.704826\pi\)
\(840\) 0 0
\(841\) 34.2379 59.3018i 1.18062 2.04489i
\(842\) 16.9894 + 2.31555i 0.585492 + 0.0797990i
\(843\) 0 0
\(844\) 27.1109 7.00000i 0.933195 0.240950i
\(845\) 1.11803 + 29.0474i 0.0384615 + 0.999260i
\(846\) 0 0
\(847\) 36.9284 21.3206i 1.26888 0.732586i
\(848\) 16.2407 26.9811i 0.557709 0.926535i
\(849\) 0 0
\(850\) 0 0
\(851\) 31.9970 55.4204i 1.09684 1.89979i
\(852\) 0 0
\(853\) −25.5408 −0.874499 −0.437250 0.899340i \(-0.644047\pi\)
−0.437250 + 0.899340i \(0.644047\pi\)
\(854\) 2.12387 + 5.19433i 0.0726773 + 0.177746i
\(855\) 0 0
\(856\) 2.45223 0.288776i 0.0838153 0.00987017i
\(857\) 15.6190 0.533533 0.266767 0.963761i \(-0.414045\pi\)
0.266767 + 0.963761i \(0.414045\pi\)
\(858\) 0 0
\(859\) 43.6028i 1.48771i −0.668342 0.743854i \(-0.732996\pi\)
0.668342 0.743854i \(-0.267004\pi\)
\(860\) −27.8018 28.3135i −0.948034 0.965484i
\(861\) 0 0
\(862\) 20.6935 8.46121i 0.704825 0.288190i
\(863\) 17.2565i 0.587418i −0.955895 0.293709i \(-0.905110\pi\)
0.955895 0.293709i \(-0.0948896\pi\)
\(864\) 0 0
\(865\) −33.8730 19.5566i −1.15172 0.664944i
\(866\) −23.1627 + 29.9029i −0.787100 + 1.01614i
\(867\) 0 0
\(868\) 25.3244 24.8667i 0.859566 0.844030i
\(869\) 3.52812 + 6.11088i 0.119683 + 0.207298i
\(870\) 0 0
\(871\) 1.69052 6.83218i 0.0572813 0.231499i
\(872\) 6.38105 + 2.74597i 0.216090 + 0.0929902i
\(873\) 0 0
\(874\) −6.26662 0.854102i −0.211972 0.0288904i
\(875\) −38.4211 22.1825i −1.29887 0.749904i
\(876\) 0 0
\(877\) −2.59808 + 4.50000i −0.0877308 + 0.151954i −0.906552 0.422095i \(-0.861295\pi\)
0.818821 + 0.574049i \(0.194628\pi\)
\(878\) −9.03098 22.0870i −0.304781 0.745401i
\(879\) 0 0
\(880\) −0.0822148 + 4.50732i −0.00277146 + 0.151942i
\(881\) 5.55544 + 9.62231i 0.187168 + 0.324184i 0.944305 0.329072i \(-0.106736\pi\)
−0.757137 + 0.653256i \(0.773403\pi\)
\(882\) 0 0
\(883\) 50.9839i 1.71574i −0.513864 0.857872i \(-0.671786\pi\)
0.513864 0.857872i \(-0.328214\pi\)
\(884\) 42.3485 0.428428i 1.42433 0.0144096i
\(885\) 0 0
\(886\) −7.77871 + 57.0730i −0.261331 + 1.91741i
\(887\) −17.8730 30.9569i −0.600116 1.03943i −0.992803 0.119759i \(-0.961788\pi\)
0.392687 0.919672i \(-0.371546\pi\)
\(888\) 0 0
\(889\) 8.94427i 0.299981i
\(890\) −5.90114 + 2.41287i −0.197807 + 0.0808795i
\(891\) 0 0
\(892\) −27.9328 + 7.21222i −0.935260 + 0.241483i
\(893\) 1.73205 + 1.00000i 0.0579609 + 0.0334637i
\(894\) 0 0
\(895\) 9.92843 5.73218i 0.331871 0.191606i
\(896\) −4.43649 44.6744i −0.148213 1.49247i
\(897\) 0 0
\(898\) −5.49193 4.25403i −0.183268 0.141959i
\(899\) 22.0767 + 38.2379i 0.736298 + 1.27531i
\(900\) 0 0
