Properties

Label 2808.2.cw.b.1585.3
Level $2808$
Weight $2$
Character 2808.1585
Analytic conductor $22.422$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2808,2,Mod(1585,2808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2808, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2808.1585"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2808 = 2^{3} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2808.cw (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.4219928876\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(40\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 936)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1585.3
Character \(\chi\) \(=\) 2808.1585
Dual form 2808.2.cw.b.2521.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.40435 + 1.96550i) q^{5} +(-4.16592 - 2.40520i) q^{7} +(2.91097 + 1.68065i) q^{11} +(0.448090 - 3.57760i) q^{13} +1.07207 q^{17} -6.57228i q^{19} +(-0.0427423 - 0.0740317i) q^{23} +(5.22640 - 9.05238i) q^{25} +(0.514326 - 0.890839i) q^{29} +(-6.40180 + 3.69608i) q^{31} +18.9097 q^{35} +4.76927i q^{37} +(-2.17095 + 1.25340i) q^{41} +(1.85904 - 3.21995i) q^{43} +(-8.71820 - 5.03346i) q^{47} +(8.06995 + 13.9776i) q^{49} +5.80367 q^{53} -13.2133 q^{55} +(-10.4025 + 6.00590i) q^{59} +(-2.30828 + 3.99806i) q^{61} +(5.50632 + 13.0601i) q^{65} +(2.45580 - 1.41786i) q^{67} -1.36430i q^{71} +2.67779i q^{73} +(-8.08457 - 14.0029i) q^{77} +(0.872958 - 1.51201i) q^{79} +(12.2034 + 7.04566i) q^{83} +(-3.64971 + 2.10716i) q^{85} +9.35462i q^{89} +(-10.4715 + 13.8263i) q^{91} +(12.9178 + 22.3743i) q^{95} +(6.64133 + 3.83437i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 6 q^{13} + 4 q^{17} - 10 q^{23} + 44 q^{25} + 52 q^{35} - 26 q^{43} + 48 q^{49} - 60 q^{53} - 16 q^{55} - 10 q^{61} + 26 q^{65} - 32 q^{77} + 6 q^{79} - 4 q^{91} - 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2808\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(1081\) \(1405\) \(2081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.40435 + 1.96550i −1.52247 + 0.878999i −0.522824 + 0.852441i \(0.675122\pi\)
−0.999647 + 0.0265586i \(0.991545\pi\)
\(6\) 0 0
\(7\) −4.16592 2.40520i −1.57457 0.909079i −0.995597 0.0937328i \(-0.970120\pi\)
−0.578974 0.815346i \(-0.696547\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.91097 + 1.68065i 0.877689 + 0.506734i 0.869896 0.493236i \(-0.164186\pi\)
0.00779327 + 0.999970i \(0.497519\pi\)
\(12\) 0 0
\(13\) 0.448090 3.57760i 0.124278 0.992247i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.07207 0.260016 0.130008 0.991513i \(-0.458500\pi\)
0.130008 + 0.991513i \(0.458500\pi\)
\(18\) 0 0
\(19\) 6.57228i 1.50778i −0.656998 0.753892i \(-0.728174\pi\)
0.656998 0.753892i \(-0.271826\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.0427423 0.0740317i −0.00891238 0.0154367i 0.861535 0.507698i \(-0.169504\pi\)
−0.870447 + 0.492262i \(0.836170\pi\)
\(24\) 0 0
\(25\) 5.22640 9.05238i 1.04528 1.81048i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.514326 0.890839i 0.0955080 0.165425i −0.814313 0.580427i \(-0.802886\pi\)
0.909821 + 0.415002i \(0.136219\pi\)
\(30\) 0 0
\(31\) −6.40180 + 3.69608i −1.14980 + 0.663836i −0.948838 0.315764i \(-0.897739\pi\)
−0.200960 + 0.979600i \(0.564406\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 18.9097 3.19632
\(36\) 0 0
\(37\) 4.76927i 0.784063i 0.919952 + 0.392031i \(0.128228\pi\)
−0.919952 + 0.392031i \(0.871772\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.17095 + 1.25340i −0.339045 + 0.195748i −0.659850 0.751398i \(-0.729380\pi\)
0.320804 + 0.947145i \(0.396047\pi\)
\(42\) 0 0
\(43\) 1.85904 3.21995i 0.283500 0.491037i −0.688744 0.725005i \(-0.741838\pi\)
0.972244 + 0.233967i \(0.0751709\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.71820 5.03346i −1.27168 0.734205i −0.296377 0.955071i \(-0.595778\pi\)
−0.975304 + 0.220866i \(0.929112\pi\)
\(48\) 0 0
\(49\) 8.06995 + 13.9776i 1.15285 + 1.99679i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.80367 0.797195 0.398598 0.917126i \(-0.369497\pi\)
0.398598 + 0.917126i \(0.369497\pi\)
\(54\) 0 0
\(55\) −13.2133 −1.78168
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −10.4025 + 6.00590i −1.35429 + 0.781901i −0.988847 0.148932i \(-0.952416\pi\)
−0.365445 + 0.930833i \(0.619083\pi\)
\(60\) 0 0
\(61\) −2.30828 + 3.99806i −0.295545 + 0.511899i −0.975112 0.221715i \(-0.928835\pi\)
0.679566 + 0.733614i \(0.262168\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 5.50632 + 13.0601i 0.682975 + 1.61991i
\(66\) 0 0
\(67\) 2.45580 1.41786i 0.300024 0.173219i −0.342430 0.939543i \(-0.611250\pi\)
0.642454 + 0.766325i \(0.277916\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.36430i 0.161913i −0.996718 0.0809564i \(-0.974203\pi\)
