Properties

Label 936.2.cw.b.25.23
Level $936$
Weight $2$
Character 936.25
Analytic conductor $7.474$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(25,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.25"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.cw (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(40\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 25.23
Character \(\chi\) \(=\) 936.25
Dual form 936.2.cw.b.337.23

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.242542 - 1.71498i) q^{3} +(-1.55919 + 0.900198i) q^{5} +(-2.30144 - 1.32873i) q^{7} +(-2.88235 - 0.831913i) q^{9} +(1.01492 + 0.585964i) q^{11} +(-2.35702 - 2.72845i) q^{13} +(1.16566 + 2.89232i) q^{15} +1.33805 q^{17} +7.81675i q^{19} +(-2.83695 + 3.62465i) q^{21} +(2.83598 + 4.91206i) q^{23} +(-0.879286 + 1.52297i) q^{25} +(-2.12581 + 4.74141i) q^{27} +(3.00413 - 5.20331i) q^{29} +(-2.23496 + 1.29036i) q^{31} +(1.25108 - 1.59845i) q^{33} +4.78450 q^{35} +5.90191i q^{37} +(-5.25093 + 3.38049i) q^{39} +(-6.23926 + 3.60224i) q^{41} +(-5.04619 + 8.74025i) q^{43} +(5.24301 - 1.29757i) q^{45} +(-8.20794 - 4.73885i) q^{47} +(0.0310704 + 0.0538156i) q^{49} +(0.324533 - 2.29473i) q^{51} -12.3419 q^{53} -2.10994 q^{55} +(13.4056 + 1.89589i) q^{57} +(10.6080 - 6.12456i) q^{59} +(5.22284 - 9.04622i) q^{61} +(5.52814 + 5.74447i) q^{63} +(6.13119 + 2.13239i) q^{65} +(-5.17129 + 2.98565i) q^{67} +(9.11195 - 3.67228i) q^{69} -1.35532i q^{71} +9.98135i q^{73} +(2.39860 + 1.87735i) q^{75} +(-1.55718 - 2.69712i) q^{77} +(-2.14171 + 3.70956i) q^{79} +(7.61584 + 4.79572i) q^{81} +(-1.70208 - 0.982698i) q^{83} +(-2.08627 + 1.20451i) q^{85} +(-8.19497 - 6.41406i) q^{87} -8.41529i q^{89} +(1.79914 + 9.41121i) q^{91} +(1.67087 + 4.14589i) q^{93} +(-7.03663 - 12.1878i) q^{95} +(-0.765238 - 0.441810i) q^{97} +(-2.43788 - 2.53328i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 6 q^{3} - 6 q^{9} + 6 q^{13} - 4 q^{17} + 10 q^{23} + 44 q^{25} + 6 q^{27} - 52 q^{35} + 40 q^{39} - 26 q^{43} + 48 q^{49} + 36 q^{51} + 60 q^{53} - 16 q^{55} - 10 q^{61} - 26 q^{65} - 38 q^{69}+ \cdots + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.242542 1.71498i 0.140032 0.990147i
\(4\) 0 0
\(5\) −1.55919 + 0.900198i −0.697291 + 0.402581i −0.806338 0.591456i \(-0.798553\pi\)
0.109047 + 0.994037i \(0.465220\pi\)
\(6\) 0 0
\(7\) −2.30144 1.32873i −0.869861 0.502214i −0.00255888 0.999997i \(-0.500815\pi\)
−0.867302 + 0.497782i \(0.834148\pi\)
\(8\) 0 0
\(9\) −2.88235 0.831913i −0.960782 0.277304i
\(10\) 0 0
\(11\) 1.01492 + 0.585964i 0.306010 + 0.176675i 0.645140 0.764065i \(-0.276799\pi\)
−0.339130 + 0.940740i \(0.610133\pi\)
\(12\) 0 0
\(13\) −2.35702 2.72845i −0.653720 0.756736i
\(14\) 0 0
\(15\) 1.16566 + 2.89232i 0.300971 + 0.746794i
\(16\) 0 0
\(17\) 1.33805 0.324524 0.162262 0.986748i \(-0.448121\pi\)
0.162262 + 0.986748i \(0.448121\pi\)
\(18\) 0 0
\(19\) 7.81675i 1.79329i 0.442754 + 0.896643i \(0.354001\pi\)
−0.442754 + 0.896643i \(0.645999\pi\)
\(20\) 0 0
\(21\) −2.83695 + 3.62465i −0.619074 + 0.790964i
\(22\) 0 0
\(23\) 2.83598 + 4.91206i 0.591342 + 1.02423i 0.994052 + 0.108907i \(0.0347351\pi\)
−0.402710 + 0.915328i \(0.631932\pi\)
\(24\) 0 0
\(25\) −0.879286 + 1.52297i −0.175857 + 0.304594i
\(26\) 0 0
\(27\) −2.12581 + 4.74141i −0.409112 + 0.912484i
\(28\) 0 0
\(29\) 3.00413 5.20331i 0.557853 0.966230i −0.439822 0.898085i \(-0.644958\pi\)
0.997675 0.0681455i \(-0.0217082\pi\)
\(30\) 0 0
\(31\) −2.23496 + 1.29036i −0.401411 + 0.231755i −0.687093 0.726570i \(-0.741113\pi\)
0.285682 + 0.958325i \(0.407780\pi\)
\(32\) 0 0
\(33\) 1.25108 1.59845i 0.217785 0.278255i
\(34\) 0 0
\(35\) 4.78450 0.808728
\(36\) 0 0
\(37\) 5.90191i 0.970268i 0.874440 + 0.485134i \(0.161229\pi\)
−0.874440 + 0.485134i \(0.838771\pi\)
\(38\) 0 0
\(39\) −5.25093 + 3.38049i −0.840822 + 0.541312i
\(40\) 0 0
\(41\) −6.23926 + 3.60224i −0.974408 + 0.562575i −0.900577 0.434696i \(-0.856856\pi\)
−0.0738310 + 0.997271i \(0.523523\pi\)
\(42\) 0 0
\(43\) −5.04619 + 8.74025i −0.769536 + 1.33288i 0.168279 + 0.985739i \(0.446179\pi\)
−0.937815 + 0.347136i \(0.887154\pi\)
\(44\) 0 0
\(45\) 5.24301 1.29757i 0.781582 0.193431i
\(46\) 0 0
\(47\) −8.20794 4.73885i −1.19725 0.691233i −0.237309 0.971434i \(-0.576265\pi\)
−0.959941 + 0.280201i \(0.909599\pi\)
\(48\) 0 0
\(49\) 0.0310704 + 0.0538156i 0.00443864 + 0.00768794i
\(50\) 0 0
\(51\) 0.324533 2.29473i 0.0454437 0.321326i
\(52\) 0 0
\(53\) −12.3419 −1.69529 −0.847645 0.530564i \(-0.821980\pi\)
−0.847645 + 0.530564i \(0.821980\pi\)
\(54\) 0 0
\(55\) −2.10994 −0.284504
\(56\) 0 0
\(57\) 13.4056 + 1.89589i 1.77562 + 0.251117i
\(58\) 0 0
\(59\) 10.6080 6.12456i 1.38105 0.797349i 0.388766 0.921337i \(-0.372901\pi\)
0.992284 + 0.123987i \(0.0395682\pi\)
\(60\) 0 0
\(61\) 5.22284 9.04622i 0.668716 1.15825i −0.309547 0.950884i \(-0.600178\pi\)
0.978263 0.207366i \(-0.0664891\pi\)
\(62\) 0 0
\(63\) 5.52814 + 5.74447i 0.696481 + 0.723735i
\(64\) 0 0
\(65\) 6.13119 + 2.13239i 0.760481 + 0.264490i
\(66\) 0 0
\(67\) −5.17129 + 2.98565i −0.631774 + 0.364755i −0.781439 0.623982i \(-0.785514\pi\)
0.149665 + 0.988737i \(0.452181\pi\)
\(68\) 0 0
\(69\) 9.11195 3.67228i 1.09695 0.442090i
\(70\) 0 0
\(71\) 1.35532i 0.160847i −0.996761 0.0804236i \(-0.974373\pi\)
0.996761 0.0804236i \(-0.0256273\pi\)
\(72\) 0 0
\(73\) 9.98135i 1.16823i 0.811672 + 0.584114i \(0.198558\pi\)
