Properties

Label 312.2.bk.a.277.3
Level $312$
Weight $2$
Character 312.277
Analytic conductor $2.491$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [312,2,Mod(205,312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("312.205"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(312, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 312.bk (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.49133254306\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.12960000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{6} + 8x^{4} - 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 277.3
Root \(0.535233 - 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 312.277
Dual form 312.2.bk.a.205.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.535233 + 1.30902i) q^{2} +(0.866025 + 0.500000i) q^{3} +(-1.42705 + 1.40126i) q^{4} +2.23607 q^{5} +(-0.190983 + 1.40126i) q^{6} +(3.43649 - 1.98406i) q^{7} +(-2.59808 - 1.11803i) q^{8} +(0.500000 + 0.866025i) q^{9} +(1.19682 + 2.92705i) q^{10} +(0.252009 - 0.436492i) q^{11} +(-1.93649 + 0.500000i) q^{12} +(-2.59808 + 2.50000i) q^{13} +(4.43649 + 3.43649i) q^{14} +(1.93649 + 1.11803i) q^{15} +(0.0729490 - 3.99933i) q^{16} +(-2.93649 - 5.08615i) q^{17} +(-0.866025 + 1.11803i) q^{18} +(-0.252009 - 0.436492i) q^{19} +(-3.19098 + 3.13331i) q^{20} +3.96812 q^{21} +(0.706258 + 0.0962587i) q^{22} +(-4.43649 + 7.68423i) q^{23} +(-1.69098 - 2.26728i) q^{24} +(-4.66312 - 2.06284i) q^{26} +1.00000i q^{27} +(-2.12387 + 7.64677i) q^{28} +(-8.55025 - 4.93649i) q^{29} +(-0.427051 + 3.13331i) q^{30} +4.47214i q^{31} +(5.27424 - 2.04508i) q^{32} +(0.436492 - 0.252009i) q^{33} +(5.08615 - 6.56619i) q^{34} +(7.68423 - 4.43649i) q^{35} +(-1.92705 - 0.535233i) q^{36} +(3.60611 - 6.24597i) q^{37} +(0.436492 - 0.563508i) q^{38} +(-3.50000 + 0.866025i) q^{39} +(-5.80948 - 2.50000i) q^{40} +(1.06351 + 0.614017i) q^{41} +(2.12387 + 5.19433i) q^{42} +(7.68423 - 4.43649i) q^{43} +(0.252009 + 0.976025i) q^{44} +(1.11803 + 1.93649i) q^{45} +(-12.4333 - 1.69459i) q^{46} +3.96812i q^{47} +(2.06284 - 3.42705i) q^{48} +(4.37298 - 7.57423i) q^{49} -5.87298i q^{51} +(0.204441 - 7.20820i) q^{52} +7.87298i q^{53} +(-1.30902 + 0.535233i) q^{54} +(0.563508 - 0.976025i) q^{55} +(-11.1465 + 1.31262i) q^{56} -0.504017i q^{57} +(1.88557 - 13.8346i) q^{58} +(-1.22803 - 2.12702i) q^{59} +(-4.33013 + 1.11803i) q^{60} +(0.866025 - 0.500000i) q^{61} +(-5.85410 + 2.39364i) q^{62} +(3.43649 + 1.98406i) q^{63} +(5.50000 + 5.80948i) q^{64} +(-5.80948 + 5.59017i) q^{65} +(0.563508 + 0.436492i) q^{66} +(0.976025 - 1.69052i) q^{67} +(11.3175 + 3.14342i) q^{68} +(-7.68423 + 4.43649i) q^{69} +(9.92030 + 7.68423i) q^{70} +(-4.30948 + 2.48808i) q^{71} +(-0.330792 - 2.80902i) q^{72} -13.1324i q^{73} +(10.1062 + 1.37741i) q^{74} +(0.971267 + 0.269767i) q^{76} -2.00000i q^{77} +(-3.00696 - 4.11803i) q^{78} +14.0000 q^{79} +(0.163119 - 8.94278i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-0.234534 + 1.72079i) q^{82} +2.96008 q^{83} +(-5.66271 + 5.56036i) q^{84} +(-6.56619 - 11.3730i) q^{85} +(9.92030 + 7.68423i) q^{86} +(-4.93649 - 8.55025i) q^{87} +(-1.14275 + 0.852284i) q^{88} +(-1.74597 - 1.00803i) q^{89} +(-1.93649 + 2.50000i) q^{90} +(-3.96812 + 13.7460i) q^{91} +(-4.43649 - 17.1825i) q^{92} +(-2.23607 + 3.87298i) q^{93} +(-5.19433 + 2.12387i) q^{94} +(-0.563508 - 0.976025i) q^{95} +(5.59017 + 0.866025i) q^{96} +(-15.0000 + 8.66025i) q^{97} +(12.2554 + 1.67033i) q^{98} +0.504017 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{4} - 6 q^{6} + 12 q^{7} + 4 q^{9} + 20 q^{14} + 14 q^{16} - 8 q^{17} - 30 q^{20} - 6 q^{22} - 20 q^{23} - 18 q^{24} - 6 q^{26} + 6 q^{28} + 10 q^{30} - 12 q^{33} - 2 q^{36} - 12 q^{38} - 28 q^{39}+ \cdots + 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.535233 + 1.30902i 0.378467 + 0.925615i
\(3\) 0.866025 + 0.500000i 0.500000 + 0.288675i
\(4\) −1.42705 + 1.40126i −0.713525 + 0.700629i
\(5\) 2.23607 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(6\) −0.190983 + 1.40126i −0.0779685 + 0.572061i
\(7\) 3.43649 1.98406i 1.29887 0.749904i 0.318663 0.947868i \(-0.396766\pi\)
0.980209 + 0.197964i \(0.0634330\pi\)
\(8\) −2.59808 1.11803i −0.918559 0.395285i
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 1.19682 + 2.92705i 0.378467 + 0.925615i
\(11\) 0.252009 0.436492i 0.0759834 0.131607i −0.825530 0.564358i \(-0.809124\pi\)
0.901514 + 0.432751i \(0.142457\pi\)
\(12\) −1.93649 + 0.500000i −0.559017 + 0.144338i
\(13\) −2.59808 + 2.50000i −0.720577 + 0.693375i
\(14\) 4.43649 + 3.43649i 1.18570 + 0.918441i
\(15\) 1.93649 + 1.11803i 0.500000 + 0.288675i
\(16\) 0.0729490 3.99933i 0.0182373 0.999834i
\(17\) −2.93649 5.08615i −0.712204 1.23357i −0.964028 0.265800i \(-0.914364\pi\)
0.251824 0.967773i \(-0.418970\pi\)
\(18\) −0.866025 + 1.11803i −0.204124 + 0.263523i
\(19\) −0.252009 0.436492i −0.0578147 0.100138i 0.835669 0.549233i \(-0.185080\pi\)
−0.893484 + 0.449095i \(0.851747\pi\)
\(20\) −3.19098 + 3.13331i −0.713525 + 0.700629i
\(21\) 3.96812 0.865915
\(22\) 0.706258 + 0.0962587i 0.150575 + 0.0205224i
\(23\) −4.43649 + 7.68423i −0.925072 + 1.60227i −0.133628 + 0.991032i \(0.542663\pi\)
−0.791445 + 0.611241i \(0.790671\pi\)
\(24\) −1.69098 2.26728i −0.345170 0.462807i
\(25\) 0 0
\(26\) −4.66312 2.06284i −0.914513 0.404557i
\(27\) 1.00000i 0.192450i
\(28\) −2.12387 + 7.64677i −0.401373 + 1.44510i
\(29\) −8.55025 4.93649i −1.58774 0.916683i −0.993678 0.112266i \(-0.964189\pi\)
−0.594064 0.804418i \(-0.702477\pi\)
\(30\) −0.427051 + 3.13331i −0.0779685 + 0.572061i
\(31\) 4.47214i 0.803219i 0.915811 + 0.401610i \(0.131549\pi\)
−0.915811 + 0.401610i \(0.868451\pi\)
\(32\) 5.27424 2.04508i 0.932363 0.361523i
\(33\) 0.436492 0.252009i 0.0759834 0.0438691i
\(34\) 5.08615 6.56619i 0.872268 1.12609i
\(35\) 7.68423 4.43649i 1.29887 0.749904i
\(36\) −1.92705 0.535233i −0.321175 0.0892055i
\(37\) 3.60611 6.24597i 0.592841 1.02683i −0.401007 0.916075i \(-0.631340\pi\)
0.993848 0.110756i \(-0.0353270\pi\)
\(38\) 0.436492 0.563508i 0.0708083 0.0914131i
\(39\) −3.50000 + 0.866025i −0.560449 + 0.138675i
\(40\) −5.80948 2.50000i −0.918559 0.395285i
\(41\) 1.06351 + 0.614017i 0.166092 + 0.0958933i 0.580742 0.814088i \(-0.302763\pi\)
−0.414650 + 0.909981i \(0.636096\pi\)
\(42\) 2.12387 + 5.19433i 0.327720 + 0.801503i
\(43\) 7.68423 4.43649i 1.17183 0.676559i 0.217723 0.976011i \(-0.430137\pi\)
0.954111 + 0.299452i \(0.0968039\pi\)
\(44\) 0.252009 + 0.976025i 0.0379917 + 0.147141i
\(45\) 1.11803 + 1.93649i 0.166667 + 0.288675i
\(46\) −12.4333 1.69459i −1.83320 0.249854i
\(47\) 3.96812i 0.578810i 0.957207 + 0.289405i \(0.0934574\pi\)
−0.957207 + 0.289405i \(0.906543\pi\)
\(48\) 2.06284 3.42705i 0.297746 0.494652i
\(49\) 4.37298 7.57423i 0.624712 1.08203i
\(50\) 0 0
\(51\) 5.87298i 0.822382i
\(52\) 0.204441 7.20820i 0.0283508 0.999598i
\(53\) 7.87298i 1.08144i 0.841203 + 0.540719i \(0.181848\pi\)
−0.841203 + 0.540719i \(0.818152\pi\)
\(54\) −1.30902 + 0.535233i −0.178135 + 0.0728360i
\(55\) 0.563508 0.976025i 0.0759834 0.131607i
\(56\) −11.1465 + 1.31262i −1.48952 + 0.175407i
\(57\) 0.504017i 0.0667587i
\(58\) 1.88557 13.8346i 0.247588 1.81657i
\(59\) −1.22803 2.12702i −0.159876 0.276914i 0.774948 0.632026i \(-0.217776\pi\)
−0.934824 + 0.355112i \(0.884443\pi\)
\(60\) −4.33013 + 1.11803i −0.559017 + 0.144338i
\(61\) 0.866025 0.500000i 0.110883 0.0640184i −0.443533 0.896258i \(-0.646275\pi\)
0.554416 + 0.832240i \(0.312942\pi\)
\(62\) −5.85410 + 2.39364i −0.743472 + 0.303992i
\(63\) 3.43649 + 1.98406i 0.432957 + 0.249968i
