Properties

Label 936.2.cl.a.779.6
Level $936$
Weight $2$
Character 936.779
Analytic conductor $7.474$
Analytic rank $0$
Dimension $24$
CM discriminant -104
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(155,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 1, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.155"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.cl (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

Embedding invariants

Embedding label 779.6
Character \(\chi\) \(=\) 936.779
Dual form 936.2.cl.a.155.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 + 0.707107i) q^{2} +(1.72159 + 0.190107i) q^{3} +(1.00000 - 1.73205i) q^{4} +(-1.00993 - 0.583083i) q^{5} +(-2.24293 + 0.984512i) q^{6} +(-0.658612 - 1.14075i) q^{7} +2.82843i q^{8} +(2.92772 + 0.654573i) q^{9} +1.64921 q^{10} +(2.05086 - 2.79177i) q^{12} +(1.80278 - 3.12250i) q^{13} +(1.61326 + 0.931418i) q^{14} +(-1.62783 - 1.19582i) q^{15} +(-2.00000 - 3.46410i) q^{16} -1.16715i q^{17} +(-4.04856 + 1.26852i) q^{18} +(-2.01986 + 1.16617i) q^{20} +(-0.916993 - 2.08911i) q^{21} +(-0.537705 + 4.86938i) q^{24} +(-1.82003 - 3.15238i) q^{25} +5.09902i q^{26} +(4.91588 + 1.68348i) q^{27} -2.63445 q^{28} +(2.83925 + 0.313527i) q^{30} +(1.87146 - 3.24146i) q^{31} +(4.89898 + 2.82843i) q^{32} +(0.825300 + 1.42946i) q^{34} +1.53610i q^{35} +(4.06147 - 4.41638i) q^{36} +5.39282 q^{37} +(3.69724 - 5.03293i) q^{39} +(1.64921 - 2.85651i) q^{40} +(2.60030 + 1.91021i) q^{42} +(-3.03604 - 5.25858i) q^{43} +(-2.57512 - 2.36817i) q^{45} +(3.79232 - 2.18950i) q^{47} +(-2.78462 - 6.34396i) q^{48} +(2.63246 - 4.55955i) q^{49} +(4.45814 + 2.57391i) q^{50} +(0.221884 - 2.00935i) q^{51} +(-3.60555 - 6.24500i) q^{52} +(-7.21110 + 1.41421i) q^{54} +(3.22653 - 1.86284i) q^{56} +(-3.69906 + 1.62366i) q^{60} +5.29329i q^{62} +(-1.18153 - 3.77090i) q^{63} -8.00000 q^{64} +(-3.64135 + 2.10234i) q^{65} +(-2.02156 - 1.16715i) q^{68} +(-1.08619 - 1.88133i) q^{70} -2.75117i q^{71} +(-1.85141 + 8.28084i) q^{72} +(-6.60483 + 3.81330i) q^{74} +(-2.53405 - 5.77310i) q^{75} +(-0.969362 + 8.77840i) q^{78} +4.66466i q^{80} +(8.14307 + 3.83281i) q^{81} +(-4.53543 - 0.500828i) q^{84} +(-0.680545 + 1.17874i) q^{85} +(7.43675 + 4.29361i) q^{86} +(4.82841 + 1.07953i) q^{90} -4.74932 q^{91} +(3.83810 - 5.22468i) q^{93} +(-3.09642 + 5.36316i) q^{94} +(7.89631 + 5.80071i) q^{96} +7.44572i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{4} - 48 q^{16} + 60 q^{25} + 12 q^{27} + 48 q^{30} + 48 q^{42} - 84 q^{49} - 60 q^{51} - 192 q^{64} - 168 q^{75} - 96 q^{90}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22474 + 0.707107i −0.866025 + 0.500000i
\(3\) 1.72159 + 0.190107i 0.993958 + 0.109759i
\(4\) 1.00000 1.73205i 0.500000 0.866025i
\(5\) −1.00993 0.583083i −0.451654 0.260763i 0.256874 0.966445i \(-0.417307\pi\)
−0.708528 + 0.705682i \(0.750641\pi\)
\(6\) −2.24293 + 0.984512i −0.915672 + 0.401925i
\(7\) −0.658612 1.14075i −0.248932 0.431163i 0.714298 0.699842i \(-0.246746\pi\)
−0.963230 + 0.268679i \(0.913413\pi\)
\(8\) 2.82843i 1.00000i
\(9\) 2.92772 + 0.654573i 0.975906 + 0.218191i
\(10\) 1.64921 0.521525
\(11\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) 2.05086 2.79177i 0.592033 0.805914i
\(13\) 1.80278 3.12250i 0.500000 0.866025i
\(14\) 1.61326 + 0.931418i 0.431163 + 0.248932i
\(15\) −1.62783 1.19582i −0.420304 0.308760i
\(16\) −2.00000 3.46410i −0.500000 0.866025i
\(17\) 1.16715i 0.283076i −0.989933 0.141538i \(-0.954795\pi\)
0.989933 0.141538i \(-0.0452047\pi\)
\(18\) −4.04856 + 1.26852i −0.954255 + 0.298994i
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) −2.01986 + 1.16617i −0.451654 + 0.260763i
\(21\) −0.916993 2.08911i −0.200104 0.455880i
\(22\) 0 0
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) −0.537705 + 4.86938i −0.109759 + 0.993958i
\(25\) −1.82003 3.15238i −0.364006 0.630476i
\(26\) 5.09902i 1.00000i
\(27\) 4.91588 + 1.68348i 0.946062 + 0.323987i
\(28\) −2.63445 −0.497864
\(29\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(30\) 2.83925 + 0.313527i 0.518374 + 0.0572419i
\(31\) 1.87146 3.24146i 0.336124 0.582184i −0.647576 0.762001i \(-0.724217\pi\)
0.983700 + 0.179817i \(0.0575506\pi\)
\(32\) 4.89898 + 2.82843i 0.866025 + 0.500000i
\(33\) 0 0
\(34\) 0.825300 + 1.42946i 0.141538 + 0.245151i
\(35\) 1.53610i 0.259649i
\(36\) 4.06147 4.41638i 0.676912 0.736064i
\(37\) 5.39282 0.886575 0.443287 0.896380i \(-0.353812\pi\)
0.443287 + 0.896380i \(0.353812\pi\)
\(38\) 0 0
\(39\) 3.69724 5.03293i 0.592033 0.805914i
\(40\) 1.64921 2.85651i 0.260763 0.451654i
\(41\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(42\) 2.60030 + 1.91021i 0.401236 + 0.294752i
\(43\) −3.03604 5.25858i −0.462992 0.801925i 0.536117 0.844144i \(-0.319891\pi\)
−0.999108 + 0.0422186i \(0.986557\pi\)
\(44\) 0 0
\(45\) −2.57512 2.36817i −0.383876 0.353027i
\(46\) 0 0
\(47\) 3.79232 2.18950i 0.553167 0.319371i −0.197231 0.980357i \(-0.563195\pi\)
0.750398 + 0.660986i \(0.229862\pi\)
