Properties

Label 936.2.c.e.649.1
Level $936$
Weight $2$
Character 936.649
Analytic conductor $7.474$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(649,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.649"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.40960000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.1
Root \(-1.14412 - 1.14412i\) of defining polynomial
Character \(\chi\) \(=\) 936.649
Dual form 936.2.c.e.649.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.23607i q^{5} -4.57649i q^{7} -1.23607i q^{11} +(2.23607 + 2.82843i) q^{13} -5.65685 q^{17} -1.08036i q^{19} +3.49613 q^{23} -5.47214 q^{25} -9.15298 q^{29} +4.57649i q^{31} -14.8098 q^{35} +5.65685i q^{37} -5.70820i q^{41} +8.94427 q^{43} +2.76393i q^{47} -13.9443 q^{49} +3.49613 q^{53} -4.00000 q^{55} -11.7082i q^{59} -0.472136 q^{61} +(9.15298 - 7.23607i) q^{65} -10.2333i q^{67} -7.70820i q^{71} -5.65685 q^{77} +16.9443 q^{79} -6.76393i q^{83} +18.3060i q^{85} +15.2361i q^{89} +(12.9443 - 10.2333i) q^{91} -3.49613 q^{95} -6.99226i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{25} - 40 q^{49} - 32 q^{55} + 32 q^{61} + 64 q^{79} + 32 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.23607i 1.44721i −0.690212 0.723607i \(-0.742483\pi\)
0.690212 0.723607i \(-0.257517\pi\)
\(6\) 0 0
\(7\) 4.57649i 1.72975i −0.501986 0.864876i \(-0.667397\pi\)
0.501986 0.864876i \(-0.332603\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.23607i 0.372689i −0.982485 0.186344i \(-0.940336\pi\)
0.982485 0.186344i \(-0.0596640\pi\)
\(12\) 0 0
\(13\) 2.23607 + 2.82843i 0.620174 + 0.784465i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −5.65685 −1.37199 −0.685994 0.727607i \(-0.740633\pi\)
−0.685994 + 0.727607i \(0.740633\pi\)
\(18\) 0 0
\(19\) 1.08036i 0.247852i −0.992291 0.123926i \(-0.960451\pi\)
0.992291 0.123926i \(-0.0395486\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.49613 0.728993 0.364497 0.931205i \(-0.381241\pi\)
0.364497 + 0.931205i \(0.381241\pi\)
\(24\) 0 0
\(25\) −5.47214 −1.09443
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −9.15298 −1.69967 −0.849833 0.527052i \(-0.823297\pi\)
−0.849833 + 0.527052i \(0.823297\pi\)
\(30\) 0 0
\(31\) 4.57649i 0.821962i 0.911644 + 0.410981i \(0.134814\pi\)
−0.911644 + 0.410981i \(0.865186\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −14.8098 −2.50332
\(36\) 0 0
\(37\) 5.65685i 0.929981i 0.885316 + 0.464991i \(0.153942\pi\)
−0.885316 + 0.464991i \(0.846058\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.70820i 0.891472i −0.895165 0.445736i \(-0.852942\pi\)
0.895165 0.445736i \(-0.147058\pi\)
\(42\) 0 0
\(43\) 8.94427 1.36399 0.681994 0.731357i \(-0.261113\pi\)
0.681994 + 0.731357i \(0.261113\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.76393i 0.403161i 0.979472 + 0.201580i \(0.0646078\pi\)
−0.979472 + 0.201580i \(0.935392\pi\)
\(48\) 0 0
\(49\) −13.9443 −1.99204
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.49613 0.480230 0.240115 0.970744i \(-0.422815\pi\)
0.240115 + 0.970744i \(0.422815\pi\)
\(54\) 0 0
\(55\) −4.00000 −0.539360
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 11.7082i 1.52428i −0.647413 0.762139i \(-0.724149\pi\)
0.647413 0.762139i \(-0.275851\pi\)
\(60\) 0 0
\(61\) −0.472136 −0.0604508 −0.0302254 0.999543i \(-0.509623\pi\)
−0.0302254 + 0.999543i \(0.509623\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 9.15298 7.23607i 1.13529 0.897524i
\(66\) 0 0
\(67\) 10.2333i 1.25020i −0.780544 0.625101i \(-0.785058\pi\)
0.780544 0.625101i \(-0.214942\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.70820i 0.914796i −0.889262 0.457398i \(-0.848782\pi\)
0.889262 0.457398i \(-0.151218\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.65685 −0.644658
\(78\) 0 0
\(79\) 16.9443 1.90638 0.953190 0.302373i \(-0.0977787\pi\)
0.953190 + 0.302373i \(0.0977787\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.76393i 0.742438i −0.928545 0.371219i \(-0.878940\pi\)
0.928545 0.371219i \(-0.121060\pi\)