−0.811672 + 0.584114i \(0.801442\pi\)
\(74\) 0 0
\(75\) 2.39860 + 1.87735i 0.276967 + 0.216777i
\(76\) 0 0
\(77\) −1.55718 2.69712i −0.177457 0.307365i
\(78\) 0 0
\(79\) −2.14171 + 3.70956i −0.240962 + 0.417358i −0.960988 0.276588i \(-0.910796\pi\)
0.720027 + 0.693946i \(0.244129\pi\)
\(80\) 0 0
\(81\) 7.61584 + 4.79572i 0.846205 + 0.532858i
\(82\) 0 0
\(83\) −1.70208 0.982698i −0.186828 0.107865i 0.403669 0.914905i \(-0.367735\pi\)
−0.590497 + 0.807040i \(0.701068\pi\)
\(84\) 0 0
\(85\) −2.08627 + 1.20451i −0.226287 + 0.130647i
\(86\) 0 0
\(87\) −8.19497 6.41406i −0.878593 0.687660i
\(88\) 0 0
\(89\) 8.41529i 0.892019i −0.895028 0.446009i \(-0.852845\pi\)
0.895028 0.446009i \(-0.147155\pi\)
\(90\) 0 0
\(91\) 1.79914 + 9.41121i 0.188602 + 0.986563i
\(92\) 0 0
\(93\) 1.67087 + 4.14589i 0.173261 + 0.429909i
\(94\) 0 0
\(95\) −7.03663 12.1878i −0.721943 1.25044i
\(96\) 0 0
\(97\) −0.765238 0.441810i −0.0776982 0.0448591i 0.460648 0.887583i \(-0.347617\pi\)
−0.538346 + 0.842724i \(0.680951\pi\)
\(98\) 0 0
\(99\) −2.43788 2.53328i −0.245016 0.254604i
\(100\) 0 0
\(101\) −0.204568 + 0.354322i −0.0203553 + 0.0352564i −0.876024 0.482268i \(-0.839813\pi\)
0.855668 + 0.517525i \(0.173146\pi\)
\(102\) 0 0
\(103\) 5.03049 + 8.71307i 0.495669 + 0.858524i 0.999988 0.00499380i \(-0.00158958\pi\)
−0.504319 + 0.863518i \(0.668256\pi\)
\(104\) 0 0
\(105\) 1.16044 8.20534i 0.113248 0.800759i
\(106\) 0 0
\(107\) −4.44751 −0.429957 −0.214979 0.976619i \(-0.568968\pi\)
−0.214979 + 0.976619i \(0.568968\pi\)
\(108\) 0 0
\(109\) 8.51488i 0.815578i −0.913076 0.407789i \(-0.866300\pi\)
0.913076 0.407789i \(-0.133700\pi\)
\(110\) 0 0
\(111\) 10.1217 + 1.43146i 0.960708 + 0.135868i
\(112\) 0 0
\(113\) 6.92238 + 11.9899i 0.651203 + 1.12792i 0.982831 + 0.184506i \(0.0590686\pi\)
−0.331629 + 0.943410i \(0.607598\pi\)
\(114\) 0 0
\(115\) −8.84365 5.10588i −0.824675 0.476126i
\(116\) 0 0
\(117\) 4.52392 + 9.82518i 0.418236 + 0.908338i
\(118\) 0 0
\(119\) −3.07943 1.77791i −0.282291 0.162980i
\(120\) 0 0
\(121\) −4.81329 8.33687i −0.437572 0.757897i
\(122\) 0 0
\(123\) 4.66450 + 11.5739i 0.420584 + 1.04359i
\(124\) 0 0
\(125\) 12.1681i 1.08835i
\(126\) 0 0
\(127\) −8.12200 −0.720711 −0.360356 0.932815i \(-0.617345\pi\)
−0.360356 + 0.932815i \(0.617345\pi\)
\(128\) 0 0
\(129\) 13.7655 + 10.7740i 1.21198 + 0.948599i
\(130\) 0 0
\(131\) 5.89862 + 10.2167i 0.515364 + 0.892637i 0.999841 + 0.0178331i \(0.00567675\pi\)
−0.484477 + 0.874804i \(0.660990\pi\)
\(132\) 0 0
\(133\) 10.3864 17.9898i 0.900614 1.55991i
\(134\) 0 0
\(135\) −0.953669 9.30640i −0.0820788 0.800967i
\(136\) 0 0
\(137\) −17.9997 10.3921i −1.53782 0.887861i −0.998966 0.0454612i \(-0.985524\pi\)
−0.538854 0.842399i \(-0.681142\pi\)
\(138\) 0 0
\(139\) −2.54165 4.40227i −0.215580 0.373396i 0.737872 0.674941i \(-0.235831\pi\)
−0.953452 + 0.301545i \(0.902498\pi\)
\(140\) 0 0
\(141\) −10.1178 + 12.9271i −0.852075 + 1.08866i
\(142\) 0 0
\(143\) −0.793412 4.15029i −0.0663484 0.347065i
\(144\) 0 0
\(145\) 10.8173i 0.898325i
\(146\) 0 0
\(147\) 0.0998288 0.0402328i 0.00823374 0.00331834i
\(148\) 0 0
\(149\) 11.9131 6.87805i 0.975962 0.563472i 0.0749137 0.997190i \(-0.476132\pi\)
0.901049 + 0.433718i \(0.142799\pi\)
\(150\) 0 0
\(151\) −16.0415 9.26157i −1.30544 0.753696i −0.324108 0.946020i \(-0.605064\pi\)
−0.981331 + 0.192324i \(0.938398\pi\)
\(152\) 0 0
\(153\) −3.85671 1.11314i −0.311797 0.0899918i
\(154\) 0 0
\(155\) 2.32315 4.02382i 0.186600 0.323201i
\(156\) 0 0
\(157\) −4.00643 6.93935i −0.319748 0.553820i 0.660687 0.750661i \(-0.270265\pi\)
−0.980435 + 0.196841i \(0.936932\pi\)
\(158\) 0 0
\(159\) −2.99343 + 21.1662i −0.237395 + 1.67859i
\(160\) 0 0
\(161\) 15.0730i 1.18792i
\(162\) 0 0
\(163\) 0.362314i 0.0283786i 0.999899 + 0.0141893i \(0.00451675\pi\)
−0.999899 + 0.0141893i \(0.995483\pi\)
\(164\) 0 0
\(165\) −0.511748 + 3.61851i −0.0398396 + 0.281700i
\(166\) 0 0
\(167\) −11.3437 + 6.54926i −0.877798 + 0.506797i −0.869932 0.493172i \(-0.835837\pi\)
−0.00786643 + 0.999969i \(0.502504\pi\)
\(168\) 0 0
\(169\) −1.88890 + 12.8620i −0.145300 + 0.989388i
\(170\) 0 0
\(171\) 6.50285 22.5306i 0.497286 1.72296i
\(172\) 0 0
\(173\) 0.104110 0.180324i 0.00791535 0.0137098i −0.862041 0.506839i \(-0.830814\pi\)
0.869956 + 0.493129i \(0.164147\pi\)
\(174\) 0 0
\(175\) 4.04724 2.33668i 0.305943 0.176636i
\(176\) 0 0
\(177\) −7.93062 19.6781i −0.596102 1.47910i
\(178\) 0 0
\(179\) 15.4820 1.15718 0.578589 0.815619i \(-0.303603\pi\)
0.578589 + 0.815619i \(0.303603\pi\)
\(180\) 0 0
\(181\) 9.66553 0.718433 0.359217 0.933254i \(-0.383044\pi\)
0.359217 + 0.933254i \(0.383044\pi\)
\(182\) 0 0
\(183\) −14.2474 11.1512i −1.05320 0.824319i
\(184\) 0 0
\(185\) −5.31289 9.20219i −0.390611 0.676559i
\(186\) 0 0
\(187\) 1.35801 + 0.784047i 0.0993074 + 0.0573352i
\(188\) 0 0
\(189\) 11.1925 8.08741i 0.814133 0.588272i
\(190\) 0 0
\(191\) −2.25148 + 3.89967i −0.162911 + 0.282171i −0.935912 0.352235i \(-0.885422\pi\)
0.773000 + 0.634406i \(0.218755\pi\)
\(192\) 0 0
\(193\) −13.6732 + 7.89423i −0.984219 + 0.568239i −0.903541 0.428501i \(-0.859042\pi\)
−0.0806778 + 0.996740i \(0.525708\pi\)
\(194\) 0 0
\(195\) 5.14408 9.99770i 0.368375 0.715950i
\(196\) 0 0
\(197\) 2.32267i 0.165484i −0.996571 0.0827418i \(-0.973632\pi\)
0.996571 0.0827418i \(-0.0263677\pi\)
\(198\) 0 0
