Properties

Label 936.2.cw.b.25.12
Level $936$
Weight $2$
Character 936.25
Analytic conductor $7.474$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(25,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.25"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.cw (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(40\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 25.12
Character \(\chi\) \(=\) 936.25
Dual form 936.2.cw.b.337.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.33331 + 1.10556i) q^{3} +(1.12193 - 0.647747i) q^{5} +(1.01499 + 0.586005i) q^{7} +(0.555454 - 2.94813i) q^{9} +(-3.37140 - 1.94648i) q^{11} +(-2.96609 - 2.04996i) q^{13} +(-0.779760 + 2.10402i) q^{15} -6.56850 q^{17} +4.02682i q^{19} +(-2.00117 + 0.340809i) q^{21} +(1.49532 + 2.58997i) q^{23} +(-1.66085 + 2.87667i) q^{25} +(2.51875 + 4.54487i) q^{27} +(4.62537 - 8.01138i) q^{29} +(-6.82747 + 3.94184i) q^{31} +(6.64710 - 1.13203i) q^{33} +1.51833 q^{35} -7.11245i q^{37} +(6.22109 - 0.545961i) q^{39} +(-8.68452 + 5.01401i) q^{41} +(2.21816 - 3.84196i) q^{43} +(-1.28646 - 3.66739i) q^{45} +(-9.72175 - 5.61286i) q^{47} +(-2.81320 - 4.87260i) q^{49} +(8.75787 - 7.26190i) q^{51} +3.94629 q^{53} -5.04331 q^{55} +(-4.45191 - 5.36902i) q^{57} +(-8.74216 + 5.04729i) q^{59} +(-0.267490 + 0.463307i) q^{61} +(2.29140 - 2.66683i) q^{63} +(-4.65560 - 0.378638i) q^{65} +(-0.708619 + 0.409121i) q^{67} +(-4.85712 - 1.80007i) q^{69} -11.3561i q^{71} +9.27918i q^{73} +(-0.965915 - 5.67168i) q^{75} +(-2.28130 - 3.95132i) q^{77} +(-3.92094 + 6.79126i) q^{79} +(-8.38294 - 3.27510i) q^{81} +(6.60302 + 3.81226i) q^{83} +(-7.36940 + 4.25473i) q^{85} +(2.69002 + 15.7953i) q^{87} -18.1154i q^{89} +(-1.80926 - 3.81883i) q^{91} +(4.74520 - 12.8039i) q^{93} +(2.60836 + 4.51782i) q^{95} +(5.94315 + 3.43128i) q^{97} +(-7.61114 + 8.85816i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 6 q^{3} - 6 q^{9} + 6 q^{13} - 4 q^{17} + 10 q^{23} + 44 q^{25} + 6 q^{27} - 52 q^{35} + 40 q^{39} - 26 q^{43} + 48 q^{49} + 36 q^{51} + 60 q^{53} - 16 q^{55} - 10 q^{61} - 26 q^{65} - 38 q^{69}+ \cdots + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.33331 + 1.10556i −0.769789 + 0.638298i
\(4\) 0 0
\(5\) 1.12193 0.647747i 0.501743 0.289681i −0.227690 0.973734i \(-0.573117\pi\)
0.729433 + 0.684052i \(0.239784\pi\)
\(6\) 0 0
\(7\) 1.01499 + 0.586005i 0.383630 + 0.221489i 0.679397 0.733771i \(-0.262242\pi\)
−0.295766 + 0.955260i \(0.595575\pi\)
\(8\) 0 0
\(9\) 0.555454 2.94813i 0.185151 0.982710i
\(10\) 0 0
\(11\) −3.37140 1.94648i −1.01652 0.586886i −0.103424 0.994637i \(-0.532980\pi\)
−0.913093 + 0.407751i \(0.866313\pi\)
\(12\) 0 0
\(13\) −2.96609 2.04996i −0.822644 0.568556i
\(14\) 0 0
\(15\) −0.779760 + 2.10402i −0.201333 + 0.543255i
\(16\) 0 0
\(17\) −6.56850 −1.59309 −0.796547 0.604576i \(-0.793343\pi\)
−0.796547 + 0.604576i \(0.793343\pi\)
\(18\) 0 0
\(19\) 4.02682i 0.923817i 0.886928 + 0.461908i \(0.152835\pi\)
−0.886928 + 0.461908i \(0.847165\pi\)
\(20\) 0 0
\(21\) −2.00117 + 0.340809i −0.436691 + 0.0743706i
\(22\) 0 0
\(23\) 1.49532 + 2.58997i 0.311796 + 0.540047i 0.978751 0.205051i \(-0.0657360\pi\)
−0.666955 + 0.745098i \(0.732403\pi\)
\(24\) 0 0
\(25\) −1.66085 + 2.87667i −0.332170 + 0.575335i
\(26\) 0 0
\(27\) 2.51875 + 4.54487i 0.484734 + 0.874661i
\(28\) 0 0
\(29\) 4.62537 8.01138i 0.858910 1.48768i −0.0140595 0.999901i \(-0.504475\pi\)
0.872970 0.487775i \(-0.162191\pi\)
\(30\) 0 0
\(31\) −6.82747 + 3.94184i −1.22625 + 0.707976i −0.966243 0.257631i \(-0.917058\pi\)
−0.260007 + 0.965607i \(0.583725\pi\)
\(32\) 0 0
\(33\) 6.64710 1.13203i 1.15711 0.197062i
\(34\) 0 0
\(35\) 1.51833 0.256645
\(36\) 0 0
\(37\) 7.11245i 1.16928i −0.811293 0.584640i \(-0.801236\pi\)
0.811293 0.584640i \(-0.198764\pi\)
\(38\) 0 0
\(39\) 6.22109 0.545961i 0.996171 0.0874237i
\(40\) 0 0
\(41\) −8.68452 + 5.01401i −1.35629 + 0.783056i −0.989122 0.147097i \(-0.953007\pi\)
−0.367171 + 0.930153i \(0.619674\pi\)
\(42\) 0 0
\(43\) 2.21816 3.84196i 0.338266 0.585894i −0.645841 0.763472i \(-0.723493\pi\)
0.984107 + 0.177578i \(0.0568263\pi\)
\(44\) 0 0
\(45\) −1.28646 3.66739i −0.191774 0.546702i
\(46\) 0 0
\(47\) −9.72175 5.61286i −1.41806 0.818719i −0.421935 0.906626i \(-0.638649\pi\)
−0.996129 + 0.0879068i \(0.971982\pi\)
\(48\) 0 0
\(49\) −2.81320 4.87260i −0.401885 0.696085i
\(50\) 0 0
\(51\) 8.75787 7.26190i 1.22635 1.01687i
\(52\) 0 0
\(53\) 3.94629 0.542065 0.271032 0.962570i \(-0.412635\pi\)
0.271032 + 0.962570i \(0.412635\pi\)
\(54\) 0 0
\(55\) −5.04331 −0.680040
\(56\) 0 0
\(57\) −4.45191 5.36902i −0.589670 0.711144i
\(58\) 0 0
\(59\) −8.74216 + 5.04729i −1.13813 + 0.657101i −0.945967 0.324262i \(-0.894884\pi\)
−0.192165 + 0.981363i \(0.561551\pi\)
\(60\) 0 0
\(61\) −0.267490 + 0.463307i −0.0342486 + 0.0593204i −0.882642 0.470046i \(-0.844237\pi\)
0.848393 + 0.529367i \(0.177570\pi\)
\(62\) 0 0
\(63\) 2.29140 2.66683i 0.288689 0.335988i
\(64\) 0 0
\(65\) −4.65560 0.378638i −0.577456 0.0469643i
\(66\) 0 0
\(67\) −0.708619 + 0.409121i −0.0865716 + 0.0499821i −0.542661 0.839952i \(-0.682583\pi\)
0.456089 + 0.889934i \(0.349250\pi\)
\(68\) 0 0
\(69\) −4.85712 1.80007i −0.584728 0.216703i
\(70\) 0 0
\(71\) 11.3561i 1.34773i −0.738856 0.673863i \(-0.764634\pi\)
0.738856 0.673863i \(-0.235366\pi\)
\(72\) 0 0
\(73\) 9.27918i 1.08605i 0.839718 + 0.543023i \(0.182720\pi\)