\(84\) 0 0
\(85\) 18.3060i 1.98556i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 15.2361i 1.61502i 0.589854 + 0.807510i \(0.299185\pi\)
−0.589854 + 0.807510i \(0.700815\pi\)
\(90\) 0 0
\(91\) 12.9443 10.2333i 1.35693 1.07275i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.49613 −0.358695
\(96\) 0 0
\(97\) 6.99226i 0.709956i −0.934875 0.354978i \(-0.884488\pi\)
0.934875 0.354978i \(-0.115512\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 14.8098 1.47363 0.736817 0.676092i \(-0.236328\pi\)
0.736817 + 0.676092i \(0.236328\pi\)
\(102\) 0 0
\(103\) −12.9443 −1.27544 −0.637719 0.770270i \(-0.720122\pi\)
−0.637719 + 0.770270i \(0.720122\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −14.8098 −1.43172 −0.715860 0.698243i \(-0.753965\pi\)
−0.715860 + 0.698243i \(0.753965\pi\)
\(108\) 0 0
\(109\) 12.6491i 1.21157i −0.795630 0.605783i \(-0.792860\pi\)
0.795630 0.605783i \(-0.207140\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −12.6491 −1.18993 −0.594964 0.803752i \(-0.702834\pi\)
−0.594964 + 0.803752i \(0.702834\pi\)
\(114\) 0 0
\(115\) 11.3137i 1.05501i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 25.8885i 2.37320i
\(120\) 0 0
\(121\) 9.47214 0.861103
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.52786i 0.136656i
\(126\) 0 0
\(127\) −8.94427 −0.793676 −0.396838 0.917889i \(-0.629892\pi\)
−0.396838 + 0.917889i \(0.629892\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 14.8098 1.29394 0.646971 0.762515i \(-0.276036\pi\)
0.646971 + 0.762515i \(0.276036\pi\)
\(132\) 0 0
\(133\) −4.94427 −0.428723
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.6525i 0.910102i 0.890465 + 0.455051i \(0.150379\pi\)
−0.890465 + 0.455051i \(0.849621\pi\)
\(138\) 0 0
\(139\) 0.944272 0.0800921 0.0400460 0.999198i \(-0.487250\pi\)
0.0400460 + 0.999198i \(0.487250\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.49613 2.76393i 0.292361 0.231132i
\(144\) 0 0
\(145\) 29.6197i 2.45978i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.18034i 0.670160i 0.942190 + 0.335080i \(0.108763\pi\)
−0.942190 + 0.335080i \(0.891237\pi\)
\(150\) 0 0
\(151\) 4.57649i 0.372430i 0.982509 + 0.186215i \(0.0596220\pi\)
−0.982509 + 0.186215i \(0.940378\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 14.8098 1.18955
\(156\) 0 0
\(157\) 6.94427 0.554213 0.277107 0.960839i \(-0.410624\pi\)
0.277107 + 0.960839i \(0.410624\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 16.0000i 1.26098i
\(162\) 0 0
\(163\) 19.3863i 1.51845i −0.650826 0.759227i \(-0.725577\pi\)
0.650826 0.759227i \(-0.274423\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.7639i 0.832938i 0.909150 + 0.416469i \(0.136733\pi\)
−0.909150 + 0.416469i \(0.863267\pi\)
\(168\) 0 0
\(169\) −3.00000 + 12.6491i −0.230769 + 0.973009i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.81758 0.594360 0.297180 0.954822i \(-0.403954\pi\)
0.297180 + 0.954822i \(0.403954\pi\)
\(174\) 0 0
\(175\) 25.0432i 1.89309i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 7.81758 0.584313 0.292157 0.956370i \(-0.405627\pi\)
0.292157 + 0.956370i \(0.405627\pi\)
\(180\) 0 0
\(181\) −14.9443 −1.11080 −0.555399 0.831584i \(-0.687435\pi\)
−0.555399 + 0.831584i \(0.687435\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 18.3060 1.34588
\(186\) 0 0
\(187\) 6.99226i 0.511324i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 26.1235 1.89023 0.945117 0.326733i \(-0.105948\pi\)
0.945117 + 0.326733i \(0.105948\pi\)
\(192\) 0 0
\(193\) 11.3137i 0.814379i −0.913344 0.407189i \(-0.866509\pi\)
0.913344 0.407189i \(-0.133491\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.18034i 0.582825i −0.956597 0.291413i \(-0.905875\pi\)
0.956597 0.291413i \(-0.0941252\pi\)
\(198\) 0 0
\(199\) −8.94427 −0.634043 −0.317021 0.948418i \(-0.602683\pi\)
−0.317021 + 0.948418i \(0.602683\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 41.8885i 2.94000i
\(204\) 0 0
\(205\) −18.4721 −1.29015