\(48\) −2.78462 6.34396i −0.401925 0.915672i
\(49\) 2.63246 4.55955i 0.376066 0.651365i
\(50\) 4.45814 + 2.57391i 0.630476 + 0.364006i
\(51\) 0.221884 2.00935i 0.0310700 0.281365i
\(52\) −3.60555 6.24500i −0.500000 0.866025i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) −7.21110 + 1.41421i −0.981307 + 0.192450i
\(55\) 0 0
\(56\) 3.22653 1.86284i 0.431163 0.248932i
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) −3.69906 + 1.62366i −0.477546 + 0.209614i
\(61\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(62\) 5.29329i 0.672248i
\(63\) −1.18153 3.77090i −0.148858 0.475089i
\(64\) −8.00000 −1.00000
\(65\) −3.64135 + 2.10234i −0.451654 + 0.260763i
\(66\) 0 0
\(67\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(68\) −2.02156 1.16715i −0.245151 0.141538i
\(69\) 0 0
\(70\) −1.08619 1.88133i −0.129824 0.224862i
\(71\) 2.75117i 0.326503i −0.986584 0.163252i \(-0.947802\pi\)
0.986584 0.163252i \(-0.0521983\pi\)
\(72\) −1.85141 + 8.28084i −0.218191 + 0.975906i
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) −6.60483 + 3.81330i −0.767796 + 0.443287i
\(75\) −2.53405 5.77310i −0.292606 0.666620i
\(76\) 0 0
\(77\) 0 0
\(78\) −0.969362 + 8.77840i −0.109759 + 0.993958i
\(79\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(80\) 4.66466i 0.521525i
\(81\) 8.14307 + 3.83281i 0.904785 + 0.425868i
\(82\) 0 0
\(83\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(84\) −4.53543 0.500828i −0.494856 0.0546449i
\(85\) −0.680545 + 1.17874i −0.0738155 + 0.127852i
\(86\) 7.43675 + 4.29361i 0.801925 + 0.462992i
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 4.82841 + 1.07953i 0.508960 + 0.113792i
\(91\) −4.74932 −0.497864
\(92\) 0 0
\(93\) 3.83810 5.22468i 0.397993 0.541774i
\(94\) −3.09642 + 5.36316i −0.319371 + 0.553167i
\(95\) 0 0
\(96\) 7.89631 + 5.80071i 0.805914 + 0.592033i
\(97\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(98\) 7.44572i 0.752131i
\(99\) 0 0
\(100\) −7.28012 −0.728012
\(101\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(102\) 1.14907 + 2.61784i 0.113775 + 0.259205i
\(103\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(104\) 8.83176 + 5.09902i 0.866025 + 0.500000i
\(105\) −0.292024 + 2.64453i −0.0284987 + 0.258080i
\(106\) 0 0
\(107\) 10.1980i 0.985882i 0.870063 + 0.492941i \(0.164078\pi\)
−0.870063 + 0.492941i \(0.835922\pi\)
\(108\) 7.83176 6.83107i 0.753612 0.657320i
\(109\) 13.6402 1.30649 0.653247 0.757145i \(-0.273406\pi\)
0.653247 + 0.757145i \(0.273406\pi\)
\(110\) 0 0
\(111\) 9.28421 + 1.02522i 0.881218 + 0.0973092i
\(112\) −2.63445 + 4.56300i −0.248932 + 0.431163i
\(113\) −4.33176 2.50094i −0.407498 0.235269i 0.282216 0.959351i \(-0.408930\pi\)
−0.689714 + 0.724082i \(0.742264\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 7.32192 7.96175i 0.676912 0.736064i
\(118\) 0 0
\(119\) −1.33143 + 0.768700i −0.122052 + 0.0704666i
\(120\) 3.38230 4.60420i 0.308760 0.420304i
\(121\) 5.50000 9.52628i 0.500000 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) −3.74292 6.48292i −0.336124 0.582184i
\(125\) 10.0757i 0.901201i
\(126\) 4.11350 + 3.78293i 0.366460 + 0.337010i
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 9.79796 5.65685i 0.866025 0.500000i
\(129\) −4.22711 9.63027i −0.372176 0.847898i
\(130\) 2.97315 5.14965i 0.260763 0.451654i
\(131\) 19.7381 + 11.3958i 1.72453 + 0.995656i 0.908818 + 0.417193i \(0.136986\pi\)
0.815709 + 0.578463i \(0.196347\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −3.98308 4.56657i −0.342809 0.393027i
\(136\) 3.30120 0.283076
\(137\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(138\) 0 0
\(139\) −11.0147 + 19.0781i −0.934256 + 1.61818i −0.158301 + 0.987391i \(0.550602\pi\)
−0.775955 + 0.630788i \(0.782732\pi\)
\(140\) 2.66061 + 1.53610i 0.224862 + 0.129824i
\(141\) 6.94505 3.04846i 0.584879 0.256727i
\(142\) 1.94537 + 3.36948i 0.163252 + 0.282760i
\(143\) 0 0
\(144\) −3.58793 11.4511i −0.298994 0.954255i
\(145\) 0 0
\(146\) 0 0
\(147\) 5.39881 7.34922i 0.445286 0.606153i
\(148\) 5.39282 9.34064i 0.443287 0.767796i
\(149\) −21.1240 12.1959i −1.73054 0.999129i −0.886135 0.463428i \(-0.846619\pi\)
−0.844407 0.535701i \(-0.820047\pi\)
\(150\) 7.18576 + 5.27873i 0.586715 + 0.431007i
\(151\) 11.0624 + 19.1606i 0.900244 + 1.55927i 0.827177 + 0.561942i \(0.189945\pi\)
0.0730673 + 0.997327i \(0.476721\pi\)
\(152\) 0 0
\(153\) 0.763985 3.41709i 0.0617645 0.276255i
\(154\) 0 0
\(155\) −3.78008 + 2.18243i −0.303623 + 0.175297i
\(156\) −5.02005 11.4367i −0.401925 0.915672i
\(157\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −3.29841 5.71302i −0.260763 0.451654i
\(161\) 0 0
\(162\) −12.6834 + 1.06381i −0.996501 + 0.0835805i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −10.1013 5.83196i −0.781659 0.451291i 0.0553591 0.998467i \(-0.482370\pi\)
−0.837018 + 0.547176i \(0.815703\pi\)
\(168\) 5.90889 2.59365i 0.455880 0.200104i
\(169\) −6.50000 11.2583i −0.500000 0.866025i
\(170\) 1.92487i 0.147631i
\(171\) 0 0
