Properties

Label 93.4.c.b.92.12
Level $93$
Weight $4$
Character 93.92
Analytic conductor $5.487$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [93,4,Mod(92,93)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("93.92"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(93, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 93 = 3 \cdot 31 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 93.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.48717763053\)
Analytic rank: \(0\)
Dimension: \(28\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 92.12
Character \(\chi\) \(=\) 93.92
Dual form 93.4.c.b.92.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.95427i q^{2} +(4.50778 + 2.58456i) q^{3} +4.18081 q^{4} -11.2496i q^{5} +(5.05094 - 8.80943i) q^{6} -8.06707 q^{7} -23.8046i q^{8} +(13.6401 + 23.3012i) q^{9} -21.9848 q^{10} +34.3236 q^{11} +(18.8462 + 10.8056i) q^{12} +2.46240i q^{13} +15.7653i q^{14} +(29.0753 - 50.7108i) q^{15} -13.0743 q^{16} +48.4699 q^{17} +(45.5370 - 26.6565i) q^{18} -109.439 q^{19} -47.0325i q^{20} +(-36.3646 - 20.8498i) q^{21} -67.0778i q^{22} -19.0799 q^{23} +(61.5246 - 107.306i) q^{24} -1.55398 q^{25} +4.81220 q^{26} +(1.26292 + 140.290i) q^{27} -33.7269 q^{28} -220.336 q^{29} +(-99.1028 - 56.8212i) q^{30} +(153.119 + 79.6593i) q^{31} -164.886i q^{32} +(154.723 + 88.7115i) q^{33} -94.7234i q^{34} +90.7515i q^{35} +(57.0266 + 97.4181i) q^{36} +338.536i q^{37} +213.873i q^{38} +(-6.36422 + 11.0999i) q^{39} -267.793 q^{40} -66.0955i q^{41} +(-40.7463 + 71.0663i) q^{42} +413.073i q^{43} +143.501 q^{44} +(262.130 - 153.446i) q^{45} +37.2874i q^{46} +175.739i q^{47} +(-58.9362 - 33.7914i) q^{48} -277.922 q^{49} +3.03691i q^{50} +(218.491 + 125.273i) q^{51} +10.2948i q^{52} -542.770 q^{53} +(274.166 - 2.46810i) q^{54} -386.128i q^{55} +192.034i q^{56} +(-493.325 - 282.851i) q^{57} +430.596i q^{58} +189.683i q^{59} +(121.558 - 212.012i) q^{60} -589.699i q^{61} +(155.676 - 299.236i) q^{62} +(-110.036 - 187.973i) q^{63} -426.828 q^{64} +27.7010 q^{65} +(173.367 - 302.372i) q^{66} +181.116 q^{67} +202.643 q^{68} +(-86.0081 - 49.3133i) q^{69} +177.353 q^{70} -347.339i q^{71} +(554.678 - 324.697i) q^{72} +363.492i q^{73} +661.593 q^{74} +(-7.00500 - 4.01636i) q^{75} -457.542 q^{76} -276.891 q^{77} +(21.6923 + 12.4374i) q^{78} -66.8156i q^{79} +147.081i q^{80} +(-356.896 + 635.662i) q^{81} -129.169 q^{82} +574.916 q^{83} +(-152.033 - 87.1693i) q^{84} -545.268i q^{85} +807.259 q^{86} +(-993.224 - 569.471i) q^{87} -817.062i q^{88} +103.425 q^{89} +(-299.875 - 512.274i) q^{90} -19.8643i q^{91} -79.7696 q^{92} +(484.341 + 754.832i) q^{93} +343.442 q^{94} +1231.14i q^{95} +(426.159 - 743.271i) q^{96} +1145.19 q^{97} +543.137i q^{98} +(468.177 + 799.783i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 144 q^{4} - 64 q^{7} + 20 q^{9} - 8 q^{10} + 248 q^{16} + 88 q^{18} + 308 q^{19} - 840 q^{25} - 420 q^{28} + 328 q^{31} - 180 q^{33} + 540 q^{36} + 1152 q^{39} + 44 q^{40} - 1568 q^{45} - 84 q^{49}+ \cdots - 988 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/93\mathbb{Z}\right)^\times\).

\(n\) \(32\) \(34\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.95427i 0.690940i −0.938430 0.345470i \(-0.887719\pi\)
0.938430 0.345470i \(-0.112281\pi\)
\(3\) 4.50778 + 2.58456i 0.867522 + 0.497399i
\(4\) 4.18081 0.522601
\(5\) 11.2496i 1.00620i −0.864229 0.503098i \(-0.832193\pi\)
0.864229 0.503098i \(-0.167807\pi\)
\(6\) 5.05094 8.80943i 0.343673 0.599406i
\(7\) −8.06707 −0.435581 −0.217791 0.975996i \(-0.569885\pi\)
−0.217791 + 0.975996i \(0.569885\pi\)
\(8\) 23.8046i 1.05203i
\(9\) 13.6401 + 23.3012i 0.505188 + 0.863009i
\(10\) −21.9848 −0.695222
\(11\) 34.3236 0.940815 0.470407 0.882449i \(-0.344107\pi\)
0.470407 + 0.882449i \(0.344107\pi\)
\(12\) 18.8462 + 10.8056i 0.453368 + 0.259941i
\(13\) 2.46240i 0.0525343i 0.999655 + 0.0262672i \(0.00836206\pi\)
−0.999655 + 0.0262672i \(0.991638\pi\)
\(14\) 15.7653i 0.300961i
\(15\) 29.0753 50.7108i 0.500481 0.872898i
\(16\) −13.0743 −0.204287
\(17\) 48.4699 0.691510 0.345755 0.938325i \(-0.387623\pi\)
0.345755 + 0.938325i \(0.387623\pi\)
\(18\) 45.5370 26.6565i 0.596288 0.349055i
\(19\) −109.439 −1.32142 −0.660709 0.750642i \(-0.729744\pi\)
−0.660709 + 0.750642i \(0.729744\pi\)
\(20\) 47.0325i 0.525840i
\(21\) −36.3646 20.8498i −0.377876 0.216658i
\(22\) 67.0778i 0.650047i
\(23\) −19.0799 −0.172976 −0.0864878 0.996253i \(-0.527564\pi\)
−0.0864878 + 0.996253i \(0.527564\pi\)
\(24\) 61.5246 107.306i 0.523277 0.912656i
\(25\) −1.55398 −0.0124318
\(26\) 4.81220 0.0362981
\(27\) 1.26292 + 140.290i 0.00900185 + 0.999959i
\(28\) −33.7269 −0.227635
\(29\) −220.336 −1.41087 −0.705436 0.708773i \(-0.749249\pi\)
−0.705436 + 0.708773i \(0.749249\pi\)
\(30\) −99.1028 56.8212i −0.603120 0.345803i
\(31\) 153.119 + 79.6593i 0.887128 + 0.461524i
\(32\) 164.886i 0.910877i
\(33\) 154.723 + 88.7115i 0.816177 + 0.467960i
\(34\) 94.7234i 0.477792i
\(35\) 90.7515i 0.438280i
\(36\) 57.0266 + 97.4181i 0.264012 + 0.451010i
\(37\) 338.536i 1.50419i 0.659054 + 0.752095i \(0.270957\pi\)
−0.659054 + 0.752095i \(0.729043\pi\)
\(38\) 213.873i 0.913021i
\(39\) −6.36422 + 11.0999i −0.0261305 + 0.0455747i
\(40\) −267.793 −1.05855
\(41\) 66.0955i 0.251765i −0.992045 0.125883i \(-0.959824\pi\)
0.992045 0.125883i \(-0.0401763\pi\)
\(42\) −40.7463 + 71.0663i −0.149698 + 0.261090i
\(43\) 413.073i 1.46496i 0.680791 + 0.732478i \(0.261636\pi\)
−0.680791 + 0.732478i \(0.738364\pi\)
\(44\) 143.501 0.491671
\(45\) 262.130 153.446i 0.868357 0.508319i
\(46\) 37.2874i 0.119516i
\(47\) 175.739i 0.545408i 0.962098 + 0.272704i \(0.0879180\pi\)
−0.962098 + 0.272704i \(0.912082\pi\)
\(48\) −58.9362 33.7914i −0.177223 0.101612i
\(49\) −277.922 −0.810269
\(50\) 3.03691i 0.00858967i
\(51\) 218.491 + 125.273i 0.599900 + 0.343957i
\(52\) 10.2948i 0.0274545i
\(53\) −542.770 −1.40670 −0.703351 0.710843i \(-0.748314\pi\)
−0.703351 + 0.710843i \(0.748314\pi\)
\(54\) 274.166 2.46810i 0.690912 0.00621974i
\(55\) 386.128i 0.946645i
\(56\) 192.034i 0.458243i
\(57\) −493.325 282.851i −1.14636 0.657272i
\(58\) 430.596i 0.974829i
\(59\) 189.683i 0.418552i 0.977857 + 0.209276i \(0.0671107\pi\)
−0.977857 + 0.209276i \(0.932889\pi\)
\(60\) 121.558 212.012i 0.261552 0.456177i