−0.839718 + 0.543023i \(0.817280\pi\)
\(74\) 0 0
\(75\) −0.965915 5.67168i −0.111534 0.654910i
\(76\) 0 0
\(77\) −2.28130 3.95132i −0.259978 0.450295i
\(78\) 0 0
\(79\) −3.92094 + 6.79126i −0.441140 + 0.764076i −0.997774 0.0666810i \(-0.978759\pi\)
0.556635 + 0.830757i \(0.312092\pi\)
\(80\) 0 0
\(81\) −8.38294 3.27510i −0.931438 0.363900i
\(82\) 0 0
\(83\) 6.60302 + 3.81226i 0.724776 + 0.418449i 0.816508 0.577334i \(-0.195907\pi\)
−0.0917322 + 0.995784i \(0.529240\pi\)
\(84\) 0 0
\(85\) −7.36940 + 4.25473i −0.799324 + 0.461490i
\(86\) 0 0
\(87\) 2.69002 + 15.7953i 0.288401 + 1.69344i
\(88\) 0 0
\(89\) 18.1154i 1.92023i −0.279606 0.960115i \(-0.590204\pi\)
0.279606 0.960115i \(-0.409796\pi\)
\(90\) 0 0
\(91\) −1.80926 3.81883i −0.189662 0.400322i
\(92\) 0 0
\(93\) 4.74520 12.8039i 0.492055 1.32771i
\(94\) 0 0
\(95\) 2.60836 + 4.51782i 0.267612 + 0.463518i
\(96\) 0 0
\(97\) 5.94315 + 3.43128i 0.603435 + 0.348393i 0.770392 0.637571i \(-0.220061\pi\)
−0.166957 + 0.985964i \(0.553394\pi\)
\(98\) 0 0
\(99\) −7.61114 + 8.85816i −0.764948 + 0.890278i
\(100\) 0 0
\(101\) 8.12658 14.0757i 0.808625 1.40058i −0.105191 0.994452i \(-0.533545\pi\)
0.913816 0.406128i \(-0.133121\pi\)
\(102\) 0 0
\(103\) −3.30921 5.73172i −0.326066 0.564763i 0.655661 0.755055i \(-0.272390\pi\)
−0.981728 + 0.190292i \(0.939057\pi\)
\(104\) 0 0
\(105\) −2.02441 + 1.67861i −0.197563 + 0.163816i
\(106\) 0 0
\(107\) 9.32645 0.901622 0.450811 0.892619i \(-0.351135\pi\)
0.450811 + 0.892619i \(0.351135\pi\)
\(108\) 0 0
\(109\) 19.9089i 1.90693i 0.301504 + 0.953465i \(0.402511\pi\)
−0.301504 + 0.953465i \(0.597489\pi\)
\(110\) 0 0
\(111\) 7.86327 + 9.48313i 0.746349 + 0.900099i
\(112\) 0 0
\(113\) −2.78841 4.82966i −0.262311 0.454336i 0.704545 0.709660i \(-0.251151\pi\)
−0.966856 + 0.255324i \(0.917818\pi\)
\(114\) 0 0
\(115\) 3.35530 + 1.93718i 0.312883 + 0.180643i
\(116\) 0 0
\(117\) −7.69107 + 7.60575i −0.711040 + 0.703152i
\(118\) 0 0
\(119\) −6.66697 3.84917i −0.611160 0.352853i
\(120\) 0 0
\(121\) 2.07758 + 3.59847i 0.188871 + 0.327134i
\(122\) 0 0
\(123\) 6.03588 16.2865i 0.544237 1.46851i
\(124\) 0 0
\(125\) 10.7807i 0.964256i
\(126\) 0 0
\(127\) 14.6816 1.30278 0.651391 0.758742i \(-0.274186\pi\)
0.651391 + 0.758742i \(0.274186\pi\)
\(128\) 0 0
\(129\) 1.29004 + 7.57486i 0.113581 + 0.666929i
\(130\) 0 0
\(131\) −4.50338 7.80009i −0.393462 0.681497i 0.599441 0.800419i \(-0.295390\pi\)
−0.992904 + 0.118922i \(0.962056\pi\)
\(132\) 0 0
\(133\) −2.35974 + 4.08719i −0.204615 + 0.354404i
\(134\) 0 0
\(135\) 5.76980 + 3.46752i 0.496585 + 0.298437i
\(136\) 0 0
\(137\) 1.20317 + 0.694649i 0.102794 + 0.0593479i 0.550515 0.834825i \(-0.314431\pi\)
−0.447722 + 0.894173i \(0.647765\pi\)
\(138\) 0 0
\(139\) −9.03975 15.6573i −0.766742 1.32804i −0.939321 0.343040i \(-0.888543\pi\)
0.172579 0.984996i \(-0.444790\pi\)
\(140\) 0 0
\(141\) 19.1675 3.26432i 1.61420 0.274906i
\(142\) 0 0
\(143\) 6.00967 + 12.6847i 0.502554 + 1.06075i
\(144\) 0 0
\(145\) 11.9843i 0.995241i
\(146\) 0 0
\(147\) 9.13785 + 3.38654i 0.753677 + 0.279317i
\(148\) 0 0
\(149\) 7.89426 4.55775i 0.646723 0.373386i −0.140477 0.990084i \(-0.544864\pi\)
0.787200 + 0.616698i \(0.211530\pi\)
\(150\) 0 0
\(151\) 2.38477 + 1.37685i 0.194070 + 0.112046i 0.593886 0.804549i \(-0.297593\pi\)
−0.399817 + 0.916595i \(0.630926\pi\)
\(152\) 0 0
\(153\) −3.64850 + 19.3648i −0.294964 + 1.56555i
\(154\) 0 0
\(155\) −5.10663 + 8.84495i −0.410175 + 0.710443i
\(156\) 0 0
\(157\) 10.3386 + 17.9069i 0.825107 + 1.42913i 0.901837 + 0.432076i \(0.142219\pi\)
−0.0767297 + 0.997052i \(0.524448\pi\)
\(158\) 0 0
\(159\) −5.26165 + 4.36288i −0.417276 + 0.345999i
\(160\) 0 0
\(161\) 3.50507i 0.276238i
\(162\) 0 0
\(163\) 10.1790i 0.797284i 0.917107 + 0.398642i \(0.130518\pi\)
−0.917107 + 0.398642i \(0.869482\pi\)
\(164\) 0 0
\(165\) 6.72432 5.57570i 0.523487 0.434068i
\(166\) 0 0
\(167\) −1.66878 + 0.963473i −0.129134 + 0.0745558i −0.563176 0.826337i \(-0.690421\pi\)
0.434041 + 0.900893i \(0.357087\pi\)
\(168\) 0 0
\(169\) 4.59534 + 12.1607i 0.353488 + 0.935439i
\(170\) 0 0
\(171\) 11.8716 + 2.23672i 0.907844 + 0.171046i
\(172\) 0 0
\(173\) −0.346784 + 0.600648i −0.0263655 + 0.0456664i −0.878907 0.476993i \(-0.841727\pi\)
0.852542 + 0.522659i \(0.175060\pi\)
\(174\) 0 0
\(175\) −3.37149 + 1.94653i −0.254861 + 0.147144i
\(176\) 0 0
\(177\) 6.07594 16.3946i 0.456696 1.23230i
\(178\) 0 0
\(179\) −16.1961 −1.21055 −0.605275 0.796016i \(-0.706937\pi\)
−0.605275 + 0.796016i \(0.706937\pi\)
\(180\) 0 0
\(181\) −7.12194 −0.529370 −0.264685 0.964335i \(-0.585268\pi\)
−0.264685 + 0.964335i \(0.585268\pi\)
\(182\) 0 0
\(183\) −0.155567 0.913462i −0.0114998 0.0675250i
\(184\) 0 0
\(185\) −4.60707 7.97967i −0.338718 0.586677i
\(186\) 0 0
\(187\) 22.1451 + 12.7855i 1.61941 + 0.934965i
\(188\) 0 0
\(189\) −0.106809 + 6.08901i −0.00776919 + 0.442910i
\(190\) 0 0
\(191\) −6.63623 + 11.4943i −0.480181 + 0.831698i −0.999742 0.0227360i \(-0.992762\pi\)
0.519561 + 0.854434i \(0.326096\pi\)
\(192\) 0 0
\(193\) −16.7689 + 9.68153i −1.20705 + 0.696892i −0.962114 0.272647i \(-0.912101\pi\)
−0.244938 + 0.969539i \(0.578767\pi\)
\(194\) 0 0
\(195\) 6.62598 4.64222i 0.474497 0.332436i
\(196\) 0 0
\(197\) 2.07336i 0.147720i −0.997269 0.0738602i \(-0.976468\pi\)
0.997269 0.0738602i \(-0.0235319\pi\)
\(198\) 0 0
