Properties

Label 93.4.c.b.92.10
Level $93$
Weight $4$
Character 93.92
Analytic conductor $5.487$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [93,4,Mod(92,93)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("93.92"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(93, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 93 = 3 \cdot 31 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 93.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.48717763053\)
Analytic rank: \(0\)
Dimension: \(28\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 92.10
Character \(\chi\) \(=\) 93.92
Dual form 93.4.c.b.92.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.97231i q^{2} +(4.89717 - 1.73716i) q^{3} -0.834616 q^{4} +8.81124i q^{5} +(-5.16337 - 14.5559i) q^{6} +20.5950 q^{7} -21.2977i q^{8} +(20.9646 - 17.0143i) q^{9} +26.1897 q^{10} -14.3060 q^{11} +(-4.08726 + 1.44986i) q^{12} +20.9481i q^{13} -61.2148i q^{14} +(15.3065 + 43.1501i) q^{15} -69.9803 q^{16} -72.5833 q^{17} +(-50.5718 - 62.3132i) q^{18} +9.18310 q^{19} -7.35400i q^{20} +(100.857 - 35.7768i) q^{21} +42.5220i q^{22} -124.620 q^{23} +(-36.9975 - 104.299i) q^{24} +47.3621 q^{25} +62.2643 q^{26} +(73.1105 - 119.741i) q^{27} -17.1890 q^{28} -4.57622 q^{29} +(128.256 - 45.4957i) q^{30} +(-34.3496 + 169.148i) q^{31} +37.6213i q^{32} +(-70.0591 + 24.8518i) q^{33} +215.740i q^{34} +181.468i q^{35} +(-17.4974 + 14.2004i) q^{36} -164.987i q^{37} -27.2950i q^{38} +(36.3902 + 102.587i) q^{39} +187.659 q^{40} +301.602i q^{41} +(-106.340 - 299.779i) q^{42} +114.689i q^{43} +11.9401 q^{44} +(149.917 + 184.724i) q^{45} +370.408i q^{46} +313.591i q^{47} +(-342.706 + 121.567i) q^{48} +81.1555 q^{49} -140.775i q^{50} +(-355.453 + 126.089i) q^{51} -17.4836i q^{52} +704.030 q^{53} +(-355.906 - 217.307i) q^{54} -126.054i q^{55} -438.628i q^{56} +(44.9712 - 15.9525i) q^{57} +13.6019i q^{58} -81.5758i q^{59} +(-12.7751 - 36.0138i) q^{60} +210.196i q^{61} +(502.761 + 102.098i) q^{62} +(431.766 - 350.410i) q^{63} -448.021 q^{64} -184.579 q^{65} +(73.8674 + 208.237i) q^{66} -789.501 q^{67} +60.5792 q^{68} +(-610.284 + 216.484i) q^{69} +539.378 q^{70} -650.622i q^{71} +(-362.366 - 446.498i) q^{72} -960.640i q^{73} -490.391 q^{74} +(231.940 - 82.2754i) q^{75} -7.66437 q^{76} -294.633 q^{77} +(304.919 - 108.163i) q^{78} +1140.44i q^{79} -616.613i q^{80} +(150.026 - 713.395i) q^{81} +896.453 q^{82} -1079.90 q^{83} +(-84.1772 + 29.8599i) q^{84} -639.549i q^{85} +340.891 q^{86} +(-22.4105 + 7.94962i) q^{87} +304.686i q^{88} +545.699 q^{89} +(549.056 - 445.600i) q^{90} +431.427i q^{91} +104.010 q^{92} +(125.621 + 888.018i) q^{93} +932.090 q^{94} +80.9145i q^{95} +(65.3542 + 184.238i) q^{96} -487.900 q^{97} -241.219i q^{98} +(-299.920 + 243.408i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 144 q^{4} - 64 q^{7} + 20 q^{9} - 8 q^{10} + 248 q^{16} + 88 q^{18} + 308 q^{19} - 840 q^{25} - 420 q^{28} + 328 q^{31} - 180 q^{33} + 540 q^{36} + 1152 q^{39} + 44 q^{40} - 1568 q^{45} - 84 q^{49}+ \cdots - 988 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/93\mathbb{Z}\right)^\times\).