0.996718 0.0809564i \(-0.0257975\pi\)
\(72\) 0 0
\(73\) 2.67779i 0.313412i 0.987645 + 0.156706i \(0.0500874\pi\)
−0.987645 + 0.156706i \(0.949913\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −8.08457 14.0029i −0.921322 1.59578i
\(78\) 0 0
\(79\) 0.872958 1.51201i 0.0982155 0.170114i −0.812731 0.582640i \(-0.802020\pi\)
0.910946 + 0.412525i \(0.135353\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 12.2034 + 7.04566i 1.33950 + 0.773362i 0.986733 0.162349i \(-0.0519070\pi\)
0.352768 + 0.935711i \(0.385240\pi\)
\(84\) 0 0
\(85\) −3.64971 + 2.10716i −0.395867 + 0.228554i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 9.35462i 0.991587i 0.868440 + 0.495794i \(0.165123\pi\)
−0.868440 + 0.495794i \(0.834877\pi\)
\(90\) 0 0
\(91\) −10.4715 + 13.8263i −1.09772 + 1.44939i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 12.9178 + 22.3743i 1.32534 + 2.29556i
\(96\) 0 0
\(97\) 6.64133 + 3.83437i 0.674325 + 0.389322i 0.797713 0.603037i \(-0.206043\pi\)
−0.123388 + 0.992358i \(0.539376\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −7.44051 + 12.8873i −0.740358 + 1.28234i 0.211974 + 0.977275i \(0.432011\pi\)
−0.952332 + 0.305063i \(0.901322\pi\)
\(102\) 0 0
\(103\) 9.46797 + 16.3990i 0.932907 + 1.61584i 0.778325 + 0.627862i \(0.216070\pi\)
0.154582 + 0.987980i \(0.450597\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −14.6995 −1.42105 −0.710526 0.703671i \(-0.751543\pi\)
−0.710526 + 0.703671i \(0.751543\pi\)
\(108\) 0 0
\(109\) 4.39621i 0.421081i −0.977585 0.210540i \(-0.932478\pi\)
0.977585 0.210540i \(-0.0675224\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.23196 + 2.13381i 0.115893 + 0.200732i 0.918136 0.396265i \(-0.129694\pi\)
−0.802244 + 0.596997i \(0.796360\pi\)
\(114\) 0 0
\(115\) 0.291019 + 0.168020i 0.0271377 + 0.0156679i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.46618 2.57855i −0.409414 0.236375i
\(120\) 0 0
\(121\) 0.149145 + 0.258327i 0.0135587 + 0.0234843i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 21.4350i 1.91720i
\(126\) 0 0
\(127\) 17.2139 1.52749 0.763743 0.645520i \(-0.223359\pi\)
0.763743 + 0.645520i \(0.223359\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −4.22778 7.32272i −0.369382 0.639789i 0.620087 0.784533i \(-0.287097\pi\)
−0.989469 + 0.144744i \(0.953764\pi\)
\(132\) 0 0
\(133\) −15.8076 + 27.3796i −1.37070 + 2.37411i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 15.7874 + 9.11483i 1.34880 + 0.778733i 0.988080 0.153940i \(-0.0491962\pi\)
0.360724 + 0.932672i \(0.382530\pi\)
\(138\) 0 0
\(139\) 5.76010 + 9.97679i 0.488565 + 0.846220i 0.999913 0.0131535i \(-0.00418701\pi\)
−0.511348 + 0.859374i \(0.670854\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 7.31705 9.66119i 0.611883 0.807909i
\(144\) 0 0
\(145\) 4.04364i 0.335806i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.77205 + 2.17780i −0.309019 + 0.178412i −0.646487 0.762925i \(-0.723763\pi\)
0.337469 + 0.941337i \(0.390429\pi\)
\(150\) 0 0
\(151\) 3.70820 + 2.14093i 0.301769 + 0.174226i 0.643237 0.765667i \(-0.277591\pi\)
−0.341468 + 0.939893i \(0.610924\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 14.5293 25.1655i 1.16702 2.02134i
\(156\) 0 0
\(157\) −0.0630158 0.109147i −0.00502921 0.00871085i 0.863500 0.504349i \(-0.168268\pi\)
−0.868529 + 0.495638i \(0.834934\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.411214i 0.0324082i
\(162\) 0 0
\(163\) 16.6292i 1.30250i −0.758862 0.651252i \(-0.774244\pi\)
0.758862 0.651252i \(-0.225756\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.79761 1.03785i 0.139103 0.0803113i −0.428833 0.903384i \(-0.641075\pi\)
0.567937 + 0.823072i \(0.307742\pi\)
\(168\) 0 0
\(169\) −12.5984 3.20617i −0.969110 0.246629i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −7.17771 + 12.4322i −0.545711 + 0.945200i 0.452851 + 0.891586i \(0.350407\pi\)
−0.998562 + 0.0536131i \(0.982926\pi\)
\(174\) 0 0
\(175\) −43.5455 + 25.1410i −3.29173 + 1.90048i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.08797 0.305549 0.152775 0.988261i \(-0.451179\pi\)
0.152775 + 0.988261i \(0.451179\pi\)
\(180\) 0 0
\(181\) −15.9509 −1.18562 −0.592810 0.805342i \(-0.701981\pi\)
−0.592810 + 0.805342i \(0.701981\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −9.37400 16.2363i −0.689191 1.19371i
\(186\) 0 0
\(187\) 3.12077 + 1.80178i 0.228213 + 0.131759i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.96091 8.59255i 0.358959 0.621735i −0.628828 0.777544i \(-0.716465\pi\)
0.987787 + 0.155809i \(0.0497985\pi\)
\(192\) 0 0
\(193\) −13.2392 + 7.64366i −0.952979 + 0.550203i −0.894005 0.448057i \(-0.852116\pi\)