\(199\) −9.20616 −0.652607 −0.326304 0.945265i \(-0.605803\pi\)
−0.326304 + 0.945265i \(0.605803\pi\)
\(200\) 0 0
\(201\) 0.492502 1.32891i 0.0347384 0.0937341i
\(202\) 0 0
\(203\) 9.38942 5.42098i 0.659008 0.380479i
\(204\) 0 0
\(205\) −6.49562 + 11.2507i −0.453674 + 0.785786i
\(206\) 0 0
\(207\) 8.46616 2.96979i 0.588439 0.206415i
\(208\) 0 0
\(209\) 7.83814 13.5760i 0.542175 0.939075i
\(210\) 0 0
\(211\) 8.43931 + 14.6173i 0.580986 + 1.00630i 0.995363 + 0.0961921i \(0.0306663\pi\)
−0.414377 + 0.910106i \(0.636000\pi\)
\(212\) 0 0
\(213\) 12.5550 + 15.1413i 0.860251 + 1.03747i
\(214\) 0 0
\(215\) 5.74722i 0.391957i
\(216\) 0 0
\(217\) −9.23976 −0.627236
\(218\) 0 0
\(219\) −10.2587 12.3721i −0.693221 0.836027i
\(220\) 0 0
\(221\) 19.4827 + 13.4652i 1.31055 + 0.905764i
\(222\) 0 0
\(223\) 11.6114 + 6.70384i 0.777557 + 0.448923i 0.835564 0.549394i \(-0.185141\pi\)
−0.0580070 + 0.998316i \(0.518475\pi\)
\(224\) 0 0
\(225\) 7.55828 + 6.49425i 0.503885 + 0.432950i
\(226\) 0 0
\(227\) −8.22562 4.74907i −0.545954 0.315207i 0.201535 0.979481i \(-0.435407\pi\)
−0.747488 + 0.664275i \(0.768740\pi\)
\(228\) 0 0
\(229\) −6.81996 + 3.93751i −0.450676 + 0.260198i −0.708116 0.706097i \(-0.750454\pi\)
0.257440 + 0.966294i \(0.417121\pi\)
\(230\) 0 0
\(231\) 7.41013 + 2.74623i 0.487551 + 0.180689i
\(232\) 0 0
\(233\) 7.61925 0.499154 0.249577 0.968355i \(-0.419708\pi\)
0.249577 + 0.968355i \(0.419708\pi\)
\(234\) 0 0
\(235\) −14.5428 −0.948671
\(236\) 0 0
\(237\) −2.28034 13.3897i −0.148124 0.869756i
\(238\) 0 0
\(239\) −15.0862 + 8.70999i −0.975842 + 0.563403i −0.901012 0.433794i \(-0.857175\pi\)
−0.0748299 + 0.997196i \(0.523841\pi\)
\(240\) 0 0
\(241\) 13.7382 + 7.93173i 0.884953 + 0.510928i 0.872288 0.488992i \(-0.162635\pi\)
0.0126645 + 0.999920i \(0.495969\pi\)
\(242\) 0 0
\(243\) 14.7979 4.90114i 0.949288 0.314408i
\(244\) 0 0
\(245\) −6.31242 3.64448i −0.403286 0.232837i
\(246\) 0 0
\(247\) 8.25482 11.9439i 0.525242 0.759973i
\(248\) 0 0
\(249\) −13.0186 + 2.21713i −0.825020 + 0.140505i
\(250\) 0 0
\(251\) 9.81440 0.619479 0.309740 0.950821i \(-0.399758\pi\)
0.309740 + 0.950821i \(0.399758\pi\)
\(252\) 0 0
\(253\) 11.6425i 0.731956i
\(254\) 0 0
\(255\) 5.12185 13.8202i 0.320743 0.865457i
\(256\) 0 0
\(257\) 2.24272 + 3.88451i 0.139897 + 0.242309i 0.927458 0.373928i \(-0.121989\pi\)
−0.787560 + 0.616238i \(0.788656\pi\)
\(258\) 0 0
\(259\) 4.16793 7.21907i 0.258983 0.448571i
\(260\) 0 0
\(261\) −21.0494 18.0862i −1.30293 1.11950i
\(262\) 0 0
\(263\) −11.0782 + 19.1881i −0.683113 + 1.18319i 0.290912 + 0.956750i \(0.406041\pi\)
−0.974026 + 0.226437i \(0.927292\pi\)
\(264\) 0 0
\(265\) 4.42747 2.55620i 0.271977 0.157026i
\(266\) 0 0
\(267\) 20.0278 + 24.1535i 1.22568 + 1.47817i
\(268\) 0 0
\(269\) −1.40882 −0.0858975 −0.0429488 0.999077i \(-0.513675\pi\)
−0.0429488 + 0.999077i \(0.513675\pi\)
\(270\) 0 0
\(271\) 13.0804i 0.794580i −0.917693 0.397290i \(-0.869951\pi\)
0.917693 0.397290i \(-0.130049\pi\)
\(272\) 0 0
\(273\) 6.63428 + 3.09144i 0.401525 + 0.187103i
\(274\) 0 0
\(275\) 11.1988 6.46562i 0.675312 0.389891i
\(276\) 0 0
\(277\) 9.34430 16.1848i 0.561444 0.972450i −0.435926 0.899982i \(-0.643579\pi\)
0.997371 0.0724677i \(-0.0230874\pi\)
\(278\) 0 0
\(279\) 7.82872 + 22.3178i 0.468693 + 1.33613i
\(280\) 0 0
\(281\) −6.11062 3.52797i −0.364529 0.210461i 0.306537 0.951859i \(-0.400830\pi\)
−0.671066 + 0.741398i \(0.734163\pi\)
\(282\) 0 0
\(283\) −13.2306 22.9160i −0.786476 1.36222i −0.928113 0.372299i \(-0.878570\pi\)
0.141637 0.989919i \(-0.454764\pi\)
\(284\) 0 0
\(285\) −8.47250 3.13996i −0.501868 0.185995i
\(286\) 0 0
\(287\) −11.7529 −0.693754
\(288\) 0 0
\(289\) 26.1452 1.53795
\(290\) 0 0
\(291\) −11.7176 + 1.99556i −0.686897 + 0.116982i
\(292\) 0 0
\(293\) −6.21621 + 3.58893i −0.363155 + 0.209668i −0.670464 0.741942i \(-0.733905\pi\)
0.307309 + 0.951610i \(0.400571\pi\)
\(294\) 0 0
\(295\) −6.53873 + 11.3254i −0.380700 + 0.659391i
\(296\) 0 0
\(297\) 0.354777 20.2253i 0.0205862 1.17359i
\(298\) 0 0
\(299\) 0.874084 10.7474i 0.0505496 0.621540i
\(300\) 0 0
\(301\) 4.50282 2.59970i 0.259538 0.149844i
\(302\) 0 0
\(303\) 4.72626 + 27.7517i 0.271516 + 1.59430i
\(304\) 0 0
\(305\) 0.693065i 0.0396848i
\(306\) 0 0
\(307\) 22.7606i 1.29901i −0.760356 0.649507i \(-0.774975\pi\)
0.760356 0.649507i \(-0.225025\pi\)
\(308\) 0 0
\(309\) 10.7490 + 3.98364i 0.611490 + 0.226621i
\(310\) 0 0
\(311\) −0.186725 0.323417i −0.0105882 0.0183393i 0.860683 0.509142i \(-0.170037\pi\)
−0.871271 + 0.490802i \(0.836704\pi\)
\(312\) 0 0
\(313\) 0.282788 0.489804i 0.0159841 0.0276853i −0.857923 0.513779i \(-0.828245\pi\)
0.873907 + 0.486093i \(0.161579\pi\)
\(314\) 0 0
\(315\) 0.843364 4.47624i 0.0475182 0.252208i
\(316\) 0 0
\(317\) 2.95778 + 1.70767i 0.166125 + 0.0959124i 0.580757 0.814077i \(-0.302756\pi\)
−0.414632 + 0.909989i \(0.636090\pi\)
\(318\) 0 0
\(319\) −31.1880 + 18.0064i −1.74619 + 1.00816i
\(320\) 0 0
\(321\) −12.4351 + 10.3110i −0.694059 + 0.575504i
\(322\) 0 0
\(323\) 26.4502i 1.47173i
\(324\) 0 0
\(325\) 10.8233 5.12779i 0.600367 0.284439i
\(326\) 0 0
\(327\) −22.0106 26.5449i −1.21719 1.46793i
\(328\) 0 0
\(329\) −6.57833 11.3940i −0.362675 0.628171i
\(330\) 0 0
\(331\) −2.45863 1.41949i −0.135139 0.0780223i 0.430906 0.902397i \(-0.358194\pi\)
−0.566045 + 0.824374i \(0.691527\pi\)
\(332\) 0 0
\(333\) −20.9684 3.95064i −1.14906 0.216494i