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.33540 −0.0923717
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 28.9443i 1.97398i
\(216\) 0 0
\(217\) 20.9443 1.42179
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −12.6491 16.0000i −0.850871 1.07628i
\(222\) 0 0
\(223\) 2.41577i 0.161772i −0.996723 0.0808858i \(-0.974225\pi\)
0.996723 0.0808858i \(-0.0257749\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.70820i 0.246122i 0.992399 + 0.123061i \(0.0392711\pi\)
−0.992399 + 0.123061i \(0.960729\pi\)
\(228\) 0 0
\(229\) 12.6491i 0.835877i −0.908475 0.417938i \(-0.862753\pi\)
0.908475 0.417938i \(-0.137247\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.3137 0.741186 0.370593 0.928795i \(-0.379155\pi\)
0.370593 + 0.928795i \(0.379155\pi\)
\(234\) 0 0
\(235\) 8.94427 0.583460
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5.81966i 0.376443i −0.982127 0.188221i \(-0.939728\pi\)
0.982127 0.188221i \(-0.0602722\pi\)
\(240\) 0 0
\(241\) 6.99226i 0.450411i −0.974311 0.225205i \(-0.927695\pi\)
0.974311 0.225205i \(-0.0723053\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 45.1246i 2.88291i
\(246\) 0 0
\(247\) 3.05573 2.41577i 0.194431 0.153711i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.99226 0.441347 0.220674 0.975348i \(-0.429174\pi\)
0.220674 + 0.975348i \(0.429174\pi\)
\(252\) 0 0
\(253\) 4.32145i 0.271687i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −11.3137 −0.705730 −0.352865 0.935674i \(-0.614792\pi\)
−0.352865 + 0.935674i \(0.614792\pi\)
\(258\) 0 0
\(259\) 25.8885 1.60864
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 22.6274 1.39527 0.697633 0.716455i \(-0.254237\pi\)
0.697633 + 0.716455i \(0.254237\pi\)
\(264\) 0 0
\(265\) 11.3137i 0.694996i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 16.1452 0.984393 0.492196 0.870484i \(-0.336194\pi\)
0.492196 + 0.870484i \(0.336194\pi\)
\(270\) 0 0
\(271\) 18.0509i 1.09652i 0.836309 + 0.548258i \(0.184709\pi\)
−0.836309 + 0.548258i \(0.815291\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.76393i 0.407880i
\(276\) 0 0
\(277\) 10.0000 0.600842 0.300421 0.953807i \(-0.402873\pi\)
0.300421 + 0.953807i \(0.402873\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 21.7082i 1.29500i 0.762064 + 0.647501i \(0.224186\pi\)
−0.762064 + 0.647501i \(0.775814\pi\)
\(282\) 0 0
\(283\) 24.0000 1.42665 0.713326 0.700832i \(-0.247188\pi\)
0.713326 + 0.700832i \(0.247188\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −26.1235 −1.54202
\(288\) 0 0
\(289\) 15.0000 0.882353
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.70820i 0.0997943i 0.998754 + 0.0498972i \(0.0158894\pi\)
−0.998754 + 0.0498972i \(0.984111\pi\)
\(294\) 0 0
\(295\) −37.8885 −2.20596
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 7.81758 + 9.88854i 0.452102 + 0.571869i
\(300\) 0 0
\(301\) 40.9334i 2.35936i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.52786i 0.0874852i
\(306\) 0 0
\(307\) 3.24109i 0.184979i −0.995714 0.0924894i \(-0.970518\pi\)
0.995714 0.0924894i \(-0.0294824\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −33.1158 −1.87782 −0.938912 0.344156i \(-0.888165\pi\)
−0.938912 + 0.344156i \(0.888165\pi\)
\(312\) 0 0
\(313\) −11.5279 −0.651593 −0.325797 0.945440i \(-0.605632\pi\)
−0.325797 + 0.945440i \(0.605632\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 27.2361i 1.52973i −0.644191 0.764865i \(-0.722806\pi\)
0.644191 0.764865i \(-0.277194\pi\)
\(318\) 0 0
\(319\) 11.3137i 0.633446i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.11146i 0.340051i
\(324\) 0 0
\(325\) −12.2361 15.4775i −0.678735 0.858539i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 12.6491 0.697368
\(330\) 0 0
\(331\) 10.2333i 0.562476i −0.959638 0.281238i \(-0.909255\pi\)
0.959638 0.281238i \(-0.0907450\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −33.1158 −1.80931
\(336\) 0 0
\(337\) 13.4164 0.730838 0.365419 0.930843i \(-0.380926\pi\)
0.365419 + 0.930843i \(0.380926\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 5.65685 0.306336
