Properties

Label 2808.2.cw.b.1585.28
Level $2808$
Weight $2$
Character 2808.1585
Analytic conductor $22.422$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2808,2,Mod(1585,2808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2808, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2808.1585"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2808 = 2^{3} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2808.cw (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.4219928876\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(40\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 936)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1585.28
Character \(\chi\) \(=\) 2808.1585
Dual form 2808.2.cw.b.2521.28

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.12193 - 0.647747i) q^{5} +(-1.01499 - 0.586005i) q^{7} +(-3.37140 - 1.94648i) q^{11} +(-0.292273 - 3.59369i) q^{13} +6.56850 q^{17} -4.02682i q^{19} +(-1.49532 - 2.58997i) q^{23} +(-1.66085 + 2.87667i) q^{25} +(-4.62537 + 8.01138i) q^{29} +(6.82747 - 3.94184i) q^{31} -1.51833 q^{35} +7.11245i q^{37} +(-8.68452 + 5.01401i) q^{41} +(2.21816 - 3.84196i) q^{43} +(-9.72175 - 5.61286i) q^{47} +(-2.81320 - 4.87260i) q^{49} -3.94629 q^{53} -5.04331 q^{55} +(-8.74216 + 5.04729i) q^{59} +(-0.267490 + 0.463307i) q^{61} +(-2.65571 - 3.84255i) q^{65} +(0.708619 - 0.409121i) q^{67} -11.3561i q^{71} -9.27918i q^{73} +(2.28130 + 3.95132i) q^{77} +(-3.92094 + 6.79126i) q^{79} +(6.60302 + 3.81226i) q^{83} +(7.36940 - 4.25473i) q^{85} -18.1154i q^{89} +(-1.80926 + 3.81883i) q^{91} +(-2.60836 - 4.51782i) q^{95} +(-5.94315 - 3.43128i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 6 q^{13} + 4 q^{17} - 10 q^{23} + 44 q^{25} + 52 q^{35} - 26 q^{43} + 48 q^{49} - 60 q^{53} - 16 q^{55} - 10 q^{61} + 26 q^{65} - 32 q^{77} + 6 q^{79} - 4 q^{91} - 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2808\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(1081\) \(1405\) \(2081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.12193 0.647747i 0.501743 0.289681i −0.227690 0.973734i \(-0.573117\pi\)
0.729433 + 0.684052i \(0.239784\pi\)
\(6\) 0 0
\(7\) −1.01499 0.586005i −0.383630 0.221489i 0.295766 0.955260i \(-0.404425\pi\)
−0.679397 + 0.733771i \(0.737758\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.37140 1.94648i −1.01652 0.586886i −0.103424 0.994637i \(-0.532980\pi\)
−0.913093 + 0.407751i \(0.866313\pi\)
\(12\) 0 0
\(13\) −0.292273 3.59369i −0.0810619 0.996709i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.56850 1.59309 0.796547 0.604576i \(-0.206657\pi\)
0.796547 + 0.604576i \(0.206657\pi\)
\(18\) 0 0
\(19\) 4.02682i 0.923817i −0.886928 0.461908i \(-0.847165\pi\)
0.886928 0.461908i \(-0.152835\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.49532 2.58997i −0.311796 0.540047i 0.666955 0.745098i \(-0.267597\pi\)
−0.978751 + 0.205051i \(0.934264\pi\)
\(24\) 0 0
\(25\) −1.66085 + 2.87667i −0.332170 + 0.575335i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.62537 + 8.01138i −0.858910 + 1.48768i 0.0140595 + 0.999901i \(0.495525\pi\)
−0.872970 + 0.487775i \(0.837809\pi\)
\(30\) 0 0
\(31\) 6.82747 3.94184i 1.22625 0.707976i 0.260007 0.965607i \(-0.416275\pi\)
0.966243 + 0.257631i \(0.0829419\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.51833 −0.256645
\(36\) 0 0
\(37\) 7.11245i 1.16928i 0.811293 + 0.584640i \(0.198764\pi\)
−0.811293 + 0.584640i \(0.801236\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −8.68452 + 5.01401i −1.35629 + 0.783056i −0.989122 0.147097i \(-0.953007\pi\)
−0.367171 + 0.930153i \(0.619674\pi\)
\(42\) 0 0
\(43\) 2.21816 3.84196i 0.338266 0.585894i −0.645841 0.763472i \(-0.723493\pi\)
0.984107 + 0.177578i \(0.0568263\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −9.72175 5.61286i −1.41806 0.818719i −0.421935 0.906626i \(-0.638649\pi\)
−0.996129 + 0.0879068i \(0.971982\pi\)
\(48\) 0 0
\(49\) −2.81320 4.87260i −0.401885 0.696085i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.94629 −0.542065 −0.271032 0.962570i \(-0.587365\pi\)
−0.271032 + 0.962570i \(0.587365\pi\)
\(54\) 0 0
\(55\) −5.04331 −0.680040
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −8.74216 + 5.04729i −1.13813 + 0.657101i −0.945967 0.324262i \(-0.894884\pi\)
−0.192165 + 0.981363i \(0.561551\pi\)
\(60\) 0 0
\(61\) −0.267490 + 0.463307i −0.0342486 + 0.0593204i −0.882642 0.470046i \(-0.844237\pi\)
0.848393 + 0.529367i \(0.177570\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.65571 3.84255i −0.329400 0.476609i
\(66\) 0 0
\(67\) 0.708619 0.409121i 0.0865716 0.0499821i −0.456089 0.889934i \(-0.650750\pi\)
0.542661 + 0.839952i \(0.317417\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.3561i 1.34773i −0.738856 0.673863i \(-0.764634\pi\)