\(172\) −12.1442 −0.925984
\(173\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(174\) 0 0
\(175\) −2.39739 + 4.15240i −0.181225 + 0.313892i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 21.0965i 1.57683i 0.615146 + 0.788413i \(0.289097\pi\)
−0.615146 + 0.788413i \(0.710903\pi\)
\(180\) −6.67692 + 2.09206i −0.497668 + 0.155933i
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 5.81671 3.35828i 0.431163 0.248932i
\(183\) 0 0
\(184\) 0 0
\(185\) −5.44637 3.14446i −0.400425 0.231185i
\(186\) −1.00629 + 9.11285i −0.0737850 + 0.668186i
\(187\) 0 0
\(188\) 8.75800i 0.638743i
\(189\) −1.31722 6.71655i −0.0958140 0.488557i
\(190\) 0 0
\(191\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(192\) −13.7727 1.52086i −0.993958 0.109759i
\(193\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(194\) 0 0
\(195\) −6.66857 + 2.92710i −0.477546 + 0.209614i
\(196\) −5.26492 9.11911i −0.376066 0.651365i
\(197\) 14.9701i 1.06657i 0.845935 + 0.533286i \(0.179043\pi\)
−0.845935 + 0.533286i \(0.820957\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 8.91628 5.14782i 0.630476 0.364006i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) −3.25841 2.39366i −0.228135 0.167590i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −14.4222 −1.00000
\(209\) 0 0
\(210\) −1.51231 3.44537i −0.104359 0.237753i
\(211\) −13.8451 + 23.9804i −0.953134 + 1.65088i −0.214552 + 0.976713i \(0.568829\pi\)
−0.738582 + 0.674164i \(0.764504\pi\)
\(212\) 0 0
\(213\) 0.523017 4.73637i 0.0358365 0.324531i
\(214\) −7.21110 12.4900i −0.492941 0.853799i
\(215\) 7.08105i 0.482924i
\(216\) −4.76161 + 13.9042i −0.323987 + 0.946062i
\(217\) −4.93026 −0.334688
\(218\) −16.7058 + 9.64508i −1.13146 + 0.653247i
\(219\) 0 0
\(220\) 0 0
\(221\) −3.64443 2.10411i −0.245151 0.141538i
\(222\) −12.0957 + 5.30930i −0.811812 + 0.356337i
\(223\) 5.99480 + 10.3833i 0.401441 + 0.695317i 0.993900 0.110284i \(-0.0351760\pi\)
−0.592459 + 0.805601i \(0.701843\pi\)
\(224\) 7.45135i 0.497864i
\(225\) −3.26507 10.4206i −0.217671 0.694709i
\(226\) 7.07374 0.470538
\(227\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(228\) 0 0
\(229\) −14.0355 + 24.3103i −0.927494 + 1.60647i −0.139995 + 0.990152i \(0.544709\pi\)
−0.787500 + 0.616315i \(0.788625\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 19.2337i 1.26004i −0.776579 0.630019i \(-0.783047\pi\)
0.776579 0.630019i \(-0.216953\pi\)
\(234\) −3.33768 + 14.9285i −0.218191 + 0.975906i
\(235\) −5.10664 −0.333120
\(236\) 0 0
\(237\) 0 0
\(238\) 1.08711 1.88292i 0.0704666 0.122052i
\(239\) −26.2505 15.1557i −1.69800 0.980342i −0.947654 0.319298i \(-0.896553\pi\)
−0.750347 0.661044i \(-0.770114\pi\)
\(240\) −0.886787 + 8.03062i −0.0572419 + 0.518374i
\(241\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(242\) 15.5563i 1.00000i
\(243\) 13.2904 + 8.14657i 0.852576 + 0.522603i
\(244\) 0 0
\(245\) −5.31720 + 3.06988i −0.339703 + 0.196128i
\(246\) 0 0
\(247\) 0 0
\(248\) 9.16824 + 5.29329i 0.582184 + 0.336124i
\(249\) 0 0
\(250\) −7.12462 12.3402i −0.450601 0.780463i
\(251\) 20.8817i 1.31804i 0.752124 + 0.659022i \(0.229030\pi\)
−0.752124 + 0.659022i \(0.770970\pi\)
\(252\) −7.71293 1.72444i −0.485869 0.108629i
\(253\) 0 0
\(254\) 0 0
\(255\) −1.39570 + 1.89992i −0.0874024 + 0.118978i
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) −24.1337 13.9336i −1.50542 0.869155i −0.999980 0.00629280i \(-0.997997\pi\)
−0.505440 0.862862i \(-0.668670\pi\)
\(258\) 11.9868 + 8.80560i 0.746263 + 0.548213i
\(259\) −3.55178 6.15186i −0.220697 0.382258i
\(260\) 8.40934i 0.521525i
\(261\) 0 0
\(262\) −32.2322 −1.99131
\(263\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 8.10731 + 2.77641i 0.493395 + 0.168967i
\(271\) 0.553478 0.0336214 0.0168107 0.999859i \(-0.494649\pi\)
0.0168107 + 0.999859i \(0.494649\pi\)
\(272\) −4.04313 + 2.33430i −0.245151 + 0.141538i
\(273\) −8.17637 0.902881i −0.494856 0.0546449i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(278\) 31.1543i 1.86851i
\(279\) 7.60088 8.26508i 0.455053 0.494818i
\(280\) −4.34475 −0.259649
\(281\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(282\) −6.35033 + 8.64448i −0.378157 + 0.514771i
\(283\) −9.74764 + 16.8834i −0.579437 + 1.00361i 0.416107 + 0.909316i \(0.363394\pi\)
−0.995544 + 0.0942988i \(0.969939\pi\)
\(284\) −4.76516 2.75117i −0.282760 0.163252i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 12.4914 + 11.4876i 0.736064 + 0.676912i
\(289\) 15.6378 0.919868
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −29.3630 16.9527i −1.71541 0.990390i −0.926854 0.375422i \(-0.877498\pi\)
−0.788552 0.614968i \(-0.789169\pi\)
\(294\) −1.41549 + 12.8184i −0.0825529 + 0.747587i
\(295\) 0 0
\(296\) 15.2532i 0.886575i
\(297\) 0 0
\(298\) 34.4953 1.99826
\(299\) 0 0
\(300\) −12.5333 1.38400i −0.723613 0.0799055i
\(301\) −3.99915 + 6.92673i −0.230507 + 0.399250i
\(302\) −27.0972 15.6446i −1.55927 0.900244i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 1.48056 + 4.72528i 0.0846380 + 0.270126i