−0.0589743 + 0.998260i \(0.518783\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.23481i 0.0879768i 0.999032 + 0.0439884i \(0.0140065\pi\)
−0.999032 + 0.0439884i \(0.985994\pi\)
\(198\) 0 0
\(199\) −5.64801 −0.400377 −0.200188 0.979757i \(-0.564155\pi\)
−0.200188 + 0.979757i \(0.564155\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −4.28529 + 2.47411i −0.300768 + 0.173649i
\(204\) 0 0
\(205\) 4.92711 8.53401i 0.344125 0.596041i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 11.0457 19.1317i 0.764046 1.32337i
\(210\) 0 0
\(211\) −7.62853 13.2130i −0.525170 0.909621i −0.999570 0.0293117i \(-0.990668\pi\)
0.474401 0.880309i \(-0.342665\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 14.6158i 0.996787i
\(216\) 0 0
\(217\) 35.5592 2.41392
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.480385 3.83545i 0.0323142 0.258000i
\(222\) 0 0
\(223\) 13.9167 + 8.03480i 0.931930 + 0.538050i 0.887422 0.460959i \(-0.152494\pi\)
0.0445087 + 0.999009i \(0.485828\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.18451 + 2.41593i 0.277735 + 0.160351i 0.632398 0.774644i \(-0.282071\pi\)
−0.354662 + 0.934994i \(0.615404\pi\)
\(228\) 0 0
\(229\) 15.6874 9.05711i 1.03665 0.598510i 0.117768 0.993041i \(-0.462426\pi\)
0.918883 + 0.394531i \(0.129093\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.37594 0.0901411 0.0450705 0.998984i \(-0.485649\pi\)
0.0450705 + 0.998984i \(0.485649\pi\)
\(234\) 0 0
\(235\) 39.5731 2.58146
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4.84277 2.79597i 0.313253 0.180856i −0.335128 0.942172i \(-0.608780\pi\)
0.648381 + 0.761316i \(0.275446\pi\)
\(240\) 0 0
\(241\) −10.4450 6.03041i −0.672820 0.388453i 0.124324 0.992242i \(-0.460324\pi\)
−0.797144 + 0.603789i \(0.793657\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −54.9458 31.7230i −3.51036 2.02671i
\(246\) 0 0
\(247\) −23.5130 2.94497i −1.49610 0.187384i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −9.90201 −0.625009 −0.312505 0.949916i \(-0.601168\pi\)
−0.312505 + 0.949916i \(0.601168\pi\)
\(252\) 0 0
\(253\) 0.287338i 0.0180648i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0.0748821 + 0.129700i 0.00467102 + 0.00809044i 0.868351 0.495949i \(-0.165180\pi\)
−0.863680 + 0.504040i \(0.831846\pi\)
\(258\) 0 0
\(259\) 11.4710 19.8684i 0.712775 1.23456i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3.18077 5.50926i 0.196135 0.339716i −0.751137 0.660146i \(-0.770494\pi\)
0.947272 + 0.320431i \(0.103828\pi\)
\(264\) 0 0
\(265\) −19.7577 + 11.4071i −1.21371 + 0.700734i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −8.43403 −0.514232 −0.257116 0.966381i \(-0.582772\pi\)
−0.257116 + 0.966381i \(0.582772\pi\)
\(270\) 0 0
\(271\) 3.97794i 0.241643i −0.992674 0.120821i \(-0.961447\pi\)
0.992674 0.120821i \(-0.0385528\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 30.4277 17.5674i 1.83486 1.05936i
\(276\) 0 0
\(277\) −0.463857 + 0.803425i −0.0278705 + 0.0482731i −0.879624 0.475669i \(-0.842206\pi\)
0.851754 + 0.523942i \(0.175539\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 21.1864 + 12.2320i 1.26387 + 0.729698i 0.973822 0.227312i \(-0.0729938\pi\)
0.290053 + 0.957011i \(0.406327\pi\)
\(282\) 0 0
\(283\) 4.48336 + 7.76541i 0.266508 + 0.461606i 0.967958 0.251114i \(-0.0807968\pi\)
−0.701450 + 0.712719i \(0.747463\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 12.0587 0.711801
\(288\) 0 0
\(289\) −15.8507 −0.932392
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.734208 + 0.423895i −0.0428929 + 0.0247642i −0.521293 0.853378i \(-0.674550\pi\)
0.478400 + 0.878142i \(0.341217\pi\)
\(294\) 0 0
\(295\) 23.6092 40.8923i 1.37458 2.38084i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.284008 + 0.119742i −0.0164246 + 0.00692485i
\(300\) 0 0
\(301\) −15.4892 + 8.94270i −0.892783 + 0.515449i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 18.1477i 1.03914i
\(306\) 0 0
\(307\) 22.2228i 1.26832i −0.773201 0.634162i \(-0.781345\pi\)
0.773201 0.634162i \(-0.218655\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 13.5320 + 23.4382i 0.767331 + 1.32906i 0.939005 + 0.343903i \(0.111749\pi\)
−0.171674 + 0.985154i \(0.554918\pi\)
\(312\) 0 0
\(313\) −10.6275 + 18.4074i −0.600703 + 1.04045i 0.392012 + 0.919960i \(0.371779\pi\)
−0.992715 + 0.120488i \(0.961554\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.41447 + 5.43545i 0.528770 + 0.305285i 0.740515 0.672040i \(-0.234582\pi\)
−0.211746 + 0.977325i \(0.567915\pi\)
\(318\) 0 0
\(319\) 2.99437 1.72880i 0.167653 0.0967943i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 7.04597i 0.392048i
\(324\) 0 0
\(325\) −30.0439 22.7542i −1.66654 1.26218i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 24.2129 + 41.9380i 1.33490 + 2.31212i
\(330\) 0 0
