Properties

Label 936.2.cw.b.337.26
Level $936$
Weight $2$
Character 936.337
Analytic conductor $7.474$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(25,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.25"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.cw (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(40\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 337.26
Character \(\chi\) \(=\) 936.337
Dual form 936.2.cw.b.25.26

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.373720 - 1.69125i) q^{3} +(3.40435 + 1.96550i) q^{5} +(-4.16592 + 2.40520i) q^{7} +(-2.72067 - 1.26411i) q^{9} +(-2.91097 + 1.68065i) q^{11} +(0.448090 + 3.57760i) q^{13} +(4.59643 - 5.02306i) q^{15} -1.07207 q^{17} +6.57228i q^{19} +(2.51090 + 7.94450i) q^{21} +(0.0427423 - 0.0740317i) q^{23} +(5.22640 + 9.05238i) q^{25} +(-3.15470 + 4.12891i) q^{27} +(-0.514326 - 0.890839i) q^{29} +(-6.40180 - 3.69608i) q^{31} +(1.75451 + 5.55127i) q^{33} -18.9097 q^{35} -4.76927i q^{37} +(6.21808 + 0.579189i) q^{39} +(2.17095 + 1.25340i) q^{41} +(1.85904 + 3.21995i) q^{43} +(-6.77749 - 9.65095i) q^{45} +(8.71820 - 5.03346i) q^{47} +(8.06995 - 13.9776i) q^{49} +(-0.400656 + 1.81315i) q^{51} -5.80367 q^{53} -13.2133 q^{55} +(11.1154 + 2.45620i) q^{57} +(10.4025 + 6.00590i) q^{59} +(-2.30828 - 3.99806i) q^{61} +(14.3745 - 1.27755i) q^{63} +(-5.50632 + 13.0601i) q^{65} +(2.45580 + 1.41786i) q^{67} +(-0.109233 - 0.0999551i) q^{69} -1.36430i q^{71} -2.67779i q^{73} +(17.2631 - 5.45609i) q^{75} +(8.08457 - 14.0029i) q^{77} +(0.872958 + 1.51201i) q^{79} +(5.80405 + 6.87845i) q^{81} +(-12.2034 + 7.04566i) q^{83} +(-3.64971 - 2.10716i) q^{85} +(-1.69885 + 0.536931i) q^{87} +9.35462i q^{89} +(-10.4715 - 13.8263i) q^{91} +(-8.64349 + 9.44576i) q^{93} +(-12.9178 + 22.3743i) q^{95} +(6.64133 - 3.83437i) q^{97} +(10.0443 - 0.892695i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 6 q^{3} - 6 q^{9} + 6 q^{13} - 4 q^{17} + 10 q^{23} + 44 q^{25} + 6 q^{27} - 52 q^{35} + 40 q^{39} - 26 q^{43} + 48 q^{49} + 36 q^{51} + 60 q^{53} - 16 q^{55} - 10 q^{61} - 26 q^{65} - 38 q^{69}+ \cdots + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.373720 1.69125i 0.215768 0.976445i
\(4\) 0 0
\(5\) 3.40435 + 1.96550i 1.52247 + 0.878999i 0.999647 + 0.0265586i \(0.00845486\pi\)
0.522824 + 0.852441i \(0.324878\pi\)
\(6\) 0 0
\(7\) −4.16592 + 2.40520i −1.57457 + 0.909079i −0.578974 + 0.815346i \(0.696547\pi\)
−0.995597 + 0.0937328i \(0.970120\pi\)
\(8\) 0 0
\(9\) −2.72067 1.26411i −0.906889 0.421370i
\(10\) 0 0
\(11\) −2.91097 + 1.68065i −0.877689 + 0.506734i −0.869896 0.493236i \(-0.835814\pi\)
−0.00779327 + 0.999970i \(0.502481\pi\)
\(12\) 0 0
\(13\) 0.448090 + 3.57760i 0.124278 + 0.992247i
\(14\) 0 0
\(15\) 4.59643 5.02306i 1.18679 1.29695i
\(16\) 0 0
\(17\) −1.07207 −0.260016 −0.130008 0.991513i \(-0.541500\pi\)
−0.130008 + 0.991513i \(0.541500\pi\)
\(18\) 0 0
\(19\) 6.57228i 1.50778i 0.656998 + 0.753892i \(0.271826\pi\)
−0.656998 + 0.753892i \(0.728174\pi\)
\(20\) 0 0
\(21\) 2.51090 + 7.94450i 0.547924 + 1.73363i
\(22\) 0 0
\(23\) 0.0427423 0.0740317i 0.00891238 0.0154367i −0.861535 0.507698i \(-0.830496\pi\)
0.870447 + 0.492262i \(0.163830\pi\)
\(24\) 0 0
\(25\) 5.22640 + 9.05238i 1.04528 + 1.81048i
\(26\) 0 0
\(27\) −3.15470 + 4.12891i −0.607122 + 0.794609i
\(28\) 0 0
\(29\) −0.514326 0.890839i −0.0955080 0.165425i 0.814313 0.580427i \(-0.197114\pi\)
−0.909821 + 0.415002i \(0.863781\pi\)
\(30\) 0 0
\(31\) −6.40180 3.69608i −1.14980 0.663836i −0.200960 0.979600i \(-0.564406\pi\)
−0.948838 + 0.315764i \(0.897739\pi\)
\(32\) 0 0
\(33\) 1.75451 + 5.55127i 0.305421 + 0.966352i
\(34\) 0 0
\(35\) −18.9097 −3.19632
\(36\) 0 0
\(37\) 4.76927i 0.784063i −0.919952 0.392031i \(-0.871772\pi\)
0.919952 0.392031i \(-0.128228\pi\)
\(38\) 0 0
\(39\) 6.21808 + 0.579189i 0.995690 + 0.0927445i
\(40\) 0 0
\(41\) 2.17095 + 1.25340i 0.339045 + 0.195748i 0.659850 0.751398i \(-0.270620\pi\)
−0.320804 + 0.947145i \(0.603953\pi\)
\(42\) 0 0
\(43\) 1.85904 + 3.21995i 0.283500 + 0.491037i 0.972244 0.233967i \(-0.0751709\pi\)
−0.688744 + 0.725005i \(0.741838\pi\)
\(44\) 0 0
\(45\) −6.77749 9.65095i −1.01033 1.43868i
\(46\) 0 0
\(47\) 8.71820 5.03346i 1.27168 0.734205i 0.296377 0.955071i \(-0.404222\pi\)
0.975304 + 0.220866i \(0.0708883\pi\)
\(48\) 0 0
\(49\) 8.06995 13.9776i 1.15285 1.99679i
\(50\) 0 0
\(51\) −0.400656 + 1.81315i −0.0561030 + 0.253891i
\(52\) 0 0
\(53\) −5.80367 −0.797195 −0.398598 0.917126i \(-0.630503\pi\)
−0.398598 + 0.917126i \(0.630503\pi\)
\(54\) 0 0
\(55\) −13.2133 −1.78168
\(56\) 0 0
\(57\) 11.1154 + 2.45620i 1.47227 + 0.325331i
\(58\) 0 0
\(59\) 10.4025 + 6.00590i 1.35429 + 0.781901i 0.988847 0.148932i \(-0.0475836\pi\)
0.365445 + 0.930833i \(0.380917\pi\)
\(60\) 0 0
\(61\) −2.30828 3.99806i −0.295545 0.511899i 0.679566 0.733614i \(-0.262168\pi\)
−0.975112 + 0.221715i \(0.928835\pi\)
\(62\) 0 0
\(63\) 14.3745 1.27755i 1.81102 0.160956i
\(64\) 0 0
\(65\) −5.50632 + 13.0601i −0.682975 + 1.61991i
\(66\) 0 0
\(67\) 2.45580 + 1.41786i 0.300024 + 0.173219i 0.642454 0.766325i \(-0.277916\pi\)
−0.342430 + 0.939543i \(0.611250\pi\)
\(68\) 0 0
\(69\) −0.109233 0.0999551i −0.0131501 0.0120332i
\(70\) 0 0
\(71\) 1.36430i 0.161913i −0.996718 0.0809564i \(-0.974203\pi\)
0.996718 0.0809564i \(-0.0257975\pi\)
\(72\) 0 0
\(73\) 2.67779i 0.313412i −0.987645 0.156706i \(-0.949913\pi\)