\(61\) 589.699i 1.23776i −0.785486 0.618879i \(-0.787587\pi\)
0.785486 0.618879i \(-0.212413\pi\)
\(62\) 155.676 299.236i 0.318885 0.612952i
\(63\) −110.036 187.973i −0.220050 0.375910i
\(64\) −426.828 −0.833648
\(65\) 27.7010 0.0528598
\(66\) 173.367 302.372i 0.323333 0.563930i
\(67\) 181.116 0.330251 0.165125 0.986273i \(-0.447197\pi\)
0.165125 + 0.986273i \(0.447197\pi\)
\(68\) 202.643 0.361384
\(69\) −86.0081 49.3133i −0.150060 0.0860380i
\(70\) 177.353 0.302826
\(71\) 347.339i 0.580586i −0.956938 0.290293i \(-0.906247\pi\)
0.956938 0.290293i \(-0.0937528\pi\)
\(72\) 554.678 324.697i 0.907909 0.531472i
\(73\) 363.492i 0.582788i 0.956603 + 0.291394i \(0.0941190\pi\)
−0.956603 + 0.291394i \(0.905881\pi\)
\(74\) 661.593 1.03931
\(75\) −7.00500 4.01636i −0.0107849 0.00618359i
\(76\) −457.542 −0.690575
\(77\) −276.891 −0.409801
\(78\) 21.6923 + 12.4374i 0.0314894 + 0.0180546i
\(79\) 66.8156i 0.0951562i −0.998868 0.0475781i \(-0.984850\pi\)
0.998868 0.0475781i \(-0.0151503\pi\)
\(80\) 147.081i 0.205552i
\(81\) −356.896 + 635.662i −0.489570 + 0.871964i
\(82\) −129.169 −0.173955
\(83\) 574.916 0.760304 0.380152 0.924924i \(-0.375872\pi\)
0.380152 + 0.924924i \(0.375872\pi\)
\(84\) −152.033 87.1693i −0.197479 0.113226i
\(85\) 545.268i 0.695795i
\(86\) 807.259 1.01220
\(87\) −993.224 569.471i −1.22396 0.701767i
\(88\) 817.062i 0.989762i
\(89\) 103.425 0.123181 0.0615903 0.998102i \(-0.480383\pi\)
0.0615903 + 0.998102i \(0.480383\pi\)
\(90\) −299.875 512.274i −0.351218 0.599983i
\(91\) 19.8643i 0.0228829i
\(92\) −79.7696 −0.0903973
\(93\) 484.341 + 754.832i 0.540041 + 0.841639i
\(94\) 343.442 0.376844
\(95\) 1231.14i 1.32961i
\(96\) 426.159 743.271i 0.453069 0.790206i
\(97\) 1145.19 1.19872 0.599361 0.800479i \(-0.295422\pi\)
0.599361 + 0.800479i \(0.295422\pi\)
\(98\) 543.137i 0.559848i
\(99\) 468.177 + 799.783i 0.475289 + 0.811932i
\(100\) −6.49690 −0.00649690
\(101\) 1613.50i 1.58959i −0.606876 0.794797i \(-0.707577\pi\)
0.606876 0.794797i \(-0.292423\pi\)
\(102\) 244.819 426.992i 0.237653 0.414495i
\(103\) −94.3351 −0.0902438 −0.0451219 0.998981i \(-0.514368\pi\)
−0.0451219 + 0.998981i \(0.514368\pi\)
\(104\) 58.6165 0.0552675
\(105\) −234.553 + 409.088i −0.218000 + 0.380218i
\(106\) 1060.72i 0.971947i
\(107\) 781.201i 0.705809i −0.935659 0.352905i \(-0.885194\pi\)
0.935659 0.352905i \(-0.114806\pi\)
\(108\) 5.28005 + 586.528i 0.00470438 + 0.522580i
\(109\) 1192.42 1.04783 0.523915 0.851771i \(-0.324471\pi\)
0.523915 + 0.851771i \(0.324471\pi\)
\(110\) −754.600 −0.654075
\(111\) −874.968 + 1526.05i −0.748183 + 1.30492i
\(112\) 105.472 0.0889833
\(113\) 220.550i 0.183607i −0.995777 0.0918037i \(-0.970737\pi\)
0.995777 0.0918037i \(-0.0292632\pi\)
\(114\) −552.768 + 964.092i −0.454136 + 0.792066i
\(115\) 214.642i 0.174048i
\(116\) −921.182 −0.737324
\(117\) −57.3769 + 33.5873i −0.0453376 + 0.0265397i
\(118\) 370.692 0.289195
\(119\) −391.010 −0.301209
\(120\) −1207.15 692.128i −0.918312 0.526520i
\(121\) −152.889 −0.114868
\(122\) −1152.43 −0.855217
\(123\) 170.828 297.943i 0.125228 0.218412i
\(124\) 640.161 + 333.041i 0.463614 + 0.241193i
\(125\) 1388.72i 0.993688i
\(126\) −367.351 + 215.040i −0.259732 + 0.152042i
\(127\) 2450.71i 1.71233i −0.516706 0.856163i \(-0.672842\pi\)
0.516706 0.856163i \(-0.327158\pi\)
\(128\) 484.952i 0.334876i
\(129\) −1067.61 + 1862.04i −0.728668 + 1.27088i
\(130\) 54.1354i 0.0365230i
\(131\) 802.813i 0.535436i 0.963497 + 0.267718i \(0.0862695\pi\)
−0.963497 + 0.267718i \(0.913731\pi\)
\(132\) 646.868 + 370.886i 0.426535 + 0.244557i
\(133\) 882.850 0.575585
\(134\) 353.950i 0.228183i
\(135\) 1578.21 14.2074i 1.00616 0.00905763i
\(136\) 1153.81i 0.727487i
\(137\) −2588.90 −1.61449 −0.807243 0.590220i \(-0.799041\pi\)
−0.807243 + 0.590220i \(0.799041\pi\)
\(138\) −96.3717 + 168.083i −0.0594471 + 0.103683i
\(139\) 837.280i 0.510915i 0.966820 + 0.255457i \(0.0822260\pi\)
−0.966820 + 0.255457i \(0.917774\pi\)
\(140\) 379.415i 0.229046i
\(141\) −454.208 + 792.192i −0.271285 + 0.473153i
\(142\) −678.797 −0.401150
\(143\) 84.5184i 0.0494250i
\(144\) −178.335 304.648i −0.103203 0.176301i
\(145\) 2478.69i 1.41962i
\(146\) 710.363 0.402672
\(147\) −1252.81 718.307i −0.702926 0.403027i
\(148\) 1415.36i 0.786092i
\(149\) 2631.00i 1.44658i 0.690546 + 0.723289i \(0.257370\pi\)
−0.690546 + 0.723289i \(0.742630\pi\)
\(150\) −7.84907 + 13.6897i −0.00427249 + 0.00745172i
\(151\) 2980.19i 1.60612i −0.595897 0.803061i \(-0.703203\pi\)
0.595897 0.803061i \(-0.296797\pi\)
\(152\) 2605.15i 1.39017i
\(153\) 661.133 + 1129.41i 0.349343 + 0.596780i
\(154\) 541.121i 0.283148i
\(155\) 896.137 1722.53i 0.464384 0.892625i
\(156\) −26.6076 + 46.4067i −0.0136558 + 0.0238174i
\(157\) −210.106 −0.106804 −0.0534021 0.998573i \(-0.517007\pi\)
−0.0534021 + 0.998573i \(0.517007\pi\)
\(158\) −130.576 −0.0657473
\(159\) −2446.68 1402.82i −1.22034 0.699692i
\(160\) −1854.91 −0.916521
\(161\) 153.919 0.0753449
\(162\) 1242.26 + 697.473i 0.602475 + 0.338263i
\(163\) 1775.03 0.852951 0.426475 0.904499i \(-0.359755\pi\)
0.426475 + 0.904499i \(0.359755\pi\)
\(164\) 276.333i 0.131573i
\(165\) 997.971 1740.58i 0.470860 0.821235i
\(166\) 1123.54i 0.525325i
\(167\) 1865.90 0.864596 0.432298 0.901731i \(-0.357703\pi\)
0.432298 + 0.901731i \(0.357703\pi\)
\(168\) −496.323 + 865.646i −0.227930 + 0.397536i
\(169\) 2190.94 0.997240
\(170\) −1065.60 −0.480753
\(171\) −1492.75 2550.06i −0.667565 1.14040i
\(172\) 1726.98i 0.765588i
\(173\) 622.347i 0.273504i 0.990605 + 0.136752i \(0.0436663\pi\)
−0.990605 + 0.136752i \(0.956334\pi\)
\(174\) −1112.90 + 1941.03i −0.484879 + 0.845685i
\(175\) 12.5361 0.00541508
\(176\) −448.759 −0.192196
\(177\) −490.246 + 855.047i −0.208187 + 0.363103i
\(178\) 202.122i 0.0851104i
\(179\) 3225.25 1.34674 0.673371 0.739305i \(-0.264846\pi\)
0.673371 + 0.739305i \(0.264846\pi\)
\(180\) 1095.92 641.528i 0.453805 0.265648i
\(181\) 419.537i 0.172287i 0.996283 + 0.0861436i \(0.0274544\pi\)
−0.996283 + 0.0861436i \(0.972546\pi\)
\(182\) −38.8204 −0.0158108
\(183\) 1524.11 2658.23i 0.615660 1.07378i
\(184\) 454.191i 0.181975i
\(185\) 3808.41 1.51351
\(186\) 1475.15 946.536i 0.581522 0.373136i
\(187\) 1663.66 0.650583
\(188\) 734.732i 0.285031i
\(189\) −10.1881 1131.73i −0.00392104 0.435563i
\(190\) 2405.99 0.918679