\(199\) −23.4999 −1.66586 −0.832932 0.553375i \(-0.813340\pi\)
−0.832932 + 0.553375i \(0.813340\pi\)
\(200\) 0 0
\(201\) 3.86608 + 9.59283i 0.272692 + 0.676626i
\(202\) 0 0
\(203\) −13.8276 + 7.98339i −0.970510 + 0.560324i
\(204\) 0 0
\(205\) 6.48546 11.2331i 0.452964 0.784556i
\(206\) 0 0
\(207\) −4.08787 16.5175i −0.284126 1.14805i
\(208\) 0 0
\(209\) −4.58034 + 7.93337i −0.316828 + 0.548763i
\(210\) 0 0
\(211\) 7.49343 + 12.9790i 0.515869 + 0.893511i 0.999830 + 0.0184218i \(0.00586417\pi\)
−0.483961 + 0.875089i \(0.660802\pi\)
\(212\) 0 0
\(213\) −2.32436 0.328723i −0.159262 0.0225237i
\(214\) 0 0
\(215\) 18.1703i 1.23920i
\(216\) 0 0
\(217\) 6.85816 0.465562
\(218\) 0 0
\(219\) 17.1179 + 2.42090i 1.15672 + 0.163589i
\(220\) 0 0
\(221\) −3.15380 3.65079i −0.212148 0.245579i
\(222\) 0 0
\(223\) −1.22733 0.708599i −0.0821880 0.0474513i 0.458343 0.888776i \(-0.348443\pi\)
−0.540531 + 0.841324i \(0.681777\pi\)
\(224\) 0 0
\(225\) 3.80138 3.65823i 0.253426 0.243882i
\(226\) 0 0
\(227\) −5.77352 3.33334i −0.383202 0.221242i 0.296008 0.955185i \(-0.404344\pi\)
−0.679210 + 0.733944i \(0.737678\pi\)
\(228\) 0 0
\(229\) −8.33635 + 4.81300i −0.550882 + 0.318052i −0.749478 0.662030i \(-0.769695\pi\)
0.198596 + 0.980081i \(0.436362\pi\)
\(230\) 0 0
\(231\) −5.00320 + 2.01638i −0.329186 + 0.132668i
\(232\) 0 0
\(233\) −4.63723 −0.303795 −0.151897 0.988396i \(-0.548538\pi\)
−0.151897 + 0.988396i \(0.548538\pi\)
\(234\) 0 0
\(235\) 17.0636 1.11311
\(236\) 0 0
\(237\) 5.84238 + 4.57273i 0.379503 + 0.297031i
\(238\) 0 0
\(239\) 20.5980 11.8922i 1.33237 0.769245i 0.346708 0.937973i \(-0.387299\pi\)
0.985663 + 0.168728i \(0.0539660\pi\)
\(240\) 0 0
\(241\) −19.5297 11.2755i −1.25802 0.726318i −0.285330 0.958429i \(-0.592103\pi\)
−0.972689 + 0.232111i \(0.925437\pi\)
\(242\) 0 0
\(243\) 10.0718 11.8979i 0.646103 0.763250i
\(244\) 0 0
\(245\) −0.0968894 0.0559391i −0.00619004 0.00357382i
\(246\) 0 0
\(247\) 21.3276 18.4243i 1.35704 1.17231i
\(248\) 0 0
\(249\) −2.09814 + 2.68070i −0.132964 + 0.169883i
\(250\) 0 0
\(251\) 28.2420 1.78262 0.891309 0.453396i \(-0.149787\pi\)
0.891309 + 0.453396i \(0.149787\pi\)
\(252\) 0 0
\(253\) 6.64712i 0.417901i
\(254\) 0 0
\(255\) 1.55970 + 3.87006i 0.0976724 + 0.242352i
\(256\) 0 0
\(257\) 3.48493 + 6.03608i 0.217384 + 0.376520i 0.954007 0.299783i \(-0.0969143\pi\)
−0.736623 + 0.676303i \(0.763581\pi\)
\(258\) 0 0
\(259\) 7.84207 13.5829i 0.487282 0.843998i
\(260\) 0 0
\(261\) −12.9877 + 12.4986i −0.803915 + 0.773642i
\(262\) 0 0
\(263\) −0.777511 + 1.34669i −0.0479434 + 0.0830404i −0.889001 0.457905i \(-0.848600\pi\)
0.841058 + 0.540945i \(0.181933\pi\)
\(264\) 0 0
\(265\) 19.2434 11.1102i 1.18211 0.682491i
\(266\) 0 0
\(267\) −14.4321 2.04106i −0.883230 0.124911i
\(268\) 0 0
\(269\) −10.3894 −0.633455 −0.316727 0.948517i \(-0.602584\pi\)
−0.316727 + 0.948517i \(0.602584\pi\)
\(270\) 0 0
\(271\) 23.8498i 1.44877i 0.689394 + 0.724387i \(0.257877\pi\)
−0.689394 + 0.724387i \(0.742123\pi\)
\(272\) 0 0
\(273\) 16.5765 0.802889i 1.00325 0.0485930i
\(274\) 0 0
\(275\) −1.78481 + 1.03046i −0.107628 + 0.0621391i
\(276\) 0 0
\(277\) −10.8536 + 18.7990i −0.652130 + 1.12952i 0.330475 + 0.943815i \(0.392791\pi\)
−0.982605 + 0.185707i \(0.940542\pi\)
\(278\) 0 0
\(279\) 7.51540 1.85996i 0.449935 0.111353i
\(280\) 0 0
\(281\) −0.843083 0.486754i −0.0502941 0.0290373i 0.474642 0.880179i \(-0.342577\pi\)
−0.524936 + 0.851142i \(0.675911\pi\)
\(282\) 0 0
\(283\) 12.2668 + 21.2468i 0.729188 + 1.26299i 0.957227 + 0.289338i \(0.0934352\pi\)
−0.228039 + 0.973652i \(0.573231\pi\)
\(284\) 0 0
\(285\) −22.6086 + 9.11165i −1.33922 + 0.539728i
\(286\) 0 0
\(287\) 19.1457 1.13013
\(288\) 0 0
\(289\) −15.2096 −0.894684
\(290\) 0 0
\(291\) −0.943301 + 1.20521i −0.0552973 + 0.0706509i
\(292\) 0 0
\(293\) 23.1545 13.3682i 1.35270 0.780981i 0.364073 0.931371i \(-0.381386\pi\)
0.988627 + 0.150389i \(0.0480527\pi\)
\(294\) 0 0
\(295\) −11.0266 + 19.0987i −0.641995 + 1.11197i
\(296\) 0 0
\(297\) −4.93582 + 3.56650i −0.286405 + 0.206949i
\(298\) 0 0
\(299\) 6.71785 19.3157i 0.388504 1.11705i
\(300\) 0 0
\(301\) 23.2269 13.4101i 1.33878 0.772944i
\(302\) 0 0
\(303\) 0.558040 + 0.436769i 0.0320586 + 0.0250917i
\(304\) 0 0
\(305\) 18.8064i 1.07685i
\(306\) 0 0
\(307\) 19.0123i 1.08509i −0.840027 0.542544i \(-0.817461\pi\)
0.840027 0.542544i \(-0.182539\pi\)
\(308\) 0 0
\(309\) 16.1629 6.51393i 0.919474 0.370565i
\(310\) 0 0
\(311\) −4.62413 8.00923i −0.262211 0.454162i 0.704618 0.709586i \(-0.251118\pi\)
−0.966829 + 0.255424i \(0.917785\pi\)
\(312\) 0 0
\(313\) 14.0904 24.4053i 0.796436 1.37947i −0.125488 0.992095i \(-0.540050\pi\)
0.921923 0.387372i \(-0.126617\pi\)
\(314\) 0 0
\(315\) −13.7906 3.98028i −0.777011 0.224264i
\(316\) 0 0
\(317\) 4.02813 + 2.32564i 0.226242 + 0.130621i 0.608837 0.793295i \(-0.291636\pi\)
−0.382595 + 0.923916i \(0.624970\pi\)
\(318\) 0 0
\(319\) 6.09791 3.52063i 0.341417 0.197117i
\(320\) 0 0
\(321\) −1.07871 + 7.62741i −0.0602077 + 0.425721i
\(322\) 0 0
\(323\) 10.4592i 0.581964i
\(324\) 0 0
\(325\) 6.22784 1.19058i 0.345458 0.0660414i
\(326\) 0 0
\(327\) −14.6029 2.06522i −0.807542 0.114207i
\(328\) 0 0
\(329\) 12.5934 + 21.8123i 0.694294 + 1.20255i
\(330\) 0 0
\(331\) −11.1406 6.43205i −0.612345 0.353538i 0.161538 0.986867i \(-0.448355\pi\)
−0.773883 + 0.633329i \(0.781688\pi\)
\(332\) 0 0
\(333\) 4.90987 17.0113i 0.269059 0.932216i