0.738856 0.673863i \(-0.235366\pi\)
\(72\) 0 0
\(73\) 9.27918i 1.08605i −0.839718 0.543023i \(-0.817280\pi\)
0.839718 0.543023i \(-0.182720\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.28130 + 3.95132i 0.259978 + 0.450295i
\(78\) 0 0
\(79\) −3.92094 + 6.79126i −0.441140 + 0.764076i −0.997774 0.0666810i \(-0.978759\pi\)
0.556635 + 0.830757i \(0.312092\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.60302 + 3.81226i 0.724776 + 0.418449i 0.816508 0.577334i \(-0.195907\pi\)
−0.0917322 + 0.995784i \(0.529240\pi\)
\(84\) 0 0
\(85\) 7.36940 4.25473i 0.799324 0.461490i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 18.1154i 1.92023i −0.279606 0.960115i \(-0.590204\pi\)
0.279606 0.960115i \(-0.409796\pi\)
\(90\) 0 0
\(91\) −1.80926 + 3.81883i −0.189662 + 0.400322i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.60836 4.51782i −0.267612 0.463518i
\(96\) 0 0
\(97\) −5.94315 3.43128i −0.603435 0.348393i 0.166957 0.985964i \(-0.446606\pi\)
−0.770392 + 0.637571i \(0.779939\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −8.12658 + 14.0757i −0.808625 + 1.40058i 0.105191 + 0.994452i \(0.466455\pi\)
−0.913816 + 0.406128i \(0.866879\pi\)
\(102\) 0 0
\(103\) −3.30921 5.73172i −0.326066 0.564763i 0.655661 0.755055i \(-0.272390\pi\)
−0.981728 + 0.190292i \(0.939057\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.32645 −0.901622 −0.450811 0.892619i \(-0.648865\pi\)
−0.450811 + 0.892619i \(0.648865\pi\)
\(108\) 0 0
\(109\) 19.9089i 1.90693i −0.301504 0.953465i \(-0.597489\pi\)
0.301504 0.953465i \(-0.402511\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.78841 + 4.82966i 0.262311 + 0.454336i 0.966856 0.255324i \(-0.0821820\pi\)
−0.704545 + 0.709660i \(0.748849\pi\)
\(114\) 0 0
\(115\) −3.35530 1.93718i −0.312883 0.180643i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.66697 3.84917i −0.611160 0.352853i
\(120\) 0 0
\(121\) 2.07758 + 3.59847i 0.188871 + 0.327134i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 10.7807i 0.964256i
\(126\) 0 0
\(127\) 14.6816 1.30278 0.651391 0.758742i \(-0.274186\pi\)
0.651391 + 0.758742i \(0.274186\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.50338 + 7.80009i 0.393462 + 0.681497i 0.992904 0.118922i \(-0.0379438\pi\)
−0.599441 + 0.800419i \(0.704610\pi\)
\(132\) 0 0
\(133\) −2.35974 + 4.08719i −0.204615 + 0.354404i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.20317 + 0.694649i 0.102794 + 0.0593479i 0.550515 0.834825i \(-0.314431\pi\)
−0.447722 + 0.894173i \(0.647765\pi\)
\(138\) 0 0
\(139\) −9.03975 15.6573i −0.766742 1.32804i −0.939321 0.343040i \(-0.888543\pi\)
0.172579 0.984996i \(-0.444790\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −6.00967 + 12.6847i −0.502554 + 1.06075i
\(144\) 0 0
\(145\) 11.9843i 0.995241i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.89426 4.55775i 0.646723 0.373386i −0.140477 0.990084i \(-0.544864\pi\)
0.787200 + 0.616698i \(0.211530\pi\)
\(150\) 0 0
\(151\) −2.38477 1.37685i −0.194070 0.112046i 0.399817 0.916595i \(-0.369074\pi\)
−0.593886 + 0.804549i \(0.702407\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.10663 8.84495i 0.410175 0.710443i
\(156\) 0 0
\(157\) 10.3386 + 17.9069i 0.825107 + 1.42913i 0.901837 + 0.432076i \(0.142219\pi\)
−0.0767297 + 0.997052i \(0.524448\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.50507i 0.276238i
\(162\) 0 0
\(163\) 10.1790i 0.797284i −0.917107 0.398642i \(-0.869482\pi\)
0.917107 0.398642i \(-0.130518\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.66878 + 0.963473i −0.129134 + 0.0745558i −0.563176 0.826337i \(-0.690421\pi\)
0.434041 + 0.900893i \(0.357087\pi\)
\(168\) 0 0
\(169\) −12.8292 + 2.10067i −0.986858 + 0.161590i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.346784 0.600648i 0.0263655 0.0456664i −0.852542 0.522659i \(-0.824940\pi\)
0.878907 + 0.476993i \(0.158273\pi\)
\(174\) 0 0
\(175\) 3.37149 1.94653i 0.254861 0.147144i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 16.1961 1.21055 0.605275 0.796016i \(-0.293063\pi\)
0.605275 + 0.796016i \(0.293063\pi\)
\(180\) 0 0
\(181\) −7.12194 −0.529370 −0.264685 0.964335i \(-0.585268\pi\)
−0.264685 + 0.964335i \(0.585268\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.60707 + 7.97967i 0.338718 + 0.586677i
\(186\) 0 0
\(187\) −22.1451 12.7855i −1.61941 0.934965i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.63623 11.4943i 0.480181 0.831698i −0.519561 0.854434i \(-0.673904\pi\)
0.999742 + 0.0227360i \(0.00723772\pi\)
\(192\) 0 0
\(193\) 16.7689 9.68153i 1.20705 0.696892i 0.244938 0.969539i \(-0.421233\pi\)
0.962114 + 0.272647i \(0.0878992\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.07336i 0.147720i −0.997269 0.0738602i \(-0.976468\pi\)