\(331\) 6.42626 + 3.71020i 0.353219 + 0.203931i 0.666102 0.745860i \(-0.267961\pi\)
−0.312883 + 0.949792i \(0.601295\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5.57361 + 9.65377i −0.304519 + 0.527442i
\(336\) 0 0
\(337\) 10.1784 + 17.6296i 0.554455 + 0.960345i 0.997946 + 0.0640656i \(0.0204067\pi\)
−0.443490 + 0.896279i \(0.646260\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −24.8472 −1.34555
\(342\) 0 0
\(343\) 43.9665i 2.37397i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.83922 + 8.38177i 0.259783 + 0.449957i 0.966184 0.257855i \(-0.0830157\pi\)
−0.706401 + 0.707812i \(0.749682\pi\)
\(348\) 0 0
\(349\) 20.3188 + 11.7311i 1.08764 + 0.627949i 0.932947 0.360014i \(-0.117228\pi\)
0.154693 + 0.987963i \(0.450561\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9.12721 + 5.26960i 0.485792 + 0.280472i 0.722827 0.691029i \(-0.242842\pi\)
−0.237035 + 0.971501i \(0.576176\pi\)
\(354\) 0 0
\(355\) 2.68154 + 4.64456i 0.142321 + 0.246508i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 33.8494i 1.78650i −0.449557 0.893252i \(-0.648418\pi\)
0.449557 0.893252i \(-0.351582\pi\)
\(360\) 0 0
\(361\) −24.1949 −1.27341
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −5.26320 9.11613i −0.275489 0.477160i
\(366\) 0 0
\(367\) −0.752021 + 1.30254i −0.0392552 + 0.0679920i −0.884985 0.465619i \(-0.845832\pi\)
0.845730 + 0.533611i \(0.179165\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −24.1776 13.9590i −1.25524 0.724713i
\(372\) 0 0
\(373\) 10.6689 + 18.4790i 0.552414 + 0.956808i 0.998100 + 0.0616191i \(0.0196264\pi\)
−0.445686 + 0.895189i \(0.647040\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.95660 2.23923i −0.152273 0.115326i
\(378\) 0 0
\(379\) 13.1930i 0.677681i 0.940844 + 0.338840i \(0.110035\pi\)
−0.940844 + 0.338840i \(0.889965\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 6.64542 3.83673i 0.339565 0.196048i −0.320515 0.947244i \(-0.603856\pi\)
0.660080 + 0.751196i \(0.270523\pi\)
\(384\) 0 0
\(385\) 55.0454 + 31.7805i 2.80537 + 1.61968i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.23245 2.13467i 0.0624877 0.108232i −0.833089 0.553139i \(-0.813430\pi\)
0.895577 + 0.444907i \(0.146763\pi\)
\(390\) 0 0
\(391\) −0.0458228 0.0793675i −0.00231736 0.00401379i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 6.86321i 0.345325i
\(396\) 0 0
\(397\) 30.6817i 1.53987i 0.638121 + 0.769936i \(0.279712\pi\)
−0.638121 + 0.769936i \(0.720288\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −28.8517 + 16.6575i −1.44078 + 0.831837i −0.997902 0.0647435i \(-0.979377\pi\)
−0.442881 + 0.896580i \(0.646044\pi\)
\(402\) 0 0
\(403\) 10.3545 + 24.5593i 0.515795 + 1.22338i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −8.01545 + 13.8832i −0.397311 + 0.688163i
\(408\) 0 0
\(409\) 29.0463 16.7699i 1.43625 0.829219i 0.438662 0.898652i \(-0.355452\pi\)
0.997587 + 0.0694331i \(0.0221190\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 57.7814 2.84324
\(414\) 0 0
\(415\) −55.3930 −2.71914
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2.84913 + 4.93483i 0.139189 + 0.241082i 0.927190 0.374592i \(-0.122217\pi\)
−0.788001 + 0.615674i \(0.788884\pi\)
\(420\) 0 0
\(421\) −18.0959 10.4477i −0.881939 0.509188i −0.0106421 0.999943i \(-0.503388\pi\)
−0.871297 + 0.490755i \(0.836721\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 5.60308 9.70482i 0.271789 0.470753i
\(426\) 0 0
\(427\) 19.2322 11.1037i 0.930714 0.537348i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 26.6529i 1.28382i 0.766778 + 0.641912i \(0.221859\pi\)
−0.766778 + 0.641912i \(0.778141\pi\)
\(432\) 0 0
\(433\) 29.5411 1.41965 0.709827 0.704376i \(-0.248773\pi\)
0.709827 + 0.704376i \(0.248773\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.486557 + 0.280914i −0.0232752 + 0.0134379i
\(438\) 0 0
\(439\) 3.60721 6.24786i 0.172163 0.298194i −0.767013 0.641631i \(-0.778258\pi\)
0.939176 + 0.343437i \(0.111591\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4.26300 7.38373i 0.202541 0.350812i −0.746805 0.665043i \(-0.768413\pi\)
0.949347 + 0.314231i \(0.101747\pi\)
\(444\) 0 0
\(445\) −18.3865 31.8464i −0.871604 1.50966i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 14.0039i 0.660883i 0.943826 + 0.330441i \(0.107198\pi\)
−0.943826 + 0.330441i \(0.892802\pi\)
\(450\) 0 0
\(451\) −8.42608 −0.396769
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 8.47323 67.6512i 0.397231 3.17154i
\(456\) 0 0
\(457\) 29.6357 + 17.1102i 1.38630 + 0.800380i 0.992896 0.118987i \(-0.0379646\pi\)
0.393402 + 0.919366i \(0.371298\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 7.56297 + 4.36648i 0.352242 + 0.203367i 0.665672 0.746244i \(-0.268145\pi\)
−0.313430 + 0.949611i \(0.601478\pi\)
