Properties

Label 2808.2.cw.b.1585.11
Level $2808$
Weight $2$
Character 2808.1585
Analytic conductor $22.422$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2808,2,Mod(1585,2808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2808, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2808.1585"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2808 = 2^{3} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2808.cw (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.4219928876\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(40\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 936)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1585.11
Character \(\chi\) \(=\) 2808.1585
Dual form 2808.2.cw.b.2521.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.55919 + 0.900198i) q^{5} +(2.30144 + 1.32873i) q^{7} +(1.01492 + 0.585964i) q^{11} +(-1.18440 - 3.40547i) q^{13} -1.33805 q^{17} -7.81675i q^{19} +(-2.83598 - 4.91206i) q^{23} +(-0.879286 + 1.52297i) q^{25} +(-3.00413 + 5.20331i) q^{29} +(2.23496 - 1.29036i) q^{31} -4.78450 q^{35} -5.90191i q^{37} +(-6.23926 + 3.60224i) q^{41} +(-5.04619 + 8.74025i) q^{43} +(-8.20794 - 4.73885i) q^{47} +(0.0310704 + 0.0538156i) q^{49} +12.3419 q^{53} -2.10994 q^{55} +(10.6080 - 6.12456i) q^{59} +(5.22284 - 9.04622i) q^{61} +(4.91230 + 4.24357i) q^{65} +(5.17129 - 2.98565i) q^{67} -1.35532i q^{71} -9.98135i q^{73} +(1.55718 + 2.69712i) q^{77} +(-2.14171 + 3.70956i) q^{79} +(-1.70208 - 0.982698i) q^{83} +(2.08627 - 1.20451i) q^{85} -8.41529i q^{89} +(1.79914 - 9.41121i) q^{91} +(7.03663 + 12.1878i) q^{95} +(0.765238 + 0.441810i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 6 q^{13} + 4 q^{17} - 10 q^{23} + 44 q^{25} + 52 q^{35} - 26 q^{43} + 48 q^{49} - 60 q^{53} - 16 q^{55} - 10 q^{61} + 26 q^{65} - 32 q^{77} + 6 q^{79} - 4 q^{91} - 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2808\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(1081\) \(1405\) \(2081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.55919 + 0.900198i −0.697291 + 0.402581i −0.806338 0.591456i \(-0.798553\pi\)
0.109047 + 0.994037i \(0.465220\pi\)
\(6\) 0 0
\(7\) 2.30144 + 1.32873i 0.869861 + 0.502214i 0.867302 0.497782i \(-0.165852\pi\)
0.00255888 + 0.999997i \(0.499185\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.01492 + 0.585964i 0.306010 + 0.176675i 0.645140 0.764065i \(-0.276799\pi\)
−0.339130 + 0.940740i \(0.610133\pi\)
\(12\) 0 0
\(13\) −1.18440 3.40547i −0.328493 0.944506i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.33805 −0.324524 −0.162262 0.986748i \(-0.551879\pi\)
−0.162262 + 0.986748i \(0.551879\pi\)
\(18\) 0 0
\(19\) 7.81675i 1.79329i −0.442754 0.896643i \(-0.645999\pi\)
0.442754 0.896643i \(-0.354001\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.83598 4.91206i −0.591342 1.02423i −0.994052 0.108907i \(-0.965265\pi\)
0.402710 0.915328i \(-0.368068\pi\)
\(24\) 0 0
\(25\) −0.879286 + 1.52297i −0.175857 + 0.304594i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.00413 + 5.20331i −0.557853 + 0.966230i 0.439822 + 0.898085i \(0.355042\pi\)
−0.997675 + 0.0681455i \(0.978292\pi\)
\(30\) 0 0
\(31\) 2.23496 1.29036i 0.401411 0.231755i −0.285682 0.958325i \(-0.592220\pi\)
0.687093 + 0.726570i \(0.258887\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.78450 −0.808728
\(36\) 0 0
\(37\) 5.90191i 0.970268i −0.874440 0.485134i \(-0.838771\pi\)
0.874440 0.485134i \(-0.161229\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6.23926 + 3.60224i −0.974408 + 0.562575i −0.900577 0.434696i \(-0.856856\pi\)
−0.0738310 + 0.997271i \(0.523523\pi\)
\(42\) 0 0
\(43\) −5.04619 + 8.74025i −0.769536 + 1.33288i 0.168279 + 0.985739i \(0.446179\pi\)
−0.937815 + 0.347136i \(0.887154\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.20794 4.73885i −1.19725 0.691233i −0.237309 0.971434i \(-0.576265\pi\)
−0.959941 + 0.280201i \(0.909599\pi\)
\(48\) 0 0
\(49\) 0.0310704 + 0.0538156i 0.00443864 + 0.00768794i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 12.3419 1.69529 0.847645 0.530564i \(-0.178020\pi\)
0.847645 + 0.530564i \(0.178020\pi\)
\(54\) 0 0
\(55\) −2.10994 −0.284504
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.6080 6.12456i 1.38105 0.797349i 0.388766 0.921337i \(-0.372901\pi\)
0.992284 + 0.123987i \(0.0395682\pi\)
\(60\) 0 0
\(61\) 5.22284 9.04622i 0.668716 1.15825i −0.309547 0.950884i \(-0.600178\pi\)
0.978263 0.207366i \(-0.0664891\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.91230 + 4.24357i 0.609295 + 0.526350i
\(66\) 0 0
\(67\) 5.17129 2.98565i 0.631774 0.364755i −0.149665 0.988737i \(-0.547819\pi\)
0.781439 + 0.623982i \(0.214486\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.35532i 0.160847i −0.996761 0.0804236i \(-0.974373\pi\)