0.997269 0.0738602i \(-0.0235319\pi\)
\(198\) 0 0
\(199\) −9.20616 −0.652607 −0.326304 0.945265i \(-0.605803\pi\)
−0.326304 + 0.945265i \(0.605803\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 9.38942 5.42098i 0.659008 0.380479i
\(204\) 0 0
\(205\) −6.49562 + 11.2507i −0.453674 + 0.785786i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −7.83814 + 13.5760i −0.542175 + 0.939075i
\(210\) 0 0
\(211\) 8.43931 + 14.6173i 0.580986 + 1.00630i 0.995363 + 0.0961921i \(0.0306663\pi\)
−0.414377 + 0.910106i \(0.636000\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.74722i 0.391957i
\(216\) 0 0
\(217\) −9.23976 −0.627236
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.91979 23.6051i −0.129139 1.58785i
\(222\) 0 0
\(223\) −11.6114 6.70384i −0.777557 0.448923i 0.0580070 0.998316i \(-0.481525\pi\)
−0.835564 + 0.549394i \(0.814859\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.22562 4.74907i −0.545954 0.315207i 0.201535 0.979481i \(-0.435407\pi\)
−0.747488 + 0.664275i \(0.768740\pi\)
\(228\) 0 0
\(229\) 6.81996 3.93751i 0.450676 0.260198i −0.257440 0.966294i \(-0.582879\pi\)
0.708116 + 0.706097i \(0.249546\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −7.61925 −0.499154 −0.249577 0.968355i \(-0.580292\pi\)
−0.249577 + 0.968355i \(0.580292\pi\)
\(234\) 0 0
\(235\) −14.5428 −0.948671
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −15.0862 + 8.70999i −0.975842 + 0.563403i −0.901012 0.433794i \(-0.857175\pi\)
−0.0748299 + 0.997196i \(0.523841\pi\)
\(240\) 0 0
\(241\) −13.7382 7.93173i −0.884953 0.510928i −0.0126645 0.999920i \(-0.504031\pi\)
−0.872288 + 0.488992i \(0.837365\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.31242 3.64448i −0.403286 0.232837i
\(246\) 0 0
\(247\) −14.4711 + 1.17693i −0.920776 + 0.0748864i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −9.81440 −0.619479 −0.309740 0.950821i \(-0.600242\pi\)
−0.309740 + 0.950821i \(0.600242\pi\)
\(252\) 0 0
\(253\) 11.6425i 0.731956i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.24272 3.88451i −0.139897 0.242309i 0.787560 0.616238i \(-0.211344\pi\)
−0.927458 + 0.373928i \(0.878011\pi\)
\(258\) 0 0
\(259\) 4.16793 7.21907i 0.258983 0.448571i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 11.0782 19.1881i 0.683113 1.18319i −0.290912 0.956750i \(-0.593959\pi\)
0.974026 0.226437i \(-0.0727078\pi\)
\(264\) 0 0
\(265\) −4.42747 + 2.55620i −0.271977 + 0.157026i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.40882 0.0858975 0.0429488 0.999077i \(-0.486325\pi\)
0.0429488 + 0.999077i \(0.486325\pi\)
\(270\) 0 0
\(271\) 13.0804i 0.794580i 0.917693 + 0.397290i \(0.130049\pi\)
−0.917693 + 0.397290i \(0.869951\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 11.1988 6.46562i 0.675312 0.389891i
\(276\) 0 0
\(277\) 9.34430 16.1848i 0.561444 0.972450i −0.435926 0.899982i \(-0.643579\pi\)
0.997371 0.0724677i \(-0.0230874\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.11062 3.52797i −0.364529 0.210461i 0.306537 0.951859i \(-0.400830\pi\)
−0.671066 + 0.741398i \(0.734163\pi\)
\(282\) 0 0
\(283\) −13.2306 22.9160i −0.786476 1.36222i −0.928113 0.372299i \(-0.878570\pi\)
0.141637 0.989919i \(-0.454764\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 11.7529 0.693754
\(288\) 0 0
\(289\) 26.1452 1.53795
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −6.21621 + 3.58893i −0.363155 + 0.209668i −0.670464 0.741942i \(-0.733905\pi\)
0.307309 + 0.951610i \(0.400571\pi\)
\(294\) 0 0
\(295\) −6.53873 + 11.3254i −0.380700 + 0.659391i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −8.87051 + 6.13070i −0.512995 + 0.354547i
\(300\) 0 0
\(301\) −4.50282 + 2.59970i −0.259538 + 0.149844i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.693065i 0.0396848i
\(306\) 0 0
\(307\) 22.7606i 1.29901i 0.760356 + 0.649507i \(0.225025\pi\)
−0.760356 + 0.649507i \(0.774975\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0.186725 + 0.323417i 0.0105882 + 0.0183393i 0.871271 0.490802i \(-0.163296\pi\)
−0.860683 + 0.509142i \(0.829963\pi\)
\(312\) 0 0
\(313\) 0.282788 0.489804i 0.0159841 0.0276853i −0.857923 0.513779i \(-0.828245\pi\)
0.873907 + 0.486093i \(0.161579\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.95778 + 1.70767i 0.166125 + 0.0959124i 0.580757 0.814077i \(-0.302756\pi\)
−0.414632 + 0.909989i \(0.636090\pi\)
\(318\) 0 0
\(319\) 31.1880 18.0064i 1.74619 1.00816i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 26.4502i 1.47173i
\(324\) 0 0
\(325\) 10.8233 + 5.12779i 0.600367 + 0.284439i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 6.57833 + 11.3940i 0.362675 + 0.628171i
\(330\) 0 0