\(191\) 2818.82i 1.06787i −0.845526 0.533934i \(-0.820713\pi\)
0.845526 0.533934i \(-0.179287\pi\)
\(192\) −1924.04 1103.16i −0.723208 0.414656i
\(193\) −4306.94 −1.60632 −0.803162 0.595761i \(-0.796851\pi\)
−0.803162 + 0.595761i \(0.796851\pi\)
\(194\) 2238.01i 0.828245i
\(195\) 124.870 + 71.5950i 0.0458571 + 0.0262924i
\(196\) −1161.94 −0.423448
\(197\) −1032.98 −0.373588 −0.186794 0.982399i \(-0.559810\pi\)
−0.186794 + 0.982399i \(0.559810\pi\)
\(198\) 1563.00 914.947i 0.560996 0.328396i
\(199\) 5407.76i 1.92636i −0.268852 0.963182i \(-0.586644\pi\)
0.268852 0.963182i \(-0.413356\pi\)
\(200\) 36.9920i 0.0130786i
\(201\) 816.428 + 468.104i 0.286500 + 0.164266i
\(202\) −3153.22 −1.09831
\(203\) 1777.46 0.614549
\(204\) 913.471 + 523.744i 0.313509 + 0.179752i
\(205\) −743.549 −0.253325
\(206\) 184.357i 0.0623531i
\(207\) −260.252 444.586i −0.0873853 0.149280i
\(208\) 32.1942i 0.0107321i
\(209\) −3756.33 −1.24321
\(210\) 799.469 + 458.381i 0.262708 + 0.150625i
\(211\) −280.030 −0.0913653 −0.0456827 0.998956i \(-0.514546\pi\)
−0.0456827 + 0.998956i \(0.514546\pi\)
\(212\) −2269.22 −0.735144
\(213\) 897.720 1565.73i 0.288783 0.503671i
\(214\) −1526.68 −0.487672
\(215\) 4646.92 1.47403
\(216\) 3339.56 30.0635i 1.05198 0.00947019i
\(217\) −1235.22 642.618i −0.386416 0.201031i
\(218\) 2330.32i 0.723988i
\(219\) −939.467 + 1638.54i −0.289878 + 0.505581i
\(220\) 1614.33i 0.494718i
\(221\) 119.352i 0.0363280i
\(222\) 2982.31 + 1709.93i 0.901621 + 0.516950i
\(223\) 4850.44i 1.45654i 0.685288 + 0.728272i \(0.259676\pi\)
−0.685288 + 0.728272i \(0.740324\pi\)
\(224\) 1330.15i 0.396761i
\(225\) −21.1964 36.2097i −0.00628042 0.0107288i
\(226\) −431.016 −0.126862
\(227\) 1886.45i 0.551576i −0.961218 0.275788i \(-0.911061\pi\)
0.961218 0.275788i \(-0.0889389\pi\)
\(228\) −2062.50 1182.55i −0.599089 0.343491i
\(229\) 3292.16i 0.950010i 0.879983 + 0.475005i \(0.157554\pi\)
−0.879983 + 0.475005i \(0.842446\pi\)
\(230\) 419.469 0.120257
\(231\) −1248.16 715.642i −0.355511 0.203835i
\(232\) 5245.01i 1.48428i
\(233\) 6500.93i 1.82785i 0.405880 + 0.913927i \(0.366965\pi\)
−0.405880 + 0.913927i \(0.633035\pi\)
\(234\) 65.6388 + 112.130i 0.0183374 + 0.0313256i
\(235\) 1977.00 0.548788
\(236\) 793.027i 0.218736i
\(237\) 172.689 301.190i 0.0473306 0.0825501i
\(238\) 764.141i 0.208117i
\(239\) −3826.17 −1.03554 −0.517770 0.855520i \(-0.673238\pi\)
−0.517770 + 0.855520i \(0.673238\pi\)
\(240\) −380.141 + 663.010i −0.102242 + 0.178321i
\(241\) 6644.03i 1.77585i −0.459989 0.887924i \(-0.652147\pi\)
0.459989 0.887924i \(-0.347853\pi\)
\(242\) 298.787i 0.0793668i
\(243\) −3251.72 + 1943.00i −0.858427 + 0.512936i
\(244\) 2465.42i 0.646854i
\(245\) 3126.52i 0.815290i
\(246\) −582.263 333.844i −0.150910 0.0865250i
\(247\) 269.481i 0.0694198i
\(248\) 1896.26 3644.94i 0.485535 0.933282i
\(249\) 2591.59 + 1485.91i 0.659580 + 0.378175i
\(250\) −2713.94 −0.686579
\(251\) 2563.22 0.644577 0.322288 0.946642i \(-0.395548\pi\)
0.322288 + 0.946642i \(0.395548\pi\)
\(252\) −460.038 785.879i −0.114999 0.196451i
\(253\) −654.892 −0.162738
\(254\) −4789.36 −1.18312
\(255\) 1409.28 2457.94i 0.346088 0.603618i
\(256\) −4362.35 −1.06503
\(257\) 4551.57i 1.10474i 0.833598 + 0.552371i \(0.186277\pi\)
−0.833598 + 0.552371i \(0.813723\pi\)
\(258\) 3638.94 + 2086.41i 0.878103 + 0.503466i
\(259\) 2731.00i 0.655197i
\(260\) 115.813 0.0276246
\(261\) −3005.40 5134.10i −0.712756 1.21760i
\(262\) 1568.92 0.369954
\(263\) −1315.34 −0.308394 −0.154197 0.988040i \(-0.549279\pi\)
−0.154197 + 0.988040i \(0.549279\pi\)
\(264\) 2111.75 3683.13i 0.492307 0.858640i
\(265\) 6105.95i 1.41542i
\(266\) 1725.33i 0.397695i
\(267\) 466.218 + 267.309i 0.106862 + 0.0612699i
\(268\) 757.210 0.172589
\(269\) −7467.48 −1.69257 −0.846283 0.532733i \(-0.821165\pi\)
−0.846283 + 0.532733i \(0.821165\pi\)
\(270\) −27.7652 3084.26i −0.00625829 0.695194i
\(271\) 4343.60i 0.973634i 0.873504 + 0.486817i \(0.161842\pi\)
−0.873504 + 0.486817i \(0.838158\pi\)
\(272\) −633.712 −0.141266
\(273\) 51.3406 89.5440i 0.0113820 0.0198515i
\(274\) 5059.42i 1.11551i
\(275\) −53.3383 −0.0116961
\(276\) −359.583 206.169i −0.0784217 0.0449635i
\(277\) 3839.72i 0.832875i 0.909164 + 0.416438i \(0.136722\pi\)
−0.909164 + 0.416438i \(0.863278\pi\)
\(278\) 1636.27 0.353012
\(279\) 232.393 + 4654.42i 0.0498673 + 0.998756i
\(280\) 2160.31 0.461083
\(281\) 4705.40i 0.998935i −0.866333 0.499468i \(-0.833529\pi\)
0.866333 0.499468i \(-0.166471\pi\)
\(282\) 1548.16 + 887.648i 0.326921 + 0.187442i
\(283\) −3360.51 −0.705871 −0.352936 0.935648i \(-0.614817\pi\)
−0.352936 + 0.935648i \(0.614817\pi\)
\(284\) 1452.16i 0.303415i
\(285\) −3181.97 + 5549.72i −0.661345 + 1.15346i
\(286\) 165.172 0.0341498
\(287\) 533.197i 0.109664i
\(288\) 3842.06 2249.06i 0.786095 0.460164i
\(289\) −2563.67 −0.521814
\(290\) 4844.05 0.980870
\(291\) 5162.24 + 2959.80i 1.03992 + 0.596243i
\(292\) 1519.69i 0.304566i
\(293\) 3091.04i 0.616315i −0.951335 0.308158i \(-0.900288\pi\)
0.951335 0.308158i \(-0.0997125\pi\)
\(294\) −1403.77 + 2448.34i −0.278468 + 0.485680i
\(295\) 2133.86 0.421146
\(296\) 8058.74 1.58245
\(297\) 43.3482 + 4815.28i 0.00846907 + 0.940777i
\(298\) 5141.70 0.999499
\(299\) 46.9824i 0.00908716i
\(300\) −29.2866 16.7916i −0.00563620 0.00323155i
\(301\) 3332.29i 0.638107i
\(302\) −5824.11 −1.10973
\(303\) 4170.18 7273.28i 0.790662 1.37901i
\(304\) 1430.84 0.269948
\(305\) −6633.89 −1.24543
\(306\) 2207.17 1292.04i 0.412339 0.241375i
\(307\) 1431.70 0.266162 0.133081 0.991105i \(-0.457513\pi\)
0.133081 + 0.991105i \(0.457513\pi\)
\(308\) −1157.63 −0.214163
\(309\) −425.242 243.815i −0.0782885 0.0448872i
\(310\) −3366.30 1751.30i −0.616751 0.320861i
\(311\) 3650.77i 0.665646i 0.942989 + 0.332823i \(0.108001\pi\)
−0.942989 + 0.332823i \(0.891999\pi\)
\(312\) 264.230 + 151.498i 0.0479458 + 0.0274900i
\(313\) 179.991i 0.0325038i −0.999868 0.0162519i \(-0.994827\pi\)
0.999868 0.0162519i \(-0.00517337\pi\)
\(314\) 410.605i 0.0737954i
\(315\) −2114.62 + 1237.86i −0.378240 + 0.221414i
\(316\) 279.343i 0.0497288i
\(317\) 62.0789i 0.0109990i 0.999985 + 0.00549952i \(0.00175056\pi\)
−0.999985 + 0.00549952i \(0.998249\pi\)
\(318\) −2741.50 + 4781.49i −0.483445 + 0.843185i
\(319\) −7562.72 −1.32737
\(320\) 4801.65i 0.838814i