0.996761 0.0804236i \(-0.0256273\pi\)
\(72\) 0 0
\(73\) 9.98135i 1.16823i −0.811672 0.584114i \(-0.801442\pi\)
0.811672 0.584114i \(-0.198558\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.55718 + 2.69712i 0.177457 + 0.307365i
\(78\) 0 0
\(79\) −2.14171 + 3.70956i −0.240962 + 0.417358i −0.960988 0.276588i \(-0.910796\pi\)
0.720027 + 0.693946i \(0.244129\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.70208 0.982698i −0.186828 0.107865i 0.403669 0.914905i \(-0.367735\pi\)
−0.590497 + 0.807040i \(0.701068\pi\)
\(84\) 0 0
\(85\) 2.08627 1.20451i 0.226287 0.130647i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 8.41529i 0.892019i −0.895028 0.446009i \(-0.852845\pi\)
0.895028 0.446009i \(-0.147155\pi\)
\(90\) 0 0
\(91\) 1.79914 9.41121i 0.188602 0.986563i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 7.03663 + 12.1878i 0.721943 + 1.25044i
\(96\) 0 0
\(97\) 0.765238 + 0.441810i 0.0776982 + 0.0448591i 0.538346 0.842724i \(-0.319049\pi\)
−0.460648 + 0.887583i \(0.652383\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.204568 0.354322i 0.0203553 0.0352564i −0.855668 0.517525i \(-0.826854\pi\)
0.876024 + 0.482268i \(0.160187\pi\)
\(102\) 0 0
\(103\) 5.03049 + 8.71307i 0.495669 + 0.858524i 0.999988 0.00499380i \(-0.00158958\pi\)
−0.504319 + 0.863518i \(0.668256\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.44751 0.429957 0.214979 0.976619i \(-0.431032\pi\)
0.214979 + 0.976619i \(0.431032\pi\)
\(108\) 0 0
\(109\) 8.51488i 0.815578i 0.913076 + 0.407789i \(0.133700\pi\)
−0.913076 + 0.407789i \(0.866300\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.92238 11.9899i −0.651203 1.12792i −0.982831 0.184506i \(-0.940931\pi\)
0.331629 0.943410i \(-0.392402\pi\)
\(114\) 0 0
\(115\) 8.84365 + 5.10588i 0.824675 + 0.476126i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.07943 1.77791i −0.282291 0.162980i
\(120\) 0 0
\(121\) −4.81329 8.33687i −0.437572 0.757897i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.1681i 1.08835i
\(126\) 0 0
\(127\) −8.12200 −0.720711 −0.360356 0.932815i \(-0.617345\pi\)
−0.360356 + 0.932815i \(0.617345\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.89862 10.2167i −0.515364 0.892637i −0.999841 0.0178331i \(-0.994323\pi\)
0.484477 0.874804i \(-0.339010\pi\)
\(132\) 0 0
\(133\) 10.3864 17.9898i 0.900614 1.55991i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −17.9997 10.3921i −1.53782 0.887861i −0.998966 0.0454612i \(-0.985524\pi\)
−0.538854 0.842399i \(-0.681142\pi\)
\(138\) 0 0
\(139\) −2.54165 4.40227i −0.215580 0.373396i 0.737872 0.674941i \(-0.235831\pi\)
−0.953452 + 0.301545i \(0.902498\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.793412 4.15029i 0.0663484 0.347065i
\(144\) 0 0
\(145\) 10.8173i 0.898325i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 11.9131 6.87805i 0.975962 0.563472i 0.0749137 0.997190i \(-0.476132\pi\)
0.901049 + 0.433718i \(0.142799\pi\)
\(150\) 0 0
\(151\) 16.0415 + 9.26157i 1.30544 + 0.753696i 0.981331 0.192324i \(-0.0616024\pi\)
0.324108 + 0.946020i \(0.394936\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.32315 + 4.02382i −0.186600 + 0.323201i
\(156\) 0 0
\(157\) −4.00643 6.93935i −0.319748 0.553820i 0.660687 0.750661i \(-0.270265\pi\)
−0.980435 + 0.196841i \(0.936932\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 15.0730i 1.18792i
\(162\) 0 0
\(163\) 0.362314i 0.0283786i −0.999899 0.0141893i \(-0.995483\pi\)
0.999899 0.0141893i \(-0.00451675\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −11.3437 + 6.54926i −0.877798 + 0.506797i −0.869932 0.493172i \(-0.835837\pi\)
−0.00786643 + 0.999969i \(0.502504\pi\)
\(168\) 0 0
\(169\) −10.1944 + 8.06686i −0.784185 + 0.620527i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −0.104110 + 0.180324i −0.00791535 + 0.0137098i −0.869956 0.493129i \(-0.835853\pi\)
0.862041 + 0.506839i \(0.169186\pi\)
\(174\) 0 0
\(175\) −4.04724 + 2.33668i −0.305943 + 0.176636i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −15.4820 −1.15718 −0.578589 0.815619i \(-0.696397\pi\)
−0.578589 + 0.815619i \(0.696397\pi\)
\(180\) 0 0
\(181\) 9.66553 0.718433 0.359217 0.933254i \(-0.383044\pi\)
0.359217 + 0.933254i \(0.383044\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.31289 + 9.20219i 0.390611 + 0.676559i
\(186\) 0 0
\(187\) −1.35801 0.784047i −0.0993074 0.0573352i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.25148 3.89967i 0.162911 0.282171i −0.773000 0.634406i \(-0.781245\pi\)
0.935912 + 0.352235i \(0.114578\pi\)
\(192\) 0 0
\(193\) 13.6732 7.89423i 0.984219 0.568239i 0.0806778 0.996740i \(-0.474292\pi\)
0.903541 + 0.428501i \(0.140958\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.32267i 0.165484i −0.996571 0.0827418i \(-0.973632\pi\)