\(462\) 0 0
\(463\) 0.0993345 0.0573508i 0.00461646 0.00266532i −0.497690 0.867355i \(-0.665818\pi\)
0.502306 + 0.864690i \(0.332485\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −42.6123 −1.97186 −0.985932 0.167147i \(-0.946544\pi\)
−0.985932 + 0.167147i \(0.946544\pi\)
\(468\) 0 0
\(469\) −13.6409 −0.629879
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 10.8232 6.24877i 0.497650 0.287319i
\(474\) 0 0
\(475\) −59.4948 34.3493i −2.72981 1.57606i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 26.1199 + 15.0803i 1.19345 + 0.689037i 0.959086 0.283113i \(-0.0913672\pi\)
0.234360 + 0.972150i \(0.424701\pi\)
\(480\) 0 0
\(481\) 17.0625 + 2.13706i 0.777984 + 0.0974415i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −30.1459 −1.36885
\(486\) 0 0
\(487\) 1.98683i 0.0900319i 0.998986 + 0.0450160i \(0.0143339\pi\)
−0.998986 + 0.0450160i \(0.985666\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 9.16415 + 15.8728i 0.413572 + 0.716328i 0.995277 0.0970714i \(-0.0309475\pi\)
−0.581705 + 0.813400i \(0.697614\pi\)
\(492\) 0 0
\(493\) 0.551396 0.955045i 0.0248336 0.0430131i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3.28141 + 5.68357i −0.147192 + 0.254943i
\(498\) 0 0
\(499\) 1.45294 0.838857i 0.0650427 0.0375524i −0.467126 0.884191i \(-0.654711\pi\)
0.532169 + 0.846638i \(0.321377\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −3.47253 −0.154833 −0.0774163 0.996999i \(-0.524667\pi\)
−0.0774163 + 0.996999i \(0.524667\pi\)
\(504\) 0 0
\(505\) 58.4973i 2.60310i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −16.0585 + 9.27140i −0.711782 + 0.410948i −0.811720 0.584046i \(-0.801469\pi\)
0.0999385 + 0.994994i \(0.468135\pi\)
\(510\) 0 0
\(511\) 6.44061 11.1555i 0.284916 0.493489i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −64.4645 37.2186i −2.84065 1.64005i
\(516\) 0 0
\(517\) −16.9189 29.3044i −0.744093 1.28881i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −25.7368 −1.12755 −0.563775 0.825929i \(-0.690651\pi\)
−0.563775 + 0.825929i \(0.690651\pi\)
\(522\) 0 0
\(523\) −6.85993 −0.299964 −0.149982 0.988689i \(-0.547922\pi\)
−0.149982 + 0.988689i \(0.547922\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.86320 + 3.96247i −0.298966 + 0.172608i
\(528\) 0 0
\(529\) 11.4963 19.9123i 0.499841 0.865750i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.51138 + 8.32842i 0.152095 + 0.360744i
\(534\) 0 0
\(535\) 50.0422 28.8919i 2.16351 1.24910i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 54.2509i 2.33675i
\(540\) 0 0
\(541\) 19.9869i 0.859306i 0.902994 + 0.429653i \(0.141364\pi\)
−0.902994 + 0.429653i \(0.858636\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 8.64077 + 14.9662i 0.370130 + 0.641084i
\(546\) 0 0
\(547\) −7.24562 + 12.5498i −0.309800 + 0.536590i −0.978319 0.207106i \(-0.933596\pi\)
0.668518 + 0.743696i \(0.266929\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −5.85485 3.38030i −0.249425 0.144005i
\(552\) 0 0
\(553\) −7.27336 + 4.19927i −0.309295 + 0.178571i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12.8651i 0.545110i −0.962140 0.272555i \(-0.912131\pi\)
0.962140 0.272555i \(-0.0878687\pi\)
\(558\) 0 0
\(559\) −10.6867 8.09371i −0.451998 0.342328i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 2.23678 + 3.87421i 0.0942689 + 0.163278i 0.909303 0.416134i \(-0.136615\pi\)
−0.815034 + 0.579413i \(0.803282\pi\)
\(564\) 0 0
\(565\) −8.38802 4.84283i −0.352887 0.203739i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −21.7045 + 37.5933i −0.909900 + 1.57599i −0.0956977 + 0.995410i \(0.530508\pi\)
−0.814202 + 0.580582i \(0.802825\pi\)
\(570\) 0 0
\(571\) −9.96107 17.2531i −0.416858 0.722019i 0.578764 0.815495i \(-0.303535\pi\)
−0.995621 + 0.0934764i \(0.970202\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.893552 −0.0372637
\(576\) 0 0
\(577\) 40.2426i 1.67532i 0.546190 + 0.837661i \(0.316078\pi\)
−0.546190 + 0.837661i \(0.683922\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −33.8924 58.7034i −1.40609 2.43543i
\(582\) 0 0
\(583\) 16.8943 + 9.75392i 0.699690 + 0.403966i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −5.59848 3.23229i −0.231074 0.133411i 0.379993 0.924989i \(-0.375926\pi\)
−0.611068 + 0.791578i \(0.709260\pi\)
\(588\) 0 0
\(589\) 24.2917 + 42.0744i 1.00092 + 1.73365i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 20.8574i 0.856510i −0.903658 0.428255i \(-0.859129\pi\)
0.903658 0.428255i \(-0.140871\pi\)
\(594\) 0 0
\(595\) 20.2726 0.831094
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3.67196 + 6.36003i 0.150032 + 0.259864i 0.931239 0.364409i \(-0.118729\pi\)
−0.781207 + 0.624272i \(0.785396\pi\)
\(600\) 0 0
\(601\) 5.37782 9.31465i 0.219366 0.379953i −0.735248 0.677798i \(-0.762935\pi\)