\(321\) 2019.06 3521.48i 0.351069 0.612305i
\(322\) 300.800i 0.0520589i
\(323\) −5304.48 −0.913774
\(324\) −1492.12 + 2657.58i −0.255850 + 0.455690i
\(325\) 3.82652i 0.000653098i
\(326\) 3468.89i 0.589338i
\(327\) 5375.18 + 3081.89i 0.909015 + 0.521189i
\(328\) −1573.38 −0.264864
\(329\) 1417.70i 0.237569i
\(330\) −3401.57 1950.31i −0.567424 0.325336i
\(331\) 6127.91i 1.01758i −0.860889 0.508792i \(-0.830092\pi\)
0.860889 0.508792i \(-0.169908\pi\)
\(332\) 2403.61 0.397336
\(333\) −7888.32 + 4617.67i −1.29813 + 0.759899i
\(334\) 3646.48i 0.597384i
\(335\) 2037.48i 0.332297i
\(336\) 475.443 + 272.598i 0.0771950 + 0.0442602i
\(337\) 2229.44i 0.360372i 0.983633 + 0.180186i \(0.0576700\pi\)
−0.983633 + 0.180186i \(0.942330\pi\)
\(338\) 4281.69i 0.689034i
\(339\) 570.026 994.191i 0.0913261 0.159283i
\(340\) 2279.66i 0.363623i
\(341\) 5255.59 + 2734.20i 0.834623 + 0.434208i
\(342\) −4983.51 + 2917.25i −0.787946 + 0.461248i
\(343\) 5009.03 0.788519
\(344\) 9833.07 1.54117
\(345\) −554.756 + 967.558i −0.0865711 + 0.150990i
\(346\) 1216.24 0.188975
\(347\) −10464.5 −1.61891 −0.809457 0.587180i \(-0.800238\pi\)
−0.809457 + 0.587180i \(0.800238\pi\)
\(348\) −4152.48 2380.85i −0.639645 0.366744i
\(349\) 11439.0 1.75448 0.877239 0.480053i \(-0.159383\pi\)
0.877239 + 0.480053i \(0.159383\pi\)
\(350\) 24.4989i 0.00374150i
\(351\) −345.451 + 3.10982i −0.0525322 + 0.000472906i
\(352\) 5659.50i 0.856966i
\(353\) 9272.63 1.39811 0.699054 0.715069i \(-0.253605\pi\)
0.699054 + 0.715069i \(0.253605\pi\)
\(354\) 1671.00 + 958.076i 0.250883 + 0.143845i
\(355\) −3907.44 −0.584184
\(356\) 432.402 0.0643743
\(357\) −1762.59 1010.59i −0.261305 0.149821i
\(358\) 6303.03i 0.930518i
\(359\) 12563.5i 1.84701i −0.383585 0.923506i \(-0.625311\pi\)
0.383585 0.923506i \(-0.374689\pi\)
\(360\) −3652.72 6239.92i −0.534765 0.913535i
\(361\) 5117.82 0.746146
\(362\) 819.891 0.119040
\(363\) −689.189 395.151i −0.0996503 0.0571351i
\(364\) 83.0490i 0.0119587i
\(365\) 4089.15 0.586399
\(366\) −5194.92 2978.54i −0.741920 0.425384i
\(367\) 1583.71i 0.225256i 0.993637 + 0.112628i \(0.0359268\pi\)
−0.993637 + 0.112628i \(0.964073\pi\)
\(368\) 249.457 0.0353366
\(369\) 1540.11 901.547i 0.217276 0.127189i
\(370\) 7442.67i 1.04575i
\(371\) 4378.56 0.612732
\(372\) 2024.94 + 3155.81i 0.282226 + 0.439841i
\(373\) −12615.3 −1.75119 −0.875596 0.483045i \(-0.839531\pi\)
−0.875596 + 0.483045i \(0.839531\pi\)
\(374\) 3251.25i 0.449514i
\(375\) 3589.23 6260.04i 0.494259 0.862046i
\(376\) 4183.41 0.573784
\(377\) 542.554i 0.0741192i
\(378\) −2211.72 + 19.9104i −0.300948 + 0.00270920i
\(379\) 13736.5 1.86173 0.930867 0.365357i \(-0.119053\pi\)
0.930867 + 0.365357i \(0.119053\pi\)
\(380\) 5147.18i 0.694854i
\(381\) 6334.01 11047.3i 0.851710 1.48548i
\(382\) −5508.75 −0.737833
\(383\) 7946.90 1.06023 0.530115 0.847926i \(-0.322149\pi\)
0.530115 + 0.847926i \(0.322149\pi\)
\(384\) 1253.39 2186.05i 0.166567 0.290512i
\(385\) 3114.92i 0.412340i
\(386\) 8416.95i 1.10987i
\(387\) −9625.13 + 5634.36i −1.26427 + 0.740078i
\(388\) 4787.80 0.626453
\(389\) −8638.48 −1.12593 −0.562967 0.826479i \(-0.690340\pi\)
−0.562967 + 0.826479i \(0.690340\pi\)
\(390\) 139.916 244.030i 0.0181665 0.0316845i
\(391\) −924.802 −0.119614
\(392\) 6615.84i 0.852425i
\(393\) −2074.92 + 3618.90i −0.266325 + 0.464502i
\(394\) 2018.73i 0.258127i
\(395\) −751.650 −0.0957458
\(396\) 1957.36 + 3343.74i 0.248386 + 0.424317i
\(397\) 2779.75 0.351415 0.175707 0.984442i \(-0.443779\pi\)
0.175707 + 0.984442i \(0.443779\pi\)
\(398\) −10568.3 −1.33100
\(399\) 3979.69 + 2281.78i 0.499332 + 0.286295i
\(400\) 20.3173 0.00253966
\(401\) 7797.66 0.971064 0.485532 0.874219i \(-0.338626\pi\)
0.485532 + 0.874219i \(0.338626\pi\)
\(402\) 914.804 1595.53i 0.113498 0.197954i
\(403\) −196.153 + 377.039i −0.0242458 + 0.0466046i
\(404\) 6745.72i 0.830724i
\(405\) 7150.96 + 4014.95i 0.877368 + 0.492603i
\(406\) 3473.65i 0.424617i
\(407\) 11619.8i 1.41516i
\(408\) 2982.09 5201.11i 0.361851 0.631111i
\(409\) 12450.1i 1.50518i 0.658488 + 0.752591i \(0.271196\pi\)
−0.658488 + 0.752591i \(0.728804\pi\)
\(410\) 1453.10i 0.175033i
\(411\) −11670.2 6691.17i −1.40060 0.803044i
\(412\) −394.397 −0.0471615
\(413\) 1530.18i 0.182313i
\(414\) −868.844 + 508.604i −0.103143 + 0.0603780i
\(415\) 6467.59i 0.765015i
\(416\) 406.016 0.0478523
\(417\) −2164.00 + 3774.27i −0.254129 + 0.443230i
\(418\) 7340.90i 0.858984i
\(419\) 4038.34i 0.470850i 0.971893 + 0.235425i \(0.0756481\pi\)
−0.971893 + 0.235425i \(0.924352\pi\)
\(420\) −980.621 + 1710.32i −0.113927 + 0.198702i
\(421\) −831.019 −0.0962028 −0.0481014 0.998842i \(-0.515317\pi\)
−0.0481014 + 0.998842i \(0.515317\pi\)
\(422\) 547.256i 0.0631280i
\(423\) −4094.94 + 2397.09i −0.470692 + 0.275534i
\(424\) 12920.4i 1.47989i
\(425\) −75.3213 −0.00859675
\(426\) −3059.86 1754.39i −0.348007 0.199532i
\(427\) 4757.15i 0.539144i
\(428\) 3266.05i 0.368857i
\(429\) −218.443 + 380.990i −0.0245840 + 0.0428773i
\(430\) 9081.36i 1.01847i
\(431\) 4275.47i 0.477824i −0.971041 0.238912i \(-0.923209\pi\)
0.971041 0.238912i \(-0.0767908\pi\)
\(432\) −16.5119 1834.20i −0.00183896 0.204278i
\(433\) 10655.8i 1.18264i −0.806436 0.591322i \(-0.798606\pi\)
0.806436 0.591322i \(-0.201394\pi\)
\(434\) −1255.85 + 2413.96i −0.138900 + 0.266990i
\(435\) −6406.33 + 11173.4i −0.706115 + 1.23155i
\(436\) 4985.30 0.547597
\(437\) 2088.08 0.228573
\(438\) 3202.16 + 1835.98i 0.349326 + 0.200288i
\(439\) 1211.24 0.131684 0.0658421 0.997830i \(-0.479027\pi\)
0.0658421 + 0.997830i \(0.479027\pi\)
\(440\) −9191.64 −0.995896
\(441\) −3790.88 6475.94i −0.409338 0.699270i
\(442\) 233.247 0.0251005
\(443\) 18271.0i 1.95955i 0.200099 + 0.979776i \(0.435874\pi\)
−0.200099 + 0.979776i \(0.564126\pi\)
\(444\) −3658.08 + 6380.11i −0.391001 + 0.681952i
\(445\) 1163.50i 0.123944i
\(446\) 9479.09 1.00639
\(447\) −6799.98 + 11860.0i −0.719526 + 1.25494i
\(448\) 3443.25 0.363121
\(449\) −17438.8 −1.83294 −0.916470 0.400105i \(-0.868974\pi\)
−0.916470 + 0.400105i \(0.868974\pi\)
\(450\) −70.7637 + 41.4236i −0.00741296 + 0.00433940i
\(451\) 2268.64i 0.236864i
\(452\) 922.079i 0.0959534i
\(453\) 7702.48 13434.0i 0.798883 1.39335i
\(454\) −3686.63 −0.381107
\(455\) −223.466 −0.0230247
\(456\) −6733.17 + 11743.4i −0.691468 + 1.20600i