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 3.08642 5.34584i 0.175297 0.303623i
\(311\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(312\) 14.2353 + 10.4574i 0.805914 + 0.592033i
\(313\) −11.3713 19.6956i −0.642741 1.11326i −0.984818 0.173589i \(-0.944464\pi\)
0.342077 0.939672i \(-0.388870\pi\)
\(314\) 0 0
\(315\) −1.00549 + 4.49727i −0.0566530 + 0.253393i
\(316\) 0 0
\(317\) 28.4724 16.4386i 1.59917 0.923282i 0.607524 0.794301i \(-0.292163\pi\)
0.991647 0.128980i \(-0.0411704\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 8.07943 + 4.66466i 0.451654 + 0.260763i
\(321\) −1.93872 + 17.5568i −0.108209 + 0.979925i
\(322\) 0 0
\(323\) 0 0
\(324\) 14.7817 10.2714i 0.821205 0.570633i
\(325\) −13.1244 −0.728012
\(326\) 0 0
\(327\) 23.4828 + 2.59310i 1.29860 + 0.143399i
\(328\) 0 0
\(329\) −4.99534 2.88406i −0.275402 0.159003i
\(330\) 0 0
\(331\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(332\) 0 0
\(333\) 15.7887 + 3.52999i 0.865214 + 0.193443i
\(334\) 16.4953 0.902582
\(335\) 0 0
\(336\) −5.40289 + 7.35477i −0.294752 + 0.401236i
\(337\) 9.06935 15.7086i 0.494039 0.855701i −0.505937 0.862570i \(-0.668853\pi\)
0.999976 + 0.00686960i \(0.00218668\pi\)
\(338\) 15.9217 + 9.19239i 0.866025 + 0.500000i
\(339\) −6.98205 5.12909i −0.379213 0.278574i
\(340\) 1.36109 + 2.35748i 0.0738155 + 0.127852i
\(341\) 0 0
\(342\) 0 0
\(343\) −16.1557 −0.872323
\(344\) 14.8735 8.58722i 0.801925 0.462992i
\(345\) 0 0
\(346\) 0 0
\(347\) 17.5289 + 10.1203i 0.941000 + 0.543287i 0.890274 0.455426i \(-0.150513\pi\)
0.0507263 + 0.998713i \(0.483846\pi\)
\(348\) 0 0
\(349\) 8.64271 + 14.9696i 0.462634 + 0.801305i 0.999091 0.0426221i \(-0.0135711\pi\)
−0.536457 + 0.843927i \(0.680238\pi\)
\(350\) 6.78083i 0.362451i
\(351\) 14.1189 12.3149i 0.753612 0.657320i
\(352\) 0 0
\(353\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(354\) 0 0
\(355\) −1.60416 + 2.77848i −0.0851399 + 0.147467i
\(356\) 0 0
\(357\) −2.43830 + 1.07027i −0.129049 + 0.0566446i
\(358\) −14.9175 25.8378i −0.788413 1.36557i
\(359\) 3.17864i 0.167762i 0.996476 + 0.0838812i \(0.0267316\pi\)
−0.996476 + 0.0838812i \(0.973268\pi\)
\(360\) 6.69821 7.28353i 0.353027 0.383876i
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 11.2797 15.3547i 0.592033 0.805914i
\(364\) −4.74932 + 8.22606i −0.248932 + 0.431163i
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 8.89388 0.462371
\(371\) 0 0
\(372\) −5.21130 11.8725i −0.270194 0.615559i
\(373\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(374\) 0 0
\(375\) −1.91547 + 17.3463i −0.0989146 + 0.895757i
\(376\) 6.19284 + 10.7263i 0.319371 + 0.553167i
\(377\) 0 0
\(378\) 6.36258 + 7.29465i 0.327256 + 0.375196i
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −14.0160 8.09214i −0.716184 0.413489i 0.0971627 0.995269i \(-0.469023\pi\)
−0.813346 + 0.581780i \(0.802357\pi\)
\(384\) 17.9434 7.87610i 0.915672 0.401925i
\(385\) 0 0
\(386\) 0 0
\(387\) −5.44655 17.3829i −0.276864 0.883624i
\(388\) 0 0
\(389\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(390\) 6.09752 8.30035i 0.308760 0.420304i
\(391\) 0 0
\(392\) 12.8964 + 7.44572i 0.651365 + 0.376066i
\(393\) 31.8144 + 23.3712i 1.60483 + 1.17892i
\(394\) −10.5854 18.3345i −0.533286 0.923679i
\(395\) 0 0
\(396\) 0 0
\(397\) −3.33082 −0.167169 −0.0835845 0.996501i \(-0.526637\pi\)
−0.0835845 + 0.996501i \(0.526637\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −7.28012 + 12.6095i −0.364006 + 0.630476i
\(401\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(402\) 0 0
\(403\) −6.74764 11.6873i −0.336124 0.582184i
\(404\) 0 0
\(405\) −5.98908 8.61895i −0.297600 0.428279i
\(406\) 0 0
\(407\) 0 0
\(408\) 5.68330 + 0.627583i 0.281365 + 0.0310700i
\(409\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 17.6635 10.1980i 0.866025 0.500000i
\(417\) −22.5897 + 30.7505i −1.10622 + 1.50586i
\(418\) 0 0
\(419\) 23.4558 + 13.5422i 1.14589 + 0.661582i 0.947883 0.318618i \(-0.103219\pi\)
0.198010 + 0.980200i \(0.436552\pi\)
\(420\) 4.28844 + 3.15033i 0.209254 + 0.153721i
\(421\) 19.5278 + 33.8231i 0.951725 + 1.64844i 0.741691 + 0.670741i \(0.234024\pi\)
0.210033 + 0.977694i \(0.432643\pi\)
\(422\) 39.1598i 1.90627i
\(423\) 12.5360 3.92788i 0.609523 0.190980i
\(424\) 0 0
\(425\) −3.67930 + 2.12425i −0.178473 + 0.103041i
\(426\) 2.70856 + 6.17067i 0.131230 + 0.298970i
\(427\) 0 0
\(428\) 17.6635 + 10.1980i 0.853799 + 0.492941i
\(429\) 0 0
\(430\) −5.00706 8.67248i −0.241462 0.418224i
\(431\) 37.9936i 1.83009i 0.403355 + 0.915044i \(0.367844\pi\)
−0.403355 + 0.915044i \(0.632156\pi\)
\(432\) −4.00000 20.3961i −0.192450 0.981307i
\(433\) 35.4188 1.70212 0.851060 0.525069i \(-0.175960\pi\)
0.851060 + 0.525069i \(0.175960\pi\)
\(434\) 6.03832 3.48622i 0.289848 0.167344i
\(435\) 0 0
\(436\) 13.6402 23.6255i 0.653247 1.13146i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(440\) 0 0
\(441\) 10.6917 11.6260i 0.509127 0.553617i
\(442\) 5.95132 0.283076