\(342\) 0 0
\(343\) 31.7804i 1.71598i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.99226 0.375364 0.187682 0.982230i \(-0.439903\pi\)
0.187682 + 0.982230i \(0.439903\pi\)
\(348\) 0 0
\(349\) 23.9628i 1.28270i 0.767248 + 0.641350i \(0.221625\pi\)
−0.767248 + 0.641350i \(0.778375\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 7.23607i 0.385137i 0.981284 + 0.192569i \(0.0616818\pi\)
−0.981284 + 0.192569i \(0.938318\pi\)
\(354\) 0 0
\(355\) −24.9443 −1.32390
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2.18034i 0.115074i −0.998343 0.0575370i \(-0.981675\pi\)
0.998343 0.0575370i \(-0.0183247\pi\)
\(360\) 0 0
\(361\) 17.8328 0.938569
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −20.9443 −1.09328 −0.546641 0.837367i \(-0.684094\pi\)
−0.546641 + 0.837367i \(0.684094\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 16.0000i 0.830679i
\(372\) 0 0
\(373\) 29.4164 1.52312 0.761562 0.648092i \(-0.224433\pi\)
0.761562 + 0.648092i \(0.224433\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −20.4667 25.8885i −1.05409 1.33333i
\(378\) 0 0
\(379\) 1.08036i 0.0554945i −0.999615 0.0277473i \(-0.991167\pi\)
0.999615 0.0277473i \(-0.00883336\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 26.1803i 1.33775i −0.743374 0.668876i \(-0.766776\pi\)
0.743374 0.668876i \(-0.233224\pi\)
\(384\) 0 0
\(385\) 18.3060i 0.932958i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 20.4667 1.03770 0.518851 0.854865i \(-0.326360\pi\)
0.518851 + 0.854865i \(0.326360\pi\)
\(390\) 0 0
\(391\) −19.7771 −1.00017
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 54.8328i 2.75894i
\(396\) 0 0
\(397\) 19.6414i 0.985772i 0.870094 + 0.492886i \(0.164058\pi\)
−0.870094 + 0.492886i \(0.835942\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 18.2918i 0.913449i 0.889608 + 0.456724i \(0.150977\pi\)
−0.889608 + 0.456724i \(0.849023\pi\)
\(402\) 0 0
\(403\) −12.9443 + 10.2333i −0.644800 + 0.509759i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6.99226 0.346593
\(408\) 0 0
\(409\) 29.6197i 1.46460i −0.680983 0.732299i \(-0.738447\pi\)
0.680983 0.732299i \(-0.261553\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −53.5825 −2.63662
\(414\) 0 0
\(415\) −21.8885 −1.07447
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 28.7943 1.40670 0.703348 0.710846i \(-0.251688\pi\)
0.703348 + 0.710846i \(0.251688\pi\)
\(420\) 0 0
\(421\) 5.65685i 0.275698i 0.990453 + 0.137849i \(0.0440189\pi\)
−0.990453 + 0.137849i \(0.955981\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 30.9551 1.50154
\(426\) 0 0
\(427\) 2.16073i 0.104565i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 31.7082i 1.52733i 0.645612 + 0.763665i \(0.276602\pi\)
−0.645612 + 0.763665i \(0.723398\pi\)
\(432\) 0 0
\(433\) −17.4164 −0.836979 −0.418490 0.908222i \(-0.637440\pi\)
−0.418490 + 0.908222i \(0.637440\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.77709i 0.180683i
\(438\) 0 0
\(439\) 20.9443 0.999616 0.499808 0.866136i \(-0.333404\pi\)
0.499808 + 0.866136i \(0.333404\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −21.8021 −1.03585 −0.517924 0.855426i \(-0.673295\pi\)
−0.517924 + 0.855426i \(0.673295\pi\)
\(444\) 0 0
\(445\) 49.3050 2.33728
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 29.7082i 1.40202i −0.713153 0.701008i \(-0.752734\pi\)
0.713153 0.701008i \(-0.247266\pi\)
\(450\) 0 0
\(451\) −7.05573 −0.332241
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −33.1158 41.8885i −1.55249 1.96377i
\(456\) 0 0
\(457\) 6.99226i 0.327084i 0.986536 + 0.163542i \(0.0522919\pi\)
−0.986536 + 0.163542i \(0.947708\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 11.2361i 0.523316i −0.965161 0.261658i \(-0.915731\pi\)
0.965161 0.261658i \(-0.0842692\pi\)
\(462\) 0 0
\(463\) 29.3646i 1.36469i 0.731030 + 0.682345i \(0.239040\pi\)
−0.731030 + 0.682345i \(0.760960\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −22.6274 −1.04707 −0.523536 0.852004i \(-0.675387\pi\)