\(457\) 6227.50i 0.637441i 0.947849 + 0.318720i \(0.103253\pi\)
−0.947849 + 0.318720i \(0.896747\pi\)
\(458\) 6433.79 0.656400
\(459\) 61.2138 + 6799.86i 0.00622487 + 0.691482i
\(460\) 897.378i 0.0909575i
\(461\) 5151.35 0.520439 0.260219 0.965549i \(-0.416205\pi\)
0.260219 + 0.965549i \(0.416205\pi\)
\(462\) −1398.56 + 2439.25i −0.140838 + 0.245637i
\(463\) 4276.73i 0.429280i −0.976693 0.214640i \(-0.931142\pi\)
0.976693 0.214640i \(-0.0688577\pi\)
\(464\) 2880.74 0.288222
\(465\) 8491.57 5448.65i 0.846854 0.543388i
\(466\) 12704.6 1.26294
\(467\) 10353.0i 1.02587i −0.858428 0.512934i \(-0.828559\pi\)
0.858428 0.512934i \(-0.171441\pi\)
\(468\) −239.882 + 140.422i −0.0236935 + 0.0138697i
\(469\) −1461.07 −0.143851
\(470\) 3863.60i 0.379180i
\(471\) −947.110 543.031i −0.0926550 0.0531244i
\(472\) 4515.33 0.440328
\(473\) 14178.2i 1.37825i
\(474\) −588.607 337.482i −0.0570372 0.0327026i
\(475\) 170.066 0.0164277
\(476\) −1634.74 −0.157412
\(477\) −7403.42 12647.2i −0.710649 1.21400i
\(478\) 7477.38i 0.715497i
\(479\) 6267.87i 0.597884i −0.954271 0.298942i \(-0.903366\pi\)
0.954271 0.298942i \(-0.0966337\pi\)
\(480\) −8361.51 4794.13i −0.795102 0.455877i
\(481\) −833.611 −0.0790216
\(482\) −12984.3 −1.22701
\(483\) 693.833 + 397.814i 0.0653634 + 0.0374765i
\(484\) −639.200 −0.0600301
\(485\) 12882.9i 1.20615i
\(486\) 3797.16 + 6354.75i 0.354409 + 0.593122i
\(487\) 5429.25i 0.505180i 0.967573 + 0.252590i \(0.0812824\pi\)
−0.967573 + 0.252590i \(0.918718\pi\)
\(488\) −14037.6 −1.30215
\(489\) 8001.43 + 4587.67i 0.739953 + 0.424257i
\(490\) 6110.08 0.563317
\(491\) −9007.79 −0.827935 −0.413967 0.910292i \(-0.635857\pi\)
−0.413967 + 0.910292i \(0.635857\pi\)
\(492\) 714.199 1245.65i 0.0654442 0.114142i
\(493\) −10679.6 −0.975633
\(494\) −526.641 −0.0479649
\(495\) 8997.26 5266.81i 0.816963 0.478234i
\(496\) −2001.93 1041.49i −0.181228 0.0942831i
\(497\) 2802.01i 0.252892i
\(498\) 2903.87 5064.68i 0.261296 0.455731i
\(499\) 14189.2i 1.27293i −0.771304 0.636467i \(-0.780395\pi\)
0.771304 0.636467i \(-0.219605\pi\)
\(500\) 5805.98i 0.519303i
\(501\) 8411.05 + 4822.53i 0.750056 + 0.430049i
\(502\) 5009.23i 0.445364i
\(503\) 692.902i 0.0614214i −0.999528 0.0307107i \(-0.990223\pi\)
0.999528 0.0307107i \(-0.00977706\pi\)
\(504\) −4474.63 + 2619.36i −0.395468 + 0.231499i
\(505\) −18151.2 −1.59944
\(506\) 1279.84i 0.112442i
\(507\) 9876.25 + 5662.61i 0.865128 + 0.496026i
\(508\) 10246.0i 0.894864i
\(509\) 894.904 0.0779291 0.0389646 0.999241i \(-0.487594\pi\)
0.0389646 + 0.999241i \(0.487594\pi\)
\(510\) −4803.50 2754.12i −0.417064 0.239126i
\(511\) 2932.32i 0.253851i
\(512\) 4645.62i 0.400995i
\(513\) −138.213 15353.2i −0.0118952 1.32136i
\(514\) 8895.01 0.763311
\(515\) 1061.23i 0.0908030i
\(516\) −4463.49 + 7784.85i −0.380803 + 0.664164i
\(517\) 6032.00i 0.513128i
\(518\) −5337.12 −0.452702
\(519\) −1608.49 + 2805.40i −0.136041 + 0.237271i
\(520\) 659.413i 0.0556100i
\(521\) 13969.9i 1.17473i −0.809324 0.587363i \(-0.800166\pi\)
0.809324 0.587363i \(-0.199834\pi\)
\(522\) −10033.4 + 5873.37i −0.841286 + 0.492472i
\(523\) 7206.75i 0.602542i 0.953539 + 0.301271i \(0.0974108\pi\)
−0.953539 + 0.301271i \(0.902589\pi\)
\(524\) 3356.41i 0.279819i
\(525\) 56.5098 + 32.4003i 0.00469770 + 0.00269345i
\(526\) 2570.54i 0.213082i
\(527\) 7421.65 + 3861.08i 0.613458 + 0.319148i
\(528\) −2022.90 1159.84i −0.166734 0.0955980i
\(529\) −11803.0 −0.970079
\(530\) 11932.7 0.977970
\(531\) −4419.84 + 2587.29i −0.361214 + 0.211448i
\(532\) 3691.03 0.300801
\(533\) 162.753 0.0132263
\(534\) 522.396 911.119i 0.0423338 0.0738351i
\(535\) −8788.22 −0.710183
\(536\) 4311.39i 0.347432i
\(537\) 14538.7 + 8335.86i 1.16833 + 0.669868i
\(538\) 14593.5i 1.16946i
\(539\) −9539.30 −0.762313
\(540\) 6598.21 59.3986i 0.525818 0.00473353i
\(541\) 2264.67 0.179973 0.0899867 0.995943i \(-0.471318\pi\)
0.0899867 + 0.995943i \(0.471318\pi\)
\(542\) 8488.58 0.672723
\(543\) −1084.32 + 1891.18i −0.0856955 + 0.149463i
\(544\) 7992.02i 0.629881i
\(545\) 13414.3i 1.05432i
\(546\) −174.993 100.334i −0.0137162 0.00786425i
\(547\) 14585.5 1.14010 0.570048 0.821612i \(-0.306925\pi\)
0.570048 + 0.821612i \(0.306925\pi\)
\(548\) −10823.7 −0.843732
\(549\) 13740.7 8043.55i 1.06820 0.625301i
\(550\) 104.238i 0.00808128i
\(551\) 24113.2 1.86435
\(552\) −1173.88 + 2047.39i −0.0905142 + 0.157867i
\(553\) 539.006i 0.0414482i
\(554\) 7503.87 0.575467
\(555\) 17167.4 + 9843.06i 1.31300 + 0.752819i
\(556\) 3500.51i 0.267005i
\(557\) 17430.3 1.32594 0.662968 0.748647i \(-0.269296\pi\)
0.662968 + 0.748647i \(0.269296\pi\)
\(558\) 9096.02 454.159i 0.690081 0.0344553i
\(559\) −1017.15 −0.0769604
\(560\) 1186.52i 0.0895347i
\(561\) 7499.41 + 4299.84i 0.564395 + 0.323599i
\(562\) −9195.65 −0.690205
\(563\) 12819.5i 0.959640i −0.877367 0.479820i \(-0.840702\pi\)
0.877367 0.479820i \(-0.159298\pi\)
\(564\) −1898.96 + 3312.01i −0.141774 + 0.247271i
\(565\) −2481.11 −0.184745
\(566\) 6567.36i 0.487715i
\(567\) 2879.11 5127.93i 0.213247 0.379811i
\(568\) −8268.29 −0.610792
\(569\) 21992.6 1.62035 0.810175 0.586188i \(-0.199372\pi\)
0.810175 + 0.586188i \(0.199372\pi\)
\(570\) 10845.7 + 6218.43i 0.796974 + 0.456950i
\(571\) 18045.6i 1.32257i 0.750135 + 0.661284i \(0.229988\pi\)
−0.750135 + 0.661284i \(0.770012\pi\)
\(572\) 353.355i 0.0258296i
\(573\) 7285.42 12706.6i 0.531157 0.926399i
\(574\) 1042.01 0.0757714
\(575\) 29.6499 0.00215041
\(576\) −5821.97 9945.62i −0.421149 0.719446i
\(577\) −4924.71 −0.355318 −0.177659 0.984092i \(-0.556852\pi\)
−0.177659 + 0.984092i \(0.556852\pi\)
\(578\) 5010.12i 0.360542i
\(579\) −19414.7 11131.6i −1.39352 0.798984i
\(580\) 10362.9i 0.741893i
\(581\) −4637.89 −0.331174
\(582\) 5784.27 10088.4i 0.411968 0.718521i
\(583\) −18629.8 −1.32345
\(584\) 8652.80 0.613108
\(585\) 377.844 + 645.469i 0.0267042 + 0.0456185i
\(586\) −6040.74 −0.425837
\(587\) −17317.8 −1.21769 −0.608844 0.793290i \(-0.708367\pi\)
−0.608844 + 0.793290i \(0.708367\pi\)
\(588\) −5237.77 3003.11i −0.367350 0.210623i
\(589\) −16757.1 8717.81i −1.17227 0.609866i
\(590\) 4170.14i 0.290987i
\(591\) −4656.44 2669.80i −0.324095 0.185822i
\(592\) 4426.14i 0.307286i
\(593\) 3406.20i 0.235878i 0.993021 + 0.117939i \(0.0376287\pi\)
−0.993021 + 0.117939i \(0.962371\pi\)
\(594\) 9410.37 84.7142i 0.650021 0.00585163i