0.987645 0.156706i \(-0.0500874\pi\)
\(74\) 0 0
\(75\) 17.2631 5.45609i 1.99337 0.630015i
\(76\) 0 0
\(77\) 8.08457 14.0029i 0.921322 1.59578i
\(78\) 0 0
\(79\) 0.872958 + 1.51201i 0.0982155 + 0.170114i 0.910946 0.412525i \(-0.135353\pi\)
−0.812731 + 0.582640i \(0.802020\pi\)
\(80\) 0 0
\(81\) 5.80405 + 6.87845i 0.644894 + 0.764272i
\(82\) 0 0
\(83\) −12.2034 + 7.04566i −1.33950 + 0.773362i −0.986733 0.162349i \(-0.948093\pi\)
−0.352768 + 0.935711i \(0.614760\pi\)
\(84\) 0 0
\(85\) −3.64971 2.10716i −0.395867 0.228554i
\(86\) 0 0
\(87\) −1.69885 + 0.536931i −0.182136 + 0.0575650i
\(88\) 0 0
\(89\) 9.35462i 0.991587i 0.868440 + 0.495794i \(0.165123\pi\)
−0.868440 + 0.495794i \(0.834877\pi\)
\(90\) 0 0
\(91\) −10.4715 13.8263i −1.09772 1.44939i
\(92\) 0 0
\(93\) −8.64349 + 9.44576i −0.896288 + 0.979479i
\(94\) 0 0
\(95\) −12.9178 + 22.3743i −1.32534 + 2.29556i
\(96\) 0 0
\(97\) 6.64133 3.83437i 0.674325 0.389322i −0.123388 0.992358i \(-0.539376\pi\)
0.797713 + 0.603037i \(0.206043\pi\)
\(98\) 0 0
\(99\) 10.0443 0.892695i 1.00949 0.0897192i
\(100\) 0 0
\(101\) 7.44051 + 12.8873i 0.740358 + 1.28234i 0.952332 + 0.305063i \(0.0986775\pi\)
−0.211974 + 0.977275i \(0.567989\pi\)
\(102\) 0 0
\(103\) 9.46797 16.3990i 0.932907 1.61584i 0.154582 0.987980i \(-0.450597\pi\)
0.778325 0.627862i \(-0.216070\pi\)
\(104\) 0 0
\(105\) −7.06693 + 31.9810i −0.689662 + 3.12103i
\(106\) 0 0
\(107\) 14.6995 1.42105 0.710526 0.703671i \(-0.248457\pi\)
0.710526 + 0.703671i \(0.248457\pi\)
\(108\) 0 0
\(109\) 4.39621i 0.421081i 0.977585 + 0.210540i \(0.0675224\pi\)
−0.977585 + 0.210540i \(0.932478\pi\)
\(110\) 0 0
\(111\) −8.06603 1.78237i −0.765594 0.169175i
\(112\) 0 0
\(113\) −1.23196 + 2.13381i −0.115893 + 0.200732i −0.918136 0.396265i \(-0.870306\pi\)
0.802244 + 0.596997i \(0.203640\pi\)
\(114\) 0 0
\(115\) 0.291019 0.168020i 0.0271377 0.0156679i
\(116\) 0 0
\(117\) 3.30338 10.2999i 0.305398 0.952225i
\(118\) 0 0
\(119\) 4.46618 2.57855i 0.409414 0.236375i
\(120\) 0 0
\(121\) 0.149145 0.258327i 0.0135587 0.0234843i
\(122\) 0 0
\(123\) 2.93114 3.20320i 0.264292 0.288823i
\(124\) 0 0
\(125\) 21.4350i 1.91720i
\(126\) 0 0
\(127\) 17.2139 1.52749 0.763743 0.645520i \(-0.223359\pi\)
0.763743 + 0.645520i \(0.223359\pi\)
\(128\) 0 0
\(129\) 6.14050 1.94074i 0.540641 0.170873i
\(130\) 0 0
\(131\) 4.22778 7.32272i 0.369382 0.639789i −0.620087 0.784533i \(-0.712903\pi\)
0.989469 + 0.144744i \(0.0462359\pi\)
\(132\) 0 0
\(133\) −15.8076 27.3796i −1.37070 2.37411i
\(134\) 0 0
\(135\) −18.8551 + 7.85568i −1.62279 + 0.676109i
\(136\) 0 0
\(137\) −15.7874 + 9.11483i −1.34880 + 0.778733i −0.988080 0.153940i \(-0.950804\pi\)
−0.360724 + 0.932672i \(0.617470\pi\)
\(138\) 0 0
\(139\) 5.76010 9.97679i 0.488565 0.846220i −0.511348 0.859374i \(-0.670854\pi\)
0.999913 + 0.0131535i \(0.00418701\pi\)
\(140\) 0 0
\(141\) −5.25467 16.6258i −0.442523 1.40014i
\(142\) 0 0
\(143\) −7.31705 9.66119i −0.611883 0.807909i
\(144\) 0 0
\(145\) 4.04364i 0.335806i
\(146\) 0 0
\(147\) −20.6237 18.8720i −1.70101 1.55654i
\(148\) 0 0
\(149\) 3.77205 + 2.17780i 0.309019 + 0.178412i 0.646487 0.762925i \(-0.276237\pi\)
−0.337469 + 0.941337i \(0.609571\pi\)
\(150\) 0 0
\(151\) 3.70820 2.14093i 0.301769 0.174226i −0.341468 0.939893i \(-0.610924\pi\)
0.643237 + 0.765667i \(0.277591\pi\)
\(152\) 0 0
\(153\) 2.91675 + 1.35522i 0.235806 + 0.109563i
\(154\) 0 0
\(155\) −14.5293 25.1655i −1.16702 2.02134i
\(156\) 0 0
\(157\) −0.0630158 + 0.109147i −0.00502921 + 0.00871085i −0.868529 0.495638i \(-0.834934\pi\)
0.863500 + 0.504349i \(0.168268\pi\)
\(158\) 0 0
\(159\) −2.16895 + 9.81547i −0.172009 + 0.778417i
\(160\) 0 0
\(161\) 0.411214i 0.0324082i
\(162\) 0 0
\(163\) 16.6292i 1.30250i 0.758862 + 0.651252i \(0.225756\pi\)
−0.758862 + 0.651252i \(0.774244\pi\)
\(164\) 0 0
\(165\) −4.93806 + 22.3469i −0.384428 + 1.73971i
\(166\) 0 0
\(167\) −1.79761 1.03785i −0.139103 0.0803113i 0.428833 0.903384i \(-0.358925\pi\)
−0.567937 + 0.823072i \(0.692258\pi\)
\(168\) 0 0
\(169\) −12.5984 + 3.20617i −0.969110 + 0.246629i
\(170\) 0 0
\(171\) 8.30809 17.8810i 0.635336 1.36739i
\(172\) 0 0
\(173\) 7.17771 + 12.4322i 0.545711 + 0.945200i 0.998562 + 0.0536131i \(0.0170738\pi\)
−0.452851 + 0.891586i \(0.649593\pi\)
\(174\) 0 0
\(175\) −43.5455 25.1410i −3.29173 1.90048i
\(176\) 0 0
\(177\) 14.0451 15.3487i 1.05570 1.15368i
\(178\) 0 0
\(179\) −4.08797 −0.305549 −0.152775 0.988261i \(-0.548821\pi\)
−0.152775 + 0.988261i \(0.548821\pi\)
\(180\) 0 0
\(181\) −15.9509 −1.18562 −0.592810 0.805342i \(-0.701981\pi\)
−0.592810 + 0.805342i \(0.701981\pi\)
\(182\) 0 0
\(183\) −7.62438 + 2.40973i −0.563610 + 0.178132i
\(184\) 0 0
\(185\) 9.37400 16.2363i 0.689191 1.19371i
\(186\) 0 0
\(187\) 3.12077 1.80178i 0.228213 0.131759i
\(188\) 0 0
\(189\) 3.21140 24.7884i 0.233595 1.80309i
\(190\) 0 0
\(191\) −4.96091 8.59255i −0.358959 0.621735i 0.628828 0.777544i \(-0.283535\pi\)
−0.987787 + 0.155809i \(0.950202\pi\)
\(192\) 0 0
\(193\) −13.2392 7.64366i −0.952979 0.550203i −0.0589743 0.998260i \(-0.518783\pi\)
−0.894005 + 0.448057i \(0.852116\pi\)
\(194\) 0 0
\(195\) 20.0301 + 14.1934i 1.43439 + 1.01641i
\(196\) 0 0
\(197\) 1.23481i 0.0879768i 0.999032 + 0.0439884i \(0.0140065\pi\)
−0.999032 + 0.0439884i \(0.985994\pi\)
\(198\) 0 0
\(199\) −5.64801 −0.400377 −0.200188 0.979757i \(-0.564155\pi\)