\(443\) 27.9497 16.1368i 1.32793 0.766680i 0.342950 0.939354i \(-0.388574\pi\)
0.984979 + 0.172673i \(0.0552404\pi\)
\(444\) 11.0599 15.0555i 0.524881 0.714503i
\(445\) 0 0
\(446\) −14.6842 8.47793i −0.695317 0.401441i
\(447\) −34.0482 25.0122i −1.61042 1.18303i
\(448\) 5.26890 + 9.12600i 0.248932 + 0.431163i
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 11.3674 + 10.4539i 0.535863 + 0.492800i
\(451\) 0 0
\(452\) −8.66352 + 5.00189i −0.407498 + 0.235269i
\(453\) 15.4023 + 35.0897i 0.723662 + 1.64866i
\(454\) 0 0
\(455\) 4.79648 + 2.76925i 0.224862 + 0.129824i
\(456\) 0 0
\(457\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(458\) 39.6985i 1.85499i
\(459\) 1.96488 5.73757i 0.0917127 0.267807i
\(460\) 0 0
\(461\) −3.43413 + 1.98269i −0.159943 + 0.0923433i −0.577835 0.816153i \(-0.696102\pi\)
0.417892 + 0.908497i \(0.362769\pi\)
\(462\) 0 0
\(463\) −20.1739 + 34.9423i −0.937563 + 1.62391i −0.167564 + 0.985861i \(0.553590\pi\)
−0.769999 + 0.638045i \(0.779743\pi\)
\(464\) 0 0
\(465\) −6.92263 + 3.03862i −0.321029 + 0.140913i
\(466\) 13.6002 + 23.5563i 0.630019 + 1.09123i
\(467\) 41.4721i 1.91910i −0.281539 0.959550i \(-0.590845\pi\)
0.281539 0.959550i \(-0.409155\pi\)
\(468\) −6.46823 20.6437i −0.298994 0.954255i
\(469\) 0 0
\(470\) 6.25433 3.61094i 0.288491 0.166560i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 3.07480i 0.140933i
\(477\) 0 0
\(478\) 42.8668 1.96068
\(479\) −30.8836 + 17.8306i −1.41111 + 0.814703i −0.995493 0.0948388i \(-0.969766\pi\)
−0.415614 + 0.909541i \(0.636433\pi\)
\(480\) −4.59242 10.4625i −0.209614 0.477546i
\(481\) 9.72205 16.8391i 0.443287 0.767796i
\(482\) 0 0
\(483\) 0 0
\(484\) −11.0000 19.0526i −0.500000 0.866025i
\(485\) 0 0
\(486\) −22.0378 0.579772i −0.999654 0.0262990i
\(487\) 36.0555 1.63383 0.816916 0.576757i \(-0.195682\pi\)
0.816916 + 0.576757i \(0.195682\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 4.34147 7.51965i 0.196128 0.339703i
\(491\) −23.7812 13.7301i −1.07323 0.619631i −0.144169 0.989553i \(-0.546051\pi\)
−0.929063 + 0.369922i \(0.879384\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −14.9717 −0.672248
\(497\) −3.13839 + 1.81195i −0.140776 + 0.0812772i
\(498\) 0 0
\(499\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(500\) 17.4517 + 10.0757i 0.780463 + 0.450601i
\(501\) −16.2815 11.9606i −0.727403 0.534358i
\(502\) −14.7656 25.5748i −0.659022 1.14146i
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 10.6657 3.34186i 0.475089 0.148858i
\(505\) 0 0
\(506\) 0 0
\(507\) −9.05002 20.6179i −0.401925 0.915672i
\(508\) 0 0
\(509\) 0.921447 + 0.531998i 0.0408424 + 0.0235804i 0.520282 0.853994i \(-0.325827\pi\)
−0.479440 + 0.877575i \(0.659160\pi\)
\(510\) 0.365933 3.31384i 0.0162038 0.146739i
\(511\) 0 0
\(512\) 22.6274i 1.00000i
\(513\) 0 0
\(514\) 39.4102 1.73831
\(515\) 0 0
\(516\) −20.9072 2.30870i −0.920389 0.101635i
\(517\) 0 0
\(518\) 8.70005 + 5.02298i 0.382258 + 0.220697i
\(519\) 0 0
\(520\) −5.94630 10.2993i −0.260763 0.451654i
\(521\) 43.1204i 1.88914i −0.328310 0.944570i \(-0.606479\pi\)
0.328310 0.944570i \(-0.393521\pi\)
\(522\) 0 0
\(523\) 43.4953 1.90192 0.950958 0.309320i \(-0.100101\pi\)
0.950958 + 0.309320i \(0.100101\pi\)
\(524\) 39.4762 22.7916i 1.72453 0.995656i
\(525\) −4.91671 + 6.69295i −0.214583 + 0.292104i
\(526\) 0 0
\(527\) −3.78327 2.18427i −0.164802 0.0951485i
\(528\) 0 0
\(529\) 11.5000 + 19.9186i 0.500000 + 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 5.94630 10.2993i 0.257081 0.445277i
\(536\) 0 0
\(537\) −4.01060 + 36.3194i −0.173070 + 1.56730i
\(538\) 0 0
\(539\) 0 0
\(540\) −11.8926 + 2.33233i −0.511776 + 0.100368i
\(541\) 25.8833 1.11281 0.556404 0.830912i \(-0.312181\pi\)
0.556404 + 0.830912i \(0.312181\pi\)
\(542\) −0.677869 + 0.391368i −0.0291170 + 0.0168107i
\(543\) 0 0
\(544\) 3.30120 5.71785i 0.141538 0.245151i
\(545\) −13.7756 7.95337i −0.590083 0.340685i
\(546\) 10.6524 4.67576i 0.455880 0.200104i
\(547\) −18.7927 32.5499i −0.803517 1.39173i −0.917287 0.398226i \(-0.869626\pi\)
0.113770 0.993507i \(-0.463707\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −8.77861 6.44886i −0.372631 0.273739i
\(556\) 22.0294 + 38.1561i 0.934256 + 1.61818i
\(557\) 30.1407i 1.27710i 0.769580 + 0.638550i \(0.220466\pi\)
−0.769580 + 0.638550i \(0.779534\pi\)
\(558\) −3.46484 + 15.4972i −0.146678 + 0.656051i
\(559\) −21.8932 −0.925984
\(560\) 5.32121 3.07220i 0.224862 0.129824i
\(561\) 0 0
\(562\) 0 0
\(563\) 11.8170 + 6.82257i 0.498029 + 0.287537i 0.727899 0.685684i \(-0.240497\pi\)
−0.229870 + 0.973221i \(0.573830\pi\)
\(564\) 1.66496 15.0776i 0.0701075 0.634883i
\(565\) 2.91651 + 5.05155i 0.122699 + 0.212520i
\(566\) 27.5705i 1.15887i
\(567\) −0.990849 11.8135i −0.0416117 0.496122i
\(568\) 7.78147 0.326503
\(569\) −9.56831 + 5.52427i −0.401125 + 0.231589i −0.686969 0.726687i \(-0.741059\pi\)
0.285845 + 0.958276i \(0.407726\pi\)
\(570\) 0 0
\(571\) −21.3730 + 37.0192i −0.894434 + 1.54920i −0.0599303 + 0.998203i \(0.519088\pi\)
