Newspace parameters
| Level: | \( N \) | \(=\) | \( 93 = 3 \cdot 31 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 93.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(5.48717763053\) |
| Analytic rank: | \(0\) |
| Dimension: | \(28\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 92.1 | − | 5.24508i | −5.08240 | + | 1.08131i | −19.5109 | − | 7.60471i | 5.67158 | + | 26.6576i | −11.1491 | 60.3756i | 24.6615 | − | 10.9913i | −39.8873 | ||||||||||
| 92.2 | − | 5.24508i | 5.08240 | − | 1.08131i | −19.5109 | − | 7.60471i | −5.67158 | − | 26.6576i | −11.1491 | 60.3756i | 24.6615 | − | 10.9913i | −39.8873 | ||||||||||
| 92.3 | − | 4.83642i | −2.52655 | − | 4.54054i | −15.3909 | 17.4129i | −21.9600 | + | 12.2195i | 2.07413 | 35.7456i | −14.2331 | + | 22.9438i | 84.2160 | |||||||||||
| 92.4 | − | 4.83642i | 2.52655 | + | 4.54054i | −15.3909 | 17.4129i | 21.9600 | − | 12.2195i | 2.07413 | 35.7456i | −14.2331 | + | 22.9438i | 84.2160 | |||||||||||
| 92.5 | − | 4.20796i | −0.517353 | − | 5.17033i | −9.70695 | − | 15.2575i | −21.7566 | + | 2.17700i | 24.2010 | 7.18279i | −26.4647 | + | 5.34977i | −64.2028 | ||||||||||
| 92.6 | − | 4.20796i | 0.517353 | + | 5.17033i | −9.70695 | − | 15.2575i | 21.7566 | − | 2.17700i | 24.2010 | 7.18279i | −26.4647 | + | 5.34977i | −64.2028 | ||||||||||
| 92.7 | − | 3.25182i | −1.88621 | + | 4.84172i | −2.57431 | 2.11610i | 15.7444 | + | 6.13360i | −32.4015 | − | 17.6433i | −19.8845 | − | 18.2650i | 6.88116 | ||||||||||
| 92.8 | − | 3.25182i | 1.88621 | − | 4.84172i | −2.57431 | 2.11610i | −15.7444 | − | 6.13360i | −32.4015 | − | 17.6433i | −19.8845 | − | 18.2650i | 6.88116 | ||||||||||
| 92.9 | − | 2.97231i | −4.89717 | + | 1.73716i | −0.834616 | 8.81124i | 5.16337 | + | 14.5559i | 20.5950 | − | 21.2977i | 20.9646 | − | 17.0143i | 26.1897 | ||||||||||
| 92.10 | − | 2.97231i | 4.89717 | − | 1.73716i | −0.834616 | 8.81124i | −5.16337 | − | 14.5559i | 20.5950 | − | 21.2977i | 20.9646 | − | 17.0143i | 26.1897 | ||||||||||
| 92.11 | − | 1.95427i | −4.50778 | − | 2.58456i | 4.18081 | − | 11.2496i | −5.05094 | + | 8.80943i | −8.06707 | − | 23.8046i | 13.6401 | + | 23.3012i | −21.9848 | |||||||||
| 92.12 | − | 1.95427i | 4.50778 | + | 2.58456i | 4.18081 | − | 11.2496i | 5.05094 | − | 8.80943i | −8.06707 | − | 23.8046i | 13.6401 | + | 23.3012i | −21.9848 | |||||||||
| 92.13 | − | 0.403871i | −4.08142 | − | 3.21589i | 7.83689 | 16.8077i | −1.29881 | + | 1.64837i | −11.2524 | − | 6.39606i | 6.31606 | + | 26.2509i | 6.78815 | ||||||||||
| 92.14 | − | 0.403871i | 4.08142 | + | 3.21589i | 7.83689 | 16.8077i | 1.29881 | − | 1.64837i | −11.2524 | − | 6.39606i | 6.31606 | + | 26.2509i | 6.78815 | ||||||||||
| 92.15 | 0.403871i | −4.08142 | + | 3.21589i | 7.83689 | − | 16.8077i | −1.29881 | − | 1.64837i | −11.2524 | 6.39606i | 6.31606 | − | 26.2509i | 6.78815 | |||||||||||
| 92.16 | 0.403871i | 4.08142 | − | 3.21589i | 7.83689 | − | 16.8077i | 1.29881 | + | 1.64837i | −11.2524 | 6.39606i | 6.31606 | − | 26.2509i | 6.78815 | |||||||||||
| 92.17 | 1.95427i | −4.50778 | + | 2.58456i | 4.18081 | 11.2496i | −5.05094 | − | 8.80943i | −8.06707 | 23.8046i | 13.6401 | − | 23.3012i | −21.9848 | ||||||||||||
| 92.18 | 1.95427i | 4.50778 | − | 2.58456i | 4.18081 | 11.2496i | 5.05094 | + | 8.80943i | −8.06707 | 23.8046i | 13.6401 | − | 23.3012i | −21.9848 | ||||||||||||
| 92.19 | 2.97231i | −4.89717 | − | 1.73716i | −0.834616 | − | 8.81124i | 5.16337 | − | 14.5559i | 20.5950 | 21.2977i | 20.9646 | + | 17.0143i | 26.1897 | |||||||||||
| 92.20 | 2.97231i | 4.89717 | + | 1.73716i | −0.834616 | − | 8.81124i | −5.16337 | + | 14.5559i | 20.5950 | 21.2977i | 20.9646 | + | 17.0143i | 26.1897 | |||||||||||
| See all 28 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 3.b | odd | 2 | 1 | inner |
| 31.b | odd | 2 | 1 | inner |
| 93.c | even | 2 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 93.4.c.b | ✓ | 28 |
| 3.b | odd | 2 | 1 | inner | 93.4.c.b | ✓ | 28 |
| 31.b | odd | 2 | 1 | inner | 93.4.c.b | ✓ | 28 |
| 93.c | even | 2 | 1 | inner | 93.4.c.b | ✓ | 28 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 93.4.c.b | ✓ | 28 | 1.a | even | 1 | 1 | trivial |
| 93.4.c.b | ✓ | 28 | 3.b | odd | 2 | 1 | inner |
| 93.4.c.b | ✓ | 28 | 31.b | odd | 2 | 1 | inner |
| 93.4.c.b | ✓ | 28 | 93.c | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{14} + 92T_{2}^{12} + 3321T_{2}^{10} + 59669T_{2}^{8} + 557626T_{2}^{6} + 2549667T_{2}^{4} + 4466736T_{2}^{2} + 663120 \)
acting on \(S_{4}^{\mathrm{new}}(93, [\chi])\).