0.996571 0.0827418i \(-0.0263677\pi\)
\(198\) 0 0
\(199\) −23.4999 −1.66586 −0.832932 0.553375i \(-0.813340\pi\)
−0.832932 + 0.553375i \(0.813340\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −13.8276 + 7.98339i −0.970510 + 0.560324i
\(204\) 0 0
\(205\) 6.48546 11.2331i 0.452964 0.784556i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4.58034 7.93337i 0.316828 0.548763i
\(210\) 0 0
\(211\) 7.49343 + 12.9790i 0.515869 + 0.893511i 0.999830 + 0.0184218i \(0.00586417\pi\)
−0.483961 + 0.875089i \(0.660802\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 18.1703i 1.23920i
\(216\) 0 0
\(217\) 6.85816 0.465562
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.58478 + 4.55667i 0.106604 + 0.306515i
\(222\) 0 0
\(223\) 1.22733 + 0.708599i 0.0821880 + 0.0474513i 0.540531 0.841324i \(-0.318223\pi\)
−0.458343 + 0.888776i \(0.651557\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5.77352 3.33334i −0.383202 0.221242i 0.296008 0.955185i \(-0.404344\pi\)
−0.679210 + 0.733944i \(0.737678\pi\)
\(228\) 0 0
\(229\) 8.33635 4.81300i 0.550882 0.318052i −0.198596 0.980081i \(-0.563638\pi\)
0.749478 + 0.662030i \(0.230305\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.63723 0.303795 0.151897 0.988396i \(-0.451462\pi\)
0.151897 + 0.988396i \(0.451462\pi\)
\(234\) 0 0
\(235\) 17.0636 1.11311
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 20.5980 11.8922i 1.33237 0.769245i 0.346708 0.937973i \(-0.387299\pi\)
0.985663 + 0.168728i \(0.0539660\pi\)
\(240\) 0 0
\(241\) 19.5297 + 11.2755i 1.25802 + 0.726318i 0.972689 0.232111i \(-0.0745634\pi\)
0.285330 + 0.958429i \(0.407897\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.0968894 0.0559391i −0.00619004 0.00357382i
\(246\) 0 0
\(247\) −26.6197 + 9.25815i −1.69377 + 0.589082i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −28.2420 −1.78262 −0.891309 0.453396i \(-0.850213\pi\)
−0.891309 + 0.453396i \(0.850213\pi\)
\(252\) 0 0
\(253\) 6.64712i 0.417901i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3.48493 6.03608i −0.217384 0.376520i 0.736623 0.676303i \(-0.236419\pi\)
−0.954007 + 0.299783i \(0.903086\pi\)
\(258\) 0 0
\(259\) 7.84207 13.5829i 0.487282 0.843998i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.777511 1.34669i 0.0479434 0.0830404i −0.841058 0.540945i \(-0.818067\pi\)
0.889001 + 0.457905i \(0.151400\pi\)
\(264\) 0 0
\(265\) −19.2434 + 11.1102i −1.18211 + 0.682491i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 10.3894 0.633455 0.316727 0.948517i \(-0.397416\pi\)
0.316727 + 0.948517i \(0.397416\pi\)
\(270\) 0 0
\(271\) 23.8498i 1.44877i −0.689394 0.724387i \(-0.742123\pi\)
0.689394 0.724387i \(-0.257877\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.78481 + 1.03046i −0.107628 + 0.0621391i
\(276\) 0 0
\(277\) −10.8536 + 18.7990i −0.652130 + 1.12952i 0.330475 + 0.943815i \(0.392791\pi\)
−0.982605 + 0.185707i \(0.940542\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −0.843083 0.486754i −0.0502941 0.0290373i 0.474642 0.880179i \(-0.342577\pi\)
−0.524936 + 0.851142i \(0.675911\pi\)
\(282\) 0 0
\(283\) 12.2668 + 21.2468i 0.729188 + 1.26299i 0.957227 + 0.289338i \(0.0934352\pi\)
−0.228039 + 0.973652i \(0.573231\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −19.1457 −1.13013
\(288\) 0 0
\(289\) −15.2096 −0.894684
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 23.1545 13.3682i 1.35270 0.780981i 0.364073 0.931371i \(-0.381386\pi\)
0.988627 + 0.150389i \(0.0480527\pi\)
\(294\) 0 0
\(295\) −11.0266 + 19.0987i −0.641995 + 1.11197i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −13.3689 + 15.4757i −0.773145 + 0.894980i
\(300\) 0 0
\(301\) −23.2269 + 13.4101i −1.33878 + 0.772944i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 18.8064i 1.07685i
\(306\) 0 0
\(307\) 19.0123i 1.08509i 0.840027 + 0.542544i \(0.182539\pi\)
−0.840027 + 0.542544i \(0.817461\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.62413 + 8.00923i 0.262211 + 0.454162i 0.966829 0.255424i \(-0.0822152\pi\)
−0.704618 + 0.709586i \(0.748882\pi\)
\(312\) 0 0
\(313\) 14.0904 24.4053i 0.796436 1.37947i −0.125488 0.992095i \(-0.540050\pi\)
0.921923 0.387372i \(-0.126617\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.02813 + 2.32564i 0.226242 + 0.130621i 0.608837 0.793295i \(-0.291636\pi\)
−0.382595 + 0.923916i \(0.624970\pi\)
\(318\) 0 0
\(319\) −6.09791 + 3.52063i −0.341417 + 0.197117i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 10.4592i 0.581964i
\(324\) 0 0
\(325\) 6.22784 + 1.19058i 0.345458 + 0.0660414i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −12.5934 21.8123i −0.694294 1.20255i
\(330\) 0 0