\(334\) 0 0
\(335\) 5.37535 9.31038i 0.293687 0.508680i
\(336\) 0 0
\(337\) −4.44018 7.69061i −0.241872 0.418934i 0.719376 0.694621i \(-0.244428\pi\)
−0.961247 + 0.275687i \(0.911095\pi\)
\(338\) 0 0
\(339\) 22.2415 8.96372i 1.20799 0.486842i
\(340\) 0 0
\(341\) −3.02441 −0.163781
\(342\) 0 0
\(343\) 18.4371i 0.995512i
\(344\) 0 0
\(345\) −10.9015 + 13.9283i −0.586916 + 0.749876i
\(346\) 0 0
\(347\) −1.97419 3.41939i −0.105980 0.183563i 0.808158 0.588965i \(-0.200465\pi\)
−0.914138 + 0.405403i \(0.867131\pi\)
\(348\) 0 0
\(349\) −26.8533 15.5037i −1.43742 0.829896i −0.439752 0.898119i \(-0.644933\pi\)
−0.997670 + 0.0682238i \(0.978267\pi\)
\(350\) 0 0
\(351\) 17.9473 5.37543i 0.957955 0.286919i
\(352\) 0 0
\(353\) −4.29737 2.48109i −0.228726 0.132055i 0.381258 0.924469i \(-0.375491\pi\)
−0.609984 + 0.792414i \(0.708824\pi\)
\(354\) 0 0
\(355\) 1.22006 + 2.11320i 0.0647540 + 0.112157i
\(356\) 0 0
\(357\) −3.79598 + 4.84995i −0.200904 + 0.256687i
\(358\) 0 0
\(359\) 23.5827i 1.24465i 0.782760 + 0.622324i \(0.213811\pi\)
−0.782760 + 0.622324i \(0.786189\pi\)
\(360\) 0 0
\(361\) −42.1016 −2.21587
\(362\) 0 0
\(363\) −15.4650 + 6.23268i −0.811703 + 0.327131i
\(364\) 0 0
\(365\) −8.98519 15.5628i −0.470306 0.814595i
\(366\) 0 0
\(367\) −1.98759 + 3.44261i −0.103752 + 0.179703i −0.913227 0.407450i \(-0.866418\pi\)
0.809476 + 0.587153i \(0.199751\pi\)
\(368\) 0 0
\(369\) 20.9804 5.19238i 1.09220 0.270304i
\(370\) 0 0
\(371\) 28.4041 + 16.3991i 1.47467 + 0.851399i
\(372\) 0 0
\(373\) 11.4714 + 19.8691i 0.593969 + 1.02878i 0.993692 + 0.112148i \(0.0357730\pi\)
−0.399723 + 0.916636i \(0.630894\pi\)
\(374\) 0 0
\(375\) −20.8681 2.95128i −1.07763 0.152403i
\(376\) 0 0
\(377\) −21.2778 + 4.06768i −1.09586 + 0.209496i
\(378\) 0 0
\(379\) 14.0412i 0.721246i 0.932712 + 0.360623i \(0.117436\pi\)
−0.932712 + 0.360623i \(0.882564\pi\)
\(380\) 0 0
\(381\) −1.96993 + 13.9291i −0.100923 + 0.713610i
\(382\) 0 0
\(383\) 1.22496 0.707232i 0.0625926 0.0361379i −0.468377 0.883529i \(-0.655161\pi\)
0.530970 + 0.847391i \(0.321828\pi\)
\(384\) 0 0
\(385\) 4.85588 + 2.80354i 0.247479 + 0.142882i
\(386\) 0 0
\(387\) 21.8160 20.9944i 1.10897 1.06721i
\(388\) 0 0
\(389\) −12.7767 + 22.1299i −0.647805 + 1.12203i 0.335841 + 0.941919i \(0.390980\pi\)
−0.983646 + 0.180113i \(0.942354\pi\)
\(390\) 0 0
\(391\) 3.79467 + 6.57256i 0.191905 + 0.332389i
\(392\) 0 0
\(393\) 18.9522 7.63805i 0.956010 0.385289i
\(394\) 0 0
\(395\) 7.71187i 0.388026i
\(396\) 0 0
\(397\) 0.254531i 0.0127746i −0.999980 0.00638728i \(-0.997967\pi\)
0.999980 0.00638728i \(-0.00203315\pi\)
\(398\) 0 0
\(399\) −28.3330 22.1758i −1.41842 1.11018i
\(400\) 0 0
\(401\) −0.372180 + 0.214878i −0.0185858 + 0.0107305i −0.509264 0.860610i \(-0.670082\pi\)
0.490678 + 0.871341i \(0.336749\pi\)
\(402\) 0 0
\(403\) 8.78853 + 3.05659i 0.437788 + 0.152260i
\(404\) 0 0
\(405\) −16.1916 0.621667i −0.804569 0.0308909i
\(406\) 0 0
\(407\) −3.45831 + 5.98996i −0.171422 + 0.296911i
\(408\) 0 0
\(409\) 4.51984 2.60953i 0.223492 0.129033i −0.384074 0.923302i \(-0.625479\pi\)
0.607566 + 0.794269i \(0.292146\pi\)
\(410\) 0 0
\(411\) −22.1881 + 28.3487i −1.09446 + 1.39834i
\(412\) 0 0
\(413\) −32.5516 −1.60176
\(414\) 0 0
\(415\) 3.53849 0.173698
\(416\) 0 0
\(417\) −8.16629 + 3.29116i −0.399905 + 0.161169i
\(418\) 0 0
\(419\) −11.5418 19.9910i −0.563853 0.976622i −0.997155 0.0753735i \(-0.975985\pi\)
0.433302 0.901249i \(-0.357348\pi\)
\(420\) 0 0
\(421\) 13.6048 + 7.85475i 0.663059 + 0.382817i 0.793441 0.608647i \(-0.208287\pi\)
−0.130383 + 0.991464i \(0.541621\pi\)
\(422\) 0 0
\(423\) 19.7158 + 20.4873i 0.958615 + 0.996127i
\(424\) 0 0
\(425\) −1.17652 + 2.03780i −0.0570698 + 0.0988479i
\(426\) 0 0
\(427\) −24.0401 + 13.8795i −1.16338 + 0.671678i
\(428\) 0 0
\(429\) −7.31012 + 0.354069i −0.352936 + 0.0170946i
\(430\) 0 0
\(431\) 28.2548i 1.36098i 0.732756 + 0.680492i \(0.238234\pi\)
−0.732756 + 0.680492i \(0.761766\pi\)
\(432\) 0 0
\(433\) 1.00582 0.0483366 0.0241683 0.999708i \(-0.492306\pi\)
0.0241683 + 0.999708i \(0.492306\pi\)
\(434\) 0 0
\(435\) 18.5514 + 2.62364i 0.889473 + 0.125794i
\(436\) 0 0
\(437\) −38.3963 + 22.1681i −1.83675 + 1.06045i
\(438\) 0 0
\(439\) 1.05111 1.82057i 0.0501667 0.0868912i −0.839852 0.542816i \(-0.817358\pi\)
0.890018 + 0.455925i \(0.150691\pi\)
\(440\) 0 0
\(441\) −0.0447859 0.180963i −0.00213266 0.00861729i
\(442\) 0 0
\(443\) −11.5606 + 20.0236i −0.549262 + 0.951350i 0.449063 + 0.893500i \(0.351758\pi\)
−0.998325 + 0.0578496i \(0.981576\pi\)
\(444\) 0 0
\(445\) 7.57543 + 13.1210i 0.359110 + 0.621996i
\(446\) 0 0
\(447\) −8.90632 22.0991i −0.421254 1.04525i
\(448\) 0 0
\(449\) 0.677149i 0.0319566i 0.999872 + 0.0159783i \(0.00508627\pi\)
−0.999872 + 0.0159783i \(0.994914\pi\)
\(450\) 0 0
\(451\) −8.44313 −0.397571
\(452\) 0 0
\(453\) −19.7742 + 25.2646i −0.929073 + 1.18704i
\(454\) 0 0
\(455\) −11.2772 13.0543i −0.528682 0.611994i
\(456\) 0 0
\(457\) 10.1204 + 5.84300i 0.473411 + 0.273324i 0.717667 0.696387i \(-0.245210\pi\)
−0.244255 + 0.969711i \(0.578543\pi\)
\(458\) 0 0
\(459\) −2.84443 + 6.34422i −0.132767 + 0.296123i
\(460\) 0 0
\(461\) 7.11644 + 4.10868i 0.331446 + 0.191360i 0.656483 0.754341i \(-0.272043\pi\)
−0.325037 + 0.945701i \(0.605377\pi\)
\(462\) 0 0
\(463\) 3.75857 2.17001i 0.174676 0.100849i −0.410113 0.912035i \(-0.634511\pi\)