0.954614 + 0.297845i \(0.0962679\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.01549 0.586291i −0.0412854 0.0238361i
\(606\) 0 0
\(607\) 8.29221 + 14.3625i 0.336570 + 0.582957i 0.983785 0.179351i \(-0.0573997\pi\)
−0.647215 + 0.762308i \(0.724066\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −21.9142 + 28.9348i −0.886555 + 1.17058i
\(612\) 0 0
\(613\) 4.54150i 0.183429i −0.995785 0.0917147i \(-0.970765\pi\)
0.995785 0.0917147i \(-0.0292348\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.149964 0.0865815i 0.00603731 0.00348564i −0.496978 0.867763i \(-0.665557\pi\)
0.503016 + 0.864277i \(0.332224\pi\)
\(618\) 0 0
\(619\) −23.6778 13.6704i −0.951692 0.549460i −0.0580858 0.998312i \(-0.518500\pi\)
−0.893606 + 0.448852i \(0.851833\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 22.4997 38.9706i 0.901431 1.56132i
\(624\) 0 0
\(625\) −15.9985 27.7101i −0.639938 1.10841i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 5.11301i 0.203869i
\(630\) 0 0
\(631\) 37.8137i 1.50534i −0.658397 0.752670i \(-0.728765\pi\)
0.658397 0.752670i \(-0.271235\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −58.6021 + 33.8339i −2.32555 + 1.34266i
\(636\) 0 0
\(637\) 53.6221 22.6078i 2.12459 0.895755i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 3.77702 6.54200i 0.149184 0.258393i −0.781742 0.623601i \(-0.785669\pi\)
0.930926 + 0.365208i \(0.119002\pi\)
\(642\) 0 0
\(643\) 24.2155 13.9808i 0.954964 0.551349i 0.0603447 0.998178i \(-0.480780\pi\)
0.894620 + 0.446829i \(0.147447\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5.98842 0.235429 0.117715 0.993047i \(-0.462443\pi\)
0.117715 + 0.993047i \(0.462443\pi\)
\(648\) 0 0
\(649\) −40.3751 −1.58486
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −8.90801 15.4291i −0.348597 0.603789i 0.637403 0.770531i \(-0.280009\pi\)
−0.986001 + 0.166742i \(0.946675\pi\)
\(654\) 0 0
\(655\) 28.7857 + 16.6194i 1.12475 + 0.649374i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −23.8222 + 41.2613i −0.927982 + 1.60731i −0.141288 + 0.989969i \(0.545124\pi\)
−0.786694 + 0.617343i \(0.788209\pi\)
\(660\) 0 0
\(661\) −4.59633 + 2.65370i −0.178777 + 0.103217i −0.586718 0.809791i \(-0.699580\pi\)
0.407941 + 0.913008i \(0.366247\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 124.280i 4.81936i
\(666\) 0 0
\(667\) −0.0879339 −0.00340481
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −13.4387 + 7.75881i −0.518794 + 0.299526i
\(672\) 0 0
\(673\) 13.9628 24.1842i 0.538225 0.932233i −0.460775 0.887517i \(-0.652428\pi\)
0.999000 0.0447160i \(-0.0142383\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 9.19203 15.9211i 0.353278 0.611896i −0.633544 0.773707i \(-0.718400\pi\)
0.986822 + 0.161811i \(0.0517336\pi\)
\(678\) 0 0
\(679\) −18.4449 31.9474i −0.707848 1.22603i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 27.5533i 1.05430i −0.849773 0.527149i \(-0.823261\pi\)
0.849773 0.527149i \(-0.176739\pi\)
\(684\) 0 0
\(685\) −71.6609 −2.73802
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.60056 20.7632i 0.0990736 0.791015i
\(690\) 0 0
\(691\) 18.0882 + 10.4432i 0.688109 + 0.397280i 0.802903 0.596110i \(-0.203288\pi\)
−0.114795 + 0.993389i \(0.536621\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −39.2188 22.6430i −1.48765 0.858897i
\(696\) 0 0
\(697\) −2.32742 + 1.34374i −0.0881573 + 0.0508976i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −39.0518 −1.47496 −0.737482 0.675366i \(-0.763986\pi\)
−0.737482 + 0.675366i \(0.763986\pi\)
\(702\) 0 0
\(703\) 31.3450 1.18220
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 61.9932 35.7918i 2.33149 1.34609i
\(708\) 0 0
\(709\) 2.00983 + 1.16037i 0.0754807 + 0.0435788i 0.537265 0.843413i \(-0.319457\pi\)
−0.461785 + 0.886992i \(0.652791\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.547255 + 0.315958i 0.0204949 + 0.0118327i
\(714\) 0 0
\(715\) −5.92072 + 47.2717i −0.221423 + 1.76786i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 7.04587 0.262767 0.131383 0.991332i \(-0.458058\pi\)
0.131383 + 0.991332i \(0.458058\pi\)
\(720\) 0 0
\(721\) 91.0893i 3.39234i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −5.37615 9.31176i −0.199665 0.345830i
\(726\) 0 0
\(727\) −3.57535 + 6.19269i −0.132602 + 0.229674i −0.924679 0.380748i \(-0.875667\pi\)
0.792077 + 0.610422i \(0.209000\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.99302 3.45202i 0.0737147 0.127678i
\(732\) 0 0
\(733\) 7.90471 4.56378i 0.291967 0.168567i −0.346862 0.937916i \(-0.612753\pi\)
0.638829 + 0.769349i \(0.279419\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 9.53168 0.351104
\(738\) 0 0
\(739\) 44.0839i 1.62165i 0.585286 + 0.810827i \(0.300982\pi\)