\(331\) 11.1406 + 6.43205i 0.612345 + 0.353538i 0.773883 0.633329i \(-0.218312\pi\)
−0.161538 + 0.986867i \(0.551645\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5.37535 + 9.31038i −0.293687 + 0.508680i
\(336\) 0 0
\(337\) −4.44018 7.69061i −0.241872 0.418934i 0.719376 0.694621i \(-0.244428\pi\)
−0.961247 + 0.275687i \(0.911095\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3.02441 0.163781
\(342\) 0 0
\(343\) 18.4371i 0.995512i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.97419 + 3.41939i 0.105980 + 0.183563i 0.914138 0.405403i \(-0.132869\pi\)
−0.808158 + 0.588965i \(0.799535\pi\)
\(348\) 0 0
\(349\) 26.8533 + 15.5037i 1.43742 + 0.829896i 0.997670 0.0682238i \(-0.0217332\pi\)
0.439752 + 0.898119i \(0.355067\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −4.29737 2.48109i −0.228726 0.132055i 0.381258 0.924469i \(-0.375491\pi\)
−0.609984 + 0.792414i \(0.708824\pi\)
\(354\) 0 0
\(355\) 1.22006 + 2.11320i 0.0647540 + 0.112157i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 23.5827i 1.24465i 0.782760 + 0.622324i \(0.213811\pi\)
−0.782760 + 0.622324i \(0.786189\pi\)
\(360\) 0 0
\(361\) −42.1016 −2.21587
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 8.98519 + 15.5628i 0.470306 + 0.814595i
\(366\) 0 0
\(367\) −1.98759 + 3.44261i −0.103752 + 0.179703i −0.913227 0.407450i \(-0.866418\pi\)
0.809476 + 0.587153i \(0.199751\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 28.4041 + 16.3991i 1.47467 + 0.851399i
\(372\) 0 0
\(373\) 11.4714 + 19.8691i 0.593969 + 1.02878i 0.993692 + 0.112148i \(0.0357730\pi\)
−0.399723 + 0.916636i \(0.630894\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 21.2778 + 4.06768i 1.09586 + 0.209496i
\(378\) 0 0
\(379\) 14.0412i 0.721246i −0.932712 0.360623i \(-0.882564\pi\)
0.932712 0.360623i \(-0.117436\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.22496 0.707232i 0.0625926 0.0361379i −0.468377 0.883529i \(-0.655161\pi\)
0.530970 + 0.847391i \(0.321828\pi\)
\(384\) 0 0
\(385\) −4.85588 2.80354i −0.247479 0.142882i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 12.7767 22.1299i 0.647805 1.12203i −0.335841 0.941919i \(-0.609020\pi\)
0.983646 0.180113i \(-0.0576463\pi\)
\(390\) 0 0
\(391\) 3.79467 + 6.57256i 0.191905 + 0.332389i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 7.71187i 0.388026i
\(396\) 0 0
\(397\) 0.254531i 0.0127746i 0.999980 + 0.00638728i \(0.00203315\pi\)
−0.999980 + 0.00638728i \(0.997967\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −0.372180 + 0.214878i −0.0185858 + 0.0107305i −0.509264 0.860610i \(-0.670082\pi\)
0.490678 + 0.871341i \(0.336749\pi\)
\(402\) 0 0
\(403\) −7.04135 6.08279i −0.350755 0.303005i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.45831 5.98996i 0.171422 0.296911i
\(408\) 0 0
\(409\) −4.51984 + 2.60953i −0.223492 + 0.129033i −0.607566 0.794269i \(-0.707854\pi\)
0.384074 + 0.923302i \(0.374521\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 32.5516 1.60176
\(414\) 0 0
\(415\) 3.53849 0.173698
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 11.5418 + 19.9910i 0.563853 + 0.976622i 0.997155 + 0.0753735i \(0.0240149\pi\)
−0.433302 + 0.901249i \(0.642652\pi\)
\(420\) 0 0
\(421\) −13.6048 7.85475i −0.663059 0.382817i 0.130383 0.991464i \(-0.458379\pi\)
−0.793441 + 0.608647i \(0.791713\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.17652 2.03780i 0.0570698 0.0988479i
\(426\) 0 0
\(427\) 24.0401 13.8795i 1.16338 0.671678i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 28.2548i 1.36098i 0.732756 + 0.680492i \(0.238234\pi\)
−0.732756 + 0.680492i \(0.761766\pi\)
\(432\) 0 0
\(433\) 1.00582 0.0483366 0.0241683 0.999708i \(-0.492306\pi\)
0.0241683 + 0.999708i \(0.492306\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −38.3963 + 22.1681i −1.83675 + 1.06045i
\(438\) 0 0
\(439\) 1.05111 1.82057i 0.0501667 0.0868912i −0.839852 0.542816i \(-0.817358\pi\)
0.890018 + 0.455925i \(0.150691\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 11.5606 20.0236i 0.549262 0.951350i −0.449063 0.893500i \(-0.648242\pi\)
0.998325 0.0578496i \(-0.0184244\pi\)
\(444\) 0 0
\(445\) 7.57543 + 13.1210i 0.359110 + 0.621996i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0.677149i 0.0319566i 0.999872 + 0.0159783i \(0.00508627\pi\)
−0.999872 + 0.0159783i \(0.994914\pi\)
\(450\) 0 0
\(451\) −8.44313 −0.397571
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 5.66675 + 16.2934i 0.265661 + 0.763849i
\(456\) 0 0
\(457\) −10.1204 5.84300i −0.473411 0.273324i 0.244255 0.969711i \(-0.421457\pi\)
−0.717667 + 0.696387i \(0.754790\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 7.11644 + 4.10868i 0.331446 + 0.191360i 0.656483 0.754341i \(-0.272043\pi\)
−0.325037 + 0.945701i \(0.605377\pi\)
\(462\) 0 0