\(334\) 0 0
\(335\) −0.530014 + 0.918011i −0.0289578 + 0.0501563i
\(336\) 0 0
\(337\) −3.43582 5.95101i −0.187161 0.324172i 0.757142 0.653251i \(-0.226595\pi\)
−0.944303 + 0.329079i \(0.893262\pi\)
\(338\) 0 0
\(339\) 9.05732 + 3.35669i 0.491926 + 0.182311i
\(340\) 0 0
\(341\) 30.6909 1.66200
\(342\) 0 0
\(343\) 14.7983i 0.799031i
\(344\) 0 0
\(345\) −6.61534 + 1.12662i −0.356158 + 0.0606554i
\(346\) 0 0
\(347\) −5.87270 10.1718i −0.315263 0.546051i 0.664231 0.747528i \(-0.268759\pi\)
−0.979493 + 0.201477i \(0.935426\pi\)
\(348\) 0 0
\(349\) −21.5356 12.4336i −1.15277 0.665555i −0.203213 0.979135i \(-0.565138\pi\)
−0.949562 + 0.313580i \(0.898472\pi\)
\(350\) 0 0
\(351\) 1.84596 18.6438i 0.0985303 0.995134i
\(352\) 0 0
\(353\) 28.9770 + 16.7299i 1.54229 + 0.890440i 0.998694 + 0.0510923i \(0.0162703\pi\)
0.543594 + 0.839348i \(0.317063\pi\)
\(354\) 0 0
\(355\) −7.35591 12.7408i −0.390411 0.676212i
\(356\) 0 0
\(357\) 13.1447 2.23860i 0.695690 0.118479i
\(358\) 0 0
\(359\) 20.9981i 1.10824i 0.832438 + 0.554118i \(0.186944\pi\)
−0.832438 + 0.554118i \(0.813056\pi\)
\(360\) 0 0
\(361\) 2.78470 0.146563
\(362\) 0 0
\(363\) −6.74841 2.50100i −0.354200 0.131268i
\(364\) 0 0
\(365\) 6.01056 + 10.4106i 0.314607 + 0.544916i
\(366\) 0 0
\(367\) −8.49086 + 14.7066i −0.443219 + 0.767678i −0.997926 0.0643677i \(-0.979497\pi\)
0.554707 + 0.832046i \(0.312830\pi\)
\(368\) 0 0
\(369\) 9.95810 + 28.3881i 0.518398 + 1.47783i
\(370\) 0 0
\(371\) 4.00545 + 2.31255i 0.207953 + 0.120062i
\(372\) 0 0
\(373\) 10.0047 + 17.3286i 0.518023 + 0.897241i 0.999781 + 0.0209372i \(0.00666500\pi\)
−0.481758 + 0.876304i \(0.660002\pi\)
\(374\) 0 0
\(375\) −11.9188 14.3741i −0.615482 0.742274i
\(376\) 0 0
\(377\) −30.1423 + 14.2806i −1.55240 + 0.735490i
\(378\) 0 0
\(379\) 17.6142i 0.904780i −0.891820 0.452390i \(-0.850571\pi\)
0.891820 0.452390i \(-0.149429\pi\)
\(380\) 0 0
\(381\) −19.5752 + 16.2315i −1.00287 + 0.831564i
\(382\) 0 0
\(383\) −4.07133 + 2.35058i −0.208035 + 0.120109i −0.600398 0.799701i \(-0.704991\pi\)
0.392363 + 0.919811i \(0.371658\pi\)
\(384\) 0 0
\(385\) −5.11891 2.95541i −0.260884 0.150621i
\(386\) 0 0
\(387\) −10.0945 8.67345i −0.513133 0.440896i
\(388\) 0 0
\(389\) 3.06849 5.31479i 0.155579 0.269470i −0.777691 0.628647i \(-0.783609\pi\)
0.933270 + 0.359177i \(0.116942\pi\)
\(390\) 0 0
\(391\) −9.82202 17.0122i −0.496721 0.860346i
\(392\) 0 0
\(393\) 14.6279 + 5.42119i 0.737881 + 0.273463i
\(394\) 0 0
\(395\) 10.1591i 0.511160i
\(396\) 0 0
\(397\) 23.3075i 1.16977i 0.811116 + 0.584885i \(0.198860\pi\)
−0.811116 + 0.584885i \(0.801140\pi\)
\(398\) 0 0
\(399\) −1.37238 8.05835i −0.0687048 0.403422i
\(400\) 0 0
\(401\) 12.5604 7.25174i 0.627236 0.362135i −0.152445 0.988312i \(-0.548715\pi\)
0.779681 + 0.626177i \(0.215381\pi\)
\(402\) 0 0
\(403\) 28.3315 + 2.30419i 1.41129 + 0.114780i
\(404\) 0 0
\(405\) −11.5265 + 1.75559i −0.572757 + 0.0872359i
\(406\) 0 0
\(407\) −13.8442 + 23.9789i −0.686234 + 1.18859i
\(408\) 0 0
\(409\) −14.3903 + 8.30824i −0.711555 + 0.410816i −0.811636 0.584163i \(-0.801423\pi\)
0.100082 + 0.994979i \(0.468090\pi\)
\(410\) 0 0
\(411\) −2.37218 + 0.403994i −0.117011 + 0.0199276i
\(412\) 0 0
\(413\) −11.8310 −0.582163
\(414\) 0 0
\(415\) 9.87751 0.484868
\(416\) 0 0
\(417\) 29.3630 + 10.8821i 1.43791 + 0.532898i
\(418\) 0 0
\(419\) 3.50413 + 6.06932i 0.171188 + 0.296506i 0.938835 0.344366i \(-0.111906\pi\)
−0.767648 + 0.640872i \(0.778573\pi\)
\(420\) 0 0
\(421\) −3.35071 1.93453i −0.163304 0.0942834i 0.416121 0.909309i \(-0.363389\pi\)
−0.579425 + 0.815026i \(0.696723\pi\)
\(422\) 0 0
\(423\) −21.9474 + 25.5433i −1.06712 + 1.24196i
\(424\) 0 0
\(425\) 10.9093 18.8954i 0.529178 0.916562i
\(426\) 0 0
\(427\) −0.543001 + 0.313502i −0.0262776 + 0.0151714i
\(428\) 0 0
\(429\) −22.0365 10.2686i −1.06393 0.495771i
\(430\) 0 0
\(431\) 5.94334i 0.286281i −0.989702 0.143140i \(-0.954280\pi\)
0.989702 0.143140i \(-0.0457201\pi\)
\(432\) 0 0
\(433\) 25.3808 1.21973 0.609863 0.792507i \(-0.291225\pi\)
0.609863 + 0.792507i \(0.291225\pi\)
\(434\) 0 0
\(435\) 13.2494 + 15.9788i 0.635260 + 0.766126i
\(436\) 0 0
\(437\) −10.4294 + 6.02140i −0.498904 + 0.288042i
\(438\) 0 0
\(439\) 3.20445 5.55026i 0.152940 0.264900i −0.779367 0.626568i \(-0.784459\pi\)
0.932307 + 0.361668i \(0.117793\pi\)
\(440\) 0 0
\(441\) −15.9277 + 5.58716i −0.758460 + 0.266055i
\(442\) 0 0
\(443\) −1.08746 + 1.88354i −0.0516668 + 0.0894895i −0.890702 0.454587i \(-0.849787\pi\)
0.839035 + 0.544077i \(0.183120\pi\)
\(444\) 0 0
\(445\) −11.7342 20.3242i −0.556255 0.963461i
\(446\) 0 0
\(447\) −5.48664 + 14.8045i −0.259509 + 0.700230i
\(448\) 0 0
\(449\) 3.54524i 0.167310i −0.996495 0.0836550i \(-0.973341\pi\)
0.996495 0.0836550i \(-0.0266594\pi\)
\(450\) 0 0
\(451\) 39.0387 1.83826
\(452\) 0 0
\(453\) −4.70184 + 0.800747i −0.220912 + 0.0376224i
\(454\) 0 0
\(455\) −4.50351 3.11252i −0.211128 0.145917i
\(456\) 0 0
\(457\) 14.7188 + 8.49788i 0.688514 + 0.397514i 0.803055 0.595905i \(-0.203206\pi\)
−0.114541 + 0.993419i \(0.536540\pi\)
\(458\) 0 0
\(459\) −16.5444 29.8530i −0.772228 1.39342i
\(460\) 0 0
\(461\) 8.29670 + 4.79010i 0.386416 + 0.223097i 0.680606 0.732650i \(-0.261717\pi\)
−0.294190 + 0.955747i \(0.595050\pi\)
\(462\) 0 0
\(463\) 14.5135 8.37937i 0.674499 0.389422i −0.123280 0.992372i \(-0.539341\pi\)
0.797779 + 0.602950i \(0.206008\pi\)