\(64\) 5.50000 + 5.80948i 0.687500 + 0.726184i
\(65\) −5.80948 + 5.59017i −0.720577 + 0.693375i
\(66\) 0.563508 + 0.436492i 0.0693631 + 0.0537284i
\(67\) 0.976025 1.69052i 0.119240 0.206530i −0.800226 0.599698i \(-0.795287\pi\)
0.919467 + 0.393167i \(0.128621\pi\)
\(68\) 11.3175 + 3.14342i 1.37245 + 0.381195i
\(69\) −7.68423 + 4.43649i −0.925072 + 0.534091i
\(70\) 9.92030 + 7.68423i 1.18570 + 0.918441i
\(71\) −4.30948 + 2.48808i −0.511441 + 0.295280i −0.733426 0.679770i \(-0.762080\pi\)
0.221985 + 0.975050i \(0.428746\pi\)
\(72\) −0.330792 2.80902i −0.0389842 0.331046i
\(73\) 13.1324i 1.53703i −0.639832 0.768515i \(-0.720996\pi\)
0.639832 0.768515i \(-0.279004\pi\)
\(74\) 10.1062 + 1.37741i 1.17482 + 0.160121i
\(75\) 0 0
\(76\) 0.971267 + 0.269767i 0.111412 + 0.0309444i
\(77\) 2.00000i 0.227921i
\(78\) −3.00696 4.11803i −0.340471 0.466276i
\(79\) 14.0000 1.57512 0.787562 0.616236i \(-0.211343\pi\)
0.787562 + 0.616236i \(0.211343\pi\)
\(80\) 0.163119 8.94278i 0.0182373 0.999834i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −0.234534 + 1.72079i −0.0258999 + 0.190030i
\(83\) 2.96008 0.324911 0.162456 0.986716i \(-0.448059\pi\)
0.162456 + 0.986716i \(0.448059\pi\)
\(84\) −5.66271 + 5.56036i −0.617852 + 0.606685i
\(85\) −6.56619 11.3730i −0.712204 1.23357i
\(86\) 9.92030 + 7.68423i 1.06973 + 0.828612i
\(87\) −4.93649 8.55025i −0.529247 0.916683i
\(88\) −1.14275 + 0.852284i −0.121818 + 0.0908538i
\(89\) −1.74597 1.00803i −0.185072 0.106851i 0.404601 0.914493i \(-0.367410\pi\)
−0.589674 + 0.807642i \(0.700744\pi\)
\(90\) −1.93649 + 2.50000i −0.204124 + 0.263523i
\(91\) −3.96812 + 13.7460i −0.415972 + 1.44097i
\(92\) −4.43649 17.1825i −0.462536 1.79140i
\(93\) −2.23607 + 3.87298i −0.231869 + 0.401610i
\(94\) −5.19433 + 2.12387i −0.535755 + 0.219060i
\(95\) −0.563508 0.976025i −0.0578147 0.100138i
\(96\) 5.59017 + 0.866025i 0.570544 + 0.0883883i
\(97\) −15.0000 + 8.66025i −1.52302 + 0.879316i −0.523390 + 0.852093i \(0.675333\pi\)
−0.999629 + 0.0272222i \(0.991334\pi\)
\(98\) 12.2554 + 1.67033i 1.23798 + 0.168729i
\(99\) 0.504017 0.0506556
\(100\) 0 0
\(101\) 6.81820 + 3.93649i 0.678437 + 0.391696i 0.799266 0.600978i \(-0.205222\pi\)
−0.120829 + 0.992673i \(0.538555\pi\)
\(102\) 7.68784 3.14342i 0.761209 0.311244i
\(103\) 10.6190 1.04632 0.523158 0.852236i \(-0.324754\pi\)
0.523158 + 0.852236i \(0.324754\pi\)
\(104\) 9.54508 3.59045i 0.935973 0.352073i
\(105\) 8.87298 0.865915
\(106\) −10.3059 + 4.21388i −1.00099 + 0.409288i
\(107\) −0.756026 0.436492i −0.0730878 0.0421972i 0.463011 0.886353i \(-0.346769\pi\)
−0.536099 + 0.844155i \(0.680102\pi\)
\(108\) −1.40126 1.42705i −0.134836 0.137318i
\(109\) 2.45607 0.235249 0.117624 0.993058i \(-0.462472\pi\)
0.117624 + 0.993058i \(0.462472\pi\)
\(110\) 1.57924 + 0.215241i 0.150575 + 0.0205224i
\(111\) 6.24597 3.60611i 0.592841 0.342277i
\(112\) −7.68423 13.8884i −0.726091 1.31233i
\(113\) −4.93649 8.55025i −0.464386 0.804340i 0.534788 0.844987i \(-0.320392\pi\)
−0.999174 + 0.0406463i \(0.987058\pi\)
\(114\) 0.659767 0.269767i 0.0617928 0.0252660i
\(115\) −9.92030 + 17.1825i −0.925072 + 1.60227i
\(116\) 19.1190 4.93649i 1.77515 0.458342i
\(117\) −3.46410 1.00000i −0.320256 0.0924500i
\(118\) 2.12702 2.74597i 0.195808 0.252787i
\(119\) −20.1825 11.6523i −1.85012 1.06817i
\(120\) −3.78115 5.06980i −0.345170 0.462807i
\(121\) 5.37298 + 9.30628i 0.488453 + 0.846025i
\(122\) 1.11803 + 0.866025i 0.101222 + 0.0784063i
\(123\) 0.614017 + 1.06351i 0.0553640 + 0.0958933i
\(124\) −6.26662 6.38197i −0.562759 0.573117i
\(125\) −11.1803 −1.00000
\(126\) −0.757843 + 5.56036i −0.0675140 + 0.495356i
\(127\) −1.12702 + 1.95205i −0.100007 + 0.173216i −0.911687 0.410885i \(-0.865220\pi\)
0.811681 + 0.584102i \(0.198553\pi\)
\(128\) −4.66092 + 10.3090i −0.411971 + 0.911197i
\(129\) 8.87298 0.781223
\(130\) −10.4271 4.61266i −0.914513 0.404557i
\(131\) 11.7460i 1.02625i −0.858314 0.513125i \(-0.828488\pi\)
0.858314 0.513125i \(-0.171512\pi\)
\(132\) −0.269767 + 0.971267i −0.0234802 + 0.0845379i
\(133\) −1.73205 1.00000i −0.150188 0.0867110i
\(134\) 2.73533 + 0.372808i 0.236296 + 0.0322057i
\(135\) 2.23607i 0.192450i
\(136\) 1.94274 + 16.4973i 0.166588 + 1.41463i
\(137\) −0.190525 + 0.110000i −0.0162776 + 0.00939790i −0.508117 0.861288i \(-0.669658\pi\)
0.491839 + 0.870686i \(0.336325\pi\)
\(138\) −9.92030 7.68423i −0.844472 0.654125i
\(139\) −8.44025 + 4.87298i −0.715893 + 0.413321i −0.813239 0.581930i \(-0.802298\pi\)
0.0973462 + 0.995251i \(0.468965\pi\)
\(140\) −4.74911 + 17.0987i −0.401373 + 1.44510i
\(141\) −1.98406 + 3.43649i −0.167088 + 0.289405i
\(142\) −5.56351 4.30948i −0.466879 0.361643i
\(143\) 0.436492 + 1.76406i 0.0365013 + 0.147518i
\(144\) 3.50000 1.93649i 0.291667 0.161374i
\(145\) −19.1190 11.0383i −1.58774 0.916683i
\(146\) 17.1905 7.02889i 1.42270 0.581715i
\(147\) 7.57423 4.37298i 0.624712 0.360678i
\(148\) 3.60611 + 13.9664i 0.296420 + 1.14803i
\(149\) 4.36214 + 7.55544i 0.357360 + 0.618966i 0.987519 0.157500i \(-0.0503436\pi\)
−0.630159 + 0.776466i \(0.717010\pi\)
\(150\) 0 0
\(151\) 10.8963i 0.886730i 0.896341 + 0.443365i \(0.146215\pi\)
−0.896341 + 0.443365i \(0.853785\pi\)
\(152\) 0.166725 + 1.41579i 0.0135232 + 0.114836i
\(153\) 2.93649 5.08615i 0.237401 0.411191i
\(154\) 2.61803 1.07047i 0.210967 0.0862606i
\(155\) 10.0000i 0.803219i
\(156\) 3.78115 6.14027i 0.302735 0.491615i
\(157\) 1.25403i 0.100083i 0.998747 + 0.0500414i \(0.0159353\pi\)
−0.998747 + 0.0500414i \(0.984065\pi\)
\(158\) 7.49326 + 18.3262i 0.596132 + 1.45796i
\(159\) −3.93649 + 6.81820i −0.312184 + 0.540719i
\(160\) 11.7936 4.57295i 0.932363 0.361523i
\(161\) 35.2091i 2.77486i
\(162\) −1.40126 0.190983i −0.110093 0.0150050i
\(163\) 8.44025 + 14.6190i 0.661092 + 1.14504i 0.980329 + 0.197370i \(0.0632399\pi\)
−0.319237 + 0.947675i \(0.603427\pi\)
\(164\) −2.37808 + 0.614017i −0.185697 + 0.0479467i
\(165\) 0.976025 0.563508i 0.0759834 0.0438691i
\(166\) 1.58434 + 3.87480i 0.122968 + 0.300743i
\(167\) 8.12702 + 4.69214i 0.628887 + 0.363088i 0.780321 0.625379i \(-0.215056\pi\)
−0.151434 + 0.988467i \(0.548389\pi\)
\(168\) −10.3095 4.43649i −0.795393 0.342283i
\(169\) 0.500000 12.9904i 0.0384615 0.999260i
\(170\) 11.3730 14.6825i 0.872268 1.12609i
\(171\) 0.252009 0.436492i 0.0192716 0.0333794i
\(172\) −4.74911 + 17.0987i −0.362117 + 1.30376i
\(173\) −15.1485 + 8.74597i −1.15172 + 0.664944i −0.949305 0.314357i \(-0.898211\pi\)
−0.202411 + 0.979301i \(0.564878\pi\)
\(174\) 8.55025 11.0383i 0.648193 0.836814i
\(175\) 0 0
\(176\) −1.72729 1.03971i −0.130200 0.0783710i
\(177\) 2.45607i 0.184609i
\(178\) 0.385035 2.82503i 0.0288596 0.211745i
\(179\) 4.44013 + 2.56351i 0.331871 + 0.191606i 0.656671 0.754177i \(-0.271964\pi\)
−0.324801 + 0.945782i \(0.605297\pi\)
\(180\) −4.30902 1.19682i −0.321175 0.0892055i
\(181\) 0.745967i 0.0554473i −0.999616 0.0277236i \(-0.991174\pi\)
0.999616 0.0277236i \(-0.00882584\pi\)
\(182\) −20.1176 + 2.16296i −1.49121 + 0.160329i
\(183\) 1.00000 0.0739221
\(184\) 20.1176 15.0041i 1.48309 1.10611i
\(185\) 8.06351 13.9664i 0.592841 1.02683i
\(186\) −6.26662 0.854102i −0.459491 0.0626258i
\(187\) −2.96008 −0.216463
\(188\) −5.56036 5.66271i −0.405531 0.412995i
\(189\) 1.98406 + 3.43649i 0.144319 + 0.249968i
\(190\) 0.976025 1.26004i 0.0708083 0.0914131i
\(191\) −9.87298 17.1005i −0.714384 1.23735i −0.963197 0.268798i \(-0.913374\pi\)
0.248813 0.968552i \(-0.419960\pi\)
\(192\) 1.85840 + 7.78115i 0.134119 + 0.561556i
\(193\) 7.11895 + 4.11013i 0.512433 + 0.295853i 0.733833 0.679330i \(-0.237729\pi\)