−0.200188 + 0.979757i \(0.564155\pi\)
\(200\) 0 0
\(201\) 3.31574 3.62350i 0.233874 0.255582i
\(202\) 0 0
\(203\) 4.28529 + 2.47411i 0.300768 + 0.173649i
\(204\) 0 0
\(205\) 4.92711 + 8.53401i 0.344125 + 0.596041i
\(206\) 0 0
\(207\) −0.209872 + 0.147385i −0.0145871 + 0.0102439i
\(208\) 0 0
\(209\) −11.0457 19.1317i −0.764046 1.32337i
\(210\) 0 0
\(211\) −7.62853 + 13.2130i −0.525170 + 0.909621i 0.474401 + 0.880309i \(0.342665\pi\)
−0.999570 + 0.0293117i \(0.990668\pi\)
\(212\) 0 0
\(213\) −2.30738 0.509867i −0.158099 0.0349355i
\(214\) 0 0
\(215\) 14.6158i 0.996787i
\(216\) 0 0
\(217\) 35.5592 2.41392
\(218\) 0 0
\(219\) −4.52882 1.00074i −0.306029 0.0676241i
\(220\) 0 0
\(221\) −0.480385 3.83545i −0.0323142 0.258000i
\(222\) 0 0
\(223\) 13.9167 8.03480i 0.931930 0.538050i 0.0445087 0.999009i \(-0.485828\pi\)
0.887422 + 0.460959i \(0.152494\pi\)
\(224\) 0 0
\(225\) −2.77606 31.2353i −0.185071 2.08235i
\(226\) 0 0
\(227\) −4.18451 + 2.41593i −0.277735 + 0.160351i −0.632398 0.774644i \(-0.717929\pi\)
0.354662 + 0.934994i \(0.384596\pi\)
\(228\) 0 0
\(229\) 15.6874 + 9.05711i 1.03665 + 0.598510i 0.918883 0.394531i \(-0.129093\pi\)
0.117768 + 0.993041i \(0.462426\pi\)
\(230\) 0 0
\(231\) −20.6610 18.9062i −1.35940 1.24394i
\(232\) 0 0
\(233\) −1.37594 −0.0901411 −0.0450705 0.998984i \(-0.514351\pi\)
−0.0450705 + 0.998984i \(0.514351\pi\)
\(234\) 0 0
\(235\) 39.5731 2.58146
\(236\) 0 0
\(237\) 2.88343 0.911324i 0.187299 0.0591969i
\(238\) 0 0
\(239\) −4.84277 2.79597i −0.313253 0.180856i 0.335128 0.942172i \(-0.391220\pi\)
−0.648381 + 0.761316i \(0.724554\pi\)
\(240\) 0 0
\(241\) −10.4450 + 6.03041i −0.672820 + 0.388453i −0.797144 0.603789i \(-0.793657\pi\)
0.124324 + 0.992242i \(0.460324\pi\)
\(242\) 0 0
\(243\) 13.8023 7.24549i 0.885417 0.464798i
\(244\) 0 0
\(245\) 54.9458 31.7230i 3.51036 2.02671i
\(246\) 0 0
\(247\) −23.5130 + 2.94497i −1.49610 + 0.187384i
\(248\) 0 0
\(249\) 7.35531 + 23.2722i 0.466124 + 1.47482i
\(250\) 0 0
\(251\) 9.90201 0.625009 0.312505 0.949916i \(-0.398832\pi\)
0.312505 + 0.949916i \(0.398832\pi\)
\(252\) 0 0
\(253\) 0.287338i 0.0180648i
\(254\) 0 0
\(255\) −4.92772 + 5.38509i −0.308586 + 0.337228i
\(256\) 0 0
\(257\) −0.0748821 + 0.129700i −0.00467102 + 0.00809044i −0.868351 0.495949i \(-0.834820\pi\)
0.863680 + 0.504040i \(0.168154\pi\)
\(258\) 0 0
\(259\) 11.4710 + 19.8684i 0.712775 + 1.23456i
\(260\) 0 0
\(261\) 0.273190 + 3.07384i 0.0169101 + 0.190266i
\(262\) 0 0
\(263\) −3.18077 5.50926i −0.196135 0.339716i 0.751137 0.660146i \(-0.229506\pi\)
−0.947272 + 0.320431i \(0.896172\pi\)
\(264\) 0 0
\(265\) −19.7577 11.4071i −1.21371 0.700734i
\(266\) 0 0
\(267\) 15.8210 + 3.49601i 0.968230 + 0.213952i
\(268\) 0 0
\(269\) 8.43403 0.514232 0.257116 0.966381i \(-0.417228\pi\)
0.257116 + 0.966381i \(0.417228\pi\)
\(270\) 0 0
\(271\) 3.97794i 0.241643i 0.992674 + 0.120821i \(0.0385528\pi\)
−0.992674 + 0.120821i \(0.961447\pi\)
\(272\) 0 0
\(273\) −27.2971 + 12.5429i −1.65210 + 0.759128i
\(274\) 0 0
\(275\) −30.4277 17.5674i −1.83486 1.05936i
\(276\) 0 0
\(277\) −0.463857 0.803425i −0.0278705 0.0482731i 0.851754 0.523942i \(-0.175539\pi\)
−0.879624 + 0.475669i \(0.842206\pi\)
\(278\) 0 0
\(279\) 12.7449 + 18.1484i 0.763018 + 1.08652i
\(280\) 0 0
\(281\) −21.1864 + 12.2320i −1.26387 + 0.729698i −0.973822 0.227312i \(-0.927006\pi\)
−0.290053 + 0.957011i \(0.593673\pi\)
\(282\) 0 0
\(283\) 4.48336 7.76541i 0.266508 0.461606i −0.701450 0.712719i \(-0.747463\pi\)
0.967958 + 0.251114i \(0.0807968\pi\)
\(284\) 0 0
\(285\) 33.0130 + 30.2091i 1.95552 + 1.78943i
\(286\) 0 0
\(287\) −12.0587 −0.711801
\(288\) 0 0
\(289\) −15.8507 −0.932392
\(290\) 0 0
\(291\) −4.00289 12.6651i −0.234654 0.742444i
\(292\) 0 0
\(293\) 0.734208 + 0.423895i 0.0428929 + 0.0247642i 0.521293 0.853378i \(-0.325450\pi\)
−0.478400 + 0.878142i \(0.658783\pi\)
\(294\) 0 0
\(295\) 23.6092 + 40.8923i 1.37458 + 2.38084i
\(296\) 0 0
\(297\) 2.24398 17.3210i 0.130209 1.00507i
\(298\) 0 0
\(299\) 0.284008 + 0.119742i 0.0164246 + 0.00692485i
\(300\) 0 0
\(301\) −15.4892 8.94270i −0.892783 0.515449i
\(302\) 0 0
\(303\) 24.5764 7.76751i 1.41188 0.446232i
\(304\) 0 0
\(305\) 18.1477i 1.03914i
\(306\) 0 0
\(307\) 22.2228i 1.26832i 0.773201 + 0.634162i \(0.218655\pi\)
−0.773201 + 0.634162i \(0.781345\pi\)
\(308\) 0 0
\(309\) −24.1965 22.1414i −1.37649 1.25958i
\(310\) 0 0
\(311\) −13.5320 + 23.4382i −0.767331 + 1.32906i 0.171674 + 0.985154i \(0.445082\pi\)
−0.939005 + 0.343903i \(0.888251\pi\)
\(312\) 0 0
\(313\) −10.6275 18.4074i −0.600703 1.04045i −0.992715 0.120488i \(-0.961554\pi\)
0.392012 0.919960i \(-0.371779\pi\)
\(314\) 0 0
\(315\) 51.4469 + 23.9039i 2.89871 + 1.34683i
\(316\) 0 0
\(317\) −9.41447 + 5.43545i −0.528770 + 0.305285i −0.740515 0.672040i \(-0.765418\pi\)
0.211746 + 0.977325i \(0.432085\pi\)
\(318\) 0 0
\(319\) 2.99437 + 1.72880i 0.167653 + 0.0967943i
\(320\) 0 0
\(321\) 5.49350 24.8605i 0.306617 1.38758i
\(322\) 0 0
\(323\) 7.04597i 0.392048i
\(324\) 0 0
\(325\) −30.0439 + 22.7542i −1.66654 + 1.26218i
\(326\) 0 0
\(327\) 7.43510 + 1.64295i 0.411162 + 0.0908556i
\(328\) 0 0
\(329\) −24.2129 + 41.9380i −1.33490 + 2.31212i
\(330\) 0 0
\(331\) 6.42626 3.71020i 0.353219 0.203931i −0.312883 0.949792i \(-0.601295\pi\)
0.666102 + 0.745860i \(0.267961\pi\)
\(332\) 0 0
\(333\) −6.02888 + 12.9756i −0.330381 + 0.711058i