−0.585286 + 0.810827i \(0.699018\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 22.0405 12.7251i 0.808586 0.466838i −0.0378784 0.999282i \(-0.512060\pi\)
0.846465 + 0.532445i \(0.178727\pi\)
\(744\) 0 0
\(745\) 8.56093 14.8280i 0.313648 0.543255i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 61.2369 + 35.3551i 2.23755 + 1.29185i
\(750\) 0 0
\(751\) 1.96715 + 3.40721i 0.0717824 + 0.124331i 0.899683 0.436545i \(-0.143798\pi\)
−0.827900 + 0.560876i \(0.810465\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −16.8320 −0.612579
\(756\) 0 0
\(757\) 33.9336 1.23334 0.616669 0.787223i \(-0.288482\pi\)
0.616669 + 0.787223i \(0.288482\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −9.27065 + 5.35241i −0.336061 + 0.194025i −0.658529 0.752556i \(-0.728821\pi\)
0.322468 + 0.946580i \(0.395488\pi\)
\(762\) 0 0
\(763\) −10.5738 + 18.3143i −0.382796 + 0.663022i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 16.8254 + 39.9072i 0.607531 + 1.44097i
\(768\) 0 0
\(769\) 11.8513 6.84235i 0.427369 0.246741i −0.270856 0.962620i \(-0.587307\pi\)
0.698225 + 0.715878i \(0.253974\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 11.4346i 0.411273i −0.978628 0.205637i \(-0.934074\pi\)
0.978628 0.205637i \(-0.0659265\pi\)
\(774\) 0 0
\(775\) 77.2688i 2.77558i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 8.23769 + 14.2681i 0.295146 + 0.511207i
\(780\) 0 0
\(781\) 2.29291 3.97143i 0.0820467 0.142109i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0.429056 + 0.247715i 0.0153137 + 0.00884134i
\(786\) 0 0
\(787\) −38.5078 + 22.2325i −1.37265 + 0.792503i −0.991262 0.131910i \(-0.957889\pi\)
−0.381393 + 0.924413i \(0.624556\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 11.8524i 0.421423i
\(792\) 0 0
\(793\) 13.2691 + 10.0496i 0.471201 + 0.356872i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −4.39354 7.60984i −0.155627 0.269554i 0.777660 0.628685i \(-0.216407\pi\)
−0.933287 + 0.359131i \(0.883073\pi\)
\(798\) 0 0
\(799\) −9.34656 5.39624i −0.330657 0.190905i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −4.50042 + 7.79495i −0.158816 + 0.275078i
\(804\) 0 0
\(805\) −0.808242 1.39992i −0.0284868 0.0493406i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 51.4550 1.80906 0.904530 0.426410i \(-0.140222\pi\)
0.904530 + 0.426410i \(0.140222\pi\)
\(810\) 0 0
\(811\) 0.149585i 0.00525263i 0.999997 + 0.00262632i \(0.000835984\pi\)
−0.999997 + 0.00262632i \(0.999164\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 32.6848 + 56.6118i 1.14490 + 1.98302i
\(816\) 0 0
\(817\) −21.1624 12.2181i −0.740378 0.427458i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −3.57618 2.06471i −0.124809 0.0720588i 0.436295 0.899803i \(-0.356290\pi\)
−0.561105 + 0.827745i \(0.689624\pi\)
\(822\) 0 0
\(823\) −12.2798 21.2693i −0.428047 0.741400i 0.568652 0.822578i \(-0.307465\pi\)
−0.996700 + 0.0811784i \(0.974132\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 41.7582i 1.45207i −0.687656 0.726037i \(-0.741360\pi\)
0.687656 0.726037i \(-0.258640\pi\)
\(828\) 0 0
\(829\) 30.9427 1.07468 0.537342 0.843365i \(-0.319429\pi\)
0.537342 + 0.843365i \(0.319429\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 8.65158 + 14.9850i 0.299759 + 0.519198i
\(834\) 0 0
\(835\) −4.07979 + 7.06641i −0.141187 + 0.244543i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −11.2119 6.47318i −0.387077 0.223479i 0.293816 0.955862i \(-0.405075\pi\)
−0.680893 + 0.732383i \(0.738408\pi\)
\(840\) 0 0
\(841\) 13.9709 + 24.1984i 0.481756 + 0.834427i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 49.1912 13.8473i 1.69223 0.476362i
\(846\) 0 0
\(847\) 1.43490i 0.0493036i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0.353077 0.203849i 0.0121033 0.00698786i
\(852\) 0 0
\(853\) 20.6627 + 11.9296i 0.707476 + 0.408462i 0.810126 0.586256i \(-0.199399\pi\)
−0.102650 + 0.994718i \(0.532732\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −8.96321 + 15.5247i −0.306177 + 0.530315i −0.977523 0.210830i \(-0.932383\pi\)
0.671345 + 0.741145i \(0.265717\pi\)
\(858\) 0 0
\(859\) −7.61224 13.1848i −0.259726 0.449859i 0.706442 0.707771i \(-0.250299\pi\)
−0.966169 + 0.257911i \(0.916966\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.21450i 0.0413422i −0.999786 0.0206711i \(-0.993420\pi\)
0.999786 0.0206711i \(-0.00658029\pi\)
\(864\) 0 0
\(865\) 56.4312i 1.91872i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 5.08230 2.93427i 0.172405 0.0995382i
\(870\) 0 0
\(871\) −3.97211 9.42121i −0.134590 0.319225i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 51.5553 89.2964i 1.74289 3.01877i
\(876\) 0 0
\(877\) −35.9366 + 20.7480i −1.21349 + 0.700611i −0.963519 0.267641i \(-0.913756\pi\)