0.584789 + 0.811186i \(0.301177\pi\)
\(464\) 0 0
\(465\) −6.33732 4.96012i −0.293886 0.230020i
\(466\) 0 0
\(467\) 31.2648 1.44676 0.723382 0.690448i \(-0.242587\pi\)
0.723382 + 0.690448i \(0.242587\pi\)
\(468\) 0 0
\(469\) 15.8685 0.732740
\(470\) 0 0
\(471\) −12.8726 + 5.18789i −0.593138 + 0.239045i
\(472\) 0 0
\(473\) −10.2429 + 5.91377i −0.470971 + 0.271915i
\(474\) 0 0
\(475\) −11.9047 6.87316i −0.546223 0.315362i
\(476\) 0 0
\(477\) 35.5736 + 10.2674i 1.62880 + 0.470111i
\(478\) 0 0
\(479\) −4.58937 2.64967i −0.209694 0.121067i 0.391475 0.920189i \(-0.371965\pi\)
−0.601169 + 0.799122i \(0.705298\pi\)
\(480\) 0 0
\(481\) 16.1031 13.9109i 0.734237 0.634283i
\(482\) 0 0
\(483\) −25.8500 3.65585i −1.17622 0.166347i
\(484\) 0 0
\(485\) 1.59087 0.0722376
\(486\) 0 0
\(487\) 13.6948i 0.620571i 0.950643 + 0.310285i \(0.100425\pi\)
−0.950643 + 0.310285i \(0.899575\pi\)
\(488\) 0 0
\(489\) 0.621362 + 0.0878764i 0.0280990 + 0.00397391i
\(490\) 0 0
\(491\) −0.206712 0.358035i −0.00932876 0.0161579i 0.861323 0.508057i \(-0.169636\pi\)
−0.870652 + 0.491899i \(0.836303\pi\)
\(492\) 0 0
\(493\) 4.01967 6.96227i 0.181037 0.313565i
\(494\) 0 0
\(495\) 6.08156 + 1.75528i 0.273346 + 0.0788940i
\(496\) 0 0
\(497\) −1.80086 + 3.11919i −0.0807798 + 0.139915i
\(498\) 0 0
\(499\) 34.2594 19.7796i 1.53366 0.885459i 0.534471 0.845187i \(-0.320511\pi\)
0.999189 0.0402716i \(-0.0128223\pi\)
\(500\) 0 0
\(501\) 8.48057 + 21.0427i 0.378884 + 0.940117i
\(502\) 0 0
\(503\) −5.35395 −0.238721 −0.119360 0.992851i \(-0.538084\pi\)
−0.119360 + 0.992851i \(0.538084\pi\)
\(504\) 0 0
\(505\) 0.736607i 0.0327786i
\(506\) 0 0
\(507\) 21.6001 + 6.35903i 0.959293 + 0.282414i
\(508\) 0 0
\(509\) −29.8564 + 17.2376i −1.32336 + 0.764044i −0.984264 0.176706i \(-0.943456\pi\)
−0.339100 + 0.940750i \(0.610122\pi\)
\(510\) 0 0
\(511\) 13.2626 22.9714i 0.586701 1.01620i
\(512\) 0 0
\(513\) −37.0624 16.6169i −1.63635 0.733655i
\(514\) 0 0
\(515\) −15.6870 9.05688i −0.691251 0.399094i
\(516\) 0 0
\(517\) −5.55360 9.61911i −0.244247 0.423048i
\(518\) 0 0
\(519\) −0.284002 0.222284i −0.0124663 0.00975716i
\(520\) 0 0
\(521\) 0.293147 0.0128430 0.00642149 0.999979i \(-0.497956\pi\)
0.00642149 + 0.999979i \(0.497956\pi\)
\(522\) 0 0
\(523\) −8.15975 −0.356801 −0.178401 0.983958i \(-0.557092\pi\)
−0.178401 + 0.983958i \(0.557092\pi\)
\(524\) 0 0
\(525\) −3.02574 7.50770i −0.132054 0.327663i
\(526\) 0 0
\(527\) −2.99048 + 1.72655i −0.130267 + 0.0752099i
\(528\) 0 0
\(529\) −4.58554 + 7.94239i −0.199371 + 0.345321i
\(530\) 0 0
\(531\) −35.6712 + 8.82813i −1.54800 + 0.383108i
\(532\) 0 0
\(533\) 24.5346 + 8.53297i 1.06271 + 0.369604i
\(534\) 0 0
\(535\) 6.93451 4.00364i 0.299805 0.173093i
\(536\) 0 0
\(537\) 3.75504 26.5514i 0.162042 1.14578i
\(538\) 0 0
\(539\) 0.0728247i 0.00313678i
\(540\) 0 0
\(541\) 24.8891i 1.07007i 0.844831 + 0.535034i \(0.179701\pi\)
−0.844831 + 0.535034i \(0.820299\pi\)
\(542\) 0 0
\(543\) 2.34430 16.5762i 0.100604 0.711354i
\(544\) 0 0
\(545\) 7.66508 + 13.2763i 0.328336 + 0.568695i
\(546\) 0 0
\(547\) −4.99309 + 8.64829i −0.213489 + 0.369774i −0.952804 0.303586i \(-0.901816\pi\)
0.739315 + 0.673360i \(0.235150\pi\)
\(548\) 0 0
\(549\) −22.5797 + 21.7294i −0.963678 + 0.927388i
\(550\) 0 0
\(551\) 40.6730 + 23.4826i 1.73273 + 1.00039i
\(552\) 0 0
\(553\) 9.85803 5.69154i 0.419206 0.242029i
\(554\) 0 0
\(555\) −17.0702 + 6.87960i −0.724590 + 0.292023i
\(556\) 0 0
\(557\) 10.3622i 0.439059i 0.975606 + 0.219530i \(0.0704522\pi\)
−0.975606 + 0.219530i \(0.929548\pi\)
\(558\) 0 0
\(559\) 35.7413 6.83268i 1.51170 0.288992i
\(560\) 0 0
\(561\) 1.67400 2.13880i 0.0706764 0.0903002i
\(562\) 0 0
\(563\) 0.0915592 + 0.158585i 0.00385876 + 0.00668357i 0.867948 0.496654i \(-0.165438\pi\)
−0.864090 + 0.503338i \(0.832105\pi\)
\(564\) 0 0
\(565\) −21.5866 12.4630i −0.908155 0.524324i
\(566\) 0 0
\(567\) −11.1551 21.1565i −0.468472 0.888488i
\(568\) 0 0
\(569\) 5.73133 9.92696i 0.240270 0.416160i −0.720521 0.693433i \(-0.756097\pi\)
0.960791 + 0.277273i \(0.0894307\pi\)
\(570\) 0 0
\(571\) −17.1416 29.6902i −0.717356 1.24250i −0.962044 0.272894i \(-0.912019\pi\)
0.244688 0.969602i \(-0.421314\pi\)
\(572\) 0 0
\(573\) 6.14180 + 4.80709i 0.256578 + 0.200819i
\(574\) 0 0
\(575\) −9.97454 −0.415967
\(576\) 0 0
\(577\) 0.249728i 0.0103963i 0.999986 + 0.00519815i \(0.00165463\pi\)
−0.999986 + 0.00519815i \(0.998345\pi\)
\(578\) 0 0
\(579\) 10.2222 + 25.3640i 0.424818 + 1.05409i
\(580\) 0 0
\(581\) 2.61149 + 4.52323i 0.108343 + 0.187655i
\(582\) 0 0
\(583\) −12.5260 7.23191i −0.518775 0.299515i
\(584\) 0 0
\(585\) −15.8983 11.2469i −0.657312 0.465002i
\(586\) 0 0
\(587\) 8.57593 + 4.95132i 0.353967 + 0.204363i 0.666431 0.745567i \(-0.267821\pi\)
−0.312464 + 0.949929i \(0.601154\pi\)
\(588\) 0 0
\(589\) −10.0864 17.4701i −0.415603 0.719845i
\(590\) 0 0
\(591\) −3.98335 0.563346i −0.163853 0.0231730i
\(592\) 0 0
\(593\) 40.4008i 1.65906i 0.558461 + 0.829531i \(0.311392\pi\)
−0.558461 + 0.829531i \(0.688608\pi\)
\(594\) 0 0
\(595\) 6.40188 0.262451
\(596\) 0 0
\(597\) −5.69972 + 40.3020i −0.233274 + 1.64945i
\(598\) 0 0
\(599\) 2.83916 + 4.91757i 0.116005 + 0.200926i 0.918181 0.396161i \(-0.129658\pi\)
−0.802176 + 0.597087i \(0.796325\pi\)
\(600\) 0 0
\(601\) 3.12330 5.40971i 0.127402 0.220667i −0.795267 0.606259i \(-0.792670\pi\)
0.922669 + 0.385592i \(0.126003\pi\)