\(334\) 0 0
\(335\) 5.57361 + 9.65377i 0.304519 + 0.527442i
\(336\) 0 0
\(337\) 10.1784 17.6296i 0.554455 0.960345i −0.443490 0.896279i \(-0.646260\pi\)
0.997946 0.0640656i \(-0.0204067\pi\)
\(338\) 0 0
\(339\) 3.14841 + 2.88100i 0.170998 + 0.156474i
\(340\) 0 0
\(341\) 24.8472 1.34555
\(342\) 0 0
\(343\) 43.9665i 2.37397i
\(344\) 0 0
\(345\) −0.175404 0.554979i −0.00944345 0.0298791i
\(346\) 0 0
\(347\) −4.83922 + 8.38177i −0.259783 + 0.449957i −0.966184 0.257855i \(-0.916984\pi\)
0.706401 + 0.707812i \(0.250318\pi\)
\(348\) 0 0
\(349\) 20.3188 11.7311i 1.08764 0.627949i 0.154693 0.987963i \(-0.450561\pi\)
0.932947 + 0.360014i \(0.117228\pi\)
\(350\) 0 0
\(351\) −16.1852 9.43613i −0.863900 0.503663i
\(352\) 0 0
\(353\) −9.12721 + 5.26960i −0.485792 + 0.280472i −0.722827 0.691029i \(-0.757158\pi\)
0.237035 + 0.971501i \(0.423824\pi\)
\(354\) 0 0
\(355\) 2.68154 4.64456i 0.142321 0.246508i
\(356\) 0 0
\(357\) −2.69187 8.51709i −0.142469 0.450772i
\(358\) 0 0
\(359\) 33.8494i 1.78650i −0.449557 0.893252i \(-0.648418\pi\)
0.449557 0.893252i \(-0.351582\pi\)
\(360\) 0 0
\(361\) −24.1949 −1.27341
\(362\) 0 0
\(363\) −0.381158 0.348784i −0.0200056 0.0183064i
\(364\) 0 0
\(365\) 5.26320 9.11613i 0.275489 0.477160i
\(366\) 0 0
\(367\) −0.752021 1.30254i −0.0392552 0.0679920i 0.845730 0.533611i \(-0.179165\pi\)
−0.884985 + 0.465619i \(0.845832\pi\)
\(368\) 0 0
\(369\) −4.32199 6.15440i −0.224994 0.320385i
\(370\) 0 0
\(371\) 24.1776 13.9590i 1.25524 0.724713i
\(372\) 0 0
\(373\) 10.6689 18.4790i 0.552414 0.956808i −0.445686 0.895189i \(-0.647040\pi\)
0.998100 0.0616191i \(-0.0196264\pi\)
\(374\) 0 0
\(375\) 36.2519 + 8.01068i 1.87204 + 0.413670i
\(376\) 0 0
\(377\) 2.95660 2.23923i 0.152273 0.115326i
\(378\) 0 0
\(379\) 13.1930i 0.677681i −0.940844 0.338840i \(-0.889965\pi\)
0.940844 0.338840i \(-0.110035\pi\)
\(380\) 0 0
\(381\) 6.43318 29.1130i 0.329582 1.49151i
\(382\) 0 0
\(383\) −6.64542 3.83673i −0.339565 0.196048i 0.320515 0.947244i \(-0.396144\pi\)
−0.660080 + 0.751196i \(0.729477\pi\)
\(384\) 0 0
\(385\) 55.0454 31.7805i 2.80537 1.61968i
\(386\) 0 0
\(387\) −0.987449 11.1104i −0.0501949 0.564775i
\(388\) 0 0
\(389\) −1.23245 2.13467i −0.0624877 0.108232i 0.833089 0.553139i \(-0.186570\pi\)
−0.895577 + 0.444907i \(0.853237\pi\)
\(390\) 0 0
\(391\) −0.0458228 + 0.0793675i −0.00231736 + 0.00401379i
\(392\) 0 0
\(393\) −10.8046 9.88688i −0.545018 0.498727i
\(394\) 0 0
\(395\) 6.86321i 0.345325i
\(396\) 0 0
\(397\) 30.6817i 1.53987i −0.638121 0.769936i \(-0.720288\pi\)
0.638121 0.769936i \(-0.279712\pi\)
\(398\) 0 0
\(399\) −52.2135 + 16.5024i −2.61394 + 0.826151i
\(400\) 0 0
\(401\) 28.8517 + 16.6575i 1.44078 + 0.831837i 0.997902 0.0647435i \(-0.0206229\pi\)
0.442881 + 0.896580i \(0.353956\pi\)
\(402\) 0 0
\(403\) 10.3545 24.5593i 0.515795 1.22338i
\(404\) 0 0
\(405\) 6.23940 + 34.8245i 0.310038 + 1.73044i
\(406\) 0 0
\(407\) 8.01545 + 13.8832i 0.397311 + 0.688163i
\(408\) 0 0
\(409\) 29.0463 + 16.7699i 1.43625 + 0.829219i 0.997587 0.0694331i \(-0.0221190\pi\)
0.438662 + 0.898652i \(0.355452\pi\)
\(410\) 0 0
\(411\) 9.51542 + 30.1068i 0.469361 + 1.48506i
\(412\) 0 0
\(413\) −57.7814 −2.84324
\(414\) 0 0
\(415\) −55.3930 −2.71914
\(416\) 0 0
\(417\) −14.7206 13.4703i −0.720871 0.659644i
\(418\) 0 0
\(419\) −2.84913 + 4.93483i −0.139189 + 0.241082i −0.927190 0.374592i \(-0.877783\pi\)
0.788001 + 0.615674i \(0.211116\pi\)
\(420\) 0 0
\(421\) −18.0959 + 10.4477i −0.881939 + 0.509188i −0.871297 0.490755i \(-0.836721\pi\)
−0.0106421 + 0.999943i \(0.503388\pi\)
\(422\) 0 0
\(423\) −30.0822 + 2.67358i −1.46265 + 0.129994i
\(424\) 0 0
\(425\) −5.60308 9.70482i −0.271789 0.470753i
\(426\) 0 0
\(427\) 19.2322 + 11.1037i 0.930714 + 0.537348i
\(428\) 0 0
\(429\) −19.0740 + 8.76440i −0.920903 + 0.423149i
\(430\) 0 0
\(431\) 26.6529i 1.28382i 0.766778 + 0.641912i \(0.221859\pi\)
−0.766778 + 0.641912i \(0.778141\pi\)
\(432\) 0 0
\(433\) 29.5411 1.41965 0.709827 0.704376i \(-0.248773\pi\)
0.709827 + 0.704376i \(0.248773\pi\)
\(434\) 0 0
\(435\) −6.83881 1.51119i −0.327896 0.0724560i
\(436\) 0 0
\(437\) 0.486557 + 0.280914i 0.0232752 + 0.0134379i
\(438\) 0 0
\(439\) 3.60721 + 6.24786i 0.172163 + 0.298194i 0.939176 0.343437i \(-0.111591\pi\)
−0.767013 + 0.641631i \(0.778258\pi\)
\(440\) 0 0
\(441\) −39.6248 + 27.8270i −1.88690 + 1.32509i
\(442\) 0 0
\(443\) −4.26300 7.38373i −0.202541 0.350812i 0.746805 0.665043i \(-0.231587\pi\)
−0.949347 + 0.314231i \(0.898253\pi\)
\(444\) 0 0
\(445\) −18.3865 + 31.8464i −0.871604 + 1.50966i
\(446\) 0 0
\(447\) 5.09290 5.56561i 0.240886 0.263244i
\(448\) 0 0
\(449\) 14.0039i 0.660883i 0.943826 + 0.330441i \(0.107198\pi\)
−0.943826 + 0.330441i \(0.892802\pi\)
\(450\) 0 0
\(451\) −8.42608 −0.396769
\(452\) 0 0
\(453\) −2.23502 7.07161i −0.105010 0.332253i
\(454\) 0 0
\(455\) −8.47323 67.6512i −0.397231 3.17154i
\(456\) 0 0
\(457\) 29.6357 17.1102i 1.38630 0.800380i 0.393402 0.919366i \(-0.371298\pi\)
0.992896 + 0.118987i \(0.0379646\pi\)
\(458\) 0 0
\(459\) 3.38207 4.42649i 0.157861 0.206611i
\(460\) 0 0
\(461\) −7.56297 + 4.36648i −0.352242 + 0.203367i −0.665672 0.746244i \(-0.731855\pi\)
0.313430 + 0.949611i \(0.398522\pi\)
\(462\) 0 0
\(463\) 0.0993345 + 0.0573508i 0.00461646 + 0.00266532i 0.502306 0.864690i \(-0.332485\pi\)
−0.497690 + 0.867355i \(0.665818\pi\)