\(595\) 4398.72i 0.303075i
\(596\) 10999.7i 0.755983i
\(597\) 13976.7 24377.0i 0.958171 1.67116i
\(598\) −91.8164 −0.00627868
\(599\) 8411.23i 0.573746i −0.957969 0.286873i \(-0.907384\pi\)
0.957969 0.286873i \(-0.0926157\pi\)
\(600\) −95.6080 + 166.752i −0.00650530 + 0.0113460i
\(601\) 17562.3i 1.19198i −0.802990 0.595992i \(-0.796759\pi\)
0.802990 0.595992i \(-0.203241\pi\)
\(602\) −6512.22 −0.440894
\(603\) 2470.43 + 4220.22i 0.166839 + 0.285009i
\(604\) 12459.6i 0.839361i
\(605\) 1719.94i 0.115580i
\(606\) −14214.0 8149.68i −0.952812 0.546301i
\(607\) 18148.3 1.21353 0.606767 0.794880i \(-0.292466\pi\)
0.606767 + 0.794880i \(0.292466\pi\)
\(608\) 18044.9i 1.20365i
\(609\) 8012.41 + 4593.97i 0.533135 + 0.305676i
\(610\) 12964.4i 0.860517i
\(611\) −432.739 −0.0286526
\(612\) 2764.07 + 4721.84i 0.182567 + 0.311878i
\(613\) 13269.9i 0.874335i −0.899380 0.437168i \(-0.855982\pi\)
0.899380 0.437168i \(-0.144018\pi\)
\(614\) 2797.94i 0.183902i
\(615\) −3351.75 1921.75i −0.219765 0.126004i
\(616\) 6591.30i 0.431122i
\(617\) 25906.3i 1.69035i −0.534486 0.845177i \(-0.679495\pi\)
0.534486 0.845177i \(-0.320505\pi\)
\(618\) −476.481 + 831.039i −0.0310144 + 0.0540927i
\(619\) 10725.3i 0.696427i −0.937415 0.348213i \(-0.886788\pi\)
0.937415 0.348213i \(-0.113212\pi\)
\(620\) 3746.58 7201.57i 0.242688 0.466487i
\(621\) −24.0965 2676.73i −0.00155710 0.172969i
\(622\) 7134.60 0.459922
\(623\) −834.340 −0.0536551
\(624\) 83.2079 145.124i 0.00533811 0.00931029i
\(625\) −15816.8 −1.01228
\(626\) −351.752 −0.0224582
\(627\) −16932.7 9708.47i −1.07851 0.618371i
\(628\) −878.413 −0.0558161
\(629\) 16408.8i 1.04016i
\(630\) 2419.12 + 4132.56i 0.152984 + 0.261341i
\(631\) 2817.33i 0.177743i 0.996043 + 0.0888717i \(0.0283261\pi\)
−0.996043 + 0.0888717i \(0.971674\pi\)
\(632\) −1590.52 −0.100107
\(633\) −1262.31 723.756i −0.0792614 0.0454450i
\(634\) 121.319 0.00759969
\(635\) −27569.6 −1.72294
\(636\) −10229.1 5864.93i −0.637753 0.365660i
\(637\) 684.355i 0.0425669i
\(638\) 14779.6i 0.917133i
\(639\) 8093.44 4737.74i 0.501051 0.293305i
\(640\) −5455.52 −0.336951
\(641\) −10955.4 −0.675060 −0.337530 0.941315i \(-0.609591\pi\)
−0.337530 + 0.941315i \(0.609591\pi\)
\(642\) −6881.94 3945.80i −0.423066 0.242568i
\(643\) 26329.3i 1.61481i 0.589995 + 0.807407i \(0.299130\pi\)
−0.589995 + 0.807407i \(0.700870\pi\)
\(644\) 643.507 0.0393754
\(645\) 20947.3 + 12010.2i 1.27876 + 0.733183i
\(646\) 10366.4i 0.631363i
\(647\) 4671.03 0.283828 0.141914 0.989879i \(-0.454674\pi\)
0.141914 + 0.989879i \(0.454674\pi\)
\(648\) 15131.7 + 8495.79i 0.917330 + 0.515040i
\(649\) 6510.60i 0.393780i
\(650\) −7.47807 −0.000451252
\(651\) −3907.22 6089.28i −0.235232 0.366602i
\(652\) 7421.06 0.445753
\(653\) 20641.5i 1.23701i 0.785782 + 0.618503i \(0.212261\pi\)
−0.785782 + 0.618503i \(0.787739\pi\)
\(654\) 6022.86 10504.6i 0.360111 0.628075i
\(655\) 9031.34 0.538754
\(656\) 864.154i 0.0514323i
\(657\) −8469.81 + 4958.06i −0.502951 + 0.294417i
\(658\) −2770.57 −0.164146
\(659\) 15196.0i 0.898255i 0.893468 + 0.449128i \(0.148265\pi\)
−0.893468 + 0.449128i \(0.851735\pi\)
\(660\) 4172.33 7277.02i 0.246072 0.429178i
\(661\) −16877.9 −0.993151 −0.496575 0.867994i \(-0.665409\pi\)
−0.496575 + 0.867994i \(0.665409\pi\)
\(662\) −11975.6 −0.703090
\(663\) −308.473 + 538.012i −0.0180695 + 0.0315153i
\(664\) 13685.7i 0.799860i
\(665\) 9931.72i 0.579151i
\(666\) 9024.19 + 15415.9i 0.525045 + 0.896931i
\(667\) 4203.99 0.244047
\(668\) 7800.96 0.451839
\(669\) −12536.3 + 21864.7i −0.724484 + 1.26358i
\(670\) −3981.80 −0.229597
\(671\) 20240.6i 1.16450i
\(672\) −3437.86 + 5996.02i −0.197348 + 0.344199i
\(673\) 2489.02i 0.142563i 0.997456 + 0.0712814i \(0.0227088\pi\)
−0.997456 + 0.0712814i \(0.977291\pi\)
\(674\) 4356.94 0.248996
\(675\) −1.96256 218.009i −0.000111910 0.0124313i
\(676\) 9159.89 0.521159
\(677\) 1660.59 0.0942713 0.0471356 0.998888i \(-0.484991\pi\)
0.0471356 + 0.998888i \(0.484991\pi\)
\(678\) −1942.92 1113.99i −0.110055 0.0631009i
\(679\) −9238.30 −0.522140
\(680\) −12979.9 −0.731995
\(681\) 4875.64 8503.68i 0.274354 0.478505i
\(682\) 5343.37 10270.9i 0.300012 0.576675i
\(683\) 16771.9i 0.939617i 0.882768 + 0.469808i \(0.155677\pi\)
−0.882768 + 0.469808i \(0.844323\pi\)
\(684\) −6240.91 10661.3i −0.348870 0.595972i
\(685\) 29124.1i 1.62449i
\(686\) 9789.01i 0.544820i
\(687\) −8508.80 + 14840.3i −0.472534 + 0.824154i
\(688\) 5400.66i 0.299271i
\(689\) 1336.51i 0.0739001i
\(690\) 1890.87 + 1084.14i 0.104325 + 0.0598155i
\(691\) 23763.0 1.30823 0.654114 0.756396i \(-0.273042\pi\)
0.654114 + 0.756396i \(0.273042\pi\)
\(692\) 2601.91i 0.142933i
\(693\) −3776.82 6451.91i −0.207027 0.353662i
\(694\) 20450.5i 1.11857i
\(695\) 9419.08 0.514081
\(696\) −13556.1 + 23643.3i −0.738277 + 1.28764i
\(697\) 3203.64i 0.174098i
\(698\) 22354.9i 1.21224i
\(699\) −16802.0 + 29304.7i −0.909172 + 1.58570i
\(700\) 52.4110 0.00282993
\(701\) 15621.6i 0.841680i 0.907135 + 0.420840i \(0.138265\pi\)
−0.907135 + 0.420840i \(0.861735\pi\)
\(702\) 6.07745 + 675.105i 0.000326750 + 0.0362966i
\(703\) 37049.0i 1.98766i
\(704\) −14650.3 −0.784309
\(705\) 8911.86 + 5109.67i 0.476085 + 0.272966i
\(706\) 18121.3i 0.966009i
\(707\) 13016.2i 0.692397i
\(708\) −2049.63 + 3574.79i −0.108799 + 0.189758i
\(709\) 33595.5i 1.77955i 0.456395 + 0.889777i \(0.349140\pi\)
−0.456395 + 0.889777i \(0.650860\pi\)
\(710\) 7636.21i 0.403636i
\(711\) 1556.89 911.370i 0.0821207 0.0480718i
\(712\) 2462.00i 0.129589i
\(713\) −2921.50 1519.89i −0.153452 0.0798324i
\(714\) −1974.97 + 3444.58i −0.103517 + 0.180546i
\(715\) 950.800 0.0497313
\(716\) 13484.2 0.703809
\(717\) −17247.5 9888.96i −0.898354 0.515077i
\(718\) −24552.6 −1.27617
\(719\) −10260.6 −0.532206 −0.266103 0.963945i \(-0.585736\pi\)
−0.266103 + 0.963945i \(0.585736\pi\)
\(720\) −3427.18 + 2006.20i −0.177394 + 0.103843i
\(721\) 761.008 0.0393085
\(722\) 10001.6i 0.515542i
\(723\) 17171.9 29949.8i 0.883306 1.54059i
\(724\) 1754.01i 0.0900375i
\(725\) 342.397 0.0175398
\(726\) −772.234 + 1346.87i −0.0394770 + 0.0688524i
\(727\) 29023.7 1.48065 0.740323 0.672251i \(-0.234672\pi\)
0.740323 + 0.672251i \(0.234672\pi\)
\(728\) −472.863 −0.0240735
\(729\) −19679.8 + 354.353i −0.999838 + 0.0180030i
\(730\) 7991.31i 0.405167i