−0.221400 + 0.975183i \(0.571063\pi\)
\(194\) −19.3649 15.0000i −1.39032 1.07694i
\(195\) −7.82624 + 1.93649i −0.560449 + 0.138675i
\(196\) 4.37298 + 16.9365i 0.312356 + 1.20975i
\(197\) −1.22803 + 2.12702i −0.0874938 + 0.151544i −0.906451 0.422311i \(-0.861219\pi\)
0.818957 + 0.573854i \(0.194552\pi\)
\(198\) 0.269767 + 0.659767i 0.0191715 + 0.0468876i
\(199\) 3.43649 + 5.95218i 0.243606 + 0.421939i 0.961739 0.273968i \(-0.0883361\pi\)
−0.718132 + 0.695906i \(0.755003\pi\)
\(200\) 0 0
\(201\) 1.69052 0.976025i 0.119240 0.0688435i
\(202\) −1.50361 + 11.0321i −0.105793 + 0.776215i
\(203\) −39.1772 −2.74970
\(204\) 8.22957 + 8.38105i 0.576185 + 0.586791i
\(205\) 2.37808 + 1.37298i 0.166092 + 0.0958933i
\(206\) 5.68361 + 13.9004i 0.395996 + 0.968486i
\(207\) −8.87298 −0.616715
\(208\) 9.80881 + 10.5729i 0.680119 + 0.733102i
\(209\) −0.254033 −0.0175719
\(210\) 4.74911 + 11.6149i 0.327720 + 0.801503i
\(211\) −12.1244 7.00000i −0.834675 0.481900i 0.0207756 0.999784i \(-0.493386\pi\)
−0.855451 + 0.517884i \(0.826720\pi\)
\(212\) −11.0321 11.2351i −0.757687 0.771633i
\(213\) −4.97615 −0.340960
\(214\) 0.166725 1.22328i 0.0113971 0.0836214i
\(215\) 17.1825 9.92030i 1.17183 0.676559i
\(216\) 1.11803 2.59808i 0.0760726 0.176777i
\(217\) 8.87298 + 15.3685i 0.602337 + 1.04328i
\(218\) 1.31457 + 3.21503i 0.0890338 + 0.217750i
\(219\) 6.56619 11.3730i 0.443702 0.768515i
\(220\) 0.563508 + 2.18246i 0.0379917 + 0.147141i
\(221\) 20.3446 + 5.87298i 1.36853 + 0.395060i
\(222\) 8.06351 + 6.24597i 0.541187 + 0.419202i
\(223\) −12.4919 7.21222i −0.836522 0.482966i 0.0195587 0.999809i \(-0.493774\pi\)
−0.856080 + 0.516843i \(0.827107\pi\)
\(224\) 14.0673 17.4923i 0.939912 1.16876i
\(225\) 0 0
\(226\) 8.55025 11.0383i 0.568754 0.734259i
\(227\) −0.976025 1.69052i −0.0647811 0.112204i 0.831816 0.555052i \(-0.187302\pi\)
−0.896597 + 0.442848i \(0.853968\pi\)
\(228\) 0.706258 + 0.719258i 0.0467731 + 0.0476340i
\(229\) 15.8725 1.04888 0.524441 0.851447i \(-0.324274\pi\)
0.524441 + 0.851447i \(0.324274\pi\)
\(230\) −27.8018 3.78922i −1.83320 0.249854i
\(231\) 1.00000 1.73205i 0.0657952 0.113961i
\(232\) 16.6950 + 22.3849i 1.09608 + 1.46964i
\(233\) 22.0000 1.44127 0.720634 0.693316i \(-0.243851\pi\)
0.720634 + 0.693316i \(0.243851\pi\)
\(234\) −0.545085 5.06980i −0.0356333 0.331423i
\(235\) 8.87298i 0.578810i
\(236\) 4.73297 + 1.31457i 0.308090 + 0.0855711i
\(237\) 12.1244 + 7.00000i 0.787562 + 0.454699i
\(238\) 4.45080 32.6559i 0.288503 2.11677i
\(239\) 1.51205i 0.0978065i −0.998804 0.0489032i \(-0.984427\pi\)
0.998804 0.0489032i \(-0.0155726\pi\)
\(240\) 4.61266 7.66312i 0.297746 0.494652i
\(241\) −13.5000 + 7.79423i −0.869611 + 0.502070i −0.867219 0.497927i \(-0.834095\pi\)
−0.00239235 + 0.999997i \(0.500762\pi\)
\(242\) −9.30628 + 12.0144i −0.598230 + 0.772312i
\(243\) −0.866025 + 0.500000i −0.0555556 + 0.0320750i
\(244\) −0.535233 + 1.92705i −0.0342648 + 0.123367i
\(245\) 9.77829 16.9365i 0.624712 1.08203i
\(246\) −1.06351 + 1.37298i −0.0678068 + 0.0875382i
\(247\) 1.74597 + 0.504017i 0.111093 + 0.0320698i
\(248\) 5.00000 11.6190i 0.317500 0.737804i
\(249\) 2.56351 + 1.48004i 0.162456 + 0.0937939i
\(250\) −5.98409 14.6353i −0.378467 0.925615i
\(251\) 13.1964 7.61895i 0.832950 0.480904i −0.0219117 0.999760i \(-0.506975\pi\)
0.854862 + 0.518856i \(0.173642\pi\)
\(252\) −7.68423 + 1.98406i −0.484061 + 0.124984i
\(253\) 2.23607 + 3.87298i 0.140580 + 0.243492i
\(254\) −3.15848 0.430482i −0.198181 0.0270108i
\(255\) 13.1324i 0.822382i
\(256\) −15.9894 0.583495i −0.999335 0.0364684i
\(257\) 7.68246 13.3064i 0.479219 0.830031i −0.520497 0.853863i \(-0.674253\pi\)
0.999716 + 0.0238323i \(0.00758678\pi\)
\(258\) 4.74911 + 11.6149i 0.295667 + 0.723111i
\(259\) 28.6190i 1.77830i
\(260\) 0.457144 16.1180i 0.0283508 0.999598i
\(261\) 9.87298i 0.611122i
\(262\) 15.3757 6.28683i 0.949912 0.388402i
\(263\) −0.563508 + 0.976025i −0.0347474 + 0.0601843i −0.882876 0.469606i \(-0.844396\pi\)
0.848129 + 0.529790i \(0.177729\pi\)
\(264\) −1.41579 + 0.166725i −0.0871360 + 0.0102612i
\(265\) 17.6045i 1.08144i
\(266\) 0.381966 2.80252i 0.0234198 0.171833i
\(267\) −1.00803 1.74597i −0.0616907 0.106851i
\(268\) 0.976025 + 3.78013i 0.0596202 + 0.230908i
\(269\) 17.1005 9.87298i 1.04264 0.601966i 0.122058 0.992523i \(-0.461051\pi\)
0.920579 + 0.390557i \(0.127717\pi\)
\(270\) −2.92705 + 1.19682i −0.178135 + 0.0728360i
\(271\) −26.2379 15.1485i −1.59384 0.920203i −0.992640 0.121104i \(-0.961357\pi\)
−0.601199 0.799099i \(-0.705310\pi\)
\(272\) −20.5554 + 11.3730i −1.24636 + 0.689588i
\(273\) −10.3095 + 9.92030i −0.623958 + 0.600404i
\(274\) −0.245967 0.190525i −0.0148594 0.0115100i
\(275\) 0 0
\(276\) 4.74911 17.0987i 0.285863 1.02922i
\(277\) −0.646026 + 0.372983i −0.0388159 + 0.0224104i −0.519282 0.854603i \(-0.673801\pi\)
0.480466 + 0.877013i \(0.340467\pi\)
\(278\) −10.8963 8.44025i −0.653518 0.506213i
\(279\) −3.87298 + 2.23607i −0.231869 + 0.133870i
\(280\) −24.9244 + 2.93511i −1.48952 + 0.175407i
\(281\) 12.1884i 0.727097i 0.931575 + 0.363549i \(0.118435\pi\)
−0.931575 + 0.363549i \(0.881565\pi\)
\(282\) −5.56036 0.757843i −0.331115 0.0451289i
\(283\) 17.8565 + 10.3095i 1.06146 + 0.612835i 0.925836 0.377926i \(-0.123362\pi\)
0.135625 + 0.990760i \(0.456696\pi\)
\(284\) 2.66340 9.58930i 0.158044 0.569020i
\(285\) 1.12702i 0.0667587i
\(286\) −2.07556 + 1.51556i −0.122730 + 0.0896168i
\(287\) 4.87298 0.287643
\(288\) 4.40822 + 3.54508i 0.259757 + 0.208896i
\(289\) −8.74597 + 15.1485i −0.514469 + 0.891086i
\(290\) 4.21627 30.9351i 0.247588 1.81657i
\(291\) −17.3205 −1.01535
\(292\) 18.4019 + 18.7406i 1.07689 + 1.09671i
\(293\) 3.07008 + 5.31754i 0.179356 + 0.310654i 0.941660 0.336565i \(-0.109265\pi\)
−0.762304 + 0.647219i \(0.775932\pi\)
\(294\) 9.77829 + 7.57423i 0.570281 + 0.441738i
\(295\) −2.74597 4.75615i −0.159876 0.276914i
\(296\) −16.3522 + 12.1957i −0.950450 + 0.708863i
\(297\) 0.436492 + 0.252009i 0.0253278 + 0.0146230i
\(298\) −7.55544 + 9.75403i −0.437675 + 0.565036i
\(299\) −7.68423 31.0554i −0.444390 1.79598i
\(300\) 0 0
\(301\) 17.6045 30.4919i 1.01471 1.75753i
\(302\) −14.2635 + 5.83207i −0.820771 + 0.335598i
\(303\) 3.93649 + 6.81820i 0.226146 + 0.391696i
\(304\) −1.76406 + 0.976025i −0.101176 + 0.0559789i
\(305\) 1.93649 1.11803i 0.110883 0.0640184i
\(306\) 8.22957 + 1.12164i 0.470453 + 0.0641199i
\(307\) 18.8326 1.07483 0.537415 0.843318i \(-0.319401\pi\)
0.537415 + 0.843318i \(0.319401\pi\)
\(308\) 2.80252 + 2.85410i 0.159688 + 0.162628i
\(309\) 9.19628 + 5.30948i 0.523158 + 0.302045i
\(310\) −13.0902 + 5.35233i −0.743472 + 0.303992i
\(311\) 12.6190 0.715555 0.357778 0.933807i \(-0.383535\pi\)
0.357778 + 0.933807i \(0.383535\pi\)
\(312\) 10.0615 + 1.66312i 0.569621 + 0.0941556i
\(313\) 4.00000 0.226093 0.113047 0.993590i \(-0.463939\pi\)
0.113047 + 0.993590i \(0.463939\pi\)
\(314\) −1.64155 + 0.671200i −0.0926381 + 0.0378780i
\(315\) 7.68423 + 4.43649i 0.432957 + 0.249968i
\(316\) −19.9787 + 19.6176i −1.12389 + 1.10358i
\(317\) −18.5485 −1.04179 −0.520895 0.853621i \(-0.674402\pi\)
−0.520895 + 0.853621i \(0.674402\pi\)
\(318\) −11.0321 1.50361i −0.618649 0.0843180i
\(319\) −4.30948 + 2.48808i −0.241284 + 0.139306i
\(320\) 12.2984 + 12.9904i 0.687500 + 0.726184i
\(321\) −0.436492 0.756026i −0.0243626 0.0421972i
\(322\) −46.0892 + 18.8451i −2.56845 + 1.05019i
\(323\) −1.48004 + 2.56351i −0.0823518 + 0.142637i
\(324\) −0.500000 1.93649i −0.0277778 0.107583i
\(325\) 0 0
\(326\) −14.6190 + 18.8730i −0.809669 + 1.04528i
\(327\) 2.12702 + 1.22803i 0.117624 + 0.0679104i