\(602\) 0 0
\(603\) 17.3893 4.30361i 0.708145 0.175256i
\(604\) 0 0
\(605\) 15.0097 + 8.66584i 0.610230 + 0.352316i
\(606\) 0 0
\(607\) −20.8317 36.0816i −0.845532 1.46451i −0.885158 0.465291i \(-0.845950\pi\)
0.0396256 0.999215i \(-0.487383\pi\)
\(608\) 0 0
\(609\) 10.3376 + 25.6505i 0.418901 + 1.03941i
\(610\) 0 0
\(611\) 6.41654 + 33.5645i 0.259586 + 1.35788i
\(612\) 0 0
\(613\) 5.54519i 0.223968i 0.993710 + 0.111984i \(0.0357205\pi\)
−0.993710 + 0.111984i \(0.964279\pi\)
\(614\) 0 0
\(615\) −17.6917 13.8470i −0.713397 0.558364i
\(616\) 0 0
\(617\) 28.6171 16.5221i 1.15208 0.665154i 0.202688 0.979243i \(-0.435032\pi\)
0.949393 + 0.314089i \(0.101699\pi\)
\(618\) 0 0
\(619\) 41.7437 + 24.1007i 1.67782 + 0.968689i 0.963047 + 0.269332i \(0.0868028\pi\)
0.714772 + 0.699358i \(0.246530\pi\)
\(620\) 0 0
\(621\) −29.3188 + 3.00443i −1.17652 + 0.120564i
\(622\) 0 0
\(623\) −11.1817 + 19.3672i −0.447985 + 0.775932i
\(624\) 0 0
\(625\) 6.55728 + 11.3575i 0.262291 + 0.454302i
\(626\) 0 0
\(627\) 12.4947 + 9.77938i 0.498990 + 0.390551i
\(628\) 0 0
\(629\) 7.89702i 0.314875i
\(630\) 0 0
\(631\) 47.4191i 1.88773i −0.330337 0.943863i \(-0.607162\pi\)
0.330337 0.943863i \(-0.392838\pi\)
\(632\) 0 0
\(633\) 24.0763 9.70316i 0.956945 0.385666i
\(634\) 0 0
\(635\) 12.6637 7.31141i 0.502545 0.290145i
\(636\) 0 0
\(637\) 0.0735996 0.211619i 0.00291612 0.00838464i
\(638\) 0 0
\(639\) −1.12751 + 3.90651i −0.0446036 + 0.154539i
\(640\) 0 0
\(641\) 7.76535 13.4500i 0.306713 0.531242i −0.670928 0.741522i \(-0.734104\pi\)
0.977641 + 0.210280i \(0.0674375\pi\)
\(642\) 0 0
\(643\) 25.4196 14.6760i 1.00245 0.578766i 0.0934792 0.995621i \(-0.470201\pi\)
0.908973 + 0.416855i \(0.136868\pi\)
\(644\) 0 0
\(645\) −31.1617 4.40706i −1.22699 0.173528i
\(646\) 0 0
\(647\) −2.49961 −0.0982699 −0.0491350 0.998792i \(-0.515646\pi\)
−0.0491350 + 0.998792i \(0.515646\pi\)
\(648\) 0 0
\(649\) 14.3551 0.563486
\(650\) 0 0
\(651\) 1.66339 11.7616i 0.0651935 0.460975i
\(652\) 0 0
\(653\) −0.184801 0.320085i −0.00723182 0.0125259i 0.862387 0.506250i \(-0.168969\pi\)
−0.869619 + 0.493724i \(0.835635\pi\)
\(654\) 0 0
\(655\) −18.3941 10.6198i −0.718718 0.414952i
\(656\) 0 0
\(657\) 8.30361 28.7697i 0.323955 1.12241i
\(658\) 0 0
\(659\) −7.51113 + 13.0097i −0.292592 + 0.506784i −0.974422 0.224727i \(-0.927851\pi\)
0.681830 + 0.731511i \(0.261184\pi\)
\(660\) 0 0
\(661\) 29.4593 17.0084i 1.14584 0.661548i 0.197967 0.980209i \(-0.436566\pi\)
0.947869 + 0.318660i \(0.103233\pi\)
\(662\) 0 0
\(663\) −7.02599 + 4.52325i −0.272867 + 0.175669i
\(664\) 0 0
\(665\) 37.3992i 1.45028i
\(666\) 0 0
\(667\) 34.0786 1.31953
\(668\) 0 0
\(669\) −1.51292 + 1.93299i −0.0584927 + 0.0747336i
\(670\) 0 0
\(671\) 10.6015 6.12079i 0.409267 0.236291i
\(672\) 0 0
\(673\) −14.0001 + 24.2489i −0.539664 + 0.934726i 0.459258 + 0.888303i \(0.348116\pi\)
−0.998922 + 0.0464229i \(0.985218\pi\)
\(674\) 0 0
\(675\) −5.35182 7.40659i −0.205992 0.285080i
\(676\) 0 0
\(677\) 12.4662 21.5921i 0.479115 0.829852i −0.520598 0.853802i \(-0.674291\pi\)
0.999713 + 0.0239498i \(0.00762420\pi\)
\(678\) 0 0
\(679\) 1.17410 + 2.03360i 0.0450577 + 0.0780423i
\(680\) 0 0
\(681\) −7.11696 + 9.09302i −0.272722 + 0.348445i
\(682\) 0 0
\(683\) 33.7051i 1.28969i −0.764313 0.644845i \(-0.776922\pi\)
0.764313 0.644845i \(-0.223078\pi\)
\(684\) 0 0
\(685\) 37.4200 1.42974
\(686\) 0 0
\(687\) 6.23230 + 15.4641i 0.237777 + 0.589991i
\(688\) 0 0
\(689\) 29.0901 + 33.6743i 1.10825 + 1.28289i
\(690\) 0 0
\(691\) 4.02127 + 2.32168i 0.152976 + 0.0883209i 0.574534 0.818481i \(-0.305183\pi\)
−0.421558 + 0.906802i \(0.638517\pi\)
\(692\) 0 0
\(693\) 2.24457 + 9.06946i 0.0852642 + 0.344520i
\(694\) 0 0
\(695\) 7.92583 + 4.57598i 0.300644 + 0.173577i
\(696\) 0 0
\(697\) −8.34841 + 4.81996i −0.316219 + 0.182569i
\(698\) 0 0
\(699\) −1.12472 + 7.95278i −0.0425410 + 0.300802i
\(700\) 0 0
\(701\) −27.8138 −1.05051 −0.525257 0.850944i \(-0.676031\pi\)
−0.525257 + 0.850944i \(0.676031\pi\)
\(702\) 0 0
\(703\) −46.1338 −1.73997
\(704\) 0 0
\(705\) 4.13865 29.2639i 0.155871 1.10214i
\(706\) 0 0
\(707\) 0.941600 0.543633i 0.0354125 0.0204454i
\(708\) 0 0
\(709\) 34.1616 + 19.7232i 1.28297 + 0.740721i 0.977390 0.211447i \(-0.0678175\pi\)
0.305576 + 0.952168i \(0.401151\pi\)
\(710\) 0 0
\(711\) 9.25919 8.91051i 0.347247 0.334170i
\(712\) 0 0
\(713\) −12.6766 7.31884i −0.474743 0.274093i
\(714\) 0 0
\(715\) 4.97316 + 5.75686i 0.185986 + 0.215294i
\(716\) 0 0
\(717\) −15.3991 38.2096i −0.575091 1.42696i
\(718\) 0 0
\(719\) −31.1306 −1.16097 −0.580487 0.814269i \(-0.697138\pi\)
−0.580487 + 0.814269i \(0.697138\pi\)
\(720\) 0 0
\(721\) 26.7367i 0.995728i
\(722\) 0 0
\(723\) −24.0741 + 30.7584i −0.895324 + 1.14392i
\(724\) 0 0
\(725\) 5.28298 + 9.15040i 0.196205 + 0.339837i
\(726\) 0 0
\(727\) −13.2138 + 22.8869i −0.490071 + 0.848829i −0.999935 0.0114268i \(-0.996363\pi\)
0.509863 + 0.860255i \(0.329696\pi\)
\(728\) 0 0
\(729\) −17.9619 20.1586i −0.665255 0.746616i
\(730\) 0 0
\(731\) −6.75203 + 11.6949i −0.249733 + 0.432550i
\(732\) 0 0
\(733\) 9.72200 5.61300i 0.359090 0.207321i −0.309591 0.950870i \(-0.600192\pi\)
0.668682 + 0.743549i \(0.266859\pi\)
\(734\) 0 0
\(735\) −0.119435 + 0.152596i −0.00440541 + 0.00562860i
\(736\) 0 0
\(737\) −6.99793 −0.257772
\(738\) 0 0
\(739\) 13.7910i 0.507310i −0.967295 0.253655i \(-0.918367\pi\)