\(464\) 0 0
\(465\) −2.96991 17.4388i −0.137726 0.808705i
\(466\) 0 0
\(467\) 13.8428 0.640567 0.320283 0.947322i \(-0.396222\pi\)
0.320283 + 0.947322i \(0.396222\pi\)
\(468\) 0 0
\(469\) −0.958989 −0.0442820
\(470\) 0 0
\(471\) −33.5818 12.4456i −1.54737 0.573463i
\(472\) 0 0
\(473\) −14.9566 + 8.63521i −0.687706 + 0.397047i
\(474\) 0 0
\(475\) −11.5839 6.68794i −0.531504 0.306864i
\(476\) 0 0
\(477\) 2.19198 11.6342i 0.100364 0.532693i
\(478\) 0 0
\(479\) −22.5215 13.0028i −1.02903 0.594112i −0.112324 0.993672i \(-0.535830\pi\)
−0.916707 + 0.399560i \(0.869163\pi\)
\(480\) 0 0
\(481\) −14.5802 + 21.0961i −0.664801 + 0.961901i
\(482\) 0 0
\(483\) −3.87508 4.67335i −0.176322 0.212645i
\(484\) 0 0
\(485\) 8.89040 0.403692
\(486\) 0 0
\(487\) 27.2672i 1.23560i −0.786337 0.617798i \(-0.788025\pi\)
0.786337 0.617798i \(-0.211975\pi\)
\(488\) 0 0
\(489\) −11.2536 13.5719i −0.508905 0.613741i
\(490\) 0 0
\(491\) −1.57007 2.71945i −0.0708565 0.122727i 0.828420 0.560107i \(-0.189240\pi\)
−0.899277 + 0.437380i \(0.855907\pi\)
\(492\) 0 0
\(493\) −30.3817 + 52.6227i −1.36833 + 2.37001i
\(494\) 0 0
\(495\) −2.80133 + 14.8683i −0.125910 + 0.668282i
\(496\) 0 0
\(497\) 6.65476 11.5264i 0.298507 0.517029i
\(498\) 0 0
\(499\) 2.63431 1.52092i 0.117928 0.0680858i −0.439876 0.898059i \(-0.644978\pi\)
0.557804 + 0.829973i \(0.311644\pi\)
\(500\) 0 0
\(501\) 1.15983 3.12956i 0.0518175 0.139818i
\(502\) 0 0
\(503\) −10.7638 −0.479933 −0.239967 0.970781i \(-0.577136\pi\)
−0.239967 + 0.970781i \(0.577136\pi\)
\(504\) 0 0
\(505\) 21.0559i 0.936974i
\(506\) 0 0
\(507\) −19.5715 11.1336i −0.869200 0.494461i
\(508\) 0 0
\(509\) −29.0244 + 16.7573i −1.28649 + 0.742752i −0.978026 0.208485i \(-0.933147\pi\)
−0.308459 + 0.951237i \(0.599813\pi\)
\(510\) 0 0
\(511\) −5.43765 + 9.41828i −0.240547 + 0.416640i
\(512\) 0 0
\(513\) −18.3014 + 10.1426i −0.808027 + 0.447806i
\(514\) 0 0
\(515\) −7.42541 4.28706i −0.327203 0.188911i
\(516\) 0 0
\(517\) 21.8506 + 37.8464i 0.960990 + 1.66448i
\(518\) 0 0
\(519\) −0.201683 1.18424i −0.00885288 0.0519825i
\(520\) 0 0
\(521\) −5.80816 −0.254460 −0.127230 0.991873i \(-0.540609\pi\)
−0.127230 + 0.991873i \(0.540609\pi\)
\(522\) 0 0
\(523\) −39.1530 −1.71204 −0.856020 0.516943i \(-0.827070\pi\)
−0.856020 + 0.516943i \(0.827070\pi\)
\(524\) 0 0
\(525\) 2.34324 6.32274i 0.102267 0.275947i
\(526\) 0 0
\(527\) 44.8462 25.8920i 1.95353 1.12787i
\(528\) 0 0
\(529\) 7.02802 12.1729i 0.305566 0.529256i
\(530\) 0 0
\(531\) 10.0242 + 28.5766i 0.435013 + 1.24012i
\(532\) 0 0
\(533\) 36.0375 + 2.93092i 1.56096 + 0.126952i
\(534\) 0 0
\(535\) 10.4636 6.04118i 0.452382 0.261183i
\(536\) 0 0
\(537\) 21.5944 17.9058i 0.931869 0.772692i
\(538\) 0 0
\(539\) 21.9033i 0.943443i
\(540\) 0 0
\(541\) 46.0331i 1.97912i −0.144130 0.989559i \(-0.546038\pi\)
0.144130 0.989559i \(-0.453962\pi\)
\(542\) 0 0
\(543\) 9.49579 7.87377i 0.407503 0.337896i
\(544\) 0 0
\(545\) 12.8960 + 22.3364i 0.552402 + 0.956788i
\(546\) 0 0
\(547\) 21.8241 37.8005i 0.933131 1.61623i 0.155198 0.987883i \(-0.450398\pi\)
0.777933 0.628347i \(-0.216268\pi\)
\(548\) 0 0
\(549\) 1.21731 + 1.04594i 0.0519536 + 0.0446397i
\(550\) 0 0
\(551\) 32.2604 + 18.6256i 1.37434 + 0.793475i
\(552\) 0 0
\(553\) −7.95943 + 4.59538i −0.338469 + 0.195415i
\(554\) 0 0
\(555\) 14.9647 + 5.54600i 0.635217 + 0.235415i
\(556\) 0 0
\(557\) 25.5959i 1.08453i −0.840206 0.542267i \(-0.817566\pi\)
0.840206 0.542267i \(-0.182434\pi\)
\(558\) 0 0
\(559\) −14.4551 + 6.84846i −0.611386 + 0.289659i
\(560\) 0 0
\(561\) −43.6615 + 7.43576i −1.84339 + 0.313938i
\(562\) 0 0
\(563\) −16.6636 28.8622i −0.702286 1.21639i −0.967662 0.252250i \(-0.918829\pi\)
0.265376 0.964145i \(-0.414504\pi\)
\(564\) 0 0
\(565\) −6.25680 3.61236i −0.263225 0.151973i
\(566\) 0 0
\(567\) −6.58938 8.23665i −0.276728 0.345907i
\(568\) 0 0
\(569\) −19.0371 + 32.9733i −0.798078 + 1.38231i 0.122789 + 0.992433i \(0.460816\pi\)
−0.920866 + 0.389878i \(0.872517\pi\)
\(570\) 0 0
\(571\) 0.538092 + 0.932002i 0.0225184 + 0.0390031i 0.877065 0.480372i \(-0.159498\pi\)
−0.854547 + 0.519375i \(0.826165\pi\)
\(572\) 0 0
\(573\) −3.85950 22.6623i −0.161233 0.946730i
\(574\) 0 0
\(575\) −9.93401 −0.414277
\(576\) 0 0
\(577\) 1.08287i 0.0450804i −0.999746 0.0225402i \(-0.992825\pi\)
0.999746 0.0225402i \(-0.00717537\pi\)
\(578\) 0 0
\(579\) 11.6547 31.4476i 0.484351 1.30692i
\(580\) 0 0
\(581\) 4.46800 + 7.73881i 0.185364 + 0.321060i
\(582\) 0 0
\(583\) −13.3045 7.68138i −0.551018 0.318130i
\(584\) 0 0
\(585\) −3.70224 + 13.5150i −0.153069 + 0.558776i
\(586\) 0 0
\(587\) 6.75430 + 3.89960i 0.278780 + 0.160954i 0.632871 0.774257i \(-0.281876\pi\)
−0.354091 + 0.935211i \(0.615210\pi\)
\(588\) 0 0
\(589\) −15.8731 27.4930i −0.654040 1.13283i
\(590\) 0 0
\(591\) 2.29223 + 2.76443i 0.0942897 + 0.113714i
\(592\) 0 0
\(593\) 27.6766i 1.13654i −0.822841 0.568271i \(-0.807612\pi\)
0.822841 0.568271i \(-0.192388\pi\)
\(594\) 0 0
\(595\) −9.97316 −0.408860
\(596\) 0 0
\(597\) 12.2747 10.1780i 0.502370 0.416558i
\(598\) 0 0
\(599\) 0.164479 + 0.284885i 0.00672041 + 0.0116401i 0.869366 0.494169i \(-0.164527\pi\)
−0.862646 + 0.505809i \(0.831194\pi\)
\(600\) 0 0
\(601\) 11.4590 19.8476i 0.467424 0.809602i −0.531883 0.846818i \(-0.678516\pi\)
0.999307 + 0.0372156i \(0.0118488\pi\)
\(602\) 0 0
\(603\) 0.812537 + 2.31635i 0.0330891 + 0.0943290i