\(328\) −2.07658 2.78430i −0.114660 0.153737i
\(329\) 7.87298 + 13.6364i 0.434052 + 0.751799i
\(330\) 1.26004 + 0.976025i 0.0693631 + 0.0537284i
\(331\) −4.97615 8.61895i −0.273514 0.473740i 0.696245 0.717804i \(-0.254853\pi\)
−0.969759 + 0.244064i \(0.921519\pi\)
\(332\) −4.22419 + 4.14784i −0.231833 + 0.227642i
\(333\) 7.21222 0.395227
\(334\) −1.79224 + 13.1498i −0.0980668 + 0.719524i
\(335\) 2.18246 3.78013i 0.119240 0.206530i
\(336\) 0.289470 15.8698i 0.0157919 0.865770i
\(337\) −13.0000 −0.708155 −0.354078 0.935216i \(-0.615205\pi\)
−0.354078 + 0.935216i \(0.615205\pi\)
\(338\) 17.2722 6.29837i 0.939486 0.342586i
\(339\) 9.87298i 0.536227i
\(340\) 25.3068 + 7.02889i 1.37245 + 0.381195i
\(341\) 1.95205 + 1.12702i 0.105709 + 0.0610314i
\(342\) 0.706258 + 0.0962587i 0.0381901 + 0.00520508i
\(343\) 6.92820i 0.374088i
\(344\) −24.9244 + 2.93511i −1.34383 + 0.158251i
\(345\) −17.1825 + 9.92030i −0.925072 + 0.534091i
\(346\) −19.5566 15.1485i −1.05137 0.814386i
\(347\) −6.17218 + 3.56351i −0.331340 + 0.191299i −0.656436 0.754382i \(-0.727937\pi\)
0.325096 + 0.945681i \(0.394603\pi\)
\(348\) 19.0257 + 5.28435i 1.01989 + 0.283271i
\(349\) 13.6364 23.6190i 0.729940 1.26429i −0.226968 0.973902i \(-0.572881\pi\)
0.956908 0.290391i \(-0.0937854\pi\)
\(350\) 0 0
\(351\) −2.50000 2.59808i −0.133440 0.138675i
\(352\) 0.436492 2.81754i 0.0232651 0.150175i
\(353\) −23.8095 13.7464i −1.26725 0.731647i −0.292784 0.956179i \(-0.594582\pi\)
−0.974467 + 0.224531i \(0.927915\pi\)
\(354\) 3.21503 1.31457i 0.170877 0.0698685i
\(355\) −9.63628 + 5.56351i −0.511441 + 0.295280i
\(356\) 3.90410 1.00803i 0.206917 0.0534257i
\(357\) −11.6523 20.1825i −0.616708 1.06817i
\(358\) −0.979173 + 7.18428i −0.0517509 + 0.379701i
\(359\) 13.9204i 0.734692i −0.930084 0.367346i \(-0.880267\pi\)
0.930084 0.367346i \(-0.119733\pi\)
\(360\) −0.739674 6.28115i −0.0389842 0.331046i
\(361\) 9.37298 16.2345i 0.493315 0.854446i
\(362\) 0.976483 0.399266i 0.0513228 0.0209850i
\(363\) 10.7460i 0.564017i
\(364\) −13.5989 25.1766i −0.712778 1.31961i
\(365\) 29.3649i 1.53703i
\(366\) 0.535233 + 1.30902i 0.0279771 + 0.0684234i
\(367\) −0.309475 + 0.536026i −0.0161545 + 0.0279804i −0.873990 0.485945i \(-0.838476\pi\)
0.857835 + 0.513925i \(0.171809\pi\)
\(368\) 30.4082 + 18.3036i 1.58514 + 0.954140i
\(369\) 1.22803i 0.0639289i
\(370\) 22.5981 + 3.07999i 1.17482 + 0.160121i
\(371\) 15.6205 + 27.0554i 0.810974 + 1.40465i
\(372\) −2.23607 8.66025i −0.115935 0.449013i
\(373\) −26.4068 + 15.2460i −1.36729 + 0.789406i −0.990581 0.136925i \(-0.956278\pi\)
−0.376710 + 0.926331i \(0.622945\pi\)
\(374\) −1.58434 3.87480i −0.0819240 0.200361i
\(375\) −9.68246 5.59017i −0.500000 0.288675i
\(376\) 4.43649 10.3095i 0.228795 0.531671i
\(377\) 34.5554 8.55025i 1.77970 0.440361i
\(378\) −3.43649 + 4.43649i −0.176754 + 0.228189i
\(379\) −5.48017 + 9.49193i −0.281497 + 0.487568i −0.971754 0.235997i \(-0.924164\pi\)
0.690256 + 0.723565i \(0.257498\pi\)
\(380\) 2.17182 + 0.603217i 0.111412 + 0.0309444i
\(381\) −1.95205 + 1.12702i −0.100007 + 0.0577388i
\(382\) 17.1005 22.0767i 0.874938 1.12954i
\(383\) −19.7460 + 11.4003i −1.00897 + 0.582530i −0.910890 0.412648i \(-0.864604\pi\)
−0.0980813 + 0.995178i \(0.531271\pi\)
\(384\) −9.19098 + 6.59741i −0.469025 + 0.336673i
\(385\) 4.47214i 0.227921i
\(386\) −1.56993 + 11.5187i −0.0799073 + 0.586287i
\(387\) 7.68423 + 4.43649i 0.390611 + 0.225520i
\(388\) 9.27051 33.3775i 0.470639 1.69449i
\(389\) 11.6190i 0.589104i 0.955635 + 0.294552i \(0.0951704\pi\)
−0.955635 + 0.294552i \(0.904830\pi\)
\(390\) −6.72376 9.20820i −0.340471 0.466276i
\(391\) 52.1109 2.63536
\(392\) −19.8296 + 14.7893i −1.00155 + 0.746971i
\(393\) 5.87298 10.1723i 0.296253 0.513125i
\(394\) −3.44159 0.469067i −0.173385 0.0236313i
\(395\) 31.3050 1.57512
\(396\) −0.719258 + 0.706258i −0.0361441 + 0.0354908i
\(397\) −3.74812 6.49193i −0.188113 0.325821i 0.756508 0.653984i \(-0.226904\pi\)
−0.944621 + 0.328163i \(0.893570\pi\)
\(398\) −5.95218 + 7.68423i −0.298356 + 0.385176i
\(399\) −1.00000 1.73205i −0.0500626 0.0867110i
\(400\) 0 0
\(401\) −3.19052 1.84205i −0.159327 0.0919876i 0.418216 0.908347i \(-0.362655\pi\)
−0.577544 + 0.816360i \(0.695989\pi\)
\(402\) 2.18246 + 1.69052i 0.108851 + 0.0843157i
\(403\) −11.1803 11.6190i −0.556932 0.578781i
\(404\) −15.2460 + 3.93649i −0.758515 + 0.195848i
\(405\) −1.11803 + 1.93649i −0.0555556 + 0.0962250i
\(406\) −20.9689 51.2836i −1.04067 2.54516i
\(407\) −1.81754 3.14807i −0.0900922 0.156044i
\(408\) −6.56619 + 15.2585i −0.325075 + 0.755406i
\(409\) 4.88105 2.81808i 0.241352 0.139345i −0.374446 0.927249i \(-0.622167\pi\)
0.615798 + 0.787904i \(0.288834\pi\)
\(410\) −0.524433 + 3.84781i −0.0258999 + 0.190030i
\(411\) −0.219999 −0.0108518
\(412\) −15.1538 + 14.8799i −0.746573 + 0.733080i
\(413\) −8.44025 4.87298i −0.415318 0.239784i
\(414\) −4.74911 11.6149i −0.233406 0.570841i
\(415\) 6.61895 0.324911
\(416\) −8.59017 + 18.4989i −0.421168 + 0.906983i
\(417\) −9.74597 −0.477262
\(418\) −0.135967 0.332534i −0.00665037 0.0162648i
\(419\) 22.5167 + 13.0000i 1.10001 + 0.635092i 0.936224 0.351404i \(-0.114296\pi\)
0.163787 + 0.986496i \(0.447629\pi\)
\(420\) −12.6622 + 12.4333i −0.617852 + 0.606685i
\(421\) 12.1244 0.590905 0.295452 0.955357i \(-0.404530\pi\)
0.295452 + 0.955357i \(0.404530\pi\)
\(422\) 2.67376 19.6176i 0.130157 0.954971i
\(423\) −3.43649 + 1.98406i −0.167088 + 0.0964683i
\(424\) 8.80226 20.4546i 0.427476 0.993364i
\(425\) 0 0
\(426\) −2.66340 6.51387i −0.129042 0.315598i
\(427\) 1.98406 3.43649i 0.0960154 0.166303i
\(428\) 1.69052 0.436492i 0.0817146 0.0210986i
\(429\) −0.504017 + 1.74597i −0.0243342 + 0.0842961i
\(430\) 22.1825 + 17.1825i 1.06973 + 0.828612i
\(431\) 13.6905 + 7.90423i 0.659449 + 0.380733i 0.792067 0.610434i \(-0.209005\pi\)
−0.132618 + 0.991167i \(0.542338\pi\)
\(432\) 3.99933 + 0.0729490i 0.192418 + 0.00350976i
\(433\) 13.3730 + 23.1627i 0.642665 + 1.11313i 0.984836 + 0.173490i \(0.0555044\pi\)
−0.342171 + 0.939638i \(0.611162\pi\)
\(434\) −15.3685 + 19.8406i −0.737710 + 0.952379i
\(435\) −11.0383 19.1190i −0.529247 0.916683i
\(436\) −3.50493 + 3.44159i −0.167856 + 0.164822i
\(437\) 4.47214 0.213931
\(438\) 18.4019 + 2.50806i 0.879276 + 0.119840i
\(439\) 8.43649 14.6124i 0.402652 0.697413i −0.591393 0.806383i \(-0.701422\pi\)
0.994045 + 0.108970i \(0.0347552\pi\)
\(440\) −2.55527 + 1.90577i −0.121818 + 0.0908538i
\(441\) 8.74597 0.416475
\(442\) 3.20127 + 29.7749i 0.152269 + 1.41625i
\(443\) 40.7298i 1.93513i 0.252617 + 0.967566i \(0.418709\pi\)
−0.252617 + 0.967566i \(0.581291\pi\)
\(444\) −3.86022 + 13.8983i −0.183198 + 0.659585i
\(445\) −3.90410 2.25403i −0.185072 0.106851i
\(446\) 2.75482 20.2124i 0.130445 0.957084i
\(447\) 8.72427i 0.412644i
\(448\) 30.4270 + 9.05189i 1.43754 + 0.427661i
\(449\) −4.25403 + 2.45607i −0.200760 + 0.115909i −0.597010 0.802234i \(-0.703645\pi\)
0.396250 + 0.918143i \(0.370311\pi\)
\(450\) 0 0
\(451\) 0.536026 0.309475i 0.0252405 0.0145726i
\(452\) 19.0257 + 5.28435i 0.894896 + 0.248555i
\(453\) −5.44816 + 9.43649i −0.255977 + 0.443365i
\(454\) 1.69052 2.18246i 0.0793403 0.102428i
\(455\) −8.87298 + 30.7369i −0.415972 + 1.44097i
\(456\) −0.563508 + 1.30948i −0.0263887 + 0.0613218i
\(457\) −33.3569 19.2586i −1.56037 0.900879i −0.997219 0.0745228i \(-0.976257\pi\)
−0.563148 0.826356i \(-0.690410\pi\)
\(458\) 8.49547 + 20.7773i 0.396967 + 0.970861i
\(459\) 5.08615 2.93649i 0.237401 0.137064i
\(460\) −9.92030 38.4211i −0.462536 1.79140i
\(461\) 18.2185 + 31.5554i 0.848522 + 1.46968i 0.882527 + 0.470262i \(0.155841\pi\)