−0.249975 + 0.968252i \(0.580422\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 20.3311 0.684972 0.342486 0.939523i \(-0.388731\pi\)
0.342486 + 0.939523i \(0.388731\pi\)
\(882\) 0 0
\(883\) 28.4196 0.956395 0.478197 0.878252i \(-0.341290\pi\)
0.478197 + 0.878252i \(0.341290\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −5.94448 10.2961i −0.199596 0.345710i 0.748802 0.662794i \(-0.230630\pi\)
−0.948397 + 0.317084i \(0.897296\pi\)
\(888\) 0 0
\(889\) −71.7118 41.4028i −2.40514 1.38861i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −33.0813 + 57.2985i −1.10702 + 1.91742i
\(894\) 0 0
\(895\) −13.9169 + 8.03491i −0.465190 + 0.268578i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 7.60397i 0.253607i
\(900\) 0 0
\(901\) 6.22196 0.207284
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 54.3024 31.3515i 1.80507 1.04216i
\(906\) 0 0
\(907\) −7.14235 + 12.3709i −0.237158 + 0.410770i −0.959898 0.280351i \(-0.909549\pi\)
0.722740 + 0.691120i \(0.242883\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −23.5622 + 40.8109i −0.780649 + 1.35212i 0.150915 + 0.988547i \(0.451778\pi\)
−0.931564 + 0.363578i \(0.881555\pi\)
\(912\) 0 0
\(913\) 23.6825 + 41.0193i 0.783777 + 1.35754i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 40.6745i 1.34319i
\(918\) 0 0
\(919\) −44.6273 −1.47212 −0.736060 0.676916i \(-0.763316\pi\)
−0.736060 + 0.676916i \(0.763316\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −4.88092 0.611329i −0.160658 0.0201222i
\(924\) 0 0
\(925\) 43.1732 + 24.9261i 1.41953 + 0.819565i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −11.2761 6.51027i −0.369958 0.213595i 0.303482 0.952837i \(-0.401851\pi\)
−0.673440 + 0.739242i \(0.735184\pi\)
\(930\) 0 0
\(931\) 91.8644 53.0379i 3.01073 1.73825i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −14.1656 −0.463264
\(936\) 0 0
\(937\) −0.395642 −0.0129251 −0.00646253 0.999979i \(-0.502057\pi\)
−0.00646253 + 0.999979i \(0.502057\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 29.0237 16.7568i 0.946145 0.546257i 0.0542640 0.998527i \(-0.482719\pi\)
0.891881 + 0.452269i \(0.149385\pi\)
\(942\) 0 0
\(943\) 0.185583 + 0.107146i 0.00604340 + 0.00348916i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −22.1028 12.7611i −0.718246 0.414679i 0.0958609 0.995395i \(-0.469440\pi\)
−0.814107 + 0.580715i \(0.802773\pi\)
\(948\) 0 0
\(949\) 9.58006 + 1.19989i 0.310982 + 0.0389501i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 13.0504 0.422743 0.211372 0.977406i \(-0.432207\pi\)
0.211372 + 0.977406i \(0.432207\pi\)
\(954\) 0 0
\(955\) 39.0027i 1.26210i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −43.8459 75.9434i −1.41586 2.45234i
\(960\) 0 0
\(961\) 11.8220 20.4764i 0.381356 0.660528i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 30.0473 52.0434i 0.967256 1.67534i
\(966\) 0 0
\(967\) 3.09895 1.78918i 0.0996555 0.0575361i −0.449344 0.893359i \(-0.648342\pi\)
0.548999 + 0.835823i \(0.315009\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 35.7804 1.14825 0.574125 0.818768i \(-0.305342\pi\)
0.574125 + 0.818768i \(0.305342\pi\)
\(972\) 0 0
\(973\) 55.4167i 1.77658i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −13.0418 + 7.52970i −0.417245 + 0.240896i −0.693898 0.720074i \(-0.744108\pi\)
0.276653 + 0.960970i \(0.410775\pi\)
\(978\) 0 0
\(979\) −15.7218 + 27.2310i −0.502471 + 0.870305i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 28.4653 + 16.4345i 0.907903 + 0.524178i 0.879756 0.475425i \(-0.157706\pi\)
0.0281475 + 0.999604i \(0.491039\pi\)
\(984\) 0 0
\(985\) −2.42703 4.20374i −0.0773316 0.133942i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −0.317838 −0.0101066
\(990\) 0 0
\(991\) 13.4770 0.428112 0.214056 0.976821i \(-0.431333\pi\)
0.214056 + 0.976821i \(0.431333\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 19.2278 11.1012i 0.609562 0.351931i
\(996\) 0 0
\(997\) −5.73848 + 9.93934i −0.181740 + 0.314782i −0.942473 0.334282i \(-0.891506\pi\)
0.760733 + 0.649064i \(0.224839\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2808.2.cw.b.1585.3 80
3.2 odd 2 936.2.cw.b.25.26 yes 80
9.4 even 3 inner 2808.2.cw.b.2521.38 80
9.5 odd 6 936.2.cw.b.337.25 yes 80
13.12 even 2 inner 2808.2.cw.b.1585.38 80
39.38 odd 2 936.2.cw.b.25.25 80
117.77 odd 6 936.2.cw.b.337.26 yes 80
117.103 even 6 inner 2808.2.cw.b.2521.3 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.cw.b.25.25 80 39.38 odd 2
936.2.cw.b.25.26 yes 80 3.2 odd 2
936.2.cw.b.337.25 yes 80 9.5 odd 6
936.2.cw.b.337.26 yes 80 117.77 odd 6
2808.2.cw.b.1585.3 80 1.1 even 1 trivial
2808.2.cw.b.1585.38 80 13.12 even 2 inner
2808.2.cw.b.2521.3 80 117.103 even 6 inner
2808.2.cw.b.2521.38 80 9.4 even 3 inner