\(464\) 0 0
\(465\) −47.9911 + 15.1679i −2.22553 + 0.703393i
\(466\) 0 0
\(467\) 42.6123 1.97186 0.985932 0.167147i \(-0.0534556\pi\)
0.985932 + 0.167147i \(0.0534556\pi\)
\(468\) 0 0
\(469\) −13.6409 −0.629879
\(470\) 0 0
\(471\) 0.161044 + 0.147366i 0.00742052 + 0.00679027i
\(472\) 0 0
\(473\) −10.8232 6.24877i −0.497650 0.287319i
\(474\) 0 0
\(475\) −59.4948 + 34.3493i −2.72981 + 1.57606i
\(476\) 0 0
\(477\) 15.7898 + 7.33648i 0.722967 + 0.335914i
\(478\) 0 0
\(479\) −26.1199 + 15.0803i −1.19345 + 0.689037i −0.959086 0.283113i \(-0.908633\pi\)
−0.234360 + 0.972150i \(0.575299\pi\)
\(480\) 0 0
\(481\) 17.0625 2.13706i 0.777984 0.0974415i
\(482\) 0 0
\(483\) 0.695467 + 0.153679i 0.0316448 + 0.00699264i
\(484\) 0 0
\(485\) 30.1459 1.36885
\(486\) 0 0
\(487\) 1.98683i 0.0900319i −0.998986 0.0450160i \(-0.985666\pi\)
0.998986 0.0450160i \(-0.0143339\pi\)
\(488\) 0 0
\(489\) 28.1242 + 6.21469i 1.27182 + 0.281038i
\(490\) 0 0
\(491\) −9.16415 + 15.8728i −0.413572 + 0.716328i −0.995277 0.0970714i \(-0.969052\pi\)
0.581705 + 0.813400i \(0.302386\pi\)
\(492\) 0 0
\(493\) 0.551396 + 0.955045i 0.0248336 + 0.0430131i
\(494\) 0 0
\(495\) 35.9489 + 16.7030i 1.61578 + 0.750745i
\(496\) 0 0
\(497\) 3.28141 + 5.68357i 0.147192 + 0.254943i
\(498\) 0 0
\(499\) 1.45294 + 0.838857i 0.0650427 + 0.0375524i 0.532169 0.846638i \(-0.321377\pi\)
−0.467126 + 0.884191i \(0.654711\pi\)
\(500\) 0 0
\(501\) −2.42707 + 2.65234i −0.108433 + 0.118498i
\(502\) 0 0
\(503\) 3.47253 0.154833 0.0774163 0.996999i \(-0.475333\pi\)
0.0774163 + 0.996999i \(0.475333\pi\)
\(504\) 0 0
\(505\) 58.4973i 2.60310i
\(506\) 0 0
\(507\) 0.714151 + 22.5053i 0.0317166 + 0.999497i
\(508\) 0 0
\(509\) 16.0585 + 9.27140i 0.711782 + 0.410948i 0.811720 0.584046i \(-0.198531\pi\)
−0.0999385 + 0.994994i \(0.531865\pi\)
\(510\) 0 0
\(511\) 6.44061 + 11.1555i 0.284916 + 0.493489i
\(512\) 0 0
\(513\) −27.1363 20.7336i −1.19810 0.915409i
\(514\) 0 0
\(515\) 64.4645 37.2186i 2.84065 1.64005i
\(516\) 0 0
\(517\) −16.9189 + 29.3044i −0.744093 + 1.28881i
\(518\) 0 0
\(519\) 23.7084 7.49316i 1.04068 0.328913i
\(520\) 0 0
\(521\) 25.7368 1.12755 0.563775 0.825929i \(-0.309349\pi\)
0.563775 + 0.825929i \(0.309349\pi\)
\(522\) 0 0
\(523\) −6.85993 −0.299964 −0.149982 0.988689i \(-0.547922\pi\)
−0.149982 + 0.988689i \(0.547922\pi\)
\(524\) 0 0
\(525\) −58.7937 + 64.2508i −2.56597 + 2.80413i
\(526\) 0 0
\(527\) 6.86320 + 3.96247i 0.298966 + 0.172608i
\(528\) 0 0
\(529\) 11.4963 + 19.9123i 0.499841 + 0.865750i
\(530\) 0 0
\(531\) −20.7097 29.4900i −0.898722 1.27976i
\(532\) 0 0
\(533\) −3.51138 + 8.32842i −0.152095 + 0.360744i
\(534\) 0 0
\(535\) 50.0422 + 28.8919i 2.16351 + 1.24910i
\(536\) 0 0
\(537\) −1.52776 + 6.91379i −0.0659276 + 0.298352i
\(538\) 0 0
\(539\) 54.2509i 2.33675i
\(540\) 0 0
\(541\) 19.9869i 0.859306i −0.902994 0.429653i \(-0.858636\pi\)
0.902994 0.429653i \(-0.141364\pi\)
\(542\) 0 0
\(543\) −5.96117 + 26.9770i −0.255818 + 1.15769i
\(544\) 0 0
\(545\) −8.64077 + 14.9662i −0.370130 + 0.641084i
\(546\) 0 0
\(547\) −7.24562 12.5498i −0.309800 0.536590i 0.668518 0.743696i \(-0.266929\pi\)
−0.978319 + 0.207106i \(0.933596\pi\)
\(548\) 0 0
\(549\) 1.22607 + 13.7953i 0.0523274 + 0.588770i
\(550\) 0 0
\(551\) 5.85485 3.38030i 0.249425 0.144005i
\(552\) 0 0
\(553\) −7.27336 4.19927i −0.309295 0.178571i
\(554\) 0 0
\(555\) −23.9563 21.9216i −1.01689 0.930521i
\(556\) 0 0
\(557\) 12.8651i 0.545110i −0.962140 0.272555i \(-0.912131\pi\)
0.962140 0.272555i \(-0.0878687\pi\)
\(558\) 0 0
\(559\) −10.6867 + 8.09371i −0.451998 + 0.342328i
\(560\) 0 0
\(561\) −1.88096 5.95137i −0.0794143 0.251267i
\(562\) 0 0
\(563\) −2.23678 + 3.87421i −0.0942689 + 0.163278i −0.909303 0.416134i \(-0.863385\pi\)
0.815034 + 0.579413i \(0.196718\pi\)
\(564\) 0 0
\(565\) −8.38802 + 4.84283i −0.352887 + 0.203739i
\(566\) 0 0
\(567\) −40.7232 14.6952i −1.71022 0.617141i
\(568\) 0 0
\(569\) 21.7045 + 37.5933i 0.909900 + 1.57599i 0.814202 + 0.580582i \(0.197175\pi\)
0.0956977 + 0.995410i \(0.469492\pi\)
\(570\) 0 0
\(571\) −9.96107 + 17.2531i −0.416858 + 0.722019i −0.995621 0.0934764i \(-0.970202\pi\)
0.578764 + 0.815495i \(0.303535\pi\)
\(572\) 0 0
\(573\) −16.3862 + 5.17894i −0.684542 + 0.216353i
\(574\) 0 0
\(575\) 0.893552 0.0372637
\(576\) 0 0
\(577\) 40.2426i 1.67532i −0.546190 0.837661i \(-0.683922\pi\)
0.546190 0.837661i \(-0.316078\pi\)
\(578\) 0 0
\(579\) −17.8751 + 19.5343i −0.742865 + 0.811816i
\(580\) 0 0
\(581\) 33.8924 58.7034i 1.40609 2.43543i
\(582\) 0 0
\(583\) 16.8943 9.75392i 0.699690 0.403966i
\(584\) 0 0
\(585\) 31.4903 28.5716i 1.30196 1.18129i
\(586\) 0 0
\(587\) 5.59848 3.23229i 0.231074 0.133411i −0.379993 0.924989i \(-0.624074\pi\)
0.611068 + 0.791578i \(0.290740\pi\)
\(588\) 0 0
\(589\) 24.2917 42.0744i 1.00092 1.73365i
\(590\) 0 0
\(591\) 2.08838 + 0.461475i 0.0859045 + 0.0189825i
\(592\) 0 0
\(593\) 20.8574i 0.856510i −0.903658 0.428255i \(-0.859129\pi\)
0.903658 0.428255i \(-0.140871\pi\)
\(594\) 0 0
\(595\) 20.2726 0.831094
\(596\) 0 0
\(597\) −2.11078 + 9.55221i −0.0863883 + 0.390946i
\(598\) 0 0
\(599\) −3.67196 + 6.36003i −0.150032 + 0.259864i −0.931239 0.364409i \(-0.881271\pi\)
0.781207 + 0.624272i \(0.214604\pi\)
\(600\) 0 0
\(601\) 5.37782 + 9.31465i 0.219366 + 0.379953i 0.954614 0.297845i \(-0.0962679\pi\)
−0.735248 + 0.677798i \(0.762935\pi\)
\(602\) 0 0