\(463\) −3.75857 + 2.17001i −0.174676 + 0.100849i −0.584789 0.811186i \(-0.698823\pi\)
0.410113 + 0.912035i \(0.365489\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −31.2648 −1.44676 −0.723382 0.690448i \(-0.757413\pi\)
−0.723382 + 0.690448i \(0.757413\pi\)
\(468\) 0 0
\(469\) 15.8685 0.732740
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −10.2429 + 5.91377i −0.470971 + 0.271915i
\(474\) 0 0
\(475\) 11.9047 + 6.87316i 0.546223 + 0.315362i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −4.58937 2.64967i −0.209694 0.121067i 0.391475 0.920189i \(-0.371965\pi\)
−0.601169 + 0.799122i \(0.705298\pi\)
\(480\) 0 0
\(481\) −20.0987 + 6.99021i −0.916424 + 0.318726i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.59087 −0.0722376
\(486\) 0 0
\(487\) 13.6948i 0.620571i −0.950643 0.310285i \(-0.899575\pi\)
0.950643 0.310285i \(-0.100425\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0.206712 + 0.358035i 0.00932876 + 0.0161579i 0.870652 0.491899i \(-0.163697\pi\)
−0.861323 + 0.508057i \(0.830364\pi\)
\(492\) 0 0
\(493\) 4.01967 6.96227i 0.181037 0.313565i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.80086 3.11919i 0.0807798 0.139915i
\(498\) 0 0
\(499\) −34.2594 + 19.7796i −1.53366 + 0.885459i −0.534471 + 0.845187i \(0.679489\pi\)
−0.999189 + 0.0402716i \(0.987178\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 5.35395 0.238721 0.119360 0.992851i \(-0.461916\pi\)
0.119360 + 0.992851i \(0.461916\pi\)
\(504\) 0 0
\(505\) 0.736607i 0.0327786i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −29.8564 + 17.2376i −1.32336 + 0.764044i −0.984264 0.176706i \(-0.943456\pi\)
−0.339100 + 0.940750i \(0.610122\pi\)
\(510\) 0 0
\(511\) 13.2626 22.9714i 0.586701 1.01620i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −15.6870 9.05688i −0.691251 0.399094i
\(516\) 0 0
\(517\) −5.55360 9.61911i −0.244247 0.423048i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −0.293147 −0.0128430 −0.00642149 0.999979i \(-0.502044\pi\)
−0.00642149 + 0.999979i \(0.502044\pi\)
\(522\) 0 0
\(523\) −8.15975 −0.356801 −0.178401 0.983958i \(-0.557092\pi\)
−0.178401 + 0.983958i \(0.557092\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.99048 + 1.72655i −0.130267 + 0.0752099i
\(528\) 0 0
\(529\) −4.58554 + 7.94239i −0.199371 + 0.345321i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 19.6571 + 16.9811i 0.851442 + 0.735533i
\(534\) 0 0
\(535\) −6.93451 + 4.00364i −0.299805 + 0.173093i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.0728247i 0.00313678i
\(540\) 0 0
\(541\) 24.8891i 1.07007i −0.844831 0.535034i \(-0.820299\pi\)
0.844831 0.535034i \(-0.179701\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −7.66508 13.2763i −0.328336 0.568695i
\(546\) 0 0
\(547\) −4.99309 + 8.64829i −0.213489 + 0.369774i −0.952804 0.303586i \(-0.901816\pi\)
0.739315 + 0.673360i \(0.235150\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 40.6730 + 23.4826i 1.73273 + 1.00039i
\(552\) 0 0
\(553\) −9.85803 + 5.69154i −0.419206 + 0.242029i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 10.3622i 0.439059i 0.975606 + 0.219530i \(0.0704522\pi\)
−0.975606 + 0.219530i \(0.929548\pi\)
\(558\) 0 0
\(559\) 35.7413 + 6.83268i 1.51170 + 0.288992i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −0.0915592 0.158585i −0.00385876 0.00668357i 0.864090 0.503338i \(-0.167895\pi\)
−0.867948 + 0.496654i \(0.834562\pi\)
\(564\) 0 0
\(565\) 21.5866 + 12.4630i 0.908155 + 0.524324i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −5.73133 + 9.92696i −0.240270 + 0.416160i −0.960791 0.277273i \(-0.910569\pi\)
0.720521 + 0.693433i \(0.243903\pi\)
\(570\) 0 0
\(571\) −17.1416 29.6902i −0.717356 1.24250i −0.962044 0.272894i \(-0.912019\pi\)
0.244688 0.969602i \(-0.421314\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 9.97454 0.415967
\(576\) 0 0
\(577\) 0.249728i 0.0103963i −0.999986 0.00519815i \(-0.998345\pi\)
0.999986 0.00519815i \(-0.00165463\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2.61149 4.52323i −0.108343 0.187655i
\(582\) 0 0
\(583\) 12.5260 + 7.23191i 0.518775 + 0.299515i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.57593 + 4.95132i 0.353967 + 0.204363i 0.666431 0.745567i \(-0.267821\pi\)
−0.312464 + 0.949929i \(0.601154\pi\)
\(588\) 0 0
\(589\) −10.0864 17.4701i −0.415603 0.719845i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 40.4008i 1.65906i 0.558461 + 0.829531i \(0.311392\pi\)
−0.558461 + 0.829531i \(0.688608\pi\)
\(594\) 0 0
\(595\) 6.40188 0.262451
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −2.83916 4.91757i −0.116005 0.200926i 0.802176 0.597087i \(-0.203675\pi\)
−0.918181 + 0.396161i \(0.870342\pi\)
\(600\) 0 0
\(601\) 3.12330 5.40971i 0.127402 0.220667i −0.795267 0.606259i \(-0.792670\pi\)