−0.523536 + 0.852004i \(0.675387\pi\)
\(468\) 0 0
\(469\) −46.8328 −2.16254
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 11.0557i 0.508343i
\(474\) 0 0
\(475\) 5.91189i 0.271256i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 29.2361i 1.33583i 0.744238 + 0.667915i \(0.232813\pi\)
−0.744238 + 0.667915i \(0.767187\pi\)
\(480\) 0 0
\(481\) −16.0000 + 12.6491i −0.729537 + 0.576750i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −22.6274 −1.02746
\(486\) 0 0
\(487\) 20.7217i 0.938991i −0.882935 0.469496i \(-0.844436\pi\)
0.882935 0.469496i \(-0.155564\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 6.99226 0.315556 0.157778 0.987475i \(-0.449567\pi\)
0.157778 + 0.987475i \(0.449567\pi\)
\(492\) 0 0
\(493\) 51.7771 2.33192
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −35.2765 −1.58237
\(498\) 0 0
\(499\) 35.5316i 1.59061i −0.606209 0.795306i \(-0.707310\pi\)
0.606209 0.795306i \(-0.292690\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 47.9256i 2.13266i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 9.70820i 0.430309i 0.976580 + 0.215154i \(0.0690254\pi\)
−0.976580 + 0.215154i \(0.930975\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 41.8885i 1.84583i
\(516\) 0 0
\(517\) 3.41641 0.150253
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −28.2843 −1.23916 −0.619578 0.784935i \(-0.712696\pi\)
−0.619578 + 0.784935i \(0.712696\pi\)
\(522\) 0 0
\(523\) −7.05573 −0.308525 −0.154263 0.988030i \(-0.549300\pi\)
−0.154263 + 0.988030i \(0.549300\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 25.8885i 1.12772i
\(528\) 0 0
\(529\) −10.7771 −0.468569
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 16.1452 12.7639i 0.699328 0.552867i
\(534\) 0 0
\(535\) 47.9256i 2.07201i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 17.2361i 0.742410i
\(540\) 0 0
\(541\) 35.2765i 1.51666i −0.651873 0.758328i \(-0.726016\pi\)
0.651873 0.758328i \(-0.273984\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −40.9334 −1.75339
\(546\) 0 0
\(547\) −8.94427 −0.382429 −0.191215 0.981548i \(-0.561243\pi\)
−0.191215 + 0.981548i \(0.561243\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 9.88854i 0.421266i
\(552\) 0 0
\(553\) 77.5453i 3.29756i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 15.8197i 0.670301i 0.942165 + 0.335150i \(0.108787\pi\)
−0.942165 + 0.335150i \(0.891213\pi\)
\(558\) 0 0
\(559\) 20.0000 + 25.2982i 0.845910 + 1.07000i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −28.7943 −1.21354 −0.606769 0.794879i \(-0.707535\pi\)
−0.606769 + 0.794879i \(0.707535\pi\)
\(564\) 0 0
\(565\) 40.9334i 1.72208i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15.6352 0.655460 0.327730 0.944771i \(-0.393716\pi\)
0.327730 + 0.944771i \(0.393716\pi\)
\(570\) 0 0
\(571\) 24.0000 1.00437 0.502184 0.864761i \(-0.332530\pi\)
0.502184 + 0.864761i \(0.332530\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −19.1313 −0.797830
\(576\) 0 0
\(577\) 18.3060i 0.762087i 0.924557 + 0.381044i \(0.124435\pi\)
−0.924557 + 0.381044i \(0.875565\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −30.9551 −1.28423
\(582\) 0 0
\(583\) 4.32145i 0.178976i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 47.4853i 1.95993i −0.199175 0.979964i \(-0.563826\pi\)
0.199175 0.979964i \(-0.436174\pi\)
\(588\) 0 0
\(589\) 4.94427 0.203725
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 7.23607i 0.297150i 0.988901 + 0.148575i \(0.0474686\pi\)
−0.988901 + 0.148575i \(0.952531\pi\)
\(594\) 0 0
\(595\) 83.7771 3.43453
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 29.6197 1.21023 0.605114 0.796139i \(-0.293128\pi\)
0.605114 + 0.796139i \(0.293128\pi\)
\(600\) 0 0
\(601\) 20.4721 0.835076 0.417538 0.908659i \(-0.362893\pi\)
0.417538 + 0.908659i \(0.362893\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 30.6525i 1.24620i
\(606\) 0 0
\(607\) −28.9443 −1.17481 −0.587406 0.809292i \(-0.699851\pi\)