\(603\) −4.88909 6.96193i −0.199099 0.283512i
\(604\) 0 0
\(605\) 1.01549 0.586291i 0.0412854 0.0238361i
\(606\) 0 0
\(607\) 8.29221 14.3625i 0.336570 0.582957i −0.647215 0.762308i \(-0.724066\pi\)
0.983785 + 0.179351i \(0.0573997\pi\)
\(608\) 0 0
\(609\) 5.78585 6.32288i 0.234454 0.256216i
\(610\) 0 0
\(611\) 21.9142 + 28.9348i 0.886555 + 1.17058i
\(612\) 0 0
\(613\) 4.54150i 0.183429i 0.995785 + 0.0917147i \(0.0292348\pi\)
−0.995785 + 0.0917147i \(0.970765\pi\)
\(614\) 0 0
\(615\) 16.2745 5.14366i 0.656252 0.207412i
\(616\) 0 0
\(617\) −0.149964 0.0865815i −0.00603731 0.00348564i 0.496978 0.867763i \(-0.334443\pi\)
−0.503016 + 0.864277i \(0.667776\pi\)
\(618\) 0 0
\(619\) −23.6778 + 13.6704i −0.951692 + 0.549460i −0.893606 0.448852i \(-0.851833\pi\)
−0.0580858 + 0.998312i \(0.518500\pi\)
\(620\) 0 0
\(621\) 0.170831 + 0.410027i 0.00685523 + 0.0164538i
\(622\) 0 0
\(623\) −22.4997 38.9706i −0.901431 1.56132i
\(624\) 0 0
\(625\) −15.9985 + 27.7101i −0.639938 + 1.10841i
\(626\) 0 0
\(627\) −36.4845 + 11.5311i −1.45705 + 0.460509i
\(628\) 0 0
\(629\) 5.11301i 0.203869i
\(630\) 0 0
\(631\) 37.8137i 1.50534i 0.658397 + 0.752670i \(0.271235\pi\)
−0.658397 + 0.752670i \(0.728765\pi\)
\(632\) 0 0
\(633\) 19.4956 + 17.8397i 0.774880 + 0.709066i
\(634\) 0 0
\(635\) 58.6021 + 33.8339i 2.32555 + 1.34266i
\(636\) 0 0
\(637\) 53.6221 + 22.6078i 2.12459 + 0.895755i
\(638\) 0 0
\(639\) −1.72463 + 3.71181i −0.0682252 + 0.146837i
\(640\) 0 0
\(641\) −3.77702 6.54200i −0.149184 0.258393i 0.781742 0.623601i \(-0.214331\pi\)
−0.930926 + 0.365208i \(0.880998\pi\)
\(642\) 0 0
\(643\) 24.2155 + 13.9808i 0.954964 + 0.551349i 0.894620 0.446829i \(-0.147447\pi\)
0.0603447 + 0.998178i \(0.480780\pi\)
\(644\) 0 0
\(645\) 24.7189 + 5.46221i 0.973307 + 0.215074i
\(646\) 0 0
\(647\) −5.98842 −0.235429 −0.117715 0.993047i \(-0.537557\pi\)
−0.117715 + 0.993047i \(0.537557\pi\)
\(648\) 0 0
\(649\) −40.3751 −1.58486
\(650\) 0 0
\(651\) 13.2892 60.1396i 0.520845 2.35706i
\(652\) 0 0
\(653\) 8.90801 15.4291i 0.348597 0.603789i −0.637403 0.770531i \(-0.719991\pi\)
0.986001 + 0.166742i \(0.0533247\pi\)
\(654\) 0 0
\(655\) 28.7857 16.6194i 1.12475 0.649374i
\(656\) 0 0
\(657\) −3.38502 + 7.28537i −0.132062 + 0.284229i
\(658\) 0 0
\(659\) 23.8222 + 41.2613i 0.927982 + 1.60731i 0.786694 + 0.617343i \(0.211791\pi\)
0.141288 + 0.989969i \(0.454876\pi\)
\(660\) 0 0
\(661\) −4.59633 2.65370i −0.178777 0.103217i 0.407941 0.913008i \(-0.366247\pi\)
−0.586718 + 0.809791i \(0.699580\pi\)
\(662\) 0 0
\(663\) −6.66624 0.620934i −0.258895 0.0241151i
\(664\) 0 0
\(665\) 124.280i 4.81936i
\(666\) 0 0
\(667\) −0.0879339 −0.00340481
\(668\) 0 0
\(669\) −8.38792 26.5394i −0.324296 1.02607i
\(670\) 0 0
\(671\) 13.4387 + 7.75881i 0.518794 + 0.299526i
\(672\) 0 0
\(673\) 13.9628 + 24.1842i 0.538225 + 0.932233i 0.999000 + 0.0447160i \(0.0142383\pi\)
−0.460775 + 0.887517i \(0.652428\pi\)
\(674\) 0 0
\(675\) −53.8642 6.97823i −2.07323 0.268592i
\(676\) 0 0
\(677\) −9.19203 15.9211i −0.353278 0.611896i 0.633544 0.773707i \(-0.281600\pi\)
−0.986822 + 0.161811i \(0.948266\pi\)
\(678\) 0 0
\(679\) −18.4449 + 31.9474i −0.707848 + 1.22603i
\(680\) 0 0
\(681\) 2.52210 + 7.97993i 0.0966472 + 0.305792i
\(682\) 0 0
\(683\) 27.5533i 1.05430i −0.849773 0.527149i \(-0.823261\pi\)
0.849773 0.527149i \(-0.176739\pi\)
\(684\) 0 0
\(685\) −71.6609 −2.73802
\(686\) 0 0
\(687\) 21.1805 23.1465i 0.808088 0.883093i
\(688\) 0 0
\(689\) −2.60056 20.7632i −0.0990736 0.791015i
\(690\) 0 0
\(691\) 18.0882 10.4432i 0.688109 0.397280i −0.114795 0.993389i \(-0.536621\pi\)
0.802903 + 0.596110i \(0.203288\pi\)
\(692\) 0 0
\(693\) −39.6966 + 27.8774i −1.50795 + 1.05897i
\(694\) 0 0
\(695\) 39.2188 22.6430i 1.48765 0.858897i
\(696\) 0 0
\(697\) −2.32742 1.34374i −0.0881573 0.0508976i
\(698\) 0 0
\(699\) −0.514218 + 2.32707i −0.0194495 + 0.0880178i
\(700\) 0 0
\(701\) 39.0518 1.47496 0.737482 0.675366i \(-0.236014\pi\)
0.737482 + 0.675366i \(0.236014\pi\)
\(702\) 0 0
\(703\) 31.3450 1.18220
\(704\) 0 0
\(705\) 14.7893 66.9280i 0.556996 2.52066i
\(706\) 0 0
\(707\) −61.9932 35.7918i −2.33149 1.34609i
\(708\) 0 0
\(709\) 2.00983 1.16037i 0.0754807 0.0435788i −0.461785 0.886992i \(-0.652791\pi\)
0.537265 + 0.843413i \(0.319457\pi\)
\(710\) 0 0
\(711\) −0.463682 5.21719i −0.0173894 0.195660i
\(712\) 0 0
\(713\) −0.547255 + 0.315958i −0.0204949 + 0.0118327i
\(714\) 0 0
\(715\) −5.92072 47.2717i −0.221423 1.76786i
\(716\) 0 0
\(717\) −6.53854 + 7.14543i −0.244186 + 0.266851i
\(718\) 0 0
\(719\) −7.04587 −0.262767 −0.131383 0.991332i \(-0.541942\pi\)
−0.131383 + 0.991332i \(0.541942\pi\)
\(720\) 0 0
\(721\) 91.0893i 3.39234i
\(722\) 0 0
\(723\) 6.29544 + 19.9188i 0.234130 + 0.740788i
\(724\) 0 0
\(725\) 5.37615 9.31176i 0.199665 0.345830i
\(726\) 0 0
\(727\) −3.57535 6.19269i −0.132602 0.229674i 0.792077 0.610422i \(-0.209000\pi\)
−0.924679 + 0.380748i \(0.875667\pi\)
\(728\) 0 0
\(729\) −7.09575 26.0509i −0.262806 0.964849i
\(730\) 0 0
\(731\) −1.99302 3.45202i −0.0737147 0.127678i
\(732\) 0 0
\(733\) 7.90471 + 4.56378i 0.291967 + 0.168567i 0.638829 0.769349i \(-0.279419\pi\)
−0.346862 + 0.937916i \(0.612753\pi\)
\(734\) 0 0
\(735\) −33.1172 104.783i −1.22155 3.86497i
\(736\) 0 0
\(737\) −9.53168 −0.351104
\(738\) 0 0
\(739\) 44.0839i 1.62165i −0.585286 0.810827i \(-0.699018\pi\)