\(331\) 2.45863 + 1.41949i 0.135139 + 0.0780223i 0.566045 0.824374i \(-0.308473\pi\)
−0.430906 + 0.902397i \(0.641806\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.530014 0.918011i 0.0289578 0.0501563i
\(336\) 0 0
\(337\) −3.43582 5.95101i −0.187161 0.324172i 0.757142 0.653251i \(-0.226595\pi\)
−0.944303 + 0.329079i \(0.893262\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −30.6909 −1.66200
\(342\) 0 0
\(343\) 14.7983i 0.799031i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5.87270 + 10.1718i 0.315263 + 0.546051i 0.979493 0.201477i \(-0.0645740\pi\)
−0.664231 + 0.747528i \(0.731241\pi\)
\(348\) 0 0
\(349\) 21.5356 + 12.4336i 1.15277 + 0.665555i 0.949562 0.313580i \(-0.101528\pi\)
0.203213 + 0.979135i \(0.434862\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 28.9770 + 16.7299i 1.54229 + 0.890440i 0.998694 + 0.0510923i \(0.0162703\pi\)
0.543594 + 0.839348i \(0.317063\pi\)
\(354\) 0 0
\(355\) −7.35591 12.7408i −0.390411 0.676212i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 20.9981i 1.10824i 0.832438 + 0.554118i \(0.186944\pi\)
−0.832438 + 0.554118i \(0.813056\pi\)
\(360\) 0 0
\(361\) 2.78470 0.146563
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −6.01056 10.4106i −0.314607 0.544916i
\(366\) 0 0
\(367\) −8.49086 + 14.7066i −0.443219 + 0.767678i −0.997926 0.0643677i \(-0.979497\pi\)
0.554707 + 0.832046i \(0.312830\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4.00545 + 2.31255i 0.207953 + 0.120062i
\(372\) 0 0
\(373\) 10.0047 + 17.3286i 0.518023 + 0.897241i 0.999781 + 0.0209372i \(0.00666500\pi\)
−0.481758 + 0.876304i \(0.660002\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 30.1423 + 14.2806i 1.55240 + 0.735490i
\(378\) 0 0
\(379\) 17.6142i 0.904780i 0.891820 + 0.452390i \(0.149429\pi\)
−0.891820 + 0.452390i \(0.850571\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4.07133 + 2.35058i −0.208035 + 0.120109i −0.600398 0.799701i \(-0.704991\pi\)
0.392363 + 0.919811i \(0.371658\pi\)
\(384\) 0 0
\(385\) 5.11891 + 2.95541i 0.260884 + 0.150621i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −3.06849 + 5.31479i −0.155579 + 0.269470i −0.933270 0.359177i \(-0.883058\pi\)
0.777691 + 0.628647i \(0.216391\pi\)
\(390\) 0 0
\(391\) −9.82202 17.0122i −0.496721 0.860346i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 10.1591i 0.511160i
\(396\) 0 0
\(397\) 23.3075i 1.16977i −0.811116 0.584885i \(-0.801140\pi\)
0.811116 0.584885i \(-0.198860\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 12.5604 7.25174i 0.627236 0.362135i −0.152445 0.988312i \(-0.548715\pi\)
0.779681 + 0.626177i \(0.215381\pi\)
\(402\) 0 0
\(403\) −16.1612 23.3837i −0.805048 1.16482i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 13.8442 23.9789i 0.686234 1.18859i
\(408\) 0 0
\(409\) 14.3903 8.30824i 0.711555 0.410816i −0.100082 0.994979i \(-0.531910\pi\)
0.811636 + 0.584163i \(0.198577\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 11.8310 0.582163
\(414\) 0 0
\(415\) 9.87751 0.484868
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −3.50413 6.06932i −0.171188 0.296506i 0.767648 0.640872i \(-0.221427\pi\)
−0.938835 + 0.344366i \(0.888094\pi\)
\(420\) 0 0
\(421\) 3.35071 + 1.93453i 0.163304 + 0.0942834i 0.579425 0.815026i \(-0.303277\pi\)
−0.416121 + 0.909309i \(0.636611\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −10.9093 + 18.8954i −0.529178 + 0.916562i
\(426\) 0 0
\(427\) 0.543001 0.313502i 0.0262776 0.0151714i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 5.94334i 0.286281i −0.989702 0.143140i \(-0.954280\pi\)
0.989702 0.143140i \(-0.0457201\pi\)
\(432\) 0 0
\(433\) 25.3808 1.21973 0.609863 0.792507i \(-0.291225\pi\)
0.609863 + 0.792507i \(0.291225\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −10.4294 + 6.02140i −0.498904 + 0.288042i
\(438\) 0 0
\(439\) 3.20445 5.55026i 0.152940 0.264900i −0.779367 0.626568i \(-0.784459\pi\)
0.932307 + 0.361668i \(0.117793\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.08746 1.88354i 0.0516668 0.0894895i −0.839035 0.544077i \(-0.816880\pi\)
0.890702 + 0.454587i \(0.150213\pi\)
\(444\) 0 0
\(445\) −11.7342 20.3242i −0.556255 0.963461i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 3.54524i 0.167310i −0.996495 0.0836550i \(-0.973341\pi\)
0.996495 0.0836550i \(-0.0266594\pi\)
\(450\) 0 0
\(451\) 39.0387 1.83826
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.443768 + 5.45641i 0.0208041 + 0.255800i
\(456\) 0 0
\(457\) −14.7188 8.49788i −0.688514 0.397514i 0.114541 0.993419i \(-0.463460\pi\)
−0.803055 + 0.595905i \(0.796794\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 8.29670 + 4.79010i 0.386416 + 0.223097i 0.680606 0.732650i \(-0.261717\pi\)
−0.294190 + 0.955747i \(0.595050\pi\)
\(462\) 0 0