\(901\) −40.0432 23.1190i −1.33403 0.770204i
\(902\) 0.692007 + 0.536026i 0.0230413 + 0.0178477i
\(903\) 0 0
\(904\) −22.3849 + 16.6950i −0.744509 + 0.555269i
\(905\) 1.66803i 0.0554473i
\(906\) 0 0
\(907\) −27.2728 + 15.7460i −0.905579 + 0.522836i −0.879006 0.476811i \(-0.841793\pi\)
−0.0265729 + 0.999647i \(0.508459\pi\)
\(908\) −2.78568 + 2.73533i −0.0924459 + 0.0907750i
\(909\) 0 0
\(910\) −6.56312 44.7650i −0.217565 1.48394i
\(911\) 38.7298 1.28318 0.641588 0.767049i \(-0.278276\pi\)
0.641588 + 0.767049i \(0.278276\pi\)
\(912\) 0 0
\(913\) 0.745967 + 1.29205i 0.0246879 + 0.0427607i
\(914\) 50.4196 20.6157i 1.66773 0.681906i
\(915\) 0 0
\(916\) −30.5871 8.49547i −1.01063 0.280698i
\(917\) −23.3047 + 40.3649i −0.769589 + 1.33297i
\(918\) 0 0
\(919\) −22.8730 + 39.6172i −0.754510 + 1.30685i 0.191107 + 0.981569i \(0.438792\pi\)
−0.945618 + 0.325281i \(0.894541\pi\)
\(920\) −6.56312 55.7326i −0.216379 1.83745i
\(921\) 0 0
\(922\) −31.5554 + 40.7379i −1.03922 + 1.34163i
\(923\) 4.97615 + 17.2379i 0.163792 + 0.567392i
\(924\) 0 0
\(925\) 0 0
\(926\) −3.51267 + 25.7727i −0.115433 + 0.846945i
\(927\) 0 0
\(928\) 55.1917 + 8.55025i 1.81175 + 0.280676i
\(929\) −23.4284 13.5264i −0.768662 0.443787i 0.0637353 0.997967i \(-0.479699\pi\)
−0.832397 + 0.554180i \(0.813032\pi\)
\(930\) 0 0
\(931\) 4.40812 0.144470
\(932\) −42.3951 11.7751i −1.38870 0.385707i
\(933\) 0 0
\(934\) 2.36149 17.3264i 0.0772703 0.566939i
\(935\) 6.61895 0.216463
\(936\) 0 0
\(937\) 12.2379 0.399795 0.199897 0.979817i \(-0.435939\pi\)
0.199897 + 0.979817i \(0.435939\pi\)
\(938\) −1.47935 + 10.8541i −0.0483024 + 0.354399i
\(939\) 0 0
\(940\) −4.74911 + 17.0987i −0.154899 + 0.557698i
\(941\) 34.6410 1.12926 0.564632 0.825342i \(-0.309018\pi\)
0.564632 + 0.825342i \(0.309018\pi\)
\(942\) 0 0
\(943\) −9.43649 5.44816i −0.307294 0.177417i
\(944\) −8.59624 + 4.75615i −0.279784 + 0.154800i
\(945\) 0 0
\(946\) −0.854102 + 6.26662i −0.0277693 + 0.203745i
\(947\) −0.504017 0.872983i −0.0163784 0.0283681i 0.857720 0.514117i \(-0.171880\pi\)
−0.874098 + 0.485749i \(0.838547\pi\)
\(948\) 0 0
\(949\) −32.8310 + 34.1190i −1.06574 + 1.10755i
\(950\) 0 0
\(951\) 0 0
\(952\) −65.4633 + 7.70901i −2.12168 + 0.249851i
\(953\) −17.7460 + 30.7369i −0.574848 + 0.995666i 0.421210 + 0.906963i \(0.361606\pi\)
−0.996058 + 0.0887032i \(0.971728\pi\)
\(954\) 0 0
\(955\) 22.0767 38.2379i 0.714384 1.23735i
\(956\) 0.809300 2.91380i 0.0261746 0.0942390i
\(957\) 0 0
\(958\) 54.5824 22.3178i 1.76348 0.721054i
\(959\) 0.436492 + 0.756026i 0.0140951 + 0.0244133i
\(960\) 0 0
\(961\) 11.0000 0.354839
\(962\) −13.5732 + 34.1788i −0.437616 + 1.10197i