−0.0340048 + 0.999422i \(0.510826\pi\)
\(462\) 2.80252 + 0.381966i 0.130385 + 0.0177707i
\(463\) 18.3926i 0.854775i 0.904069 + 0.427387i \(0.140566\pi\)
−0.904069 + 0.427387i \(0.859434\pi\)
\(464\) −20.3664 + 33.8352i −0.945487 + 1.57076i
\(465\) −5.00000 + 8.66025i −0.231869 + 0.401610i
\(466\) 11.7751 + 28.7984i 0.545472 + 1.33406i
\(467\) 12.3649i 0.572180i −0.958203 0.286090i \(-0.907644\pi\)
0.958203 0.286090i \(-0.0923557\pi\)
\(468\) 6.34471 3.42705i 0.293284 0.158415i
\(469\) 7.74597i 0.357676i
\(470\) −11.6149 + 4.74911i −0.535755 + 0.219060i
\(471\) −0.627017 + 1.08602i −0.0288914 + 0.0500414i
\(472\) 0.812448 + 6.89913i 0.0373960 + 0.317558i
\(473\) 4.47214i 0.205629i
\(474\) −2.67376 + 19.6176i −0.122810 + 0.901067i
\(475\) 0 0
\(476\) 45.1293 11.6523i 2.06850 0.534084i
\(477\) −6.81820 + 3.93649i −0.312184 + 0.180240i
\(478\) 1.97930 0.809300i 0.0905311 0.0370165i
\(479\) 36.1109 + 20.8486i 1.64995 + 0.952598i 0.977090 + 0.212827i \(0.0682670\pi\)
0.672858 + 0.739771i \(0.265066\pi\)
\(480\) 12.5000 + 1.93649i 0.570544 + 0.0883883i
\(481\) 6.24597 + 25.2428i 0.284792 + 1.15097i
\(482\) −17.4284 13.5000i −0.793843 0.614908i
\(483\) −17.6045 + 30.4919i −0.801034 + 1.38743i
\(484\) −20.7080 5.75160i −0.941274 0.261436i
\(485\) −33.5410 + 19.3649i −1.52302 + 0.879316i
\(486\) −1.11803 0.866025i −0.0507151 0.0392837i
\(487\) −27.9284 + 16.1245i −1.26556 + 0.730670i −0.974144 0.225927i \(-0.927459\pi\)
−0.291414 + 0.956597i \(0.594126\pi\)
\(488\) −2.80902 + 0.330792i −0.127158 + 0.0149743i
\(489\) 16.8805i 0.763363i
\(490\) 27.4038 + 3.73497i 1.23798 + 0.168729i
\(491\) −32.7850 18.9284i −1.47957 0.854228i −0.479834 0.877359i \(-0.659303\pi\)
−0.999732 + 0.0231316i \(0.992636\pi\)
\(492\) −2.36648 0.657284i −0.106689 0.0296327i
\(493\) 57.9839i 2.61146i
\(494\) 0.274732 + 2.55527i 0.0123608 + 0.114967i
\(495\) 1.12702 0.0506556
\(496\) 17.8856 + 0.326238i 0.803086 + 0.0146485i
\(497\) −9.87298 + 17.1005i −0.442864 + 0.767063i
\(498\) −0.565326 + 4.14784i −0.0253329 + 0.185869i
\(499\) 2.01607 0.0902516 0.0451258 0.998981i \(-0.485631\pi\)
0.0451258 + 0.998981i \(0.485631\pi\)
\(500\) 15.9549 15.6665i 0.713525 0.700629i
\(501\) 4.69214 + 8.12702i 0.209629 + 0.363088i
\(502\) 17.0365 + 13.1964i 0.760376 + 0.588985i
\(503\) −10.3095 17.8565i −0.459677 0.796184i 0.539267 0.842135i \(-0.318701\pi\)
−0.998944 + 0.0459514i \(0.985368\pi\)
\(504\) −6.71002 8.99685i −0.298888 0.400752i
\(505\) 15.2460 + 8.80226i 0.678437 + 0.391696i
\(506\) −3.87298 + 5.00000i −0.172175 + 0.222277i
\(507\) 6.92820 11.0000i 0.307692 0.488527i
\(508\) −1.12702 4.36492i −0.0500033 0.193662i
\(509\) 4.36214 7.55544i 0.193348 0.334889i −0.753010 0.658010i \(-0.771399\pi\)
0.946358 + 0.323121i \(0.104732\pi\)
\(510\) 17.1905 7.02889i 0.761209 0.311244i
\(511\) −26.0554 45.1293i −1.15262 1.99640i
\(512\) −7.79423 21.2426i −0.344459 0.938801i
\(513\) 0.436492 0.252009i 0.0192716 0.0111265i
\(514\) 21.5302 + 2.93444i 0.949657 + 0.129433i
\(515\) 23.7447 1.04632
\(516\) −12.6622 + 12.4333i −0.557422 + 0.547347i
\(517\) 1.73205 + 1.00000i 0.0761755 + 0.0439799i
\(518\) 37.4627 15.3178i 1.64602 0.673026i
\(519\) −17.4919 −0.767811
\(520\) 21.3435 8.02850i 0.935973 0.352073i
\(521\) 5.61895 0.246171 0.123085 0.992396i \(-0.460721\pi\)
0.123085 + 0.992396i \(0.460721\pi\)
\(522\) 12.9239 5.28435i 0.565664 0.231290i
\(523\) −29.7609 17.1825i −1.30135 0.751336i −0.320717 0.947175i \(-0.603924\pi\)
−0.980636 + 0.195839i \(0.937257\pi\)
\(524\) 16.4591 + 16.7621i 0.719021 + 0.732255i
\(525\) 0 0
\(526\) −1.57924 0.215241i −0.0688582 0.00938495i
\(527\) 22.7460 13.1324i 0.990830 0.572056i
\(528\) −0.976025 1.76406i −0.0424760 0.0767709i
\(529\) −27.8649 48.2635i −1.21152 2.09841i
\(530\) −23.0446 + 9.42253i −1.00099 + 0.409288i
\(531\) 1.22803 2.12702i 0.0532921 0.0923047i
\(532\) 3.87298 1.00000i 0.167915 0.0433555i
\(533\) −4.29812 + 1.06351i −0.186172 + 0.0460657i
\(534\) 1.74597 2.25403i 0.0755554 0.0975416i
\(535\) −1.69052 0.976025i −0.0730878 0.0421972i
\(536\) −4.42585 + 3.30088i −0.191168 + 0.142576i
\(537\) 2.56351 + 4.44013i 0.110624 + 0.191606i
\(538\) 22.0767 + 17.1005i 0.951792 + 0.737255i
\(539\) −2.20406 3.81754i −0.0949355 0.164433i
\(540\) −3.13331 3.19098i −0.134836 0.137318i
\(541\) −29.4449 −1.26593 −0.632967 0.774179i \(-0.718163\pi\)
−0.632967 + 0.774179i \(0.718163\pi\)
\(542\) 5.78620 42.4538i 0.248538 1.82355i
\(543\) 0.372983 0.646026i 0.0160062 0.0277236i
\(544\) −25.8894 20.8202i −1.11000 0.892660i
\(545\) 5.49193 0.235249
\(546\) −18.5038 8.18561i −0.791890 0.350312i
\(547\) 24.3649i 1.04177i 0.853627 + 0.520884i \(0.174398\pi\)
−0.853627 + 0.520884i \(0.825602\pi\)
\(548\) 0.117751 0.423950i 0.00503007 0.0181102i
\(549\) 0.866025 + 0.500000i 0.0369611 + 0.0213395i
\(550\) 0 0
\(551\) 4.97615i 0.211991i
\(552\) 24.9244 2.93511i 1.06085 0.124927i
\(553\) 48.1109 27.7768i 2.04588 1.18119i
\(554\) −0.834016 0.646026i −0.0354339 0.0274470i
\(555\) 13.9664 8.06351i 0.592841 0.342277i
\(556\) 5.21636 18.7810i 0.221223 0.796491i
\(557\) −2.85008 + 4.93649i −0.120762 + 0.209166i −0.920068 0.391758i \(-0.871867\pi\)
0.799306 + 0.600924i \(0.205200\pi\)
\(558\) −5.00000 3.87298i −0.211667 0.163956i
\(559\) −8.87298 + 30.7369i −0.375287 + 1.30003i
\(560\) −17.1825 31.0554i −0.726091 1.31233i
\(561\) −2.56351 1.48004i −0.108231 0.0624874i
\(562\) −15.9548 + 6.52362i −0.673012 + 0.275182i
\(563\) −21.6367 + 12.4919i −0.911877 + 0.526472i −0.881034 0.473052i \(-0.843152\pi\)
−0.0308422 + 0.999524i \(0.509819\pi\)
\(564\) −1.98406 7.68423i −0.0835440 0.323564i
\(565\) −11.0383 19.1190i −0.464386 0.804340i
\(566\) −3.93787 + 28.8925i −0.165521 + 1.21444i
\(567\) 3.96812i 0.166645i
\(568\) 13.9781 1.64607i 0.586508 0.0690677i
\(569\) 19.4919 33.7610i 0.817144 1.41534i −0.0906335 0.995884i \(-0.528889\pi\)
0.907778 0.419451i \(-0.137777\pi\)
\(570\) 1.47528 0.603217i 0.0617928 0.0252660i
\(571\) 16.6190i 0.695481i 0.937591 + 0.347741i \(0.113051\pi\)
−0.937591 + 0.347741i \(0.886949\pi\)
\(572\) −3.09480 1.90577i −0.129400 0.0796841i
\(573\) 19.7460i 0.824900i
\(574\) 2.60818 + 6.37882i 0.108863 + 0.266247i
\(575\) 0 0
\(576\) −2.28115 + 7.66788i −0.0950480 + 0.319495i
\(577\) 18.6126i 0.774851i −0.921901 0.387426i \(-0.873364\pi\)
0.921901 0.387426i \(-0.126636\pi\)
\(578\) −24.5107 3.34066i −1.01951 0.138953i
\(579\) 4.11013 + 7.11895i 0.170811 + 0.295853i
\(580\) 42.7513 11.0383i 1.77515 0.458342i
\(581\) 10.1723 5.87298i 0.422018 0.243652i
\(582\) −9.27051 22.6728i −0.384275 0.939819i
\(583\) 3.43649 + 1.98406i 0.142325 + 0.0821713i
\(584\) −14.6825 + 34.1190i −0.607564 + 1.41185i
\(585\) −7.74597 2.23607i −0.320256 0.0924500i
\(586\) −5.31754 + 6.86492i −0.219666 + 0.283587i
\(587\) 4.47214 7.74597i 0.184585 0.319710i −0.758852 0.651263i \(-0.774239\pi\)
0.943437 + 0.331553i \(0.107573\pi\)
\(588\) −4.68113 + 16.8539i −0.193047 + 0.695044i
\(589\) 1.95205 1.12702i 0.0804328 0.0464379i
\(590\) 4.75615 6.14017i 0.195808 0.252787i
\(591\) −2.12702 + 1.22803i −0.0874938 + 0.0505146i
\(592\) −24.7166 14.8777i −1.01585 0.611469i
\(593\) 19.5566i 0.803092i 0.915839 + 0.401546i \(0.131527\pi\)
−0.915839 + 0.401546i \(0.868473\pi\)
\(594\) −0.0962587 + 0.706258i −0.00394954 + 0.0289781i
\(595\) −45.1293 26.0554i −1.85012 1.06817i
\(596\) −16.8121 4.66952i −0.688651 0.191271i
\(597\) 6.87298i 0.281292i
\(598\) 36.5392 26.6807i 1.49420 1.09105i
\(599\) −10.0000 −0.408589 −0.204294 0.978909i \(-0.565490\pi\)
−0.204294 + 0.978909i \(0.565490\pi\)
\(600\) 0 0