\(463\) −14.5135 + 8.37937i −0.674499 + 0.389422i −0.797779 0.602950i \(-0.793992\pi\)
0.123280 + 0.992372i \(0.460659\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −13.8428 −0.640567 −0.320283 0.947322i \(-0.603778\pi\)
−0.320283 + 0.947322i \(0.603778\pi\)
\(468\) 0 0
\(469\) −0.958989 −0.0442820
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −14.9566 + 8.63521i −0.687706 + 0.397047i
\(474\) 0 0
\(475\) 11.5839 + 6.68794i 0.531504 + 0.306864i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −22.5215 13.0028i −1.02903 0.594112i −0.112324 0.993672i \(-0.535830\pi\)
−0.916707 + 0.399560i \(0.869163\pi\)
\(480\) 0 0
\(481\) 25.5599 2.07878i 1.16543 0.0947840i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −8.89040 −0.403692
\(486\) 0 0
\(487\) 27.2672i 1.23560i 0.786337 + 0.617798i \(0.211975\pi\)
−0.786337 + 0.617798i \(0.788025\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.57007 + 2.71945i 0.0708565 + 0.122727i 0.899277 0.437380i \(-0.144093\pi\)
−0.828420 + 0.560107i \(0.810760\pi\)
\(492\) 0 0
\(493\) −30.3817 + 52.6227i −1.36833 + 2.37001i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6.65476 + 11.5264i −0.298507 + 0.517029i
\(498\) 0 0
\(499\) −2.63431 + 1.52092i −0.117928 + 0.0680858i −0.557804 0.829973i \(-0.688356\pi\)
0.439876 + 0.898059i \(0.355022\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 10.7638 0.479933 0.239967 0.970781i \(-0.422864\pi\)
0.239967 + 0.970781i \(0.422864\pi\)
\(504\) 0 0
\(505\) 21.0559i 0.936974i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −29.0244 + 16.7573i −1.28649 + 0.742752i −0.978026 0.208485i \(-0.933147\pi\)
−0.308459 + 0.951237i \(0.599813\pi\)
\(510\) 0 0
\(511\) −5.43765 + 9.41828i −0.240547 + 0.416640i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −7.42541 4.28706i −0.327203 0.188911i
\(516\) 0 0
\(517\) 21.8506 + 37.8464i 0.960990 + 1.66448i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 5.80816 0.254460 0.127230 0.991873i \(-0.459391\pi\)
0.127230 + 0.991873i \(0.459391\pi\)
\(522\) 0 0
\(523\) −39.1530 −1.71204 −0.856020 0.516943i \(-0.827070\pi\)
−0.856020 + 0.516943i \(0.827070\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 44.8462 25.8920i 1.95353 1.12787i
\(528\) 0 0
\(529\) 7.02802 12.1729i 0.305566 0.529256i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 20.5570 + 29.7440i 0.890423 + 1.28835i
\(534\) 0 0
\(535\) −10.4636 + 6.04118i −0.452382 + 0.261183i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 21.9033i 0.943443i
\(540\) 0 0
\(541\) 46.0331i 1.97912i 0.144130 + 0.989559i \(0.453962\pi\)
−0.144130 + 0.989559i \(0.546038\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −12.8960 22.3364i −0.552402 0.956788i
\(546\) 0 0
\(547\) 21.8241 37.8005i 0.933131 1.61623i 0.155198 0.987883i \(-0.450398\pi\)
0.777933 0.628347i \(-0.216268\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 32.2604 + 18.6256i 1.37434 + 0.793475i
\(552\) 0 0
\(553\) 7.95943 4.59538i 0.338469 0.195415i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 25.5959i 1.08453i −0.840206 0.542267i \(-0.817566\pi\)
0.840206 0.542267i \(-0.182434\pi\)
\(558\) 0 0
\(559\) −14.4551 6.84846i −0.611386 0.289659i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 16.6636 + 28.8622i 0.702286 + 1.21639i 0.967662 + 0.252250i \(0.0811705\pi\)
−0.265376 + 0.964145i \(0.585496\pi\)
\(564\) 0 0
\(565\) 6.25680 + 3.61236i 0.263225 + 0.151973i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 19.0371 32.9733i 0.798078 1.38231i −0.122789 0.992433i \(-0.539184\pi\)
0.920866 0.389878i \(-0.127483\pi\)
\(570\) 0 0
\(571\) 0.538092 + 0.932002i 0.0225184 + 0.0390031i 0.877065 0.480372i \(-0.159498\pi\)
−0.854547 + 0.519375i \(0.826165\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 9.93401 0.414277
\(576\) 0 0
\(577\) 1.08287i 0.0450804i 0.999746 + 0.0225402i \(0.00717537\pi\)
−0.999746 + 0.0225402i \(0.992825\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4.46800 7.73881i −0.185364 0.321060i
\(582\) 0 0
\(583\) 13.3045 + 7.68138i 0.551018 + 0.318130i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6.75430 + 3.89960i 0.278780 + 0.160954i 0.632871 0.774257i \(-0.281876\pi\)
−0.354091 + 0.935211i \(0.615210\pi\)
\(588\) 0 0
\(589\) −15.8731 27.4930i −0.654040 1.13283i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 27.6766i 1.13654i −0.822841 0.568271i \(-0.807612\pi\)
0.822841 0.568271i \(-0.192388\pi\)
\(594\) 0 0
\(595\) −9.97316 −0.408860
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −0.164479 0.284885i −0.00672041 0.0116401i 0.862646 0.505809i \(-0.168806\pi\)
−0.869366 + 0.494169i \(0.835473\pi\)
\(600\) 0 0
\(601\) 11.4590 19.8476i 0.467424 0.809602i −0.531883 0.846818i \(-0.678516\pi\)