−0.834504 + 0.551002i \(0.814245\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −23.4217 5.23658i −0.975906 0.218191i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −19.1523 + 11.0576i −0.796629 + 0.459934i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −12.0370 + 3.77152i −0.497668 + 0.155933i
\(586\) 47.9496 1.98078
\(587\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(588\) −7.33040 16.7002i −0.302301 0.688706i
\(589\) 0 0
\(590\) 0 0
\(591\) −2.84592 + 25.7722i −0.117065 + 1.06013i
\(592\) −10.7856 18.6813i −0.443287 0.767796i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 1.79286 0.0735002
\(596\) −42.2479 + 24.3918i −1.73054 + 0.999129i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(600\) 16.3288 7.16736i 0.666620 0.292606i
\(601\) 24.4695 + 42.3823i 0.998130 + 1.72881i 0.552001 + 0.833843i \(0.313864\pi\)
0.446129 + 0.894969i \(0.352802\pi\)
\(602\) 11.3113i 0.461014i
\(603\) 0 0
\(604\) 44.2495 1.80049
\(605\) −11.1092 + 6.41391i −0.451654 + 0.260763i
\(606\) 0 0
\(607\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 15.7887i 0.638743i
\(612\) −5.15459 4.74035i −0.208362 0.191617i
\(613\) −47.4216 −1.91534 −0.957671 0.287865i \(-0.907054\pi\)
−0.957671 + 0.287865i \(0.907054\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(618\) 0 0
\(619\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(620\) 8.72972i 0.350594i
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) −24.8291 2.74177i −0.993958 0.109759i
\(625\) −3.22515 + 5.58613i −0.129006 + 0.223445i
\(626\) 27.8538 + 16.0814i 1.11326 + 0.642741i
\(627\) 0 0
\(628\) 0 0
\(629\) 6.29424i 0.250968i
\(630\) −1.94858 6.21900i −0.0776334 0.247771i
\(631\) 49.1736 1.95757 0.978785 0.204890i \(-0.0656837\pi\)
0.978785 + 0.204890i \(0.0656837\pi\)
\(632\) 0 0
\(633\) −28.3943 + 38.6522i −1.12857 + 1.53629i
\(634\) −23.2476 + 40.2661i −0.923282 + 1.59917i
\(635\) 0 0
\(636\) 0 0
\(637\) −9.49147 16.4397i −0.376066 0.651365i
\(638\) 0 0
\(639\) 1.80084 8.05464i 0.0712401 0.318637i
\(640\) −13.1937 −0.521525
\(641\) 4.83648 2.79234i 0.191029 0.110291i −0.401435 0.915888i \(-0.631488\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) −10.0401 22.8735i −0.396251 0.902745i
\(643\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(644\) 0 0
\(645\) −1.34616 + 12.1906i −0.0530050 + 0.480006i
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) −10.8408 + 23.0321i −0.425868 + 0.904785i
\(649\) 0 0
\(650\) 16.0741 9.28036i 0.630476 0.364006i
\(651\) −8.48787 0.937280i −0.332666 0.0367349i
\(652\) 0 0
\(653\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(654\) −30.5940 + 13.4289i −1.19632 + 0.525113i
\(655\) −13.2894 23.0179i −0.519260 0.899384i
\(656\) 0 0
\(657\) 0 0
\(658\) 8.15736 0.318007
\(659\) 17.5794 10.1495i 0.684796 0.395367i −0.116863 0.993148i \(-0.537284\pi\)
0.801660 + 0.597781i \(0.203951\pi\)
\(660\) 0 0
\(661\) 3.60555 6.24500i 0.140240 0.242902i −0.787347 0.616510i \(-0.788546\pi\)
0.927587 + 0.373608i \(0.121879\pi\)
\(662\) 0 0
\(663\) −5.87419 4.31524i −0.228135 0.167590i
\(664\) 0 0
\(665\) 0 0
\(666\) −21.8332 + 6.84093i −0.846018 + 0.265081i
\(667\) 0 0
\(668\) −20.2025 + 11.6639i −0.781659 + 0.451291i
\(669\) 8.34662 + 19.0154i 0.322699 + 0.735178i
\(670\) 0 0
\(671\) 0 0
\(672\) 1.41656 12.8281i 0.0546449 0.494856i
\(673\) 19.6173 + 33.9782i 0.756191 + 1.30976i 0.944780 + 0.327705i \(0.106275\pi\)
−0.188589 + 0.982056i \(0.560391\pi\)
\(674\) 25.6520i 0.988078i
\(675\) −3.64006 18.5607i −0.140106 0.714403i
\(676\) −26.0000 −1.00000
\(677\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(678\) 12.1780 + 1.34477i 0.467695 + 0.0516456i
\(679\) 0 0
\(680\) −3.33398 1.92487i −0.127852 0.0738155i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 19.7866 11.4238i 0.755454 0.436162i
\(687\) −28.7849 + 39.1840i −1.09821 + 1.49496i
\(688\) −12.1442 + 21.0343i −0.462992 + 0.801925i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −28.6246 −1.08657
\(695\) 22.2482 12.8450i 0.843921 0.487238i
\(696\) 0 0
\(697\) 0 0
\(698\) −21.1702 12.2226i −0.801305 0.462634i
\(699\) 3.65646 33.1124i 0.138300 1.25243i
\(700\) 4.79477 + 8.30479i 0.181225 + 0.313892i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) −8.58412 + 25.0662i −0.323987 + 0.946062i
\(703\) 0 0
\(704\) 0 0
\(705\) −8.79152 0.970810i −0.331108 0.0365628i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −19.9679 34.5854i −0.749910 1.29888i −0.947865 0.318671i \(-0.896763\pi\)
0.197955 0.980211i \(-0.436570\pi\)
\(710\) 4.53724i 0.170280i
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 2.22950 3.03495i 0.0834371 0.113580i
\(715\) 0 0
\(716\) 36.5402 + 21.0965i 1.36557 + 0.788413i
\(717\) −42.3112 31.0823i −1.58014 1.16079i
\(718\) −2.24764 3.89303i −0.0838812 0.145287i
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) −3.05336 + 13.6568i −0.113792 + 0.508960i
\(721\) 0 0