0.967295 0.253655i \(-0.0816327\pi\)
\(740\) 0 0
\(741\) −26.4245 41.0452i −0.970727 1.50783i
\(742\) 0 0
\(743\) −30.7527 + 17.7551i −1.12821 + 0.651371i −0.943483 0.331420i \(-0.892472\pi\)
−0.184724 + 0.982791i \(0.559139\pi\)
\(744\) 0 0
\(745\) −12.3832 + 21.4484i −0.453686 + 0.785808i
\(746\) 0 0
\(747\) 4.08848 + 4.24846i 0.149589 + 0.155443i
\(748\) 0 0
\(749\) 10.2357 + 5.90956i 0.374003 + 0.215931i
\(750\) 0 0
\(751\) 6.23222 + 10.7945i 0.227417 + 0.393898i 0.957042 0.289950i \(-0.0936387\pi\)
−0.729625 + 0.683848i \(0.760305\pi\)
\(752\) 0 0
\(753\) 6.84988 48.4346i 0.249623 1.76505i
\(754\) 0 0
\(755\) 33.3490 1.21369
\(756\) 0 0
\(757\) 27.3303 0.993336 0.496668 0.867941i \(-0.334557\pi\)
0.496668 + 0.867941i \(0.334557\pi\)
\(758\) 0 0
\(759\) 11.3997 + 1.61221i 0.413784 + 0.0585195i
\(760\) 0 0
\(761\) 36.2143 20.9083i 1.31277 0.757926i 0.330213 0.943906i \(-0.392879\pi\)
0.982553 + 0.185981i \(0.0595461\pi\)
\(762\) 0 0
\(763\) −11.3140 + 19.5965i −0.409595 + 0.709439i
\(764\) 0 0
\(765\) 7.01539 1.73621i 0.253642 0.0627729i
\(766\) 0 0
\(767\) −41.7139 14.5078i −1.50620 0.523847i
\(768\) 0 0
\(769\) 38.4184 22.1809i 1.38540 0.799864i 0.392611 0.919704i \(-0.371572\pi\)
0.992793 + 0.119841i \(0.0382384\pi\)
\(770\) 0 0
\(771\) 11.1970 4.51260i 0.403251 0.162517i
\(772\) 0 0
\(773\) 29.3084i 1.05415i −0.849818 0.527076i \(-0.823288\pi\)
0.849818 0.527076i \(-0.176712\pi\)
\(774\) 0 0
\(775\) 4.53837i 0.163023i
\(776\) 0 0
\(777\) −21.3924 16.7434i −0.767447 0.600668i
\(778\) 0 0
\(779\) −28.1578 48.7707i −1.00886 1.74739i
\(780\) 0 0
\(781\) 0.794170 1.37554i 0.0284176 0.0492208i
\(782\) 0 0
\(783\) 18.2848 + 25.3051i 0.653445 + 0.904329i
\(784\) 0 0
\(785\) 12.4936 + 7.21317i 0.445915 + 0.257449i
\(786\) 0 0
\(787\) −17.9606 + 10.3696i −0.640228 + 0.369636i −0.784702 0.619873i \(-0.787184\pi\)
0.144475 + 0.989509i \(0.453851\pi\)
\(788\) 0 0
\(789\) 2.12097 + 1.66005i 0.0755086 + 0.0590993i
\(790\) 0 0
\(791\) 36.7920i 1.30817i
\(792\) 0 0
\(793\) −36.9925 + 7.07187i −1.31364 + 0.251130i
\(794\) 0 0
\(795\) −14.3864 35.6967i −0.510234 1.26603i
\(796\) 0 0
\(797\) 1.07189 + 1.85657i 0.0379683 + 0.0657630i 0.884385 0.466758i \(-0.154578\pi\)
−0.846417 + 0.532521i \(0.821245\pi\)
\(798\) 0 0
\(799\) −10.9826 6.34080i −0.388536 0.224322i
\(800\) 0 0
\(801\) −7.00078 + 24.2558i −0.247361 + 0.857036i
\(802\) 0 0
\(803\) −5.84871 + 10.1303i −0.206396 + 0.357489i
\(804\) 0 0
\(805\) 13.5687 + 23.5017i 0.478235 + 0.828327i
\(806\) 0 0
\(807\) −2.51988 + 17.8177i −0.0887039 + 0.627214i
\(808\) 0 0
\(809\) 35.4976 1.24803 0.624014 0.781413i \(-0.285501\pi\)
0.624014 + 0.781413i \(0.285501\pi\)
\(810\) 0 0
\(811\) 47.1960i 1.65728i −0.559785 0.828638i \(-0.689116\pi\)
0.559785 0.828638i \(-0.310884\pi\)
\(812\) 0 0
\(813\) 40.9021 + 5.78459i 1.43450 + 0.202874i
\(814\) 0 0
\(815\) −0.326154 0.564916i −0.0114247 0.0197881i
\(816\) 0 0
\(817\) −68.3204 39.4448i −2.39023 1.38000i
\(818\) 0 0
\(819\) 2.64355 28.6231i 0.0923731 1.00017i
\(820\) 0 0
\(821\) −31.4493 18.1573i −1.09759 0.633693i −0.162002 0.986790i \(-0.551795\pi\)
−0.935586 + 0.353098i \(0.885128\pi\)
\(822\) 0 0
\(823\) 8.48337 + 14.6936i 0.295712 + 0.512188i 0.975150 0.221545i \(-0.0711099\pi\)
−0.679438 + 0.733732i \(0.737777\pi\)
\(824\) 0 0
\(825\) 1.33433 + 3.31085i 0.0464555 + 0.115269i
\(826\) 0 0
\(827\) 24.9508i 0.867626i 0.901003 + 0.433813i \(0.142832\pi\)
−0.901003 + 0.433813i \(0.857168\pi\)
\(828\) 0 0
\(829\) 8.49384 0.295003 0.147502 0.989062i \(-0.452877\pi\)
0.147502 + 0.989062i \(0.452877\pi\)
\(830\) 0 0
\(831\) 29.6075 + 23.1733i 1.02707 + 0.803873i
\(832\) 0 0
\(833\) 0.0415737 + 0.0720077i 0.00144044 + 0.00249492i
\(834\) 0 0
\(835\) 11.7913 20.4231i 0.408054 0.706770i
\(836\) 0 0
\(837\) −1.36700 13.3399i −0.0472505 0.461095i
\(838\) 0 0
\(839\) 33.7446 + 19.4825i 1.16499 + 0.672610i 0.952496 0.304551i \(-0.0985065\pi\)
0.212499 + 0.977161i \(0.431840\pi\)
\(840\) 0 0
\(841\) −3.54962 6.14813i −0.122401 0.212004i
\(842\) 0 0
\(843\) −1.03926 + 1.32782i −0.0357940 + 0.0457324i
\(844\) 0 0
\(845\) −8.63323 21.7547i −0.296992 0.748386i
\(846\) 0 0
\(847\) 25.5823i 0.879020i
\(848\) 0 0
\(849\) 39.4131 15.8842i 1.35266 0.545144i
\(850\) 0 0
\(851\) −28.9905 + 16.7377i −0.993782 + 0.573760i
\(852\) 0 0
\(853\) 13.4418 + 7.76062i 0.460238 + 0.265719i 0.712144 0.702033i \(-0.247724\pi\)
−0.251906 + 0.967752i \(0.581057\pi\)
\(854\) 0 0
\(855\) 10.1428 + 40.9833i 0.346877 + 1.40160i
\(856\) 0 0
\(857\) 20.9017 36.2027i 0.713987 1.23666i −0.249362 0.968410i \(-0.580221\pi\)
0.963349 0.268252i \(-0.0864459\pi\)
\(858\) 0 0
\(859\) 23.7115 + 41.0695i 0.809025 + 1.40127i 0.913540 + 0.406749i \(0.133338\pi\)
−0.104515 + 0.994523i \(0.533329\pi\)
\(860\) 0 0
\(861\) 4.64363 32.8345i 0.158255 1.11900i
\(862\) 0 0
\(863\) 49.1903i 1.67446i 0.546853 + 0.837229i \(0.315826\pi\)
−0.546853 + 0.837229i \(0.684174\pi\)
\(864\) 0 0
\(865\) 0.374879i 0.0127463i
\(866\) 0 0
\(867\) −3.68898 + 26.0843i −0.125284 + 0.885869i
\(868\) 0 0
\(869\) −4.34733 + 2.50993i −0.147473 + 0.0851437i
\(870\) 0 0
\(871\) 20.3350 + 7.07239i 0.689026 + 0.239639i
\(872\) 0 0
\(873\) 1.83813 + 1.91006i 0.0622114 + 0.0646458i
\(874\) 0 0
\(875\) −16.1682 + 28.0041i −0.546584 + 0.946712i
\(876\) 0 0
\(877\) −8.93127 + 5.15647i −0.301587 + 0.174122i −0.643156 0.765735i \(-0.722375\pi\)