0.922669 + 0.385592i \(0.126003\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 15.0097 + 8.66584i 0.610230 + 0.352316i
\(606\) 0 0
\(607\) −20.8317 36.0816i −0.845532 1.46451i −0.885158 0.465291i \(-0.845950\pi\)
0.0396256 0.999215i \(-0.487383\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −6.41654 + 33.5645i −0.259586 + 1.35788i
\(612\) 0 0
\(613\) 5.54519i 0.223968i −0.993710 0.111984i \(-0.964279\pi\)
0.993710 0.111984i \(-0.0357205\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 28.6171 16.5221i 1.15208 0.665154i 0.202688 0.979243i \(-0.435032\pi\)
0.949393 + 0.314089i \(0.101699\pi\)
\(618\) 0 0
\(619\) −41.7437 24.1007i −1.67782 0.968689i −0.963047 0.269332i \(-0.913197\pi\)
−0.714772 0.699358i \(-0.753470\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 11.1817 19.3672i 0.447985 0.775932i
\(624\) 0 0
\(625\) 6.55728 + 11.3575i 0.262291 + 0.454302i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 7.89702i 0.314875i
\(630\) 0 0
\(631\) 47.4191i 1.88773i 0.330337 + 0.943863i \(0.392838\pi\)
−0.330337 + 0.943863i \(0.607162\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 12.6637 7.31141i 0.502545 0.290145i
\(636\) 0 0
\(637\) 0.146467 0.169548i 0.00580325 0.00671775i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −7.76535 + 13.4500i −0.306713 + 0.531242i −0.977641 0.210280i \(-0.932563\pi\)
0.670928 + 0.741522i \(0.265896\pi\)
\(642\) 0 0
\(643\) −25.4196 + 14.6760i −1.00245 + 0.578766i −0.908973 0.416855i \(-0.863132\pi\)
−0.0934792 + 0.995621i \(0.529799\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2.49961 0.0982699 0.0491350 0.998792i \(-0.484354\pi\)
0.0491350 + 0.998792i \(0.484354\pi\)
\(648\) 0 0
\(649\) 14.3551 0.563486
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.184801 + 0.320085i 0.00723182 + 0.0125259i 0.869619 0.493724i \(-0.164365\pi\)
−0.862387 + 0.506250i \(0.831031\pi\)
\(654\) 0 0
\(655\) 18.3941 + 10.6198i 0.718718 + 0.414952i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 7.51113 13.0097i 0.292592 0.506784i −0.681830 0.731511i \(-0.738816\pi\)
0.974422 + 0.224727i \(0.0721489\pi\)
\(660\) 0 0
\(661\) −29.4593 + 17.0084i −1.14584 + 0.661548i −0.947869 0.318660i \(-0.896767\pi\)
−0.197967 + 0.980209i \(0.563434\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 37.3992i 1.45028i
\(666\) 0 0
\(667\) 34.0786 1.31953
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 10.6015 6.12079i 0.409267 0.236291i
\(672\) 0 0
\(673\) −14.0001 + 24.2489i −0.539664 + 0.934726i 0.459258 + 0.888303i \(0.348116\pi\)
−0.998922 + 0.0464229i \(0.985218\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −12.4662 + 21.5921i −0.479115 + 0.829852i −0.999713 0.0239498i \(-0.992376\pi\)
0.520598 + 0.853802i \(0.325709\pi\)
\(678\) 0 0
\(679\) 1.17410 + 2.03360i 0.0450577 + 0.0780423i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 33.7051i 1.28969i −0.764313 0.644845i \(-0.776922\pi\)
0.764313 0.644845i \(-0.223078\pi\)
\(684\) 0 0
\(685\) 37.4200 1.42974
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −14.6177 42.0299i −0.556891 1.60121i
\(690\) 0 0
\(691\) −4.02127 2.32168i −0.152976 0.0883209i 0.421558 0.906802i \(-0.361483\pi\)
−0.574534 + 0.818481i \(0.694817\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.92583 + 4.57598i 0.300644 + 0.173577i
\(696\) 0 0
\(697\) 8.34841 4.81996i 0.316219 0.182569i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 27.8138 1.05051 0.525257 0.850944i \(-0.323969\pi\)
0.525257 + 0.850944i \(0.323969\pi\)
\(702\) 0 0
\(703\) −46.1338 −1.73997
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0.941600 0.543633i 0.0354125 0.0204454i
\(708\) 0 0
\(709\) −34.1616 19.7232i −1.28297 0.740721i −0.305576 0.952168i \(-0.598849\pi\)
−0.977390 + 0.211447i \(0.932182\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −12.6766 7.31884i −0.474743 0.274093i
\(714\) 0 0
\(715\) 2.49900 + 7.18531i 0.0934574 + 0.268715i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 31.1306 1.16097 0.580487 0.814269i \(-0.302862\pi\)
0.580487 + 0.814269i \(0.302862\pi\)
\(720\) 0 0
\(721\) 26.7367i 0.995728i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −5.28298 9.15040i −0.196205 0.339837i
\(726\) 0 0
\(727\) −13.2138 + 22.8869i −0.490071 + 0.848829i −0.999935 0.0114268i \(-0.996363\pi\)
0.509863 + 0.860255i \(0.329696\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 6.75203 11.6949i 0.249733 0.432550i
\(732\) 0 0
\(733\) −9.72200 + 5.61300i −0.359090 + 0.207321i −0.668682 0.743549i \(-0.733141\pi\)
0.309591 + 0.950870i \(0.399808\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.99793 0.257772
\(738\) 0 0
\(739\) 13.7910i 0.507310i 0.967295 + 0.253655i \(0.0816327\pi\)