\(722\) −23.2702 + 13.4350i −0.866025 + 0.500000i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) −2.95738 + 26.7816i −0.109759 + 0.993958i
\(727\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(728\) 13.4331i 0.497864i
\(729\) 21.3318 + 16.5516i 0.790065 + 0.613023i
\(730\) 0 0
\(731\) −6.13755 + 3.54352i −0.227006 + 0.131062i
\(732\) 0 0
\(733\) 11.6244 20.1341i 0.429357 0.743669i −0.567459 0.823402i \(-0.692073\pi\)
0.996816 + 0.0797329i \(0.0254067\pi\)
\(734\) 0 0
\(735\) −9.73762 + 4.27423i −0.359177 + 0.157657i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) −10.8927 + 6.28893i −0.400425 + 0.231185i
\(741\) 0 0
\(742\) 0 0
\(743\) 41.1240 + 23.7429i 1.50869 + 0.871044i 0.999949 + 0.0101256i \(0.00322315\pi\)
0.508743 + 0.860918i \(0.330110\pi\)
\(744\) 14.7776 + 10.8558i 0.541774 + 0.397993i
\(745\) 14.2225 + 24.6340i 0.521071 + 0.902521i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 11.6334 6.71655i 0.425076 0.245418i
\(750\) −9.91969 22.5992i −0.362216 0.825205i
\(751\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(752\) −15.1693 8.75800i −0.553167 0.319371i
\(753\) −3.96977 + 35.9497i −0.144667 + 1.31008i
\(754\) 0 0
\(755\) 25.8011i 0.939000i
\(756\) −12.9506 4.43505i −0.471010 0.161301i
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(762\) 0 0
\(763\) −8.98360 15.5601i −0.325228 0.563312i
\(764\) 0 0
\(765\) −2.76402 + 3.00555i −0.0999332 + 0.108666i
\(766\) 22.8880 0.826978
\(767\) 0 0
\(768\) −16.4069 + 22.3341i −0.592033 + 0.805914i
\(769\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(770\) 0 0
\(771\) −38.8994 28.5759i −1.40093 1.02914i
\(772\) 0 0
\(773\) 4.54977i 0.163644i 0.996647 + 0.0818220i \(0.0260739\pi\)
−0.996647 + 0.0818220i \(0.973926\pi\)
\(774\) 18.9622 + 17.4384i 0.681583 + 0.626809i
\(775\) −13.6244 −0.489404
\(776\) 0 0
\(777\) −4.94518 11.2662i −0.177407 0.404172i
\(778\) 0 0
\(779\) 0 0
\(780\) −1.59868 + 14.4774i −0.0572419 + 0.518374i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −21.0597 −0.752131
\(785\) 0 0
\(786\) −55.4905 6.12758i −1.97928 0.218564i
\(787\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(788\) 25.9289 + 14.9701i 0.923679 + 0.533286i
\(789\) 0 0
\(790\) 0 0
\(791\) 6.58861i 0.234264i
\(792\) 0 0
\(793\) 0 0
\(794\) 4.07940 2.35524i 0.144773 0.0835845i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(798\) 0 0
\(799\) −2.55548 4.42621i −0.0904062 0.156588i
\(800\) 20.5913i 0.728012i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 16.5283 + 9.54261i 0.582184 + 0.336124i
\(807\) 0 0
\(808\) 0 0
\(809\) 49.0847i 1.72572i 0.505439 + 0.862862i \(0.331331\pi\)
−0.505439 + 0.862862i \(0.668669\pi\)
\(810\) 13.4296 + 6.32110i 0.471868 + 0.222101i
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0.952860 + 0.105220i 0.0334183 + 0.00369024i
\(814\) 0 0
\(815\) 0 0
\(816\) −7.40436 + 3.25007i −0.259205 + 0.113775i
\(817\) 0 0
\(818\) 0 0
\(819\) −13.9047 3.10878i −0.485869 0.108629i
\(820\) 0 0
\(821\) 26.3984 15.2411i 0.921309 0.531918i 0.0372568 0.999306i \(-0.488138\pi\)
0.884053 + 0.467388i \(0.154805\pi\)
\(822\) 0 0
\(823\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −14.4222 + 24.9800i −0.500000 + 0.866025i
\(833\) −5.32169 3.07248i −0.184385 0.106455i
\(834\) 5.92267 53.6349i 0.205085 1.85722i
\(835\) 6.80104 + 11.7797i 0.235360 + 0.407655i
\(836\) 0 0
\(837\) 14.6568 12.7841i 0.506614 0.441882i
\(838\) −38.3032 −1.32316
\(839\) 39.4951 22.8025i 1.36352 0.787231i 0.373432 0.927657i \(-0.378181\pi\)
0.990091 + 0.140427i \(0.0448475\pi\)
\(840\) −7.47987 0.825970i −0.258080 0.0284987i
\(841\) 14.5000 25.1147i 0.500000 0.866025i
\(842\) −47.8330 27.6164i −1.64844 0.951725i
\(843\) 0 0
\(844\) 27.6901 + 47.9607i 0.953134 + 1.65088i
\(845\) 15.1602i 0.521525i
\(846\) −12.5760 + 13.6750i −0.432372 + 0.470155i
\(847\) −14.4895 −0.497864
\(848\) 0 0
\(849\) −19.9911 + 27.2131i −0.686092 + 0.933953i
\(850\) 3.00414 5.20332i 0.103041 0.178473i
\(851\) 0 0
\(852\) −7.68062 5.64226i −0.263134 0.193301i
\(853\) −11.7719 20.3895i −0.403062 0.698124i 0.591032 0.806648i \(-0.298721\pi\)
−0.994094 + 0.108524i \(0.965387\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −28.8444 −0.985882
\(857\) −49.1635 + 28.3846i −1.67939 + 0.969599i −0.717346 + 0.696717i \(0.754643\pi\)
−0.962048 + 0.272882i \(0.912023\pi\)
\(858\) 0 0
\(859\) −0.747641 + 1.29495i −0.0255092 + 0.0441832i −0.878498 0.477746i \(-0.841454\pi\)
0.852989 + 0.521929i \(0.174787\pi\)
\(860\) 12.2647 + 7.08105i 0.418224 + 0.241462i
\(861\) 0 0
\(862\) −26.8655 46.5325i −0.915044 1.58490i
\(863\) 28.6643i 0.975743i −0.872915 0.487872i \(-0.837773\pi\)
0.872915 0.487872i \(-0.162227\pi\)
\(864\) 19.3212 + 22.1516i 0.657320 + 0.753612i
\(865\) 0 0
\(866\) −43.3790 + 25.0449i −1.47408 + 0.851060i
\(867\) 26.9218 + 2.97285i 0.914311 + 0.100963i
\(868\) −4.93026 + 8.53947i −0.167344 + 0.289848i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 38.5803i 1.30649i
\(873\) 0 0
\(874\) 0 0