\(604\) 0 0
\(605\) 4.66180 + 2.69149i 0.189529 + 0.109425i
\(606\) 0 0
\(607\) 7.75554 + 13.4330i 0.314788 + 0.545228i 0.979392 0.201967i \(-0.0647333\pi\)
−0.664605 + 0.747195i \(0.731400\pi\)
\(608\) 0 0
\(609\) −6.52580 + 17.6085i −0.264439 + 0.713532i
\(610\) 0 0
\(611\) 17.3294 + 36.5774i 0.701074 + 1.47976i
\(612\) 0 0
\(613\) 34.7194i 1.40230i −0.713013 0.701151i \(-0.752670\pi\)
0.713013 0.701151i \(-0.247330\pi\)
\(614\) 0 0
\(615\) −3.77772 22.1821i −0.152332 0.894468i
\(616\) 0 0
\(617\) 4.04094 2.33304i 0.162682 0.0939246i −0.416449 0.909159i \(-0.636725\pi\)
0.579131 + 0.815235i \(0.303392\pi\)
\(618\) 0 0
\(619\) −30.4860 17.6011i −1.22534 0.707448i −0.259286 0.965801i \(-0.583487\pi\)
−0.966051 + 0.258352i \(0.916820\pi\)
\(620\) 0 0
\(621\) −8.00476 + 13.3196i −0.321220 + 0.534495i
\(622\) 0 0
\(623\) 10.6157 18.3870i 0.425310 0.736659i
\(624\) 0 0
\(625\) −1.32107 2.28816i −0.0528427 0.0915263i
\(626\) 0 0
\(627\) 4.55850 + 26.7667i 0.182049 + 1.06896i
\(628\) 0 0
\(629\) 46.7181i 1.86277i
\(630\) 0 0
\(631\) 14.5335i 0.578569i 0.957243 + 0.289284i \(0.0934174\pi\)
−0.957243 + 0.289284i \(0.906583\pi\)
\(632\) 0 0
\(633\) −27.4126 10.1593i −1.08955 0.403795i
\(634\) 0 0
\(635\) 16.4718 9.50997i 0.653662 0.377392i
\(636\) 0 0
\(637\) −1.64444 + 20.2195i −0.0651552 + 0.801125i
\(638\) 0 0
\(639\) −33.4794 6.30782i −1.32442 0.249533i
\(640\) 0 0
\(641\) −8.17292 + 14.1559i −0.322811 + 0.559125i −0.981067 0.193669i \(-0.937961\pi\)
0.658256 + 0.752794i \(0.271294\pi\)
\(642\) 0 0
\(643\) −25.7847 + 14.8868i −1.01685 + 0.587079i −0.913190 0.407534i \(-0.866389\pi\)
−0.103661 + 0.994613i \(0.533056\pi\)
\(644\) 0 0
\(645\) 6.35392 + 7.66285i 0.250185 + 0.301724i
\(646\) 0 0
\(647\) 6.87304 0.270207 0.135103 0.990831i \(-0.456863\pi\)
0.135103 + 0.990831i \(0.456863\pi\)
\(648\) 0 0
\(649\) 39.2978 1.54257
\(650\) 0 0
\(651\) 12.3195 10.2152i 0.482839 0.400363i
\(652\) 0 0
\(653\) −1.01601 1.75979i −0.0397597 0.0688658i 0.845461 0.534038i \(-0.179326\pi\)
−0.885220 + 0.465172i \(0.845993\pi\)
\(654\) 0 0
\(655\) −10.1050 5.83411i −0.394834 0.227957i
\(656\) 0 0
\(657\) 27.3562 + 5.15416i 1.06727 + 0.201083i
\(658\) 0 0
\(659\) −21.1157 + 36.5735i −0.822551 + 1.42470i 0.0812254 + 0.996696i \(0.474117\pi\)
−0.903777 + 0.428005i \(0.859217\pi\)
\(660\) 0 0
\(661\) −24.5947 + 14.1998i −0.956625 + 0.552308i −0.895133 0.445800i \(-0.852919\pi\)
−0.0614922 + 0.998108i \(0.519586\pi\)
\(662\) 0 0
\(663\) −40.8632 + 3.58614i −1.58700 + 0.139274i
\(664\) 0 0
\(665\) 6.11406i 0.237093i
\(666\) 0 0
\(667\) 27.6657 1.07122
\(668\) 0 0
\(669\) −22.8932 + 3.89882i −0.885101 + 0.150737i
\(670\) 0 0
\(671\) 1.80364 1.04133i 0.0696286 0.0402001i
\(672\) 0 0
\(673\) 18.9395 32.8042i 0.730065 1.26451i −0.226789 0.973944i \(-0.572823\pi\)
0.956855 0.290567i \(-0.0938438\pi\)
\(674\) 0 0
\(675\) −17.2574 0.302716i −0.664237 0.0116515i
\(676\) 0 0
\(677\) −1.86904 + 3.23726i −0.0718329 + 0.124418i −0.899705 0.436499i \(-0.856218\pi\)
0.827872 + 0.560917i \(0.189551\pi\)
\(678\) 0 0
\(679\) 4.02149 + 6.96543i 0.154331 + 0.267309i
\(680\) 0 0
\(681\) 16.2177 2.76196i 0.621465 0.105839i
\(682\) 0 0
\(683\) 17.5633i 0.672042i −0.941854 0.336021i \(-0.890919\pi\)
0.941854 0.336021i \(-0.109081\pi\)
\(684\) 0 0
\(685\) 1.79983 0.0687679
\(686\) 0 0
\(687\) 4.73998 12.7898i 0.180842 0.487963i
\(688\) 0 0
\(689\) −11.7050 8.08974i −0.445927 0.308194i
\(690\) 0 0
\(691\) −17.5312 10.1216i −0.666918 0.385045i 0.127990 0.991776i \(-0.459148\pi\)
−0.794908 + 0.606730i \(0.792481\pi\)
\(692\) 0 0
\(693\) −12.9162 + 4.53078i −0.490645 + 0.172110i
\(694\) 0 0
\(695\) −20.2839 11.7109i −0.769414 0.444221i
\(696\) 0 0
\(697\) 57.0442 32.9345i 2.16070 1.24748i
\(698\) 0 0
\(699\) −10.1589 + 8.42357i −0.384243 + 0.318609i
\(700\) 0 0
\(701\) −21.7160 −0.820202 −0.410101 0.912040i \(-0.634507\pi\)
−0.410101 + 0.912040i \(0.634507\pi\)
\(702\) 0 0
\(703\) 28.6406 1.08020
\(704\) 0 0
\(705\) 19.3902 16.0781i 0.730277 0.605535i
\(706\) 0 0
\(707\) 16.4968 9.52444i 0.620427 0.358203i
\(708\) 0 0
\(709\) −12.5657 7.25481i −0.471915 0.272460i 0.245126 0.969491i \(-0.421171\pi\)
−0.717041 + 0.697031i \(0.754504\pi\)
\(710\) 0 0
\(711\) 17.8436 + 15.3317i 0.669188 + 0.574982i
\(712\) 0 0
\(713\) −20.4185 11.7886i −0.764680 0.441488i
\(714\) 0 0
\(715\) 14.9589 + 10.3386i 0.559431 + 0.386641i
\(716\) 0 0
\(717\) 10.4851 28.2919i 0.391574 1.05658i
\(718\) 0 0
\(719\) 20.4539 0.762801 0.381400 0.924410i \(-0.375442\pi\)
0.381400 + 0.924410i \(0.375442\pi\)
\(720\) 0 0
\(721\) 7.75686i 0.288881i
\(722\) 0 0
\(723\) −27.0863 + 4.61293i −1.00735 + 0.171557i
\(724\) 0 0
\(725\) 15.3641 + 26.6114i 0.570607 + 0.988321i
\(726\) 0 0
\(727\) 4.66361 8.07761i 0.172964 0.299582i −0.766491 0.642255i \(-0.777999\pi\)
0.939455 + 0.342673i \(0.111332\pi\)
\(728\) 0 0
\(729\) −14.3118 + 22.8948i −0.530065 + 0.847957i
\(730\) 0 0
\(731\) −14.5700 + 25.2359i −0.538890 + 0.933384i
\(732\) 0 0
\(733\) 8.45225 4.87991i 0.312191 0.180243i −0.335716 0.941963i \(-0.608978\pi\)
0.647906 + 0.761720i \(0.275645\pi\)
\(734\) 0 0
\(735\) 12.4456 2.11955i 0.459065 0.0781809i
\(736\) 0 0
\(737\) 3.18539 0.117335
\(738\) 0 0
\(739\) 14.3579i 0.528164i −0.964500 0.264082i \(-0.914931\pi\)
0.964500 0.264082i \(-0.0850690\pi\)
\(740\) 0 0