0.585286 0.810827i \(-0.300982\pi\)
\(740\) 0 0
\(741\) −3.80660 + 40.8670i −0.139839 + 1.50129i
\(742\) 0 0
\(743\) −22.0405 12.7251i −0.808586 0.466838i 0.0378784 0.999282i \(-0.487940\pi\)
−0.846465 + 0.532445i \(0.821273\pi\)
\(744\) 0 0
\(745\) 8.56093 + 14.8280i 0.313648 + 0.543255i
\(746\) 0 0
\(747\) 42.1080 3.74239i 1.54065 0.136927i
\(748\) 0 0
\(749\) −61.2369 + 35.3551i −2.23755 + 1.29185i
\(750\) 0 0
\(751\) 1.96715 3.40721i 0.0717824 0.124331i −0.827900 0.560876i \(-0.810465\pi\)
0.899683 + 0.436545i \(0.143798\pi\)
\(752\) 0 0
\(753\) 3.70058 16.7468i 0.134857 0.610287i
\(754\) 0 0
\(755\) 16.8320 0.612579
\(756\) 0 0
\(757\) 33.9336 1.23334 0.616669 0.787223i \(-0.288482\pi\)
0.616669 + 0.787223i \(0.288482\pi\)
\(758\) 0 0
\(759\) 0.485962 + 0.107384i 0.0176393 + 0.00389780i
\(760\) 0 0
\(761\) 9.27065 + 5.35241i 0.336061 + 0.194025i 0.658529 0.752556i \(-0.271179\pi\)
−0.322468 + 0.946580i \(0.604512\pi\)
\(762\) 0 0
\(763\) −10.5738 18.3143i −0.382796 0.663022i
\(764\) 0 0
\(765\) 7.26596 + 10.3465i 0.262701 + 0.374080i
\(766\) 0 0
\(767\) −16.8254 + 39.9072i −0.607531 + 1.44097i
\(768\) 0 0
\(769\) 11.8513 + 6.84235i 0.427369 + 0.246741i 0.698225 0.715878i \(-0.253974\pi\)
−0.270856 + 0.962620i \(0.587307\pi\)
\(770\) 0 0
\(771\) 0.191370 + 0.175116i 0.00689201 + 0.00630664i
\(772\) 0 0
\(773\) 11.4346i 0.411273i −0.978628 0.205637i \(-0.934074\pi\)
0.978628 0.205637i \(-0.0659265\pi\)
\(774\) 0 0
\(775\) 77.2688i 2.77558i
\(776\) 0 0
\(777\) 37.8894 11.9752i 1.35928 0.429607i
\(778\) 0 0
\(779\) −8.23769 + 14.2681i −0.295146 + 0.511207i
\(780\) 0 0
\(781\) 2.29291 + 3.97143i 0.0820467 + 0.142109i
\(782\) 0 0
\(783\) 5.30074 + 0.686724i 0.189433 + 0.0245415i
\(784\) 0 0
\(785\) −0.429056 + 0.247715i −0.0153137 + 0.00884134i
\(786\) 0 0
\(787\) −38.5078 22.2325i −1.37265 0.792503i −0.381393 0.924413i \(-0.624556\pi\)
−0.991262 + 0.131910i \(0.957889\pi\)
\(788\) 0 0
\(789\) −10.5063 + 3.32057i −0.374033 + 0.118215i
\(790\) 0 0
\(791\) 11.8524i 0.421423i
\(792\) 0 0
\(793\) 13.2691 10.0496i 0.471201 0.356872i
\(794\) 0 0
\(795\) −26.6762 + 29.1522i −0.946107 + 1.03392i
\(796\) 0 0
\(797\) 4.39354 7.60984i 0.155627 0.269554i −0.777660 0.628685i \(-0.783593\pi\)
0.933287 + 0.359131i \(0.116927\pi\)
\(798\) 0 0
\(799\) −9.34656 + 5.39624i −0.330657 + 0.190905i
\(800\) 0 0
\(801\) 11.8253 25.4508i 0.417825 0.899259i
\(802\) 0 0
\(803\) 4.50042 + 7.79495i 0.158816 + 0.275078i
\(804\) 0 0
\(805\) −0.808242 + 1.39992i −0.0284868 + 0.0493406i
\(806\) 0 0
\(807\) 3.15197 14.2641i 0.110955 0.502119i
\(808\) 0 0
\(809\) −51.4550 −1.80906 −0.904530 0.426410i \(-0.859778\pi\)
−0.904530 + 0.426410i \(0.859778\pi\)
\(810\) 0 0
\(811\) 0.149585i 0.00525263i −0.999997 0.00262632i \(-0.999164\pi\)
0.999997 0.00262632i \(-0.000835984\pi\)
\(812\) 0 0
\(813\) 6.72770 + 1.48664i 0.235951 + 0.0521387i
\(814\) 0 0
\(815\) −32.6848 + 56.6118i −1.14490 + 1.98302i
\(816\) 0 0
\(817\) −21.1624 + 12.2181i −0.740378 + 0.427458i
\(818\) 0 0
\(819\) 11.0116 + 50.8538i 0.384778 + 1.77698i
\(820\) 0 0
\(821\) 3.57618 2.06471i 0.124809 0.0720588i −0.436295 0.899803i \(-0.643710\pi\)
0.561105 + 0.827745i \(0.310376\pi\)
\(822\) 0 0
\(823\) −12.2798 + 21.2693i −0.428047 + 0.741400i −0.996700 0.0811784i \(-0.974132\pi\)
0.568652 + 0.822578i \(0.307465\pi\)
\(824\) 0 0
\(825\) −41.0824 + 44.8956i −1.43031 + 1.56306i
\(826\) 0 0
\(827\) 41.7582i 1.45207i −0.687656 0.726037i \(-0.741360\pi\)
0.687656 0.726037i \(-0.258640\pi\)
\(828\) 0 0
\(829\) 30.9427 1.07468 0.537342 0.843365i \(-0.319429\pi\)
0.537342 + 0.843365i \(0.319429\pi\)
\(830\) 0 0
\(831\) −1.53215 + 0.484244i −0.0531496 + 0.0167982i
\(832\) 0 0
\(833\) −8.65158 + 14.9850i −0.299759 + 0.519198i
\(834\) 0 0
\(835\) −4.07979 7.06641i −0.141187 0.244543i
\(836\) 0 0
\(837\) 35.4565 14.7724i 1.22556 0.510610i
\(838\) 0 0
\(839\) 11.2119 6.47318i 0.387077 0.223479i −0.293816 0.955862i \(-0.594925\pi\)
0.680893 + 0.732383i \(0.261592\pi\)
\(840\) 0 0
\(841\) 13.9709 24.1984i 0.481756 0.834427i
\(842\) 0 0
\(843\) 12.7696 + 40.4029i 0.439807 + 1.39155i
\(844\) 0 0
\(845\) −49.1912 13.8473i −1.69223 0.476362i
\(846\) 0 0
\(847\) 1.43490i 0.0493036i
\(848\) 0 0
\(849\) −11.4577 10.4846i −0.393228 0.359830i
\(850\) 0 0
\(851\) −0.353077 0.203849i −0.0121033 0.00698786i
\(852\) 0 0
\(853\) 20.6627 11.9296i 0.707476 0.408462i −0.102650 0.994718i \(-0.532732\pi\)
0.810126 + 0.586256i \(0.199399\pi\)
\(854\) 0 0
\(855\) 63.4287 44.5435i 2.16922 1.52336i
\(856\) 0 0
\(857\) 8.96321 + 15.5247i 0.306177 + 0.530315i 0.977523 0.210830i \(-0.0676166\pi\)
−0.671345 + 0.741145i \(0.734283\pi\)
\(858\) 0 0
\(859\) −7.61224 + 13.1848i −0.259726 + 0.449859i −0.966169 0.257911i \(-0.916966\pi\)
0.706442 + 0.707771i \(0.250299\pi\)
\(860\) 0 0
\(861\) −4.50658 + 20.3943i −0.153584 + 0.695035i
\(862\) 0 0
\(863\) 1.21450i 0.0413422i −0.999786 0.0206711i \(-0.993420\pi\)
0.999786 0.0206711i \(-0.00658029\pi\)
\(864\) 0 0
\(865\) 56.4312i 1.91872i
\(866\) 0 0
\(867\) −5.92372 + 26.8075i −0.201180 + 0.910429i
\(868\) 0 0
\(869\) −5.08230 2.93427i −0.172405 0.0995382i
\(870\) 0 0
\(871\) −3.97211 + 9.42121i −0.134590 + 0.319225i
\(872\) 0 0
\(873\) −22.9159 + 2.03667i −0.775586 + 0.0689309i
\(874\) 0 0
\(875\) −51.5553 89.2964i −1.74289 3.01877i
\(876\) 0 0
\(877\) −35.9366 20.7480i −1.21349 0.700611i −0.249975 0.968252i \(-0.580422\pi\)