\(875\) 11.4939 6.63601i 0.388565 0.224338i
\(876\) 0 0
\(877\) 24.8212 42.9916i 0.838152 1.45172i −0.0532864 0.998579i \(-0.516970\pi\)
0.891438 0.453142i \(-0.149697\pi\)
\(878\) 0 0
\(879\) −47.3281 34.7677i −1.59634 1.17269i
\(880\) 0 0
\(881\) 36.2766i 1.22219i −0.791558 0.611094i \(-0.790730\pi\)
0.791558 0.611094i \(-0.209270\pi\)
\(882\) −4.87377 + 21.7990i −0.164108 + 0.734010i
\(883\) −14.4965 −0.487845 −0.243923 0.969795i \(-0.578434\pi\)
−0.243923 + 0.969795i \(0.578434\pi\)
\(884\) −7.28885 + 4.20822i −0.245151 + 0.141538i
\(885\) 0 0
\(886\) −22.8208 + 39.5268i −0.766680 + 1.32793i
\(887\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(888\) −2.89975 + 26.2597i −0.0973092 + 0.881218i
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 23.9792 0.802883
\(893\) 0 0
\(894\) 59.3866 + 6.55781i 1.98619 + 0.219326i
\(895\) 12.3010 21.3060i 0.411177 0.712180i
\(896\) −12.9061 7.45135i −0.431163 0.248932i
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −21.3141 4.76536i −0.710471 0.158845i
\(901\) 0 0
\(902\) 0 0
\(903\) −8.20170 + 11.1647i −0.272935 + 0.371538i
\(904\) 7.07374 12.2521i 0.235269 0.407498i
\(905\) 0 0
\(906\) −43.6760 32.0849i −1.45104 1.06595i
\(907\) −24.4041 42.2691i −0.810325 1.40352i −0.912637 0.408771i \(-0.865957\pi\)
0.102312 0.994752i \(-0.467376\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) −7.83261 −0.259649
\(911\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 28.0711 + 48.6205i 0.927494 + 1.60647i
\(917\) 30.0217i 0.991403i
\(918\) 1.65060 + 8.41644i 0.0544779 + 0.277784i
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 2.80395 4.85659i 0.0923433 0.159943i
\(923\) −8.59051 4.95974i −0.282760 0.163252i
\(924\) 0 0
\(925\) −9.81509 17.0002i −0.322718 0.558964i
\(926\) 57.0605i 1.87513i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(930\) 6.32983 8.61658i 0.207563 0.282549i
\(931\) 0 0
\(932\) −33.3137 19.2337i −1.09123 0.630019i
\(933\) 0 0
\(934\) 29.3252 + 50.7927i 0.959550 + 1.66199i
\(935\) 0 0
\(936\) 22.5192 + 20.7095i 0.736064 + 0.676912i
\(937\) −53.9906 −1.76379 −0.881897 0.471441i \(-0.843734\pi\)
−0.881897 + 0.471441i \(0.843734\pi\)
\(938\) 0 0
\(939\) −15.8323 36.0694i −0.516668 1.17708i
\(940\) −5.10664 + 8.84495i −0.166560 + 0.288491i
\(941\) 50.5268 + 29.1716i 1.64713 + 0.950968i 0.978207 + 0.207632i \(0.0665756\pi\)
0.668918 + 0.743336i \(0.266758\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −2.58600 + 7.55129i −0.0841227 + 0.245644i
\(946\) 0 0
\(947\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 52.1428 22.8876i 1.69085 0.742181i
\(952\) −2.17421 3.76584i −0.0704666 0.122052i
\(953\) 37.8620i 1.22647i 0.789900 + 0.613236i \(0.210132\pi\)
−0.789900 + 0.613236i \(0.789868\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −52.5009 + 30.3114i −1.69800 + 0.980342i
\(957\) 0 0
\(958\) 25.2163 43.6760i 0.814703 1.41111i
\(959\) 0 0
\(960\) 13.0227 + 9.56658i 0.420304 + 0.308760i
\(961\) 8.49528 + 14.7143i 0.274041 + 0.474654i
\(962\) 27.4981i 0.886575i
\(963\) −6.67536 + 29.8570i −0.215110 + 0.962128i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 26.2374 45.4445i 0.843738 1.46140i −0.0429750 0.999076i \(-0.513684\pi\)
0.886713 0.462321i \(-0.152983\pi\)
\(968\) 26.9444 + 15.5563i 0.866025 + 0.500000i
\(969\) 0 0
\(970\) 0 0
\(971\) 4.98741i 0.160053i 0.996793 + 0.0800267i \(0.0255006\pi\)
−0.996793 + 0.0800267i \(0.974499\pi\)
\(972\) 27.4006 14.8730i 0.878875 0.477051i
\(973\) 29.0177 0.930265
\(974\) −44.1588 + 25.4951i −1.41494 + 0.816916i
\(975\) −22.5948 2.49505i −0.723613 0.0799055i
\(976\) 0 0
\(977\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 12.2795i 0.392255i
\(981\) 39.9347 + 8.92850i 1.27502 + 0.285065i
\(982\) 38.8346 1.23926
\(983\) 45.0226 25.9938i 1.43600 0.829073i 0.438429 0.898766i \(-0.355535\pi\)
0.997569 + 0.0696927i \(0.0222019\pi\)
\(984\) 0 0
\(985\) 8.72878 15.1187i 0.278122 0.481722i
\(986\) 0 0
\(987\) −8.05163 5.91481i −0.256286 0.188271i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 18.3365 10.5866i 0.582184 0.336124i
\(993\) 0 0
\(994\) 2.56249 4.43836i 0.0812772 0.140776i
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(998\) 0 0
\(999\) 26.5105 + 9.07873i 0.838754 + 0.287238i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.cl.a.779.6 yes 24
8.3 odd 2 inner 936.2.cl.a.779.12 yes 24
9.2 odd 6 inner 936.2.cl.a.155.6 24
13.12 even 2 inner 936.2.cl.a.779.12 yes 24
72.11 even 6 inner 936.2.cl.a.155.12 yes 24
104.51 odd 2 CM 936.2.cl.a.779.6 yes 24
117.38 odd 6 inner 936.2.cl.a.155.12 yes 24
936.155 even 6 inner 936.2.cl.a.155.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.cl.a.155.6 24 9.2 odd 6 inner
936.2.cl.a.155.6 24 936.155 even 6 inner
936.2.cl.a.155.12 yes 24 72.11 even 6 inner
936.2.cl.a.155.12 yes 24 117.38 odd 6 inner
936.2.cl.a.779.6 yes 24 1.1 even 1 trivial
936.2.cl.a.779.6 yes 24 104.51 odd 2 CM
936.2.cl.a.779.12 yes 24 8.3 odd 2 inner
936.2.cl.a.779.12 yes 24 13.12 even 2 inner