\(601\) 8.24597 14.2824i 0.336360 0.582593i −0.647385 0.762163i \(-0.724137\pi\)
0.983745 + 0.179570i \(0.0574708\pi\)
\(602\) 49.3370 + 6.72433i 2.01083 + 0.274063i
\(603\) 1.95205 0.0794936
\(604\) −15.2686 15.5496i −0.621269 0.632705i
\(605\) 12.0144 + 20.8095i 0.488453 + 0.846025i
\(606\) −6.81820 + 8.80226i −0.276971 + 0.357567i
\(607\) 9.74597 + 16.8805i 0.395577 + 0.685159i 0.993175 0.116637i \(-0.0372114\pi\)
−0.597598 + 0.801796i \(0.703878\pi\)
\(608\) −2.22182 1.78678i −0.0901066 0.0724636i
\(609\) −33.9284 19.5886i −1.37485 0.793770i
\(610\) 2.50000 + 1.93649i 0.101222 + 0.0784063i
\(611\) −9.92030 10.3095i −0.401332 0.417077i
\(612\) 2.93649 + 11.3730i 0.118701 + 0.459726i
\(613\) −7.35423 + 12.7379i −0.297035 + 0.514479i −0.975456 0.220194i \(-0.929331\pi\)
0.678422 + 0.734673i \(0.262664\pi\)
\(614\) 10.0798 + 24.6521i 0.406788 + 0.994879i
\(615\) 1.37298 + 2.37808i 0.0553640 + 0.0958933i
\(616\) −2.23607 + 5.19615i −0.0900937 + 0.209359i
\(617\) −5.42843 + 3.13410i −0.218540 + 0.126174i −0.605274 0.796017i \(-0.706937\pi\)
0.386734 + 0.922191i \(0.373603\pi\)
\(618\) −2.02804 + 14.8799i −0.0815797 + 0.598557i
\(619\) 22.2326 0.893605 0.446803 0.894633i \(-0.352563\pi\)
0.446803 + 0.894633i \(0.352563\pi\)
\(620\) −14.0126 14.2705i −0.562759 0.573117i
\(621\) −7.68423 4.43649i −0.308357 0.178030i
\(622\) 6.75408 + 16.5184i 0.270814 + 0.662328i
\(623\) −8.00000 −0.320513
\(624\) 3.20820 + 14.0608i 0.128431 + 0.562884i
\(625\) −25.0000 −1.00000
\(626\) 2.14093 + 5.23607i 0.0855689 + 0.209275i
\(627\) −0.219999 0.127017i −0.00878593 0.00507256i
\(628\) −1.75722 1.78957i −0.0701209 0.0714116i
\(629\) −42.3573 −1.68889
\(630\) −1.69459 + 12.4333i −0.0675140 + 0.495356i
\(631\) 12.0000 6.92820i 0.477712 0.275807i −0.241750 0.970339i \(-0.577721\pi\)
0.719463 + 0.694531i \(0.244388\pi\)
\(632\) −36.3731 15.6525i −1.44684 0.622622i
\(633\) −7.00000 12.1244i −0.278225 0.481900i
\(634\) −9.92779 24.2804i −0.394283 0.964296i
\(635\) −2.52009 + 4.36492i −0.100007 + 0.173216i
\(636\) −3.93649 15.2460i −0.156092 0.604542i
\(637\) 7.57423 + 30.6109i 0.300102 + 1.21285i
\(638\) −5.56351 4.30948i −0.220261 0.170614i
\(639\) −4.30948 2.48808i −0.170480 0.0984268i
\(640\) −10.4221 + 23.0517i −0.411971 + 0.911197i
\(641\) −9.68246 16.7705i −0.382434 0.662395i 0.608975 0.793189i \(-0.291581\pi\)
−0.991410 + 0.130794i \(0.958247\pi\)
\(642\) 0.756026 0.976025i 0.0298380 0.0385206i
\(643\) 2.67607 + 4.63508i 0.105534 + 0.182790i 0.913956 0.405813i \(-0.133012\pi\)
−0.808422 + 0.588603i \(0.799678\pi\)
\(644\) −49.3370 50.2451i −1.94415 1.97993i
\(645\) 19.8406 0.781223
\(646\) −4.14784 0.565326i −0.163195 0.0222424i
\(647\) 8.12702 14.0764i 0.319506 0.553401i −0.660879 0.750492i \(-0.729816\pi\)
0.980385 + 0.197092i \(0.0631497\pi\)
\(648\) 2.26728 1.69098i 0.0890673 0.0664281i
\(649\) −1.23790 −0.0485918
\(650\) 0 0
\(651\) 17.7460i 0.695519i
\(652\) −32.5296 9.03501i −1.27396 0.353838i
\(653\) 16.6605 + 9.61895i 0.651976 + 0.376419i 0.789213 0.614120i \(-0.210489\pi\)
−0.137237 + 0.990538i \(0.543822\pi\)
\(654\) −0.469067 + 3.44159i −0.0183420 + 0.134577i
\(655\) 26.2648i 1.02625i
\(656\) 2.53324 4.20853i 0.0989064 0.164316i
\(657\) 11.3730 6.56619i 0.443702 0.256172i
\(658\) −13.6364 + 17.6045i −0.531602 + 0.686296i
\(659\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(660\) −0.603217 + 2.17182i −0.0234802 + 0.0845379i
\(661\) −16.2345 + 28.1190i −0.631448 + 1.09370i 0.355808 + 0.934559i \(0.384206\pi\)
−0.987256 + 0.159141i \(0.949127\pi\)
\(662\) 8.61895 11.1270i 0.334985 0.432464i
\(663\) 14.6825 + 15.2585i 0.570219 + 0.592589i
\(664\) −7.69052 3.30948i −0.298450 0.128433i
\(665\) −3.87298 2.23607i −0.150188 0.0867110i
\(666\) 3.86022 + 9.44092i 0.149580 + 0.365828i
\(667\) 75.8663 43.8014i 2.93755 1.69600i
\(668\) −18.1726 + 4.69214i −0.703118 + 0.181544i
\(669\) −7.21222 12.4919i −0.278841 0.482966i
\(670\) 6.11638 + 0.833625i 0.236296 + 0.0322057i
\(671\) 0.504017i 0.0194574i
\(672\) 20.9288 8.11514i 0.807347 0.313048i
\(673\) −11.1190 + 19.2586i −0.428604 + 0.742364i −0.996749 0.0805642i \(-0.974328\pi\)
0.568145 + 0.822928i \(0.307661\pi\)
\(674\) −6.95803 17.0172i −0.268013 0.655479i
\(675\) 0 0
\(676\) 17.4894 + 19.2386i 0.672668 + 0.739945i
\(677\) 15.7460i 0.605167i −0.953123 0.302583i \(-0.902151\pi\)
0.953123 0.302583i \(-0.0978491\pi\)
\(678\) 12.9239 5.28435i 0.496340 0.202944i
\(679\) −34.3649 + 59.5218i −1.31880 + 2.28424i
\(680\) 4.34409 + 36.8891i 0.166588 + 1.41463i
\(681\) 1.95205i 0.0748027i
\(682\) −0.430482 + 3.15848i −0.0164840 + 0.120945i
\(683\) 4.25214 + 7.36492i 0.162703 + 0.281811i 0.935837 0.352432i \(-0.114645\pi\)
−0.773134 + 0.634243i \(0.781312\pi\)
\(684\) 0.252009 + 0.976025i 0.00963579 + 0.0373193i
\(685\) −0.426027 + 0.245967i −0.0162776 + 0.00939790i
\(686\) 9.06914 3.70820i 0.346261 0.141580i
\(687\) 13.7460 + 7.93624i 0.524441 + 0.302786i
\(688\) −17.1825 31.0554i −0.655075 1.18398i
\(689\) −19.6825 20.4546i −0.749842 0.779259i
\(690\) −22.1825 17.1825i −0.844472 0.654125i
\(691\) 21.3206 36.9284i 0.811075 1.40482i −0.101037 0.994883i \(-0.532216\pi\)
0.912112 0.409941i \(-0.134451\pi\)
\(692\) 9.36226 33.7078i 0.355900 1.28138i
\(693\) 1.73205 1.00000i 0.0657952 0.0379869i
\(694\) −7.96825 6.17218i −0.302471 0.234293i
\(695\) −18.8730 + 10.8963i −0.715893 + 0.413321i
\(696\) 3.26591 + 27.7334i 0.123794 + 1.05123i
\(697\) 7.21222i 0.273182i
\(698\) 38.2163 + 5.20864i 1.44651 + 0.197150i
\(699\) 19.0526 + 11.0000i 0.720634 + 0.416058i
\(700\) 0 0
\(701\) 43.7460i 1.65226i −0.563478 0.826131i \(-0.690537\pi\)
0.563478 0.826131i \(-0.309463\pi\)
\(702\) 2.06284 4.66312i 0.0778570 0.175998i
\(703\) −3.63508 −0.137100
\(704\) 3.92183 0.936667i 0.147810 0.0353020i
\(705\) −4.43649 + 7.68423i −0.167088 + 0.289405i
\(706\) 5.25066 38.5245i 0.197611 1.44989i
\(707\) 31.2409 1.17494
\(708\) 3.44159 + 3.50493i 0.129343 + 0.131723i
\(709\) −24.8947 43.1190i −0.934941 1.61937i −0.774738 0.632282i \(-0.782118\pi\)
−0.160203 0.987084i \(-0.551215\pi\)
\(710\) −12.4404 9.63628i −0.466879 0.361643i
\(711\) 7.00000 + 12.1244i 0.262521 + 0.454699i
\(712\) 3.40914 + 4.57100i 0.127763 + 0.171305i
\(713\) −34.3649 19.8406i −1.28698 0.743036i
\(714\) 20.1825 26.0554i 0.755310 0.975100i
\(715\) 0.976025 + 3.94456i 0.0365013 + 0.147518i
\(716\) −9.92843 + 2.56351i −0.371043 + 0.0958028i
\(717\) 0.756026 1.30948i 0.0282343 0.0489032i
\(718\) 18.2221 7.45067i 0.680042 0.278057i
\(719\) 6.49193 + 11.2444i 0.242108 + 0.419344i 0.961315 0.275453i \(-0.0888277\pi\)
−0.719206 + 0.694797i \(0.755494\pi\)
\(720\) 7.82624 4.33013i 0.291667 0.161374i
\(721\) 36.4919 21.0686i 1.35903 0.784637i
\(722\) 26.2679 + 3.58016i 0.977592 + 0.133240i
\(723\) −15.5885 −0.579741
\(724\) 1.04529 + 1.06453i 0.0388480 + 0.0395630i
\(725\) 0 0
\(726\) −14.0667 + 5.75160i −0.522062 + 0.213462i
\(727\) −25.1270 −0.931909 −0.465955 0.884809i \(-0.654289\pi\)
−0.465955 + 0.884809i \(0.654289\pi\)
\(728\) 25.6779 31.2766i 0.951688 1.15919i
\(729\) −1.00000 −0.0370370
\(730\) 38.4392 15.7171i 1.42270 0.581715i
\(731\) −45.1293 26.0554i −1.66917 0.963695i
\(732\) −1.42705 + 1.40126i −0.0527453 + 0.0517920i
\(733\) −30.5809 −1.12953 −0.564766 0.825251i \(-0.691034\pi\)
−0.564766 + 0.825251i \(0.691034\pi\)
\(734\) −0.867309 0.118209i −0.0320130 0.00436317i
\(735\) 16.9365 9.77829i 0.624712 0.360678i
\(736\) −7.68423 + 49.6015i −0.283244 + 1.82833i
\(737\) −0.491933 0.852054i −0.0181206 0.0313858i
\(738\) −1.60752 + 0.657284i −0.0591735 + 0.0241950i