\(741\) 2.19849 + 25.0512i 0.0807635 + 0.920279i
\(742\) 0 0
\(743\) −17.0494 + 9.84349i −0.625483 + 0.361123i −0.779001 0.627023i \(-0.784273\pi\)
0.153518 + 0.988146i \(0.450940\pi\)
\(744\) 0 0
\(745\) 5.90454 10.2270i 0.216326 0.374687i
\(746\) 0 0
\(747\) 14.9067 17.3490i 0.545408 0.634768i
\(748\) 0 0
\(749\) 9.46626 + 5.46535i 0.345890 + 0.199700i
\(750\) 0 0
\(751\) −2.92800 5.07145i −0.106844 0.185060i 0.807646 0.589668i \(-0.200741\pi\)
−0.914490 + 0.404608i \(0.867408\pi\)
\(752\) 0 0
\(753\) −13.0857 + 10.8505i −0.476869 + 0.395413i
\(754\) 0 0
\(755\) 3.56740 0.129831
\(756\) 0 0
\(757\) −10.4064 −0.378228 −0.189114 0.981955i \(-0.560562\pi\)
−0.189114 + 0.981955i \(0.560562\pi\)
\(758\) 0 0
\(759\) 12.8715 + 15.5231i 0.467206 + 0.563452i
\(760\) 0 0
\(761\) 40.2552 23.2414i 1.45925 0.842499i 0.460276 0.887776i \(-0.347750\pi\)
0.998974 + 0.0452769i \(0.0144170\pi\)
\(762\) 0 0
\(763\) −11.6667 + 20.2074i −0.422364 + 0.731556i
\(764\) 0 0
\(765\) 8.45012 + 24.0893i 0.305515 + 0.870949i
\(766\) 0 0
\(767\) 36.2767 + 2.95037i 1.30988 + 0.106532i
\(768\) 0 0
\(769\) 19.1017 11.0283i 0.688823 0.397692i −0.114348 0.993441i \(-0.536478\pi\)
0.803171 + 0.595748i \(0.203144\pi\)
\(770\) 0 0
\(771\) −7.28484 2.69980i −0.262357 0.0972309i
\(772\) 0 0
\(773\) 3.52236i 0.126690i −0.997992 0.0633452i \(-0.979823\pi\)
0.997992 0.0633452i \(-0.0201769\pi\)
\(774\) 0 0
\(775\) 26.1872i 0.940672i
\(776\) 0 0
\(777\) 2.42398 + 14.2332i 0.0869600 + 0.510613i
\(778\) 0 0
\(779\) −20.1905 34.9710i −0.723400 1.25297i
\(780\) 0 0
\(781\) −22.1045 + 38.2862i −0.790962 + 1.36999i
\(782\) 0 0
\(783\) 48.0609 + 0.843047i 1.71756 + 0.0301280i
\(784\) 0 0
\(785\) 23.1983 + 13.3936i 0.827983 + 0.478036i
\(786\) 0 0
\(787\) 20.3257 11.7350i 0.724531 0.418308i −0.0918869 0.995769i \(-0.529290\pi\)
0.816418 + 0.577461i \(0.195956\pi\)
\(788\) 0 0
\(789\) −6.44288 37.8314i −0.229372 1.34683i
\(790\) 0 0
\(791\) 6.53608i 0.232396i
\(792\) 0 0
\(793\) 1.74316 0.825864i 0.0619014 0.0293273i
\(794\) 0 0
\(795\) −3.07716 + 8.30307i −0.109136 + 0.294479i
\(796\) 0 0
\(797\) 0.665795 + 1.15319i 0.0235837 + 0.0408481i 0.877576 0.479437i \(-0.159159\pi\)
−0.853993 + 0.520285i \(0.825826\pi\)
\(798\) 0 0
\(799\) 63.8573 + 36.8680i 2.25911 + 1.30430i
\(800\) 0 0
\(801\) −53.4066 10.0623i −1.88703 0.355533i
\(802\) 0 0
\(803\) 18.0618 31.2839i 0.637385 1.10398i
\(804\) 0 0
\(805\) 2.27040 + 3.93244i 0.0800209 + 0.138600i
\(806\) 0 0
\(807\) 1.87841 1.55755i 0.0661230 0.0548282i
\(808\) 0 0
\(809\) −51.9672 −1.82707 −0.913535 0.406760i \(-0.866658\pi\)
−0.913535 + 0.406760i \(0.866658\pi\)
\(810\) 0 0
\(811\) 35.6357i 1.25134i 0.780088 + 0.625670i \(0.215174\pi\)
−0.780088 + 0.625670i \(0.784826\pi\)
\(812\) 0 0
\(813\) 14.4613 + 17.4403i 0.507179 + 0.611659i
\(814\) 0 0
\(815\) 6.59344 + 11.4202i 0.230958 + 0.400031i
\(816\) 0 0
\(817\) 15.4709 + 8.93213i 0.541258 + 0.312496i
\(818\) 0 0
\(819\) −12.2634 + 3.21276i −0.428517 + 0.112263i
\(820\) 0 0
\(821\) 8.92925 + 5.15531i 0.311633 + 0.179921i 0.647657 0.761932i \(-0.275749\pi\)
−0.336024 + 0.941853i \(0.609082\pi\)
\(822\) 0 0
\(823\) 20.9553 + 36.2957i 0.730456 + 1.26519i 0.956688 + 0.291114i \(0.0940259\pi\)
−0.226232 + 0.974073i \(0.572641\pi\)
\(824\) 0 0
\(825\) −7.78333 + 21.0017i −0.270981 + 0.731184i
\(826\) 0 0
\(827\) 14.6304i 0.508748i −0.967106 0.254374i \(-0.918131\pi\)
0.967106 0.254374i \(-0.0818694\pi\)
\(828\) 0 0
\(829\) −5.45165 −0.189344 −0.0946719 0.995509i \(-0.530180\pi\)
−0.0946719 + 0.995509i \(0.530180\pi\)
\(830\) 0 0
\(831\) 5.43445 + 31.9101i 0.188519 + 1.10695i
\(832\) 0 0
\(833\) 18.4785 + 32.0057i 0.640241 + 1.10893i
\(834\) 0 0
\(835\) −1.24817 + 2.16190i −0.0431948 + 0.0748156i
\(836\) 0 0
\(837\) −35.1119 21.1015i −1.21364 0.729374i
\(838\) 0 0
\(839\) −5.64378 3.25844i −0.194845 0.112494i 0.399404 0.916775i \(-0.369217\pi\)
−0.594249 + 0.804281i \(0.702551\pi\)
\(840\) 0 0
\(841\) −28.2881 48.9965i −0.975453 1.68953i
\(842\) 0 0
\(843\) 12.0478 2.05179i 0.414947 0.0706676i
\(844\) 0 0
\(845\) 13.0327 + 10.6669i 0.448339 + 0.366951i
\(846\) 0 0
\(847\) 4.86989i 0.167331i
\(848\) 0 0
\(849\) 42.9757 + 15.9270i 1.47492 + 0.546614i
\(850\) 0 0
\(851\) 18.4211 10.6354i 0.631466 0.364577i
\(852\) 0 0
\(853\) 27.5422 + 15.9015i 0.943029 + 0.544458i 0.890908 0.454183i \(-0.150069\pi\)
0.0521202 + 0.998641i \(0.483402\pi\)
\(854\) 0 0
\(855\) 14.7679 5.18035i 0.505053 0.177164i
\(856\) 0 0
\(857\) −1.82625 + 3.16316i −0.0623836 + 0.108052i −0.895530 0.445000i \(-0.853204\pi\)
0.833147 + 0.553052i \(0.186537\pi\)
\(858\) 0 0
\(859\) 0.814178 + 1.41020i 0.0277794 + 0.0481153i 0.879581 0.475749i \(-0.157823\pi\)
−0.851801 + 0.523865i \(0.824490\pi\)
\(860\) 0 0
\(861\) 15.6704 12.9936i 0.534044 0.442822i
\(862\) 0 0
\(863\) 1.90203i 0.0647458i 0.999476 + 0.0323729i \(0.0103064\pi\)
−0.999476 + 0.0323729i \(0.989694\pi\)
\(864\) 0 0
\(865\) 0.898513i 0.0305504i
\(866\) 0 0
\(867\) −34.8597 + 28.9052i −1.18390 + 0.981671i
\(868\) 0 0
\(869\) 26.4381 15.2641i 0.896852 0.517798i
\(870\) 0 0
\(871\) 2.94051 + 0.239150i 0.0996352 + 0.00810329i
\(872\) 0 0
\(873\) 13.4170 15.6153i 0.454097 0.528496i
\(874\) 0 0
\(875\) −6.31755 + 10.9423i −0.213572 + 0.369918i
\(876\) 0 0
\(877\) −12.4613 + 7.19456i −0.420790 + 0.242943i −0.695415 0.718608i \(-0.744779\pi\)
0.274625 + 0.961551i \(0.411446\pi\)