\(731\) 20021.6i 1.01303i
\(732\) 6372.03 11113.6i 0.321745 0.561160i
\(733\) −16596.9 −0.836319 −0.418160 0.908374i \(-0.637325\pi\)
−0.418160 + 0.908374i \(0.637325\pi\)
\(734\) 3095.00 0.155638
\(735\) −8080.69 + 14093.7i −0.405525 + 0.707282i
\(736\) 3146.02i 0.157560i
\(737\) 6216.54 0.310705
\(738\) −1761.87 3009.79i −0.0878799 0.150125i
\(739\) 14480.6i 0.720808i 0.932796 + 0.360404i \(0.117361\pi\)
−0.932796 + 0.360404i \(0.882639\pi\)
\(740\) 15922.2 0.790963
\(741\) 696.491 1214.76i 0.0345293 0.0602232i
\(742\) 8556.92i 0.423362i
\(743\) 1263.67 0.0623950 0.0311975 0.999513i \(-0.490068\pi\)
0.0311975 + 0.999513i \(0.490068\pi\)
\(744\) 17968.5 11529.6i 0.885426 0.568138i
\(745\) 29597.8 1.45554
\(746\) 24653.7i 1.20997i
\(747\) 7841.90 + 13396.3i 0.384097 + 0.656149i
\(748\) 6955.45 0.339995
\(749\) 6302.01i 0.307437i
\(750\) −12233.8 7014.35i −0.595622 0.341504i
\(751\) 31412.1 1.52629 0.763145 0.646227i \(-0.223654\pi\)
0.763145 + 0.646227i \(0.223654\pi\)
\(752\) 2297.67i 0.111419i
\(753\) 11554.4 + 6624.79i 0.559184 + 0.320612i
\(754\) −1060.30 −0.0512120
\(755\) −33526.0 −1.61607
\(756\) −42.5945 4731.56i −0.00204914 0.227626i
\(757\) 6922.57i 0.332371i 0.986094 + 0.166186i \(0.0531451\pi\)
−0.986094 + 0.166186i \(0.946855\pi\)
\(758\) 26844.9i 1.28635i
\(759\) −2952.11 1692.61i −0.141179 0.0809458i
\(760\) 29306.9 1.39878
\(761\) −3112.56 −0.148266 −0.0741328 0.997248i \(-0.523619\pi\)
−0.0741328 + 0.997248i \(0.523619\pi\)
\(762\) −21589.4 12378.4i −1.02638 0.588481i
\(763\) −9619.36 −0.456415
\(764\) 11785.0i 0.558069i
\(765\) 12705.4 7437.50i 0.600478 0.351508i
\(766\) 15530.4i 0.732555i
\(767\) −467.074 −0.0219883
\(768\) −19664.5 11274.8i −0.923935 0.529744i
\(769\) 303.063 0.0142116 0.00710580 0.999975i \(-0.497738\pi\)
0.00710580 + 0.999975i \(0.497738\pi\)
\(770\) 6087.41 0.284903
\(771\) −11763.8 + 20517.4i −0.549498 + 0.958388i
\(772\) −18006.5 −0.839467
\(773\) 30419.8 1.41542 0.707712 0.706501i \(-0.249727\pi\)
0.707712 + 0.706501i \(0.249727\pi\)
\(774\) 11011.1 + 18810.1i 0.511350 + 0.873535i
\(775\) −237.944 123.789i −0.0110286 0.00573759i
\(776\) 27260.7i 1.26109i
\(777\) 7058.43 12310.7i 0.325894 0.568398i
\(778\) 16882.0i 0.777953i
\(779\) 7233.40i 0.332687i
\(780\) 522.058 + 299.325i 0.0239650 + 0.0137405i
\(781\) 11921.9i 0.546224i
\(782\) 1807.32i 0.0826465i
\(783\) −278.267 30911.0i −0.0127005 1.41082i
\(784\) 3633.65 0.165527
\(785\) 2363.61i 0.107466i
\(786\) 7072.32 + 4054.96i 0.320943 + 0.184015i
\(787\) 13429.0i 0.608249i −0.952632 0.304124i \(-0.901636\pi\)
0.952632 0.304124i \(-0.0983638\pi\)
\(788\) −4318.69 −0.195237
\(789\) −5929.27 3399.58i −0.267538 0.153395i
\(790\) 1468.93i 0.0661547i
\(791\) 1779.20i 0.0799759i
\(792\) 19038.6 11144.8i 0.854174 0.500016i
\(793\) 1452.07 0.0650248
\(794\) 5432.40i 0.242807i
\(795\) −15781.2 + 27524.3i −0.704028 + 1.22791i
\(796\) 22608.8i 1.00672i
\(797\) 18964.0 0.842833 0.421417 0.906867i \(-0.361533\pi\)
0.421417 + 0.906867i \(0.361533\pi\)
\(798\) 4459.22 7777.40i 0.197813 0.345009i
\(799\) 8518.05i 0.377155i
\(800\) 256.230i 0.0113239i
\(801\) 1410.73 + 2409.94i 0.0622294 + 0.106306i
\(802\) 15238.8i 0.670947i
\(803\) 12476.4i 0.548295i
\(804\) 3413.33 + 1957.06i 0.149725 + 0.0858458i
\(805\) 1731.53i 0.0758118i
\(806\) 736.839 + 383.337i 0.0322010 + 0.0167524i
\(807\) −33661.7 19300.2i −1.46834 0.841881i
\(808\) −38408.7 −1.67229
\(809\) 16627.5 0.722608 0.361304 0.932448i \(-0.382332\pi\)
0.361304 + 0.932448i \(0.382332\pi\)
\(810\) 7846.31 13974.9i 0.340360 0.606209i
\(811\) −362.356 −0.0156893 −0.00784466 0.999969i \(-0.502497\pi\)
−0.00784466 + 0.999969i \(0.502497\pi\)
\(812\) 7431.24 0.321164
\(813\) −11226.3 + 19580.0i −0.484284 + 0.844648i
\(814\) 22708.3 0.977794
\(815\) 19968.4i 0.858236i
\(816\) −2856.63 1637.87i −0.122552 0.0702657i
\(817\) 45206.2i 1.93582i
\(818\) 24331.0 1.03999
\(819\) 462.864 270.951i 0.0197482 0.0115602i
\(820\) −3108.64 −0.132388
\(821\) −7911.36 −0.336307 −0.168154 0.985761i \(-0.553780\pi\)
−0.168154 + 0.985761i \(0.553780\pi\)
\(822\) −13076.4 + 22806.7i −0.554855 + 0.967732i
\(823\) 19678.1i 0.833457i 0.909031 + 0.416729i \(0.136823\pi\)
−0.909031 + 0.416729i \(0.863177\pi\)
\(824\) 2245.61i 0.0949389i
\(825\) −240.437 137.856i −0.0101466 0.00581761i
\(826\) −2990.40 −0.125968
\(827\) 3014.86 0.126768 0.0633838 0.997989i \(-0.479811\pi\)
0.0633838 + 0.997989i \(0.479811\pi\)
\(828\) −1088.06 1858.73i −0.0456677 0.0780137i
\(829\) 18132.4i 0.759668i −0.925055 0.379834i \(-0.875981\pi\)
0.925055 0.379834i \(-0.124019\pi\)
\(830\) −12639.4 −0.528580
\(831\) −9924.00 + 17308.6i −0.414272 + 0.722538i
\(832\) 1051.02i 0.0437951i
\(833\) −13470.9 −0.560309
\(834\) 7375.96 + 4229.05i 0.306245 + 0.175588i
\(835\) 20990.6i 0.869953i
\(836\) −15704.5 −0.649703
\(837\) −10982.1 + 21581.7i −0.453519 + 0.891246i
\(838\) 7892.03 0.325329
\(839\) 10654.5i 0.438419i 0.975678 + 0.219209i \(0.0703478\pi\)
−0.975678 + 0.219209i \(0.929652\pi\)
\(840\) 9738.18 + 5583.45i 0.399999 + 0.229342i
\(841\) 24158.8 0.990561
\(842\) 1624.04i 0.0664704i
\(843\) 12161.4 21210.9i 0.496869 0.866598i
\(844\) −1170.75 −0.0477476
\(845\) 24647.2i 1.00342i
\(846\) 4684.58 + 8002.63i 0.190377 + 0.325220i
\(847\) 1233.37 0.0500342
\(848\) 7096.36 0.287370
\(849\) −15148.4 8685.44i −0.612359 0.351100i
\(850\) 147.198i 0.00593984i
\(851\) 6459.25i 0.260188i
\(852\) 3753.20 6546.01i 0.150918 0.263219i
\(853\) 2346.87 0.0942033 0.0471017 0.998890i \(-0.485002\pi\)
0.0471017 + 0.998890i \(0.485002\pi\)
\(854\) 9296.77 0.372516
\(855\) −28687.2 + 16792.9i −1.14746 + 0.671702i
\(856\) −18596.2 −0.742530
\(857\) 28584.4i 1.13935i −0.821869 0.569676i \(-0.807069\pi\)
0.821869 0.569676i \(-0.192931\pi\)
\(858\) 744.559 + 426.897i 0.0296257 + 0.0169861i
\(859\) 5232.57i 0.207838i −0.994586 0.103919i \(-0.966862\pi\)
0.994586 0.103919i \(-0.0331383\pi\)
\(860\) 19427.9 0.770332
\(861\) −1378.08 + 2403.53i −0.0545469 + 0.0951361i
\(862\) −8355.45 −0.330148
\(863\) 22024.3 0.868731 0.434366 0.900737i \(-0.356973\pi\)
0.434366 + 0.900737i \(0.356973\pi\)
\(864\) 23132.0 208.239i 0.910840 0.00819958i
\(865\) 7001.17 0.275199
\(866\) −20824.3 −0.817136
\(867\) −11556.5 6625.97i −0.452685 0.259550i
\(868\) −5164.23 2686.66i −0.201942 0.105059i