\(739\) −16.3765 + 28.3649i −0.602419 + 1.04342i 0.390035 + 0.920800i \(0.372463\pi\)
−0.992454 + 0.122620i \(0.960870\pi\)
\(740\) 8.06351 + 31.2298i 0.296420 + 1.14803i
\(741\) 1.26004 + 1.30948i 0.0462888 + 0.0481048i
\(742\) −27.0554 + 34.9284i −0.993237 + 1.28226i
\(743\) 30.0000 + 17.3205i 1.10059 + 0.635428i 0.936377 0.350997i \(-0.114157\pi\)
0.164216 + 0.986424i \(0.447490\pi\)
\(744\) 10.1396 7.56231i 0.371736 0.277248i
\(745\) 9.75403 + 16.8945i 0.357360 + 0.618966i
\(746\) −34.0910 26.4068i −1.24816 0.966821i
\(747\) 1.48004 + 2.56351i 0.0541519 + 0.0937939i
\(748\) 4.22419 4.14784i 0.154452 0.151660i
\(749\) −3.46410 −0.126576
\(750\) 2.13525 15.6665i 0.0779685 0.572061i
\(751\) −9.56351 + 16.5645i −0.348977 + 0.604447i −0.986068 0.166342i \(-0.946804\pi\)
0.637091 + 0.770789i \(0.280138\pi\)
\(752\) 15.8698 + 0.289470i 0.578713 + 0.0105559i
\(753\) 15.2379 0.555300
\(754\) 29.6876 + 40.6573i 1.08116 + 1.48065i
\(755\) 24.3649i 0.886730i
\(756\) −7.64677 2.12387i −0.278110 0.0772444i
\(757\) −2.39205 1.38105i −0.0869405 0.0501951i 0.455899 0.890031i \(-0.349318\pi\)
−0.542840 + 0.839836i \(0.682651\pi\)
\(758\) −15.3583 2.09324i −0.557838 0.0760299i
\(759\) 4.47214i 0.162328i
\(760\) 0.372808 + 3.16581i 0.0135232 + 0.114836i
\(761\) 5.12702 2.96008i 0.185854 0.107303i −0.404186 0.914677i \(-0.632445\pi\)
0.590040 + 0.807374i \(0.299112\pi\)
\(762\) −2.52009 1.95205i −0.0912931 0.0707153i
\(763\) 8.44025 4.87298i 0.305558 0.176414i
\(764\) 38.0515 + 10.5687i 1.37665 + 0.382362i
\(765\) 6.56619 11.3730i 0.237401 0.411191i
\(766\) −25.4919 19.7460i −0.921061 0.713451i
\(767\) 8.50807 + 2.45607i 0.307208 + 0.0886834i
\(768\) −13.5554 8.50000i −0.489140 0.306717i
\(769\) 24.4919 + 14.1404i 0.883202 + 0.509917i 0.871713 0.490017i \(-0.163010\pi\)
0.0114890 + 0.999934i \(0.496343\pi\)
\(770\) 5.85410 2.39364i 0.210967 0.0862606i
\(771\) 13.3064 7.68246i 0.479219 0.276677i
\(772\) −15.9185 + 4.11013i −0.572918 + 0.147927i
\(773\) 1.51205 + 2.61895i 0.0543847 + 0.0941971i 0.891936 0.452161i \(-0.149347\pi\)
−0.837551 + 0.546359i \(0.816014\pi\)
\(774\) −1.69459 + 12.4333i −0.0609107 + 0.446907i
\(775\) 0 0
\(776\) 48.6536 5.72949i 1.74656 0.205677i
\(777\) 14.3095 24.7847i 0.513350 0.889148i
\(778\) −15.2094 + 6.21885i −0.545284 + 0.222956i
\(779\) 0.618950i 0.0221762i
\(780\) 8.45492 13.7301i 0.302735 0.491615i
\(781\) 2.50807i 0.0897457i
\(782\) 27.8915 + 68.2140i 0.997397 + 2.43933i
\(783\) 4.93649 8.55025i 0.176416 0.305561i
\(784\) −29.9729 18.0416i −1.07046 0.644341i
\(785\) 2.80410i 0.100083i
\(786\) 16.4591 + 2.24328i 0.587078 + 0.0800151i
\(787\) 3.24410 + 5.61895i 0.115640 + 0.200294i 0.918035 0.396499i \(-0.129775\pi\)
−0.802396 + 0.596793i \(0.796442\pi\)
\(788\) −1.22803 4.75615i −0.0437469 0.169431i
\(789\) −0.976025 + 0.563508i −0.0347474 + 0.0200614i
\(790\) 16.7554 + 40.9787i 0.596132 + 1.45796i
\(791\) −33.9284 19.5886i −1.20636 0.696490i
\(792\) −1.30948 0.563508i −0.0465302 0.0200234i
\(793\) −1.00000 + 3.46410i −0.0355110 + 0.123014i
\(794\) 6.49193 8.38105i 0.230390 0.297432i
\(795\) −8.80226 + 15.2460i −0.312184 + 0.540719i
\(796\) −13.2446 3.67865i −0.469442 0.130386i
\(797\) −27.2728 + 15.7460i −0.966053 + 0.557751i −0.898031 0.439933i \(-0.855002\pi\)
−0.0680221 + 0.997684i \(0.521669\pi\)
\(798\) 1.73205 2.23607i 0.0613139 0.0791559i
\(799\) 20.1825 11.6523i 0.714004 0.412230i
\(800\) 0 0
\(801\) 2.01607i 0.0712343i
\(802\) 0.703601 5.16238i 0.0248450 0.182290i
\(803\) −5.73218 3.30948i −0.202284 0.116789i
\(804\) −1.04480 + 3.76170i −0.0368473 + 0.132665i
\(805\) 78.7298i 2.77486i
\(806\) 9.22531 20.8541i 0.324948 0.734554i
\(807\) 19.7460 0.695091
\(808\) −13.3131 17.8503i −0.468353 0.627971i
\(809\) −13.9365 + 24.1387i −0.489981 + 0.848672i −0.999934 0.0115306i \(-0.996330\pi\)
0.509953 + 0.860203i \(0.329663\pi\)
\(810\) −3.13331 0.427051i −0.110093 0.0150050i
\(811\) 36.2171 1.27175 0.635877 0.771790i \(-0.280639\pi\)
0.635877 + 0.771790i \(0.280639\pi\)
\(812\) 55.9078 54.8973i 1.96198 1.92652i
\(813\) −15.1485 26.2379i −0.531280 0.920203i
\(814\) 3.14807 4.06415i 0.110340 0.142448i
\(815\) 18.8730 + 32.6890i 0.661092 + 1.14504i
\(816\) −23.4880 0.428428i −0.822245 0.0149980i
\(817\) −3.87298 2.23607i −0.135499 0.0782301i
\(818\) 6.30141 + 4.88105i 0.220324 + 0.170662i
\(819\) −13.8884 + 3.43649i −0.485301 + 0.120081i
\(820\) −5.31754 + 1.37298i −0.185697 + 0.0479467i
\(821\) 26.3288 45.6028i 0.918881 1.59155i 0.117764 0.993042i \(-0.462427\pi\)
0.801117 0.598508i \(-0.204239\pi\)
\(822\) −0.117751 0.287983i −0.00410703 0.0100446i
\(823\) −23.8730 41.3492i −0.832160 1.44134i −0.896322 0.443404i \(-0.853771\pi\)
0.0641621 0.997939i \(-0.479563\pi\)
\(824\) −27.5888 11.8723i −0.961103 0.413593i
\(825\) 0 0
\(826\) 1.86131 13.6566i 0.0647634 0.475175i
\(827\) −35.2091 −1.22434 −0.612169 0.790727i \(-0.709703\pi\)
−0.612169 + 0.790727i \(0.709703\pi\)
\(828\) 12.6622 12.4333i 0.440042 0.432089i
\(829\) 26.1868 + 15.1190i 0.909505 + 0.525103i 0.880272 0.474470i \(-0.157360\pi\)
0.0292330 + 0.999573i \(0.490694\pi\)
\(830\) 3.54268 + 8.66432i 0.122968 + 0.300743i
\(831\) −0.745967 −0.0258773
\(832\) −28.8131 1.34346i −0.998915 0.0465761i
\(833\) −51.3649 −1.77969
\(834\) −5.21636 12.7576i −0.180628 0.441761i
\(835\) 18.1726 + 10.4919i 0.628887 + 0.363088i
\(836\) 0.362518 0.355966i 0.0125380 0.0123114i
\(837\) −4.47214 −0.154580
\(838\) −4.96556 + 36.4327i −0.171532 + 1.25855i
\(839\) 6.00000 3.46410i 0.207143 0.119594i −0.392840 0.919607i \(-0.628507\pi\)
0.599983 + 0.800013i \(0.295174\pi\)
\(840\) −23.0527 9.92030i −0.795393 0.342283i
\(841\) 34.2379 + 59.3018i 1.18062 + 2.04489i
\(842\) 6.48936 + 15.8710i 0.223638 + 0.546950i
\(843\) −6.09419 + 10.5554i −0.209895 + 0.363549i
\(844\) 27.1109 7.00000i 0.933195 0.240950i
\(845\) 1.11803 29.0474i 0.0384615 0.999260i
\(846\) −4.43649 3.43649i −0.152530 0.118149i
\(847\) 36.9284 + 21.3206i 1.26888 + 0.732586i
\(848\) 31.4867 + 0.574326i 1.08126 + 0.0197224i
\(849\) 10.3095 + 17.8565i 0.353820 + 0.612835i
\(850\) 0 0
\(851\) 31.9970 + 55.4204i 1.09684 + 1.89979i
\(852\) 7.10122 6.97288i 0.243284 0.238887i
\(853\) 25.5408 0.874499 0.437250 0.899340i \(-0.355953\pi\)
0.437250 + 0.899340i \(0.355953\pi\)
\(854\) 5.56036 + 0.757843i 0.190272 + 0.0259329i
\(855\) 0.563508 0.976025i 0.0192716 0.0333794i
\(856\) 1.47620 + 1.97930i 0.0504555 + 0.0676511i
\(857\) −15.6190 −0.533533 −0.266767 0.963761i \(-0.585955\pi\)
−0.266767 + 0.963761i \(0.585955\pi\)
\(858\) −2.55527 + 0.274732i −0.0872354 + 0.00937920i
\(859\) 43.6028i 1.48771i −0.668342 0.743854i \(-0.732996\pi\)
0.668342 0.743854i \(-0.267004\pi\)
\(860\) −10.6193 + 38.2338i −0.362117 + 1.30376i
\(861\) 4.22013 + 2.43649i 0.143822 + 0.0830354i
\(862\) −3.01915 + 22.1517i −0.102833 + 0.754491i
\(863\) 17.2565i 0.587418i −0.955895 0.293709i \(-0.905110\pi\)
0.955895 0.293709i \(-0.0948896\pi\)
\(864\) 2.04508 + 5.27424i 0.0695752 + 0.179433i
\(865\) −33.8730 + 19.5566i −1.15172 + 0.664944i
\(866\) −23.1627 + 29.9029i −0.787100 + 1.01614i
\(867\) −15.1485 + 8.74597i −0.514469 + 0.297029i
\(868\) −34.1974 9.49823i −1.16073 0.322391i
\(869\) 3.52812 6.11088i 0.119683 0.207298i
\(870\) 19.1190 24.6825i 0.648193 0.836814i
\(871\) 1.69052 + 6.83218i 0.0572813 + 0.231499i
\(872\) −6.38105 2.74597i −0.216090 0.0929902i
\(873\) −15.0000 8.66025i −0.507673 0.293105i
\(874\) 2.39364 + 5.85410i 0.0809659 + 0.198018i
\(875\) −38.4211 + 22.1825i −1.29887 + 0.749904i
\(876\) 6.56619 + 25.4308i 0.221851 + 0.859226i