0.999307 + 0.0372156i \(0.0118488\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4.66180 + 2.69149i 0.189529 + 0.109425i
\(606\) 0 0
\(607\) 7.75554 + 13.4330i 0.314788 + 0.545228i 0.979392 0.201967i \(-0.0647333\pi\)
−0.664605 + 0.747195i \(0.731400\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −17.3294 + 36.5774i −0.701074 + 1.47976i
\(612\) 0 0
\(613\) 34.7194i 1.40230i 0.713013 + 0.701151i \(0.247330\pi\)
−0.713013 + 0.701151i \(0.752670\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4.04094 2.33304i 0.162682 0.0939246i −0.416449 0.909159i \(-0.636725\pi\)
0.579131 + 0.815235i \(0.303392\pi\)
\(618\) 0 0
\(619\) 30.4860 + 17.6011i 1.22534 + 0.707448i 0.966051 0.258352i \(-0.0831795\pi\)
0.259286 + 0.965801i \(0.416513\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −10.6157 + 18.3870i −0.425310 + 0.736659i
\(624\) 0 0
\(625\) −1.32107 2.28816i −0.0528427 0.0915263i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 46.7181i 1.86277i
\(630\) 0 0
\(631\) 14.5335i 0.578569i −0.957243 0.289284i \(-0.906583\pi\)
0.957243 0.289284i \(-0.0934174\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 16.4718 9.50997i 0.653662 0.377392i
\(636\) 0 0
\(637\) −16.6884 + 11.5339i −0.661217 + 0.456989i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 8.17292 14.1559i 0.322811 0.559125i −0.658256 0.752794i \(-0.728706\pi\)
0.981067 + 0.193669i \(0.0620389\pi\)
\(642\) 0 0
\(643\) 25.7847 14.8868i 1.01685 0.587079i 0.103661 0.994613i \(-0.466944\pi\)
0.913190 + 0.407534i \(0.133611\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −6.87304 −0.270207 −0.135103 0.990831i \(-0.543137\pi\)
−0.135103 + 0.990831i \(0.543137\pi\)
\(648\) 0 0
\(649\) 39.2978 1.54257
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.01601 + 1.75979i 0.0397597 + 0.0688658i 0.885220 0.465172i \(-0.154007\pi\)
−0.845461 + 0.534038i \(0.820674\pi\)
\(654\) 0 0
\(655\) 10.1050 + 5.83411i 0.394834 + 0.227957i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 21.1157 36.5735i 0.822551 1.42470i −0.0812254 0.996696i \(-0.525883\pi\)
0.903777 0.428005i \(-0.140783\pi\)
\(660\) 0 0
\(661\) 24.5947 14.1998i 0.956625 0.552308i 0.0614922 0.998108i \(-0.480414\pi\)
0.895133 + 0.445800i \(0.147081\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6.11406i 0.237093i
\(666\) 0 0
\(667\) 27.6657 1.07122
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.80364 1.04133i 0.0696286 0.0402001i
\(672\) 0 0
\(673\) 18.9395 32.8042i 0.730065 1.26451i −0.226789 0.973944i \(-0.572823\pi\)
0.956855 0.290567i \(-0.0938438\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.86904 3.23726i 0.0718329 0.124418i −0.827872 0.560917i \(-0.810449\pi\)
0.899705 + 0.436499i \(0.143782\pi\)
\(678\) 0 0
\(679\) 4.02149 + 6.96543i 0.154331 + 0.267309i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 17.5633i 0.672042i −0.941854 0.336021i \(-0.890919\pi\)
0.941854 0.336021i \(-0.109081\pi\)
\(684\) 0 0
\(685\) 1.79983 0.0687679
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.15339 + 14.1817i 0.0439408 + 0.540281i
\(690\) 0 0
\(691\) 17.5312 + 10.1216i 0.666918 + 0.385045i 0.794908 0.606730i \(-0.207519\pi\)
−0.127990 + 0.991776i \(0.540852\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −20.2839 11.7109i −0.769414 0.444221i
\(696\) 0 0
\(697\) −57.0442 + 32.9345i −2.16070 + 1.24748i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 21.7160 0.820202 0.410101 0.912040i \(-0.365493\pi\)
0.410101 + 0.912040i \(0.365493\pi\)
\(702\) 0 0
\(703\) 28.6406 1.08020
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 16.4968 9.52444i 0.620427 0.358203i
\(708\) 0 0
\(709\) 12.5657 + 7.25481i 0.471915 + 0.272460i 0.717041 0.697031i \(-0.245496\pi\)
−0.245126 + 0.969491i \(0.578829\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −20.4185 11.7886i −0.764680 0.441488i
\(714\) 0 0
\(715\) 1.47402 + 18.1241i 0.0551253 + 0.677802i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −20.4539 −0.762801 −0.381400 0.924410i \(-0.624558\pi\)
−0.381400 + 0.924410i \(0.624558\pi\)
\(720\) 0 0
\(721\) 7.75686i 0.288881i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −15.3641 26.6114i −0.570607 0.988321i
\(726\) 0 0
\(727\) 4.66361 8.07761i 0.172964 0.299582i −0.766491 0.642255i \(-0.777999\pi\)
0.939455 + 0.342673i \(0.111332\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 14.5700 25.2359i 0.538890 0.933384i
\(732\) 0 0
\(733\) −8.45225 + 4.87991i −0.312191 + 0.180243i −0.647906 0.761720i \(-0.724355\pi\)
0.335716 + 0.941963i \(0.391022\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.18539 −0.117335
\(738\) 0 0
\(739\) 14.3579i 0.528164i 0.964500 + 0.264082i \(0.0850690\pi\)