0.341568 + 0.939857i \(0.389042\pi\)
\(878\) 0 0
\(879\) −17.3104 42.9520i −0.583865 1.44873i
\(880\) 0 0
\(881\) −10.1849 −0.343139 −0.171570 0.985172i \(-0.554884\pi\)
−0.171570 + 0.985172i \(0.554884\pi\)
\(882\) 0 0
\(883\) −12.2488 −0.412206 −0.206103 0.978530i \(-0.566078\pi\)
−0.206103 + 0.978530i \(0.566078\pi\)
\(884\) 0 0
\(885\) 30.0795 + 23.5427i 1.01111 + 0.791381i
\(886\) 0 0
\(887\) 5.18061 + 8.97309i 0.173948 + 0.301287i 0.939797 0.341734i \(-0.111014\pi\)
−0.765849 + 0.643021i \(0.777681\pi\)
\(888\) 0 0
\(889\) 18.6923 + 10.7920i 0.626918 + 0.361952i
\(890\) 0 0
\(891\) 4.91935 + 9.32988i 0.164804 + 0.312563i
\(892\) 0 0
\(893\) 37.0425 64.1594i 1.23958 2.14701i
\(894\) 0 0
\(895\) −24.1394 + 13.9369i −0.806890 + 0.465858i
\(896\) 0 0
\(897\) −31.4967 16.2059i −1.05164 0.541099i
\(898\) 0 0
\(899\) 15.5056i 0.517141i
\(900\) 0 0
\(901\) −16.5140 −0.550162
\(902\) 0 0
\(903\) −17.3646 43.0864i −0.577857 1.43382i
\(904\) 0 0
\(905\) −15.0704 + 8.70089i −0.500957 + 0.289227i
\(906\) 0 0
\(907\) 11.2973 19.5674i 0.375119 0.649726i −0.615226 0.788351i \(-0.710935\pi\)
0.990345 + 0.138625i \(0.0442684\pi\)
\(908\) 0 0
\(909\) 0.884400 0.851096i 0.0293337 0.0282291i
\(910\) 0 0
\(911\) 10.9088 18.8945i 0.361423 0.626003i −0.626772 0.779203i \(-0.715624\pi\)
0.988195 + 0.153199i \(0.0489576\pi\)
\(912\) 0 0
\(913\) −1.15165 1.99472i −0.0381141 0.0660156i
\(914\) 0 0
\(915\) 32.2526 + 4.56134i 1.06624 + 0.150793i
\(916\) 0 0
\(917\) 31.3508i 1.03529i
\(918\) 0 0
\(919\) −13.4021 −0.442094 −0.221047 0.975263i \(-0.570947\pi\)
−0.221047 + 0.975263i \(0.570947\pi\)
\(920\) 0 0
\(921\) −32.6058 4.61128i −1.07440 0.151947i
\(922\) 0 0
\(923\) −3.69793 + 3.19452i −0.121719 + 0.105149i
\(924\) 0 0
\(925\) −8.98842 5.18947i −0.295537 0.170629i
\(926\) 0 0
\(927\) −7.25111 29.2990i −0.238158 0.962306i
\(928\) 0 0
\(929\) 8.30493 + 4.79485i 0.272476 + 0.157314i 0.630012 0.776585i \(-0.283050\pi\)
−0.357536 + 0.933899i \(0.616383\pi\)
\(930\) 0 0
\(931\) −0.420663 + 0.242870i −0.0137867 + 0.00795974i
\(932\) 0 0
\(933\) −14.8573 + 5.98774i −0.486405 + 0.196030i
\(934\) 0 0
\(935\) −2.82319 −0.0923282
\(936\) 0 0
\(937\) −48.2050 −1.57479 −0.787394 0.616450i \(-0.788570\pi\)
−0.787394 + 0.616450i \(0.788570\pi\)
\(938\) 0 0
\(939\) −38.4372 30.0841i −1.25435 0.981758i
\(940\) 0 0
\(941\) 35.4422 20.4625i 1.15538 0.667060i 0.205189 0.978722i \(-0.434219\pi\)
0.950193 + 0.311663i \(0.100886\pi\)
\(942\) 0 0
\(943\) −35.3888 20.4317i −1.15242 0.665349i
\(944\) 0 0
\(945\) −10.1709 + 22.6853i −0.330860 + 0.737951i
\(946\) 0 0
\(947\) −16.5907 9.57865i −0.539125 0.311264i 0.205599 0.978636i \(-0.434086\pi\)
−0.744724 + 0.667372i \(0.767419\pi\)
\(948\) 0 0
\(949\) 27.2336 23.5262i 0.884041 0.763694i
\(950\) 0 0
\(951\) 4.96544 6.34412i 0.161015 0.205722i
\(952\) 0 0
\(953\) 58.5490 1.89659 0.948294 0.317393i \(-0.102807\pi\)
0.948294 + 0.317393i \(0.102807\pi\)
\(954\) 0 0
\(955\) 8.10711i 0.262340i
\(956\) 0 0
\(957\) −4.55882 11.3117i −0.147366 0.365656i
\(958\) 0 0
\(959\) 27.6168 + 47.8337i 0.891793 + 1.54463i
\(960\) 0 0
\(961\) −12.1700 + 21.0790i −0.392579 + 0.679968i
\(962\) 0 0
\(963\) 12.8193 + 3.69994i 0.413095 + 0.119229i
\(964\) 0 0
\(965\) 14.2127 24.6172i 0.457524 0.792456i
\(966\) 0 0
\(967\) 12.5783 7.26210i 0.404491 0.233533i −0.283929 0.958845i \(-0.591638\pi\)
0.688420 + 0.725312i \(0.258305\pi\)
\(968\) 0 0
\(969\) 17.9373 + 2.53679i 0.576230 + 0.0814935i
\(970\) 0 0
\(971\) −4.10205 −0.131641 −0.0658206 0.997831i \(-0.520967\pi\)
−0.0658206 + 0.997831i \(0.520967\pi\)
\(972\) 0 0
\(973\) 13.5087i 0.433070i
\(974\) 0 0
\(975\) −0.531309 10.9694i −0.0170155 0.351303i
\(976\) 0 0
\(977\) −33.7487 + 19.4848i −1.07972 + 0.623374i −0.930820 0.365479i \(-0.880905\pi\)
−0.148896 + 0.988853i \(0.547572\pi\)
\(978\) 0 0
\(979\) 4.93106 8.54084i 0.157597 0.272966i
\(980\) 0 0
\(981\) −7.08364 + 24.5428i −0.226163 + 0.783593i
\(982\) 0 0
\(983\) 17.1004 + 9.87292i 0.545418 + 0.314897i 0.747272 0.664518i \(-0.231363\pi\)
−0.201854 + 0.979416i \(0.564697\pi\)
\(984\) 0 0
\(985\) 2.09087 + 3.62149i 0.0666205 + 0.115390i
\(986\) 0 0
\(987\) 40.4622 16.3070i 1.28793 0.519058i
\(988\) 0 0
\(989\) −57.2435 −1.82024
\(990\) 0 0
\(991\) −15.2644 −0.484890 −0.242445 0.970165i \(-0.577949\pi\)
−0.242445 + 0.970165i \(0.577949\pi\)
\(992\) 0 0
\(993\) −13.7329 + 17.5460i −0.435802 + 0.556805i
\(994\) 0 0
\(995\) 36.6408 21.1546i 1.16159 0.670645i
\(996\) 0 0
\(997\) 26.5012 45.9014i 0.839301 1.45371i −0.0511787 0.998690i \(-0.516298\pi\)
0.890480 0.455023i \(-0.150369\pi\)
\(998\) 0 0
\(999\) −27.9833 12.5463i −0.885354 0.396948i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.cw.b.25.23 80
3.2 odd 2 2808.2.cw.b.1585.30 80
9.4 even 3 inner 936.2.cw.b.337.24 yes 80
9.5 odd 6 2808.2.cw.b.2521.11 80
13.12 even 2 inner 936.2.cw.b.25.24 yes 80
39.38 odd 2 2808.2.cw.b.1585.11 80
117.77 odd 6 2808.2.cw.b.2521.30 80
117.103 even 6 inner 936.2.cw.b.337.23 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.cw.b.25.23 80 1.1 even 1 trivial
936.2.cw.b.25.24 yes 80 13.12 even 2 inner
936.2.cw.b.337.23 yes 80 117.103 even 6 inner
936.2.cw.b.337.24 yes 80 9.4 even 3 inner
2808.2.cw.b.1585.11 80 39.38 odd 2
2808.2.cw.b.1585.30 80 3.2 odd 2
2808.2.cw.b.2521.11 80 9.5 odd 6
2808.2.cw.b.2521.30 80 117.77 odd 6