−0.967295 + 0.253655i \(0.918367\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −30.7527 + 17.7551i −1.12821 + 0.651371i −0.943483 0.331420i \(-0.892472\pi\)
−0.184724 + 0.982791i \(0.559139\pi\)
\(744\) 0 0
\(745\) −12.3832 + 21.4484i −0.453686 + 0.785808i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 10.2357 + 5.90956i 0.374003 + 0.215931i
\(750\) 0 0
\(751\) 6.23222 + 10.7945i 0.227417 + 0.393898i 0.957042 0.289950i \(-0.0936387\pi\)
−0.729625 + 0.683848i \(0.760305\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −33.3490 −1.21369
\(756\) 0 0
\(757\) 27.3303 0.993336 0.496668 0.867941i \(-0.334557\pi\)
0.496668 + 0.867941i \(0.334557\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 36.2143 20.9083i 1.31277 0.757926i 0.330213 0.943906i \(-0.392879\pi\)
0.982553 + 0.185981i \(0.0595461\pi\)
\(762\) 0 0
\(763\) −11.3140 + 19.5965i −0.409595 + 0.709439i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −33.4211 28.8714i −1.20677 1.04249i
\(768\) 0 0
\(769\) −38.4184 + 22.1809i −1.38540 + 0.799864i −0.992793 0.119841i \(-0.961762\pi\)
−0.392611 + 0.919704i \(0.628428\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 29.3084i 1.05415i −0.849818 0.527076i \(-0.823288\pi\)
0.849818 0.527076i \(-0.176712\pi\)
\(774\) 0 0
\(775\) 4.53837i 0.163023i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 28.1578 + 48.7707i 1.00886 + 1.74739i
\(780\) 0 0
\(781\) 0.794170 1.37554i 0.0284176 0.0492208i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 12.4936 + 7.21317i 0.445915 + 0.257449i
\(786\) 0 0
\(787\) 17.9606 10.3696i 0.640228 0.369636i −0.144475 0.989509i \(-0.546149\pi\)
0.784702 + 0.619873i \(0.212816\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 36.7920i 1.30817i
\(792\) 0 0
\(793\) −36.9925 7.07187i −1.31364 0.251130i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1.07189 1.85657i −0.0379683 0.0657630i 0.846417 0.532521i \(-0.178755\pi\)
−0.884385 + 0.466758i \(0.845422\pi\)
\(798\) 0 0
\(799\) 10.9826 + 6.34080i 0.388536 + 0.224322i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 5.84871 10.1303i 0.206396 0.357489i
\(804\) 0 0
\(805\) 13.5687 + 23.5017i 0.478235 + 0.828327i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −35.4976 −1.24803 −0.624014 0.781413i \(-0.714499\pi\)
−0.624014 + 0.781413i \(0.714499\pi\)
\(810\) 0 0
\(811\) 47.1960i 1.65728i 0.559785 + 0.828638i \(0.310884\pi\)
−0.559785 + 0.828638i \(0.689116\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0.326154 + 0.564916i 0.0114247 + 0.0197881i
\(816\) 0 0
\(817\) 68.3204 + 39.4448i 2.39023 + 1.38000i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −31.4493 18.1573i −1.09759 0.633693i −0.162002 0.986790i \(-0.551795\pi\)
−0.935586 + 0.353098i \(0.885128\pi\)
\(822\) 0 0
\(823\) 8.48337 + 14.6936i 0.295712 + 0.512188i 0.975150 0.221545i \(-0.0711099\pi\)
−0.679438 + 0.733732i \(0.737777\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 24.9508i 0.867626i 0.901003 + 0.433813i \(0.142832\pi\)
−0.901003 + 0.433813i \(0.857168\pi\)
\(828\) 0 0
\(829\) 8.49384 0.295003 0.147502 0.989062i \(-0.452877\pi\)
0.147502 + 0.989062i \(0.452877\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.0415737 0.0720077i −0.00144044 0.00249492i
\(834\) 0 0
\(835\) 11.7913 20.4231i 0.408054 0.706770i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 33.7446 + 19.4825i 1.16499 + 0.672610i 0.952496 0.304551i \(-0.0985065\pi\)
0.212499 + 0.977161i \(0.431840\pi\)
\(840\) 0 0
\(841\) −3.54962 6.14813i −0.122401 0.212004i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 8.63323 21.7547i 0.296992 0.748386i
\(846\) 0 0
\(847\) 25.5823i 0.879020i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −28.9905 + 16.7377i −0.993782 + 0.573760i
\(852\) 0 0
\(853\) −13.4418 7.76062i −0.460238 0.265719i 0.251906 0.967752i \(-0.418943\pi\)
−0.712144 + 0.702033i \(0.752276\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −20.9017 + 36.2027i −0.713987 + 1.23666i 0.249362 + 0.968410i \(0.419779\pi\)
−0.963349 + 0.268252i \(0.913554\pi\)
\(858\) 0 0
\(859\) 23.7115 + 41.0695i 0.809025 + 1.40127i 0.913540 + 0.406749i \(0.133338\pi\)
−0.104515 + 0.994523i \(0.533329\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 49.1903i 1.67446i 0.546853 + 0.837229i \(0.315826\pi\)
−0.546853 + 0.837229i \(0.684174\pi\)
\(864\) 0 0
\(865\) 0.374879i 0.0127463i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −4.34733 + 2.50993i −0.147473 + 0.0851437i
\(870\) 0 0
\(871\) −16.2924 14.0745i −0.552046 0.476895i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 16.1682 28.0041i 0.546584 0.946712i
\(876\) 0 0
\(877\) 8.93127 5.15647i 0.301587 0.174122i −0.341568 0.939857i \(-0.610958\pi\)