\(869\) 2293.35i 0.0895243i
\(870\) 21835.9 + 12519.7i 0.850926 + 0.487884i
\(871\) 445.978i 0.0173495i
\(872\) 28385.2i 1.10234i
\(873\) 15620.4 + 26684.3i 0.605580 + 1.03451i
\(874\) 4080.69i 0.157930i
\(875\) 11202.9i 0.432832i
\(876\) −3927.73 + 6850.42i −0.151491 + 0.264217i
\(877\) −33249.9 −1.28024 −0.640119 0.768275i \(-0.721115\pi\)
−0.640119 + 0.768275i \(0.721115\pi\)
\(878\) 2367.10i 0.0909860i
\(879\) 7988.98 13933.7i 0.306555 0.534667i
\(880\) 5048.36i 0.193387i
\(881\) −24488.6 −0.936484 −0.468242 0.883600i \(-0.655112\pi\)
−0.468242 + 0.883600i \(0.655112\pi\)
\(882\) −12655.8 + 7408.43i −0.483154 + 0.282828i
\(883\) 21164.1i 0.806600i 0.915068 + 0.403300i \(0.132137\pi\)
−0.915068 + 0.403300i \(0.867863\pi\)
\(884\) 498.988i 0.0189851i
\(885\) 9618.95 + 5515.09i 0.365353 + 0.209478i
\(886\) 35706.5 1.35393
\(887\) 43717.6i 1.65490i 0.561543 + 0.827448i \(0.310208\pi\)
−0.561543 + 0.827448i \(0.689792\pi\)
\(888\) 36327.0 + 20828.3i 1.37281 + 0.787109i
\(889\) 19770.1i 0.745857i
\(890\) −2273.79 −0.0856378
\(891\) −12250.0 + 21818.2i −0.460594 + 0.820357i
\(892\) 20278.8i 0.761192i
\(893\) 19232.6i 0.720712i
\(894\) 23177.6 + 13289.0i 0.867087 + 0.497150i
\(895\) 36282.9i 1.35509i
\(896\) 3912.14i 0.145865i
\(897\) 121.429 211.786i 0.00451994 0.00788331i
\(898\) 34080.3i 1.26645i
\(899\) −33737.6 17551.8i −1.25162 0.651151i
\(900\) −88.6183 151.386i −0.00328216 0.00560688i
\(901\) −26308.0 −0.972748
\(902\) −4433.54 −0.163659
\(903\) 8612.52 15021.2i 0.317394 0.553572i
\(904\) −5250.12 −0.193160
\(905\) 4719.64 0.173355
\(906\) −26253.8 15052.8i −0.962719 0.551981i
\(907\) 32604.5 1.19362 0.596811 0.802382i \(-0.296434\pi\)
0.596811 + 0.802382i \(0.296434\pi\)
\(908\) 7886.88i 0.288255i
\(909\) 37596.5 22008.2i 1.37183 0.803044i
\(910\) 436.714i 0.0159087i
\(911\) −40833.7 −1.48505 −0.742526 0.669818i \(-0.766372\pi\)
−0.742526 + 0.669818i \(0.766372\pi\)
\(912\) 6449.90 + 3698.09i 0.234186 + 0.134272i
\(913\) 19733.2 0.715305
\(914\) 12170.3 0.440433
\(915\) −29904.1 17145.7i −1.08044 0.619475i
\(916\) 13763.9i 0.496476i
\(917\) 6476.35i 0.233226i
\(918\) 13288.8 119.629i 0.477773 0.00430102i
\(919\) −1795.92 −0.0644634 −0.0322317 0.999480i \(-0.510261\pi\)
−0.0322317 + 0.999480i \(0.510261\pi\)
\(920\) 5109.48 0.183103
\(921\) 6453.80 + 3700.33i 0.230901 + 0.132389i
\(922\) 10067.2i 0.359592i
\(923\) 855.287 0.0305007
\(924\) −5218.33 2991.96i −0.185791 0.106524i
\(925\) 526.079i 0.0186999i
\(926\) −8357.90 −0.296607
\(927\) −1286.74 2198.13i −0.0455901 0.0778813i
\(928\) 36330.3i 1.28513i
\(929\) −24120.5 −0.851850 −0.425925 0.904759i \(-0.640051\pi\)
−0.425925 + 0.904759i \(0.640051\pi\)
\(930\) −10648.2 16594.9i −0.375449 0.585126i
\(931\) 30415.4 1.07070
\(932\) 27179.1i 0.955238i
\(933\) −9435.63 + 16456.8i −0.331092 + 0.577463i
\(934\) −20232.6 −0.708813
\(935\) 18715.6i 0.654614i
\(936\) 799.534 + 1365.84i 0.0279205 + 0.0476964i
\(937\) 24179.2 0.843009 0.421504 0.906826i \(-0.361502\pi\)
0.421504 + 0.906826i \(0.361502\pi\)
\(938\) 2855.34i 0.0993924i
\(939\) 465.198 811.359i 0.0161674 0.0281978i
\(940\) 8265.45 0.286797
\(941\) 9608.96 0.332883 0.166442 0.986051i \(-0.446772\pi\)
0.166442 + 0.986051i \(0.446772\pi\)
\(942\) −1061.23 + 1850.91i −0.0367058 + 0.0640191i
\(943\) 1261.10i 0.0435493i
\(944\) 2479.98i 0.0855046i
\(945\) −12731.6 + 114.612i −0.438262 + 0.00394533i
\(946\) 27708.0 0.952290
\(947\) 6277.62 0.215412 0.107706 0.994183i \(-0.465649\pi\)
0.107706 + 0.994183i \(0.465649\pi\)
\(948\) 721.980 1259.22i 0.0247350 0.0431408i
\(949\) −895.061 −0.0306163
\(950\) 332.355i 0.0113505i
\(951\) −160.447 + 279.838i −0.00547092 + 0.00954191i
\(952\) 9307.86i 0.316880i
\(953\) 5533.32 0.188082 0.0940409 0.995568i \(-0.470022\pi\)
0.0940409 + 0.995568i \(0.470022\pi\)
\(954\) −24716.1 + 14468.3i −0.838799 + 0.491016i
\(955\) −31710.7 −1.07449
\(956\) −15996.5 −0.541175
\(957\) −34091.0 19546.3i −1.15152 0.660232i
\(958\) −12249.1 −0.413102
\(959\) 20884.8 0.703239
\(960\) −12410.2 + 21644.8i −0.417225 + 0.727690i
\(961\) 17099.8 + 24394.7i 0.573992 + 0.818861i
\(962\) 1629.10i 0.0545992i
\(963\) 18203.0 10655.7i 0.609120 0.356566i
\(964\) 27777.4i 0.928061i
\(965\) 48451.5i 1.61628i
\(966\) 777.437 1355.94i 0.0258940 0.0451622i
\(967\) 33479.8i 1.11338i −0.830721 0.556689i \(-0.812071\pi\)
0.830721 0.556689i \(-0.187929\pi\)
\(968\) 3639.47i 0.120844i
\(969\) −23911.4 13709.7i −0.792719 0.454510i
\(970\) −25176.7 −0.833377
\(971\) 30574.1i 1.01047i 0.862981 + 0.505237i \(0.168595\pi\)
−0.862981 + 0.505237i \(0.831405\pi\)
\(972\) −13594.8 + 8123.32i −0.448615 + 0.268061i
\(973\) 6754.40i 0.222545i
\(974\) 10610.2 0.349049
\(975\) 9.88987 17.2491i 0.000324851 0.000566577i
\(976\) 7709.93i 0.252857i
\(977\) 30140.9i 0.986993i 0.869748 + 0.493496i \(0.164281\pi\)
−0.869748 + 0.493496i \(0.835719\pi\)
\(978\) 8965.57 15637.0i 0.293136 0.511264i
\(979\) 3549.93 0.115890
\(980\) 13071.4i 0.426072i
\(981\) 16264.8 + 27784.9i 0.529351 + 0.904286i
\(982\) 17603.7i 0.572054i
\(983\) 41311.0 1.34040 0.670201 0.742180i \(-0.266208\pi\)
0.670201 + 0.742180i \(0.266208\pi\)
\(984\) −7092.44 4066.50i −0.229775 0.131743i
\(985\) 11620.6i 0.375903i
\(986\) 20871.0i 0.674104i
\(987\) 3664.13 6390.67i 0.118167 0.206097i
\(988\) 1126.65i 0.0362789i
\(989\) 7881.41i 0.253402i
\(990\) −10292.8 17583.1i −0.330431 0.564473i
\(991\) 2929.34i 0.0938988i 0.998897 + 0.0469494i \(0.0149500\pi\)
−0.998897 + 0.0469494i \(0.985050\pi\)
\(992\) 13134.7 25247.2i 0.420391 0.808064i
\(993\) 15838.0 27623.2i 0.506146 0.882777i
\(994\) 5475.90 0.174733
\(995\) −60835.3 −1.93830
\(996\) 10835.0 + 6212.29i 0.344698 + 0.197635i
\(997\) 5523.90 0.175470 0.0877350 0.996144i \(-0.472037\pi\)
0.0877350 + 0.996144i \(0.472037\pi\)
\(998\) −27729.5 −0.879521
\(999\) −47493.4 + 427.546i −1.50413 + 0.0135405i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 93.4.c.b.92.12 yes 28
3.2 odd 2 inner 93.4.c.b.92.17 yes 28
31.30 odd 2 inner 93.4.c.b.92.11 28
93.92 even 2 inner 93.4.c.b.92.18 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
93.4.c.b.92.11 28 31.30 odd 2 inner
93.4.c.b.92.12 yes 28 1.1 even 1 trivial
93.4.c.b.92.17 yes 28 3.2 odd 2 inner
93.4.c.b.92.18 yes 28 93.92 even 2 inner