−0.587406 + 0.809292i \(0.699851\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −7.81758 + 6.18034i −0.316265 + 0.250030i
\(612\) 0 0
\(613\) 8.32766i 0.336351i −0.985757 0.168175i \(-0.946212\pi\)
0.985757 0.168175i \(-0.0537875\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 31.5967i 1.27204i −0.771674 0.636019i \(-0.780580\pi\)
0.771674 0.636019i \(-0.219420\pi\)
\(618\) 0 0
\(619\) 35.5316i 1.42813i −0.700077 0.714067i \(-0.746851\pi\)
0.700077 0.714067i \(-0.253149\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 69.7277 2.79358
\(624\) 0 0
\(625\) −22.4164 −0.896656
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 32.0000i 1.27592i
\(630\) 0 0
\(631\) 38.5176i 1.53336i 0.642028 + 0.766681i \(0.278093\pi\)
−0.642028 + 0.766681i \(0.721907\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 28.9443i 1.14862i
\(636\) 0 0
\(637\) −31.1803 39.4404i −1.23541 1.56268i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 28.2843 1.11716 0.558581 0.829450i \(-0.311346\pi\)
0.558581 + 0.829450i \(0.311346\pi\)
\(642\) 0 0
\(643\) 19.3863i 0.764522i 0.924054 + 0.382261i \(0.124854\pi\)
−0.924054 + 0.382261i \(0.875146\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6.99226 0.274894 0.137447 0.990509i \(-0.456110\pi\)
0.137447 + 0.990509i \(0.456110\pi\)
\(648\) 0 0
\(649\) −14.4721 −0.568081
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 45.7649 1.79092 0.895460 0.445143i \(-0.146847\pi\)
0.895460 + 0.445143i \(0.146847\pi\)
\(654\) 0 0
\(655\) 47.9256i 1.87261i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 30.9551i 1.20401i 0.798491 + 0.602006i \(0.205632\pi\)
−0.798491 + 0.602006i \(0.794368\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 16.0000i 0.620453i
\(666\) 0 0
\(667\) −32.0000 −1.23904
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0.583592i 0.0225293i
\(672\) 0 0
\(673\) −38.9443 −1.50119 −0.750596 0.660762i \(-0.770233\pi\)
−0.750596 + 0.660762i \(0.770233\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −14.8098 −0.569188 −0.284594 0.958648i \(-0.591859\pi\)
−0.284594 + 0.958648i \(0.591859\pi\)
\(678\) 0 0
\(679\) −32.0000 −1.22805
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 5.59675i 0.214154i 0.994251 + 0.107077i \(0.0341491\pi\)
−0.994251 + 0.107077i \(0.965851\pi\)
\(684\) 0 0
\(685\) 34.4721 1.31711
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 7.81758 + 9.88854i 0.297826 + 0.376724i
\(690\) 0 0
\(691\) 10.2333i 0.389295i −0.980873 0.194647i \(-0.937644\pi\)
0.980873 0.194647i \(-0.0623563\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.05573i 0.115910i
\(696\) 0 0
\(697\) 32.2905i 1.22309i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −20.4667 −0.773016 −0.386508 0.922286i \(-0.626319\pi\)
−0.386508 + 0.922286i \(0.626319\pi\)
\(702\) 0 0
\(703\) 6.11146 0.230498
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 67.7771i 2.54902i
\(708\) 0 0
\(709\) 28.2843i 1.06224i 0.847297 + 0.531119i \(0.178228\pi\)
−0.847297 + 0.531119i \(0.821772\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 16.0000i 0.599205i
\(714\) 0 0
\(715\) −8.94427 11.3137i −0.334497 0.423109i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 19.1313 0.713477 0.356738 0.934204i \(-0.383889\pi\)
0.356738 + 0.934204i \(0.383889\pi\)
\(720\) 0 0
\(721\) 59.2393i 2.20619i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 50.0864 1.86016
\(726\) 0 0
\(727\) 36.7214 1.36192 0.680960 0.732321i \(-0.261563\pi\)
0.680960 + 0.732321i \(0.261563\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −50.5964 −1.87138
\(732\) 0 0
\(733\) 26.6336i 0.983735i 0.870670 + 0.491868i \(0.163686\pi\)
−0.870670 + 0.491868i \(0.836314\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −12.6491 −0.465936
\(738\) 0 0
\(739\) 3.75117i 0.137989i 0.997617 + 0.0689945i \(0.0219791\pi\)
−0.997617 + 0.0689945i \(0.978021\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 31.1246i 1.14185i 0.821002 + 0.570926i \(0.193416\pi\)
−0.821002 + 0.570926i \(0.806584\pi\)