−0.964500 + 0.264082i \(0.914931\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −17.0494 + 9.84349i −0.625483 + 0.361123i −0.779001 0.627023i \(-0.784273\pi\)
0.153518 + 0.988146i \(0.450940\pi\)
\(744\) 0 0
\(745\) 5.90454 10.2270i 0.216326 0.374687i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 9.46626 + 5.46535i 0.345890 + 0.199700i
\(750\) 0 0
\(751\) −2.92800 5.07145i −0.106844 0.185060i 0.807646 0.589668i \(-0.200741\pi\)
−0.914490 + 0.404608i \(0.867408\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −3.56740 −0.129831
\(756\) 0 0
\(757\) −10.4064 −0.378228 −0.189114 0.981955i \(-0.560562\pi\)
−0.189114 + 0.981955i \(0.560562\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 40.2552 23.2414i 1.45925 0.842499i 0.460276 0.887776i \(-0.347750\pi\)
0.998974 + 0.0452769i \(0.0144170\pi\)
\(762\) 0 0
\(763\) −11.6667 + 20.2074i −0.422364 + 0.731556i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 20.6935 + 29.9414i 0.747198 + 1.08112i
\(768\) 0 0
\(769\) −19.1017 + 11.0283i −0.688823 + 0.397692i −0.803171 0.595748i \(-0.796856\pi\)
0.114348 + 0.993441i \(0.463522\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 3.52236i 0.126690i −0.997992 0.0633452i \(-0.979823\pi\)
0.997992 0.0633452i \(-0.0201769\pi\)
\(774\) 0 0
\(775\) 26.1872i 0.940672i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 20.1905 + 34.9710i 0.723400 + 1.25297i
\(780\) 0 0
\(781\) −22.1045 + 38.2862i −0.790962 + 1.36999i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 23.1983 + 13.3936i 0.827983 + 0.478036i
\(786\) 0 0
\(787\) −20.3257 + 11.7350i −0.724531 + 0.418308i −0.816418 0.577461i \(-0.804044\pi\)
0.0918869 + 0.995769i \(0.470710\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 6.53608i 0.232396i
\(792\) 0 0
\(793\) 1.74316 + 0.825864i 0.0619014 + 0.0293273i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −0.665795 1.15319i −0.0235837 0.0408481i 0.853993 0.520285i \(-0.174174\pi\)
−0.877576 + 0.479437i \(0.840841\pi\)
\(798\) 0 0
\(799\) −63.8573 36.8680i −2.25911 1.30430i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −18.0618 + 31.2839i −0.637385 + 1.10398i
\(804\) 0 0
\(805\) 2.27040 + 3.93244i 0.0800209 + 0.138600i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 51.9672 1.82707 0.913535 0.406760i \(-0.133342\pi\)
0.913535 + 0.406760i \(0.133342\pi\)
\(810\) 0 0
\(811\) 35.6357i 1.25134i −0.780088 0.625670i \(-0.784826\pi\)
0.780088 0.625670i \(-0.215174\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −6.59344 11.4202i −0.230958 0.400031i
\(816\) 0 0
\(817\) −15.4709 8.93213i −0.541258 0.312496i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 8.92925 + 5.15531i 0.311633 + 0.179921i 0.647657 0.761932i \(-0.275749\pi\)
−0.336024 + 0.941853i \(0.609082\pi\)
\(822\) 0 0
\(823\) 20.9553 + 36.2957i 0.730456 + 1.26519i 0.956688 + 0.291114i \(0.0940259\pi\)
−0.226232 + 0.974073i \(0.572641\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 14.6304i 0.508748i −0.967106 0.254374i \(-0.918131\pi\)
0.967106 0.254374i \(-0.0818694\pi\)
\(828\) 0 0
\(829\) −5.45165 −0.189344 −0.0946719 0.995509i \(-0.530180\pi\)
−0.0946719 + 0.995509i \(0.530180\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −18.4785 32.0057i −0.640241 1.10893i
\(834\) 0 0
\(835\) −1.24817 + 2.16190i −0.0431948 + 0.0748156i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −5.64378 3.25844i −0.194845 0.112494i 0.399404 0.916775i \(-0.369217\pi\)
−0.594249 + 0.804281i \(0.702551\pi\)
\(840\) 0 0
\(841\) −28.2881 48.9965i −0.975453 1.68953i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −13.0327 + 10.6669i −0.448339 + 0.366951i
\(846\) 0 0
\(847\) 4.86989i 0.167331i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 18.4211 10.6354i 0.631466 0.364577i
\(852\) 0 0
\(853\) −27.5422 15.9015i −0.943029 0.544458i −0.0521202 0.998641i \(-0.516598\pi\)
−0.890908 + 0.454183i \(0.849931\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.82625 3.16316i 0.0623836 0.108052i −0.833147 0.553052i \(-0.813463\pi\)
0.895530 + 0.445000i \(0.146796\pi\)
\(858\) 0 0
\(859\) 0.814178 + 1.41020i 0.0277794 + 0.0481153i 0.879581 0.475749i \(-0.157823\pi\)
−0.851801 + 0.523865i \(0.824490\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.90203i 0.0647458i 0.999476 + 0.0323729i \(0.0103064\pi\)
−0.999476 + 0.0323729i \(0.989694\pi\)
\(864\) 0 0
\(865\) 0.898513i 0.0305504i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 26.4381 15.2641i 0.896852 0.517798i
\(870\) 0 0
\(871\) −1.67736 2.42698i −0.0568353 0.0822350i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 6.31755 10.9423i 0.213572 0.369918i
\(876\) 0 0
\(877\) 12.4613 7.19456i 0.420790 0.242943i −0.274625 0.961551i \(-0.588554\pi\)