\(877\) 2.59808 + 4.50000i 0.0877308 + 0.151954i 0.906552 0.422095i \(-0.138705\pi\)
−0.818821 + 0.574049i \(0.805372\pi\)
\(878\) 23.6434 + 3.22245i 0.797927 + 0.108753i
\(879\) 6.14017i 0.207103i
\(880\) −3.86234 2.32486i −0.130200 0.0783710i
\(881\) −5.55544 + 9.62231i −0.187168 + 0.324184i −0.944305 0.329072i \(-0.893264\pi\)
0.757137 + 0.653256i \(0.226597\pi\)
\(882\) 4.68113 + 11.4486i 0.157622 + 0.385495i
\(883\) 50.9839i 1.71574i −0.513864 0.857872i \(-0.671786\pi\)
0.513864 0.857872i \(-0.328214\pi\)
\(884\) −37.2624 + 20.1270i −1.25327 + 0.676945i
\(885\) 5.49193i 0.184609i
\(886\) −53.3160 + 21.8000i −1.79119 + 0.732384i
\(887\) 17.8730 30.9569i 0.600116 1.03943i −0.392687 0.919672i \(-0.628454\pi\)
0.992803 0.119759i \(-0.0382123\pi\)
\(888\) −20.2593 + 2.38575i −0.679856 + 0.0800604i
\(889\) 8.94427i 0.299981i
\(890\) 0.860964 6.31697i 0.0288596 0.211745i
\(891\) 0.252009 + 0.436492i 0.00844261 + 0.0146230i
\(892\) 27.9328 7.21222i 0.935260 0.241483i
\(893\) 1.73205 1.00000i 0.0579609 0.0334637i
\(894\) −11.4202 + 4.66952i −0.381949 + 0.156172i
\(895\) 9.92843 + 5.73218i 0.331871 + 0.191606i
\(896\) 4.43649 + 44.6744i 0.148213 + 1.49247i
\(897\) 8.87298 30.7369i 0.296260 1.02628i
\(898\) −5.49193 4.25403i −0.183268 0.141959i
\(899\) 22.0767 38.2379i 0.736298 1.27531i
\(900\) 0 0
\(901\) 40.0432 23.1190i 1.33403 0.770204i
\(902\) 0.692007 + 0.536026i 0.0230413 + 0.0178477i
\(903\) 30.4919 17.6045i 1.01471 0.585842i
\(904\) 3.26591 + 27.7334i 0.108622 + 0.922398i
\(905\) 1.66803i 0.0554473i
\(906\) −15.2686 2.08101i −0.507264 0.0691370i
\(907\) 27.2728 + 15.7460i 0.905579 + 0.522836i 0.879006 0.476811i \(-0.158207\pi\)
0.0265729 + 0.999647i \(0.491541\pi\)
\(908\) 3.76170 + 1.04480i 0.124836 + 0.0346730i
\(909\) 7.87298i 0.261130i
\(910\) −44.9843 + 4.83653i −1.49121 + 0.160329i
\(911\) −38.7298 −1.28318 −0.641588 0.767049i \(-0.721724\pi\)
−0.641588 + 0.767049i \(0.721724\pi\)
\(912\) −2.01573 0.0367676i −0.0667476 0.00121750i
\(913\) 0.745967 1.29205i 0.0246879 0.0427607i
\(914\) 7.35613 53.9725i 0.243319 1.78525i
\(915\) 2.23607 0.0739221
\(916\) −22.6508 + 22.2414i −0.748405 + 0.734878i
\(917\) −23.3047 40.3649i −0.769589 1.33297i
\(918\) 6.56619 + 5.08615i 0.216717 + 0.167868i
\(919\) −22.8730 39.6172i −0.754510 1.30685i −0.945618 0.325281i \(-0.894541\pi\)
0.191107 0.981569i \(-0.438792\pi\)
\(920\) 44.9843 33.5501i 1.48309 1.10611i
\(921\) 16.3095 + 9.41628i 0.537415 + 0.310277i
\(922\) −31.5554 + 40.7379i −1.03922 + 1.34163i
\(923\) 4.97615 17.2379i 0.163792 0.567392i
\(924\) 1.00000 + 3.87298i 0.0328976 + 0.127412i
\(925\) 0 0
\(926\) −24.0762 + 9.84431i −0.791192 + 0.323504i
\(927\) 5.30948 + 9.19628i 0.174386 + 0.302045i
\(928\) −55.1917 8.55025i −1.81175 0.280676i
\(929\) 23.4284 13.5264i 0.768662 0.443787i −0.0637353 0.997967i \(-0.520301\pi\)
0.832397 + 0.554180i \(0.186968\pi\)
\(930\) −14.0126 1.90983i −0.459491 0.0626258i
\(931\) −4.40812 −0.144470
\(932\) −31.3951 + 30.8277i −1.02838 + 1.00979i
\(933\) 10.9283 + 6.30948i 0.357778 + 0.206563i
\(934\) 16.1859 6.61811i 0.529618 0.216551i
\(935\) −6.61895 −0.216463
\(936\) 7.88197 + 6.47106i 0.257630 + 0.211513i
\(937\) 12.2379 0.399795 0.199897 0.979817i \(-0.435939\pi\)
0.199897 + 0.979817i \(0.435939\pi\)
\(938\) 10.1396 4.14590i 0.331070 0.135368i
\(939\) 3.46410 + 2.00000i 0.113047 + 0.0652675i
\(940\) −12.4333 12.6622i −0.405531 0.412995i
\(941\) 34.6410 1.12926 0.564632 0.825342i \(-0.309018\pi\)
0.564632 + 0.825342i \(0.309018\pi\)
\(942\) −1.75722 0.239499i −0.0572535 0.00780330i
\(943\) −9.43649 + 5.44816i −0.307294 + 0.177417i
\(944\) −8.59624 + 4.75615i −0.279784 + 0.154800i
\(945\) 4.43649 + 7.68423i 0.144319 + 0.249968i
\(946\) 5.85410 2.39364i 0.190333 0.0778238i
\(947\) −0.504017 + 0.872983i −0.0163784 + 0.0283681i −0.874098 0.485749i \(-0.838547\pi\)
0.857720 + 0.514117i \(0.171880\pi\)
\(948\) −27.1109 + 7.00000i −0.880521 + 0.227349i
\(949\) 32.8310 + 34.1190i 1.06574 + 1.10755i
\(950\) 0 0
\(951\) −16.0635 9.27427i −0.520895 0.300739i
\(952\) 39.4078 + 52.8384i 1.27722 + 1.71250i
\(953\) 17.7460 + 30.7369i 0.574848 + 0.995666i 0.996058 + 0.0887032i \(0.0282723\pi\)
−0.421210 + 0.906963i \(0.638394\pi\)
\(954\) −8.80226 6.81820i −0.284984 0.220747i
\(955\) −22.0767 38.2379i −0.714384 1.23735i
\(956\) 2.11878 + 2.15777i 0.0685261 + 0.0697874i
\(957\) −4.97615 −0.160856
\(958\) −7.96347 + 58.4286i −0.257288 + 1.88774i
\(959\) −0.436492 + 0.756026i −0.0140951 + 0.0244133i
\(960\) 4.15551 + 17.3992i 0.134119 + 0.561556i
\(961\) 11.0000 0.354839
\(962\) −29.7002 + 21.6868i −0.957572 + 0.699212i
\(963\) 0.872983i 0.0281315i
\(964\) 8.34346 30.0398i 0.268725 0.967515i
\(965\) 15.9185 + 9.19052i 0.512433 + 0.295853i
\(966\) −49.3370 6.72433i −1.58739 0.216352i
\(967\) 11.3363i 0.364551i 0.983247 + 0.182276i \(0.0583464\pi\)
−0.983247 + 0.182276i \(0.941654\pi\)
\(968\) −3.55468 30.1856i −0.114252 0.970202i
\(969\) −2.56351 + 1.48004i −0.0823518 + 0.0475458i
\(970\) −43.3013 33.5410i −1.39032 1.07694i
\(971\) 50.6415 29.2379i 1.62516 0.938289i 0.639656 0.768662i \(-0.279077\pi\)
0.985508 0.169627i \(-0.0542564\pi\)
\(972\) 0.535233 1.92705i 0.0171676 0.0618102i
\(973\) −19.3366 + 33.4919i −0.619902 + 1.07370i
\(974\) −36.0554 27.9284i −1.15529 0.894884i
\(975\) 0 0
\(976\) −1.93649 3.50000i −0.0619856 0.112032i
\(977\) 27.3014 + 15.7625i 0.873449 + 0.504286i 0.868493 0.495701i \(-0.165089\pi\)
0.00495645 + 0.999988i \(0.498422\pi\)
\(978\) −22.0969 + 9.03501i −0.706580 + 0.288908i
\(979\) −0.879997 + 0.508067i −0.0281248 + 0.0162379i
\(980\) 9.77829 + 37.8711i 0.312356 + 1.20975i
\(981\) 1.22803 + 2.12702i 0.0392081 + 0.0679104i
\(982\) 7.23002 53.0472i 0.230719 1.69281i
\(983\) 27.2728i 0.869868i 0.900462 + 0.434934i \(0.143228\pi\)
−0.900462 + 0.434934i \(0.856772\pi\)
\(984\) −0.406224 3.44957i −0.0129499 0.109968i
\(985\) −2.74597 + 4.75615i −0.0874938 + 0.151544i
\(986\) −75.9019 + 31.0349i −2.41721 + 0.988352i
\(987\) 15.7460i 0.501200i
\(988\) −3.19784 + 1.72729i −0.101737 + 0.0549525i
\(989\) 78.7298i 2.50346i
\(990\) 0.603217 + 1.47528i 0.0191715 + 0.0468876i
\(991\) 6.18246 10.7083i 0.196392 0.340161i −0.750964 0.660343i \(-0.770411\pi\)
0.947356 + 0.320182i \(0.103744\pi\)
\(992\) 9.14590 + 23.5871i 0.290383 + 0.748892i
\(993\) 9.95231i 0.315827i
\(994\) −27.6692 3.77114i −0.877614 0.119613i
\(995\) 7.68423 + 13.3095i 0.243606 + 0.421939i
\(996\) −5.73218 + 1.48004i −0.181631 + 0.0468969i
\(997\) −6.50218 + 3.75403i −0.205926 + 0.118891i −0.599417 0.800437i \(-0.704601\pi\)
0.393491 + 0.919329i \(0.371267\pi\)
\(998\) 1.07907 + 2.63907i 0.0341573 + 0.0835382i
\(999\) 6.24597 + 3.60611i 0.197614 + 0.114092i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 312.2.bk.a.277.3 yes 8
3.2 odd 2 936.2.dg.c.901.2 8
4.3 odd 2 1248.2.ca.a.433.2 8
8.3 odd 2 1248.2.ca.a.433.3 8
8.5 even 2 inner 312.2.bk.a.277.4 yes 8
13.10 even 6 inner 312.2.bk.a.205.4 yes 8
24.5 odd 2 936.2.dg.c.901.1 8
39.23 odd 6 936.2.dg.c.829.1 8
52.23 odd 6 1248.2.ca.a.49.3 8
104.75 odd 6 1248.2.ca.a.49.2 8
104.101 even 6 inner 312.2.bk.a.205.3 8
312.101 odd 6 936.2.dg.c.829.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bk.a.205.3 8 104.101 even 6 inner
312.2.bk.a.205.4 yes 8 13.10 even 6 inner
312.2.bk.a.277.3 yes 8 1.1 even 1 trivial
312.2.bk.a.277.4 yes 8 8.5 even 2 inner
936.2.dg.c.829.1 8 39.23 odd 6
936.2.dg.c.829.2 8 312.101 odd 6
936.2.dg.c.901.1 8 24.5 odd 2
936.2.dg.c.901.2 8 3.2 odd 2
1248.2.ca.a.49.2 8 104.75 odd 6
1248.2.ca.a.49.3 8 52.23 odd 6
1248.2.ca.a.433.2 8 4.3 odd 2
1248.2.ca.a.433.3 8 8.3 odd 2