\(744\) 0 0
\(745\) 26.4721 0.969864
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 67.7771i 2.47652i
\(750\) 0 0
\(751\) −4.94427 −0.180419 −0.0902095 0.995923i \(-0.528754\pi\)
−0.0902095 + 0.995923i \(0.528754\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 14.8098 0.538985
\(756\) 0 0
\(757\) 14.5836 0.530050 0.265025 0.964242i \(-0.414620\pi\)
0.265025 + 0.964242i \(0.414620\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 10.6525i 0.386152i 0.981184 + 0.193076i \(0.0618464\pi\)
−0.981184 + 0.193076i \(0.938154\pi\)
\(762\) 0 0
\(763\) −57.8885 −2.09571
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 33.1158 26.1803i 1.19574 0.945317i
\(768\) 0 0
\(769\) 11.3137i 0.407983i 0.978973 + 0.203991i \(0.0653915\pi\)
−0.978973 + 0.203991i \(0.934609\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 29.1246i 1.04754i 0.851860 + 0.523770i \(0.175475\pi\)
−0.851860 + 0.523770i \(0.824525\pi\)
\(774\) 0 0
\(775\) 25.0432i 0.899578i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −6.16693 −0.220953
\(780\) 0 0
\(781\) −9.52786 −0.340934
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 22.4721i 0.802065i
\(786\) 0 0
\(787\) 30.7000i 1.09434i 0.837022 + 0.547169i \(0.184295\pi\)
−0.837022 + 0.547169i \(0.815705\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 57.8885i 2.05828i
\(792\) 0 0
\(793\) −1.05573 1.33540i −0.0374900 0.0474215i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −13.4744 −0.477289 −0.238644 0.971107i \(-0.576703\pi\)
−0.238644 + 0.971107i \(0.576703\pi\)
\(798\) 0 0
\(799\) 15.6352i 0.553132i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −51.7771 −1.82490
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −8.32766 −0.292785 −0.146392 0.989227i \(-0.546766\pi\)
−0.146392 + 0.989227i \(0.546766\pi\)
\(810\) 0 0
\(811\) 5.40182i 0.189683i −0.995492 0.0948417i \(-0.969766\pi\)
0.995492 0.0948417i \(-0.0302345\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −62.7355 −2.19753
\(816\) 0 0
\(817\) 9.66306i 0.338068i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 50.0689i 1.74742i 0.486451 + 0.873708i \(0.338291\pi\)
−0.486451 + 0.873708i \(0.661709\pi\)
\(822\) 0 0
\(823\) −4.94427 −0.172346 −0.0861732 0.996280i \(-0.527464\pi\)
−0.0861732 + 0.996280i \(0.527464\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 11.7082i 0.407134i 0.979061 + 0.203567i \(0.0652535\pi\)
−0.979061 + 0.203567i \(0.934747\pi\)
\(828\) 0 0
\(829\) −15.5279 −0.539305 −0.269653 0.962958i \(-0.586909\pi\)
−0.269653 + 0.962958i \(0.586909\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 78.8807 2.73305
\(834\) 0 0
\(835\) 34.8328 1.20544
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 41.0132i 1.41593i 0.706247 + 0.707966i \(0.250387\pi\)
−0.706247 + 0.707966i \(0.749613\pi\)
\(840\) 0 0
\(841\) 54.7771 1.88887
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 40.9334 + 9.70820i 1.40815 + 0.333972i
\(846\) 0 0
\(847\) 43.3491i 1.48949i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 19.7771i 0.677950i
\(852\) 0 0
\(853\) 16.9706i 0.581061i 0.956866 + 0.290531i \(0.0938318\pi\)
−0.956866 + 0.290531i \(0.906168\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 18.3060 0.625320 0.312660 0.949865i \(-0.398780\pi\)
0.312660 + 0.949865i \(0.398780\pi\)
\(858\) 0 0
\(859\) 9.88854 0.337393 0.168696 0.985668i \(-0.446044\pi\)
0.168696 + 0.985668i \(0.446044\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 22.5410i 0.767305i 0.923477 + 0.383653i \(0.125334\pi\)
−0.923477 + 0.383653i \(0.874666\pi\)
\(864\) 0 0
\(865\) 25.2982i 0.860165i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 20.9443i 0.710486i
\(870\) 0 0
\(871\) 28.9443 22.8825i 0.980739 0.775342i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 6.99226 0.236381
\(876\) 0 0
\(877\) 12.6491i 0.427130i −0.976929 0.213565i \(-0.931492\pi\)
0.976929 0.213565i \(-0.0685075\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 50.5964 1.70464 0.852319 0.523023i \(-0.175196\pi\)