\(963\) 0 0
\(964\) −21.8435 22.2455i −0.703530 0.716480i
\(965\) 15.9185 9.19052i 0.512433 0.295853i
\(966\) 0 0
\(967\) 11.3363i 0.364551i −0.983247 0.182276i \(-0.941654\pi\)
0.983247 0.182276i \(-0.0583464\pi\)
\(968\) −24.3642 + 18.1712i −0.783094 + 0.584046i
\(969\) 0 0
\(970\) 43.3013 + 33.5410i 1.39032 + 1.07694i
\(971\) 50.6415 + 29.2379i 1.62516 + 0.938289i 0.985508 + 0.169627i \(0.0542564\pi\)
0.639656 + 0.768662i \(0.279077\pi\)
\(972\) 0 0
\(973\) 19.3366 + 33.4919i 0.619902 + 1.07370i
\(974\) 36.0554 + 27.9284i 1.15529 + 0.894884i
\(975\) 0 0
\(976\) −1.93649 3.50000i −0.0619856 0.112032i
\(977\) −27.3014 + 15.7625i −0.873449 + 0.504286i −0.868493 0.495701i \(-0.834911\pi\)
−0.00495645 + 0.999988i \(0.501578\pi\)
\(978\) 0 0
\(979\) 0.879997 + 0.508067i 0.0281248 + 0.0162379i
\(980\) 9.77829 + 37.8711i 0.312356 + 1.20975i
\(981\) 0 0
\(982\) 49.5553 20.2622i 1.58137 0.646594i
\(983\) 27.2728i 0.869868i 0.900462 + 0.434934i \(0.143228\pi\)
−0.900462 + 0.434934i \(0.856772\pi\)
\(984\) 0 0
\(985\) −2.74597 4.75615i −0.0874938 0.151544i
\(986\) 11.0739 81.2504i 0.352666 2.58754i
\(987\) 0 0
\(988\) 3.63433 0.0367676i 0.115624 0.00116973i
\(989\) 78.7298i 2.50346i
\(990\) 0 0
\(991\) 6.18246 + 10.7083i 0.196392 + 0.340161i 0.947356 0.320182i \(-0.103744\pi\)
−0.750964 + 0.660343i \(0.770411\pi\)
\(992\) −15.8541 + 19.7141i −0.503368 + 0.625925i
\(993\) 0 0
\(994\) −10.5687 25.8478i −0.335219 0.819843i
\(995\) 7.68423 13.3095i 0.243606 0.421939i
\(996\) 0 0
\(997\) 6.50218 + 3.75403i 0.205926 + 0.118891i 0.599417 0.800437i \(-0.295399\pi\)
−0.393491 + 0.919329i \(0.628733\pi\)
\(998\) 2.82503 + 0.385035i 0.0894249 + 0.0121881i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.dg.c.829.1 8
3.2 odd 2 312.2.bk.a.205.4 yes 8
8.5 even 2 inner 936.2.dg.c.829.2 8
12.11 even 2 1248.2.ca.a.49.3 8
13.4 even 6 inner 936.2.dg.c.901.2 8
24.5 odd 2 312.2.bk.a.205.3 8
24.11 even 2 1248.2.ca.a.49.2 8
39.17 odd 6 312.2.bk.a.277.3 yes 8
104.69 even 6 inner 936.2.dg.c.901.1 8
156.95 even 6 1248.2.ca.a.433.2 8
312.173 odd 6 312.2.bk.a.277.4 yes 8
312.251 even 6 1248.2.ca.a.433.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bk.a.205.3 8 24.5 odd 2
312.2.bk.a.205.4 yes 8 3.2 odd 2
312.2.bk.a.277.3 yes 8 39.17 odd 6
312.2.bk.a.277.4 yes 8 312.173 odd 6
936.2.dg.c.829.1 8 1.1 even 1 trivial
936.2.dg.c.829.2 8 8.5 even 2 inner
936.2.dg.c.901.1 8 104.69 even 6 inner
936.2.dg.c.901.2 8 13.4 even 6 inner
1248.2.ca.a.49.2 8 24.11 even 2
1248.2.ca.a.49.3 8 12.11 even 2
1248.2.ca.a.433.2 8 156.95 even 6
1248.2.ca.a.433.3 8 312.251 even 6