\(878\) 0 0
\(879\) 4.32037 11.6576i 0.145722 0.393201i
\(880\) 0 0
\(881\) −47.2375 −1.59147 −0.795736 0.605644i \(-0.792915\pi\)
−0.795736 + 0.605644i \(0.792915\pi\)
\(882\) 0 0
\(883\) 10.5214 0.354073 0.177036 0.984204i \(-0.443349\pi\)
0.177036 + 0.984204i \(0.443349\pi\)
\(884\) 0 0
\(885\) −3.80279 22.3293i −0.127830 0.750592i
\(886\) 0 0
\(887\) 18.5854 + 32.1908i 0.624036 + 1.08086i 0.988726 + 0.149733i \(0.0478413\pi\)
−0.364691 + 0.931129i \(0.618825\pi\)
\(888\) 0 0
\(889\) 14.9017 + 8.60350i 0.499787 + 0.288552i
\(890\) 0 0
\(891\) 21.8874 + 27.3589i 0.733254 + 0.916559i
\(892\) 0 0
\(893\) 22.6020 39.1478i 0.756347 1.31003i
\(894\) 0 0
\(895\) −18.1709 + 10.4909i −0.607385 + 0.350674i
\(896\) 0 0
\(897\) 10.7166 + 15.2961i 0.357815 + 0.510721i
\(898\) 0 0
\(899\) 72.9300i 2.43235i
\(900\) 0 0
\(901\) −25.9212 −0.863561
\(902\) 0 0
\(903\) −3.12953 + 8.44438i −0.104144 + 0.281011i
\(904\) 0 0
\(905\) −7.99033 + 4.61322i −0.265607 + 0.153349i
\(906\) 0 0
\(907\) −4.73223 + 8.19647i −0.157131 + 0.272159i −0.933833 0.357709i \(-0.883558\pi\)
0.776702 + 0.629868i \(0.216891\pi\)
\(908\) 0 0
\(909\) −36.9829 31.7766i −1.22665 1.05396i
\(910\) 0 0
\(911\) −14.3065 + 24.7795i −0.473995 + 0.820983i −0.999557 0.0297724i \(-0.990522\pi\)
0.525562 + 0.850755i \(0.323855\pi\)
\(912\) 0 0
\(913\) −14.8410 25.7053i −0.491164 0.850722i
\(914\) 0 0
\(915\) −0.766228 0.924073i −0.0253307 0.0305489i
\(916\) 0 0
\(917\) 10.5560i 0.348591i
\(918\) 0 0
\(919\) −12.3995 −0.409021 −0.204510 0.978864i \(-0.565560\pi\)
−0.204510 + 0.978864i \(0.565560\pi\)
\(920\) 0 0
\(921\) 25.1633 + 30.3470i 0.829158 + 0.999967i
\(922\) 0 0
\(923\) −23.2796 + 33.6833i −0.766259 + 1.10870i
\(924\) 0 0
\(925\) 20.4602 + 11.8127i 0.672727 + 0.388399i
\(926\) 0 0
\(927\) −18.7360 + 6.57228i −0.615370 + 0.215862i
\(928\) 0 0
\(929\) 17.0132 + 9.82260i 0.558186 + 0.322269i 0.752417 0.658687i \(-0.228888\pi\)
−0.194231 + 0.980956i \(0.562221\pi\)
\(930\) 0 0
\(931\) 19.6211 11.3282i 0.643055 0.371268i
\(932\) 0 0
\(933\) 0.606521 + 0.224780i 0.0198566 + 0.00735897i
\(934\) 0 0
\(935\) 33.1270 1.08337
\(936\) 0 0
\(937\) −45.1494 −1.47497 −0.737483 0.675366i \(-0.763986\pi\)
−0.737483 + 0.675366i \(0.763986\pi\)
\(938\) 0 0
\(939\) 0.164464 + 0.965703i 0.00536708 + 0.0315145i
\(940\) 0 0
\(941\) 10.1924 5.88460i 0.332263 0.191832i −0.324582 0.945857i \(-0.605224\pi\)
0.656846 + 0.754025i \(0.271890\pi\)
\(942\) 0 0
\(943\) −25.9723 14.9951i −0.845774 0.488308i
\(944\) 0 0
\(945\) 3.82430 + 6.90063i 0.124405 + 0.224478i
\(946\) 0 0
\(947\) 13.4450 + 7.76245i 0.436902 + 0.252246i 0.702283 0.711898i \(-0.252164\pi\)
−0.265380 + 0.964144i \(0.585498\pi\)
\(948\) 0 0
\(949\) 19.0219 27.5229i 0.617478 0.893430i
\(950\) 0 0
\(951\) −5.83159 + 0.993147i −0.189102 + 0.0322050i
\(952\) 0 0
\(953\) −40.6782 −1.31770 −0.658848 0.752276i \(-0.728956\pi\)
−0.658848 + 0.752276i \(0.728956\pi\)
\(954\) 0 0
\(955\) 17.1944i 0.556398i
\(956\) 0 0
\(957\) 21.6762 58.4885i 0.700691 1.89067i
\(958\) 0 0
\(959\) 0.814136 + 1.41013i 0.0262898 + 0.0455353i
\(960\) 0 0
\(961\) 15.5762 26.9788i 0.502459 0.870285i
\(962\) 0 0
\(963\) 5.18042 27.4956i 0.166937 0.886033i
\(964\) 0 0
\(965\) −12.5424 + 21.7240i −0.403753 + 0.699320i
\(966\) 0 0
\(967\) −16.3248 + 9.42513i −0.524970 + 0.303092i −0.738966 0.673743i \(-0.764686\pi\)
0.213996 + 0.976835i \(0.431352\pi\)
\(968\) 0 0
\(969\) 29.2424 + 35.2664i 0.939401 + 1.13292i
\(970\) 0 0
\(971\) 25.4536 0.816845 0.408423 0.912793i \(-0.366079\pi\)
0.408423 + 0.912793i \(0.366079\pi\)
\(972\) 0 0
\(973\) 21.1894i 0.679300i
\(974\) 0 0
\(975\) −8.76173 + 18.8028i −0.280600 + 0.602171i
\(976\) 0 0
\(977\) −3.81800 + 2.20432i −0.122149 + 0.0705225i −0.559829 0.828608i \(-0.689133\pi\)
0.437681 + 0.899130i \(0.355800\pi\)
\(978\) 0 0
\(979\) −35.2613 + 61.0744i −1.12696 + 1.95195i
\(980\) 0 0
\(981\) 58.6941 + 11.0585i 1.87396 + 0.353071i
\(982\) 0 0
\(983\) 31.7489 + 18.3303i 1.01263 + 0.584644i 0.911962 0.410275i \(-0.134567\pi\)
0.100672 + 0.994920i \(0.467901\pi\)
\(984\) 0 0
\(985\) −1.34301 2.32616i −0.0427918 0.0741176i
\(986\) 0 0
\(987\) 21.3678 + 7.91901i 0.680144 + 0.252065i
\(988\) 0 0
\(989\) 13.2674 0.421880
\(990\) 0 0
\(991\) 21.7867 0.692078 0.346039 0.938220i \(-0.387526\pi\)
0.346039 + 0.938220i \(0.387526\pi\)
\(992\) 0 0
\(993\) 4.84747 0.825548i 0.153830 0.0261980i
\(994\) 0 0
\(995\) −10.3287 + 5.96326i −0.327441 + 0.189048i
\(996\) 0 0
\(997\) −0.925027 + 1.60219i −0.0292959 + 0.0507420i −0.880302 0.474414i \(-0.842660\pi\)
0.851006 + 0.525156i \(0.175993\pi\)
\(998\) 0 0
\(999\) 32.3252 17.9145i 1.02272 0.566790i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.cw.b.25.12 yes 80
3.2 odd 2 2808.2.cw.b.1585.13 80
9.4 even 3 inner 936.2.cw.b.337.11 yes 80
9.5 odd 6 2808.2.cw.b.2521.28 80
13.12 even 2 inner 936.2.cw.b.25.11 80
39.38 odd 2 2808.2.cw.b.1585.28 80
117.77 odd 6 2808.2.cw.b.2521.13 80
117.103 even 6 inner 936.2.cw.b.337.12 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.cw.b.25.11 80 13.12 even 2 inner
936.2.cw.b.25.12 yes 80 1.1 even 1 trivial
936.2.cw.b.337.11 yes 80 9.4 even 3 inner
936.2.cw.b.337.12 yes 80 117.103 even 6 inner
2808.2.cw.b.1585.13 80 3.2 odd 2
2808.2.cw.b.1585.28 80 39.38 odd 2
2808.2.cw.b.2521.13 80 117.77 odd 6
2808.2.cw.b.2521.28 80 9.5 odd 6