0.852319 + 0.523023i \(0.175196\pi\)
\(882\) 0 0
\(883\) −1.88854 −0.0635546 −0.0317773 0.999495i \(-0.510117\pi\)
−0.0317773 + 0.999495i \(0.510117\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −10.4884 −0.352165 −0.176083 0.984375i \(-0.556343\pi\)
−0.176083 + 0.984375i \(0.556343\pi\)
\(888\) 0 0
\(889\) 40.9334i 1.37286i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.98605 0.0999244
\(894\) 0 0
\(895\) 25.2982i 0.845626i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 41.8885i 1.39706i
\(900\) 0 0
\(901\) −19.7771 −0.658870
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 48.3607i 1.60756i
\(906\) 0 0
\(907\) 22.1115 0.734199 0.367099 0.930182i \(-0.380351\pi\)
0.367099 + 0.930182i \(0.380351\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 26.1235 0.865512 0.432756 0.901511i \(-0.357541\pi\)
0.432756 + 0.901511i \(0.357541\pi\)
\(912\) 0 0
\(913\) −8.36068 −0.276698
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 67.7771i 2.23820i
\(918\) 0 0
\(919\) 36.7214 1.21133 0.605663 0.795721i \(-0.292908\pi\)
0.605663 + 0.795721i \(0.292908\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 21.8021 17.2361i 0.717625 0.567332i
\(924\) 0 0
\(925\) 30.9551i 1.01780i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 17.1246i 0.561840i 0.959731 + 0.280920i \(0.0906396\pi\)
−0.959731 + 0.280920i \(0.909360\pi\)
\(930\) 0 0
\(931\) 15.0649i 0.493731i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 22.6274 0.739996
\(936\) 0 0
\(937\) −15.5279 −0.507273 −0.253637 0.967300i \(-0.581627\pi\)
−0.253637 + 0.967300i \(0.581627\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 32.1803i 1.04905i 0.851395 + 0.524525i \(0.175757\pi\)
−0.851395 + 0.524525i \(0.824243\pi\)
\(942\) 0 0
\(943\) 19.9566i 0.649877i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.70820i 0.120500i −0.998183 0.0602502i \(-0.980810\pi\)
0.998183 0.0602502i \(-0.0191899\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −54.9179 −1.77897 −0.889483 0.456969i \(-0.848935\pi\)
−0.889483 + 0.456969i \(0.848935\pi\)
\(954\) 0 0
\(955\) 84.5376i 2.73557i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 48.7510 1.57425
\(960\) 0 0
\(961\) 10.0557 0.324378
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −36.6119 −1.17858
\(966\) 0 0
\(967\) 2.41577i 0.0776858i −0.999245 0.0388429i \(-0.987633\pi\)
0.999245 0.0388429i \(-0.0123672\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 22.6274 0.726148 0.363074 0.931760i \(-0.381727\pi\)
0.363074 + 0.931760i \(0.381727\pi\)
\(972\) 0 0
\(973\) 4.32145i 0.138539i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 18.6525i 0.596746i 0.954449 + 0.298373i \(0.0964439\pi\)
−0.954449 + 0.298373i \(0.903556\pi\)
\(978\) 0 0
\(979\) 18.8328 0.601899
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 56.4296i 1.79982i −0.436072 0.899912i \(-0.643631\pi\)
0.436072 0.899912i \(-0.356369\pi\)
\(984\) 0 0
\(985\) −26.4721 −0.843472
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 31.2703 0.994338
\(990\) 0 0
\(991\) −52.9443 −1.68183 −0.840915 0.541167i \(-0.817983\pi\)
−0.840915 + 0.541167i \(0.817983\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 28.9443i 0.917595i
\(996\) 0 0
\(997\) −13.7771 −0.436325 −0.218162 0.975912i \(-0.570006\pi\)
−0.218162 + 0.975912i \(0.570006\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.c.e.649.1 8
3.2 odd 2 inner 936.2.c.e.649.7 yes 8
4.3 odd 2 1872.2.c.l.1585.2 8
12.11 even 2 1872.2.c.l.1585.8 8
13.12 even 2 inner 936.2.c.e.649.8 yes 8
39.38 odd 2 inner 936.2.c.e.649.2 yes 8
52.51 odd 2 1872.2.c.l.1585.7 8
156.155 even 2 1872.2.c.l.1585.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.c.e.649.1 8 1.1 even 1 trivial
936.2.c.e.649.2 yes 8 39.38 odd 2 inner
936.2.c.e.649.7 yes 8 3.2 odd 2 inner
936.2.c.e.649.8 yes 8 13.12 even 2 inner
1872.2.c.l.1585.1 8 156.155 even 2
1872.2.c.l.1585.2 8 4.3 odd 2
1872.2.c.l.1585.7 8 52.51 odd 2
1872.2.c.l.1585.8 8 12.11 even 2