Properties

Label 2-936-13.12-c1-0-17
Degree $2$
Conductor $936$
Sign $-0.784 + 0.620i$
Analytic cond. $7.47399$
Root an. cond. $2.73386$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.23i·5-s − 4.57i·7-s − 1.23i·11-s + (2.23 + 2.82i)13-s − 5.65·17-s − 1.08i·19-s + 3.49·23-s − 5.47·25-s − 9.15·29-s + 4.57i·31-s − 14.8·35-s + 5.65i·37-s − 5.70i·41-s + 8.94·43-s + 2.76i·47-s + ⋯
L(s)  = 1  − 1.44i·5-s − 1.72i·7-s − 0.372i·11-s + (0.620 + 0.784i)13-s − 1.37·17-s − 0.247i·19-s + 0.728·23-s − 1.09·25-s − 1.69·29-s + 0.821i·31-s − 2.50·35-s + 0.929i·37-s − 0.891i·41-s + 1.36·43-s + 0.403i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.784 + 0.620i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.784 + 0.620i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(936\)    =    \(2^{3} \cdot 3^{2} \cdot 13\)
Sign: $-0.784 + 0.620i$
Analytic conductor: \(7.47399\)
Root analytic conductor: \(2.73386\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{936} (649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 936,\ (\ :1/2),\ -0.784 + 0.620i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.414175 - 1.19173i\)
\(L(\frac12)\) \(\approx\) \(0.414175 - 1.19173i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + (-2.23 - 2.82i)T \)
good5 \( 1 + 3.23iT - 5T^{2} \)
7 \( 1 + 4.57iT - 7T^{2} \)
11 \( 1 + 1.23iT - 11T^{2} \)
17 \( 1 + 5.65T + 17T^{2} \)
19 \( 1 + 1.08iT - 19T^{2} \)
23 \( 1 - 3.49T + 23T^{2} \)
29 \( 1 + 9.15T + 29T^{2} \)
31 \( 1 - 4.57iT - 31T^{2} \)
37 \( 1 - 5.65iT - 37T^{2} \)
41 \( 1 + 5.70iT - 41T^{2} \)
43 \( 1 - 8.94T + 43T^{2} \)
47 \( 1 - 2.76iT - 47T^{2} \)
53 \( 1 - 3.49T + 53T^{2} \)
59 \( 1 + 11.7iT - 59T^{2} \)
61 \( 1 + 0.472T + 61T^{2} \)
67 \( 1 + 10.2iT - 67T^{2} \)
71 \( 1 + 7.70iT - 71T^{2} \)
73 \( 1 - 73T^{2} \)
79 \( 1 - 16.9T + 79T^{2} \)
83 \( 1 + 6.76iT - 83T^{2} \)
89 \( 1 - 15.2iT - 89T^{2} \)
97 \( 1 + 6.99iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.463882339699247855379806420453, −9.008600239249340245377003526900, −8.132374588141535124806760948853, −7.19000027634811692116507058201, −6.40867365754002606513564113671, −5.09657142650075933718599508208, −4.37231684859331620534169954490, −3.64740056402293089991722686318, −1.68923489789662812030824490776, −0.59089290338068428532584710835, 2.19162620061660484556994145304, 2.80196077961847905531398666849, 3.96971296506311400058308649747, 5.46201196152039593459758362742, 6.04193141510908078809741373484, 6.93065338843268042146262681252, 7.81863948535289625820677115073, 8.862165805946161208810200141134, 9.433568733929300631426892102153, 10.56358952367817386444860941209

Graph of the $Z$-function along the critical line