0.643156 + 0.765735i \(0.277625\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 10.1849 0.343139 0.171570 0.985172i \(-0.445116\pi\)
0.171570 + 0.985172i \(0.445116\pi\)
\(882\) 0 0
\(883\) −12.2488 −0.412206 −0.206103 0.978530i \(-0.566078\pi\)
−0.206103 + 0.978530i \(0.566078\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −5.18061 8.97309i −0.173948 0.301287i 0.765849 0.643021i \(-0.222319\pi\)
−0.939797 + 0.341734i \(0.888986\pi\)
\(888\) 0 0
\(889\) −18.6923 10.7920i −0.626918 0.361952i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −37.0425 + 64.1594i −1.23958 + 2.14701i
\(894\) 0 0
\(895\) 24.1394 13.9369i 0.806890 0.465858i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 15.5056i 0.517141i
\(900\) 0 0
\(901\) −16.5140 −0.550162
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −15.0704 + 8.70089i −0.500957 + 0.289227i
\(906\) 0 0
\(907\) 11.2973 19.5674i 0.375119 0.649726i −0.615226 0.788351i \(-0.710935\pi\)
0.990345 + 0.138625i \(0.0442684\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −10.9088 + 18.8945i −0.361423 + 0.626003i −0.988195 0.153199i \(-0.951042\pi\)
0.626772 + 0.779203i \(0.284376\pi\)
\(912\) 0 0
\(913\) −1.15165 1.99472i −0.0381141 0.0660156i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 31.3508i 1.03529i
\(918\) 0 0
\(919\) −13.4021 −0.442094 −0.221047 0.975263i \(-0.570947\pi\)
−0.221047 + 0.975263i \(0.570947\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −4.61551 + 1.60524i −0.151921 + 0.0528372i
\(924\) 0 0
\(925\) 8.98842 + 5.18947i 0.295537 + 0.170629i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 8.30493 + 4.79485i 0.272476 + 0.157314i 0.630012 0.776585i \(-0.283050\pi\)
−0.357536 + 0.933899i \(0.616383\pi\)
\(930\) 0 0
\(931\) 0.420663 0.242870i 0.0137867 0.00795974i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2.82319 0.0923282
\(936\) 0 0
\(937\) −48.2050 −1.57479 −0.787394 0.616450i \(-0.788570\pi\)
−0.787394 + 0.616450i \(0.788570\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 35.4422 20.4625i 1.15538 0.667060i 0.205189 0.978722i \(-0.434219\pi\)
0.950193 + 0.311663i \(0.100886\pi\)
\(942\) 0 0
\(943\) 35.3888 + 20.4317i 1.15242 + 0.665349i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −16.5907 9.57865i −0.539125 0.311264i 0.205599 0.978636i \(-0.434086\pi\)
−0.744724 + 0.667372i \(0.767419\pi\)
\(948\) 0 0
\(949\) −33.9911 + 11.8219i −1.10340 + 0.383755i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −58.5490 −1.89659 −0.948294 0.317393i \(-0.897193\pi\)
−0.948294 + 0.317393i \(0.897193\pi\)
\(954\) 0 0
\(955\) 8.10711i 0.262340i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −27.6168 47.8337i −0.891793 1.54463i
\(960\) 0 0
\(961\) −12.1700 + 21.0790i −0.392579 + 0.679968i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −14.2127 + 24.6172i −0.457524 + 0.792456i
\(966\) 0 0
\(967\) −12.5783 + 7.26210i −0.404491 + 0.233533i −0.688420 0.725312i \(-0.741695\pi\)
0.283929 + 0.958845i \(0.408362\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 4.10205 0.131641 0.0658206 0.997831i \(-0.479033\pi\)
0.0658206 + 0.997831i \(0.479033\pi\)
\(972\) 0 0
\(973\) 13.5087i 0.433070i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −33.7487 + 19.4848i −1.07972 + 0.623374i −0.930820 0.365479i \(-0.880905\pi\)
−0.148896 + 0.988853i \(0.547572\pi\)
\(978\) 0 0
\(979\) 4.93106 8.54084i 0.157597 0.272966i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 17.1004 + 9.87292i 0.545418 + 0.314897i 0.747272 0.664518i \(-0.231363\pi\)
−0.201854 + 0.979416i \(0.564697\pi\)
\(984\) 0 0
\(985\) 2.09087 + 3.62149i 0.0666205 + 0.115390i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 57.2435 1.82024
\(990\) 0 0
\(991\) −15.2644 −0.484890 −0.242445 0.970165i \(-0.577949\pi\)
−0.242445 + 0.970165i \(0.577949\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 36.6408 21.1546i 1.16159 0.670645i
\(996\) 0 0
\(997\) 26.5012 45.9014i 0.839301 1.45371i −0.0511787 0.998690i \(-0.516298\pi\)
0.890480 0.455023i \(-0.150369\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2808.2.cw.b.1585.11 80
3.2 odd 2 936.2.cw.b.25.24 yes 80
9.4 even 3 inner 2808.2.cw.b.2521.30 80
9.5 odd 6 936.2.cw.b.337.23 yes 80
13.12 even 2 inner 2808.2.cw.b.1585.30 80
39.38 odd 2 936.2.cw.b.25.23 80
117.77 odd 6 936.2.cw.b.337.24 yes 80
117.103 even 6 inner 2808.2.cw.b.2521.11 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.cw.b.25.23 80 39.38 odd 2
936.2.cw.b.25.24 yes 80 3.2 odd 2
936.2.cw.b.337.23 yes 80 9.5 odd 6
936.2.cw.b.337.24 yes 80 117.77 odd 6
2808.2.cw.b.1585.11 80 1.1 even 1 trivial
2808.2.cw.b.1585.30 80 13.12 even 2 inner
2808.2.cw.b.2521.11 80 117.103 even 6 inner
2808.2.cw.b.2521.30 80 9.4 even 3 inner