0.695415 + 0.718608i \(0.255221\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 47.2375 1.59147 0.795736 0.605644i \(-0.207085\pi\)
0.795736 + 0.605644i \(0.207085\pi\)
\(882\) 0 0
\(883\) 10.5214 0.354073 0.177036 0.984204i \(-0.443349\pi\)
0.177036 + 0.984204i \(0.443349\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −18.5854 32.1908i −0.624036 1.08086i −0.988726 0.149733i \(-0.952159\pi\)
0.364691 0.931129i \(-0.381175\pi\)
\(888\) 0 0
\(889\) −14.9017 8.60350i −0.499787 0.288552i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −22.6020 + 39.1478i −0.756347 + 1.31003i
\(894\) 0 0
\(895\) 18.1709 10.4909i 0.607385 0.350674i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 72.9300i 2.43235i
\(900\) 0 0
\(901\) −25.9212 −0.863561
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −7.99033 + 4.61322i −0.265607 + 0.153349i
\(906\) 0 0
\(907\) −4.73223 + 8.19647i −0.157131 + 0.272159i −0.933833 0.357709i \(-0.883558\pi\)
0.776702 + 0.629868i \(0.216891\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 14.3065 24.7795i 0.473995 0.820983i −0.525562 0.850755i \(-0.676145\pi\)
0.999557 + 0.0297724i \(0.00947826\pi\)
\(912\) 0 0
\(913\) −14.8410 25.7053i −0.491164 0.850722i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 10.5560i 0.348591i
\(918\) 0 0
\(919\) −12.3995 −0.409021 −0.204510 0.978864i \(-0.565560\pi\)
−0.204510 + 0.978864i \(0.565560\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −40.8104 + 3.31910i −1.34329 + 0.109249i
\(924\) 0 0
\(925\) −20.4602 11.8127i −0.672727 0.388399i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 17.0132 + 9.82260i 0.558186 + 0.322269i 0.752417 0.658687i \(-0.228888\pi\)
−0.194231 + 0.980956i \(0.562221\pi\)
\(930\) 0 0
\(931\) −19.6211 + 11.3282i −0.643055 + 0.371268i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −33.1270 −1.08337
\(936\) 0 0
\(937\) −45.1494 −1.47497 −0.737483 0.675366i \(-0.763986\pi\)
−0.737483 + 0.675366i \(0.763986\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 10.1924 5.88460i 0.332263 0.191832i −0.324582 0.945857i \(-0.605224\pi\)
0.656846 + 0.754025i \(0.271890\pi\)
\(942\) 0 0
\(943\) 25.9723 + 14.9951i 0.845774 + 0.488308i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 13.4450 + 7.76245i 0.436902 + 0.252246i 0.702283 0.711898i \(-0.252164\pi\)
−0.265380 + 0.964144i \(0.585498\pi\)
\(948\) 0 0
\(949\) −33.3465 + 2.71205i −1.08247 + 0.0880370i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 40.6782 1.31770 0.658848 0.752276i \(-0.271044\pi\)
0.658848 + 0.752276i \(0.271044\pi\)
\(954\) 0 0
\(955\) 17.1944i 0.556398i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −0.814136 1.41013i −0.0262898 0.0455353i
\(960\) 0 0
\(961\) 15.5762 26.9788i 0.502459 0.870285i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 12.5424 21.7240i 0.403753 0.699320i
\(966\) 0 0
\(967\) 16.3248 9.42513i 0.524970 0.303092i −0.213996 0.976835i \(-0.568648\pi\)
0.738966 + 0.673743i \(0.235314\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −25.4536 −0.816845 −0.408423 0.912793i \(-0.633921\pi\)
−0.408423 + 0.912793i \(0.633921\pi\)
\(972\) 0 0
\(973\) 21.1894i 0.679300i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −3.81800 + 2.20432i −0.122149 + 0.0705225i −0.559829 0.828608i \(-0.689133\pi\)
0.437681 + 0.899130i \(0.355800\pi\)
\(978\) 0 0
\(979\) −35.2613 + 61.0744i −1.12696 + 1.95195i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 31.7489 + 18.3303i 1.01263 + 0.584644i 0.911962 0.410275i \(-0.134567\pi\)
0.100672 + 0.994920i \(0.467901\pi\)
\(984\) 0 0
\(985\) −1.34301 2.32616i −0.0427918 0.0741176i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −13.2674 −0.421880
\(990\) 0 0
\(991\) 21.7867 0.692078 0.346039 0.938220i \(-0.387526\pi\)
0.346039 + 0.938220i \(0.387526\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −10.3287 + 5.96326i −0.327441 + 0.189048i
\(996\) 0 0
\(997\) −0.925027 + 1.60219i −0.0292959 + 0.0507420i −0.880302 0.474414i \(-0.842660\pi\)
0.851006 + 0.525156i \(0.175993\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2808.2.cw.b.1585.28 80
3.2 odd 2 936.2.cw.b.25.11 80
9.4 even 3 inner 2808.2.cw.b.2521.13 80
9.5 odd 6 936.2.cw.b.337.12 yes 80
13.12 even 2 inner 2808.2.cw.b.1585.13 80
39.38 odd 2 936.2.cw.b.25.12 yes 80
117.77 odd 6 936.2.cw.b.337.11 yes 80
117.103 even 6 inner 2808.2.cw.b.2521.28 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.cw.b.25.11 80 3.2 odd 2
936.2.cw.b.25.12 yes 80 39.38 odd 2
936.2.cw.b.337.11 yes 80 117.77 odd 6
936.2.cw.b.337.12 yes 80 9.5 odd 6
2808.2.cw.b.1585.13 80 13.12 even 2 inner
2808.2.cw.b.1585.28 80 1.1 even 1 trivial
2808.2.cw.b.2521.13 80 9.4 even 3 inner
2808.2.cw.b.2521.28 80 117.103 even 6 inner