−0.963519 + 0.267641i \(0.913756\pi\)
\(878\) 0 0
\(879\) 0.991302 1.08331i 0.0334358 0.0365392i
\(880\) 0 0
\(881\) −20.3311 −0.684972 −0.342486 0.939523i \(-0.611269\pi\)
−0.342486 + 0.939523i \(0.611269\pi\)
\(882\) 0 0
\(883\) 28.4196 0.956395 0.478197 0.878252i \(-0.341290\pi\)
0.478197 + 0.878252i \(0.341290\pi\)
\(884\) 0 0
\(885\) 77.9825 24.6468i 2.62135 0.828493i
\(886\) 0 0
\(887\) 5.94448 10.2961i 0.199596 0.345710i −0.748802 0.662794i \(-0.769370\pi\)
0.948397 + 0.317084i \(0.102704\pi\)
\(888\) 0 0
\(889\) −71.7118 + 41.4028i −2.40514 + 1.38861i
\(890\) 0 0
\(891\) −28.4556 10.2684i −0.953299 0.344003i
\(892\) 0 0
\(893\) 33.0813 + 57.2985i 1.10702 + 1.91742i
\(894\) 0 0
\(895\) −13.9169 8.03491i −0.465190 0.268578i
\(896\) 0 0
\(897\) 0.308653 0.435580i 0.0103056 0.0145436i
\(898\) 0 0
\(899\) 7.60397i 0.253607i
\(900\) 0 0
\(901\) 6.22196 0.207284
\(902\) 0 0
\(903\) −20.9130 + 22.8541i −0.695941 + 0.760536i
\(904\) 0 0
\(905\) −54.3024 31.3515i −1.80507 1.04216i
\(906\) 0 0
\(907\) −7.14235 12.3709i −0.237158 0.410770i 0.722740 0.691120i \(-0.242883\pi\)
−0.959898 + 0.280351i \(0.909549\pi\)
\(908\) 0 0
\(909\) −3.95211 44.4678i −0.131083 1.47490i
\(910\) 0 0
\(911\) 23.5622 + 40.8109i 0.780649 + 1.35212i 0.931564 + 0.363578i \(0.118445\pi\)
−0.150915 + 0.988547i \(0.548222\pi\)
\(912\) 0 0
\(913\) 23.6825 41.0193i 0.783777 1.35754i
\(914\) 0 0
\(915\) −30.6924 6.78218i −1.01466 0.224212i
\(916\) 0 0
\(917\) 40.6745i 1.34319i
\(918\) 0 0
\(919\) −44.6273 −1.47212 −0.736060 0.676916i \(-0.763316\pi\)
−0.736060 + 0.676916i \(0.763316\pi\)
\(920\) 0 0
\(921\) 37.5844 + 8.30512i 1.23845 + 0.273663i
\(922\) 0 0
\(923\) 4.88092 0.611329i 0.160658 0.0201222i
\(924\) 0 0
\(925\) 43.1732 24.9261i 1.41953 0.819565i
\(926\) 0 0
\(927\) −46.4893 + 32.6476i −1.52691 + 1.07229i
\(928\) 0 0
\(929\) 11.2761 6.51027i 0.369958 0.213595i −0.303482 0.952837i \(-0.598149\pi\)
0.673440 + 0.739242i \(0.264816\pi\)
\(930\) 0 0
\(931\) 91.8644 + 53.0379i 3.01073 + 1.73825i
\(932\) 0 0
\(933\) 34.5827 + 31.6454i 1.13219 + 1.03602i
\(934\) 0 0
\(935\) 14.1656 0.463264
\(936\) 0 0
\(937\) −0.395642 −0.0129251 −0.00646253 0.999979i \(-0.502057\pi\)
−0.00646253 + 0.999979i \(0.502057\pi\)
\(938\) 0 0
\(939\) −35.1033 + 11.0946i −1.14555 + 0.362058i
\(940\) 0 0
\(941\) −29.0237 16.7568i −0.946145 0.546257i −0.0542640 0.998527i \(-0.517281\pi\)
−0.891881 + 0.452269i \(0.850615\pi\)
\(942\) 0 0
\(943\) 0.185583 0.107146i 0.00604340 0.00348916i
\(944\) 0 0
\(945\) 59.6543 78.0763i 1.94056 2.53982i
\(946\) 0 0
\(947\) 22.1028 12.7611i 0.718246 0.414679i −0.0958609 0.995395i \(-0.530560\pi\)
0.814107 + 0.580715i \(0.197227\pi\)
\(948\) 0 0
\(949\) 9.58006 1.19989i 0.310982 0.0389501i
\(950\) 0 0
\(951\) 5.67433 + 17.9536i 0.184003 + 0.582185i
\(952\) 0 0
\(953\) −13.0504 −0.422743 −0.211372 0.977406i \(-0.567793\pi\)
−0.211372 + 0.977406i \(0.567793\pi\)
\(954\) 0 0
\(955\) 39.0027i 1.26210i
\(956\) 0 0
\(957\) 4.04290 4.41815i 0.130688 0.142818i
\(958\) 0 0
\(959\) 43.8459 75.9434i 1.41586 2.45234i
\(960\) 0 0
\(961\) 11.8220 + 20.4764i 0.381356 + 0.660528i
\(962\) 0 0
\(963\) −39.9924 18.5818i −1.28874 0.598789i
\(964\) 0 0
\(965\) −30.0473 52.0434i −0.967256 1.67534i
\(966\) 0 0
\(967\) 3.09895 + 1.78918i 0.0996555 + 0.0575361i 0.548999 0.835823i \(-0.315009\pi\)
−0.449344 + 0.893359i \(0.648342\pi\)
\(968\) 0 0
\(969\) −11.9165 2.63322i −0.382813 0.0845913i
\(970\) 0 0
\(971\) −35.7804 −1.14825 −0.574125 0.818768i \(-0.694658\pi\)
−0.574125 + 0.818768i \(0.694658\pi\)
\(972\) 0 0
\(973\) 55.4167i 1.77658i
\(974\) 0 0
\(975\) 27.2551 + 59.3155i 0.872862 + 1.89962i
\(976\) 0 0
\(977\) 13.0418 + 7.52970i 0.417245 + 0.240896i 0.693898 0.720074i \(-0.255892\pi\)
−0.276653 + 0.960970i \(0.589225\pi\)
\(978\) 0 0
\(979\) −15.7218 27.2310i −0.502471 0.870305i
\(980\) 0 0
\(981\) 5.55730 11.9606i 0.177431 0.381873i
\(982\) 0 0
\(983\) −28.4653 + 16.4345i −0.907903 + 0.524178i −0.879756 0.475425i \(-0.842294\pi\)
−0.0281475 + 0.999604i \(0.508961\pi\)
\(984\) 0 0
\(985\) −2.42703 + 4.20374i −0.0773316 + 0.133942i
\(986\) 0 0
\(987\) 61.8789 + 56.6232i 1.96963 + 1.80234i
\(988\) 0 0
\(989\) 0.317838 0.0101066
\(990\) 0 0
\(991\) 13.4770 0.428112 0.214056 0.976821i \(-0.431333\pi\)
0.214056 + 0.976821i \(0.431333\pi\)
\(992\) 0 0
\(993\) −3.87326 12.2550i −0.122914 0.388901i
\(994\) 0 0
\(995\) −19.2278 11.1012i −0.609562 0.351931i
\(996\) 0 0
\(997\) −5.73848 9.93934i −0.181740 0.314782i 0.760733 0.649064i \(-0.224839\pi\)
−0.942473 + 0.334282i \(0.891506\pi\)
\(998\) 0 0
\(999\) 19.6919 + 15.0456i 0.623023 + 0.476022i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.cw.b.337.26 yes 80
3.2 odd 2 2808.2.cw.b.2521.3 80
9.2 odd 6 2808.2.cw.b.1585.38 80
9.7 even 3 inner 936.2.cw.b.25.25 80
13.12 even 2 inner 936.2.cw.b.337.25 yes 80
39.38 odd 2 2808.2.cw.b.2521.38 80
117.25 even 6 inner 936.2.cw.b.25.26 yes 80
117.38 odd 6 2808.2.cw.b.1585.3 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.cw.b.25.25 80 9.7 even 3 inner
936.2.cw.b.25.26 yes 80 117.25 even 6 inner
936.2.cw.b.337.25 yes 80 13.12 even 2 inner
936.2.cw.b.337.26 yes 80 1.1 even 1 trivial
2808.2.cw.b.1585.3 80 117.38 odd 6
2808.2.cw.b.1585.38 80 9.2 odd 6
2808.2.cw.b.2521.3 80 3.2 odd 2
2808.2.cw.b.2521.38 80 39.38 odd 2