\(n\) \(32\) \(34\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.97231i 1.05087i −0.850834 0.525435i \(-0.823903\pi\)
0.850834 0.525435i \(-0.176097\pi\)
\(3\) 4.89717 1.73716i 0.942461 0.334316i
\(4\) −0.834616 −0.104327
\(5\) 8.81124i 0.788101i 0.919089 + 0.394051i \(0.128926\pi\)
−0.919089 + 0.394051i \(0.871074\pi\)
\(6\) −5.16337 14.5559i −0.351323 0.990404i
\(7\) 20.5950 1.11203 0.556014 0.831173i \(-0.312330\pi\)
0.556014 + 0.831173i \(0.312330\pi\)
\(8\) 21.2977i 0.941236i
\(9\) 20.9646 17.0143i 0.776465 0.630160i
\(10\) 26.1897 0.828191
\(11\) −14.3060 −0.392130 −0.196065 0.980591i \(-0.562816\pi\)
−0.196065 + 0.980591i \(0.562816\pi\)
\(12\) −4.08726 + 1.44986i −0.0983242 + 0.0348782i
\(13\) 20.9481i 0.446920i 0.974713 + 0.223460i \(0.0717352\pi\)
−0.974713 + 0.223460i \(0.928265\pi\)
\(14\) 61.2148i 1.16860i
\(15\) 15.3065 + 43.1501i 0.263475 + 0.742754i
\(16\) −69.9803 −1.09344
\(17\) −72.5833 −1.03553 −0.517766 0.855522i \(-0.673236\pi\)
−0.517766 + 0.855522i \(0.673236\pi\)
\(18\) −50.5718 62.3132i −0.662216 0.815964i
\(19\) 9.18310 0.110881 0.0554407 0.998462i \(-0.482344\pi\)
0.0554407 + 0.998462i \(0.482344\pi\)
\(20\) 7.35400i 0.0822202i
\(21\) 100.857 35.7768i 1.04804 0.371769i
\(22\) 42.5220i 0.412078i
\(23\) −124.620 −1.12978 −0.564892 0.825165i \(-0.691082\pi\)
−0.564892 + 0.825165i \(0.691082\pi\)
\(24\) −36.9975 104.299i −0.314670 0.887078i
\(25\) 47.3621 0.378897
\(26\) 62.2643 0.469655
\(27\) 73.1105 119.741i 0.521116 0.853486i
\(28\) −17.1890 −0.116015
\(29\) −4.57622 −0.0293029 −0.0146514 0.999893i \(-0.504664\pi\)
−0.0146514 + 0.999893i \(0.504664\pi\)
\(30\) 128.256 45.4957i 0.780538 0.276878i
\(31\) −34.3496 + 169.148i −0.199012 + 0.979997i
\(32\) 37.6213i 0.207830i
\(33\) −70.0591 + 24.8518i −0.369568 + 0.131096i
\(34\) 215.740i 1.08821i
\(35\) 181.468i 0.876390i
\(36\) −17.4974 + 14.2004i −0.0810063 + 0.0657427i
\(37\) 164.987i 0.733071i −0.930404 0.366536i \(-0.880544\pi\)
0.930404 0.366536i \(-0.119456\pi\)
\(38\) 27.2950i 0.116522i
\(39\) 36.3902 + 102.587i 0.149413 + 0.421205i
\(40\) 187.659 0.741789
\(41\) 301.602i 1.14884i 0.818562 + 0.574418i \(0.194771\pi\)
−0.818562 + 0.574418i \(0.805229\pi\)
\(42\) −106.340 299.779i −0.390680 1.10136i
\(43\) 114.689i 0.406742i 0.979102 + 0.203371i \(0.0651898\pi\)
−0.979102 + 0.203371i \(0.934810\pi\)
\(44\) 11.9401 0.0409098
\(45\) 149.917 + 184.724i 0.496630 + 0.611933i
\(46\) 370.408i 1.18726i
\(47\) 313.591i 0.973234i 0.873615 + 0.486617i \(0.161769\pi\)
−0.873615 + 0.486617i \(0.838231\pi\)
\(48\) −342.706 + 121.567i −1.03053 + 0.365556i
\(49\) 81.1555 0.236605
\(50\) 140.775i 0.398171i
\(51\) −355.453 + 126.089i −0.975949 + 0.346195i
\(52\) 17.4836i 0.0466259i
\(53\) 704.030 1.82464 0.912321 0.409476i \(-0.134289\pi\)
0.912321 + 0.409476i \(0.134289\pi\)
\(54\) −355.906 217.307i −0.896902 0.547625i
\(55\) 126.054i 0.309038i
\(56\) 438.628i 1.04668i
\(57\) 44.9712 15.9525i 0.104501 0.0370695i
\(58\) 13.6019i 0.0307935i
\(59\) 81.5758i 0.180005i −0.995942 0.0900023i \(-0.971313\pi\)
0.995942 0.0900023i \(-0.0286874\pi\)
\(60\) −12.7751 36.0138i −0.0274875 0.0774894i
\(61\) 210.196i 0.441194i 0.975365 + 0.220597i \(0.0708005\pi\)
−0.975365 + 0.220597i \(0.929199\pi\)
\(62\) 502.761 + 102.098i 1.02985 + 0.209136i
\(63\) 431.766 350.410i 0.863451 0.700755i
\(64\) −448.021 −0.875040
\(65\) −184.579 −0.352218
\(66\) 73.8674 + 208.237i 0.137764 + 0.388367i
\(67\) −789.501 −1.43960 −0.719798 0.694184i \(-0.755765\pi\)
−0.719798 + 0.694184i \(0.755765\pi\)
\(68\) 60.5792 0.108034
\(69\) −610.284 + 216.484i −1.06478 + 0.377705i
\(70\) 539.378 0.920972
\(71\) 650.622i 1.08753i −0.839238 0.543765i \(-0.816998\pi\)
0.839238 0.543765i \(-0.183002\pi\)
\(72\) −362.366 446.498i −0.593129 0.730837i
\(73\) 960.640i 1.54020i −0.637925 0.770098i \(-0.720207\pi\)
0.637925 0.770098i \(-0.279793\pi\)
\(74\) −490.391 −0.770362
\(75\) 231.940 82.2754i 0.357095 0.126671i
\(76\) −7.66437 −0.0115679
\(77\) −294.633 −0.436060
\(78\) 304.919 108.163i 0.442631 0.157013i
\(79\) 1140.44i 1.62417i 0.583541 + 0.812084i \(0.301667\pi\)
−0.583541 + 0.812084i \(0.698333\pi\)
\(80\) 616.613i 0.861743i
\(81\) 150.026 713.395i 0.205797 0.978595i
\(82\) 896.453 1.20728
\(83\) −1079.90 −1.42813 −0.714063 0.700082i \(-0.753147\pi\)
−0.714063 + 0.700082i \(0.753147\pi\)
\(84\) −84.1772 + 29.8599i −0.109339 + 0.0387855i
\(85\) 639.549i 0.816104i
\(86\) 340.891 0.427433
\(87\) −22.4105 + 7.94962i −0.0276168 + 0.00979642i
\(88\) 304.686i 0.369087i
\(89\) 545.699 0.649932 0.324966 0.945726i \(-0.394647\pi\)
0.324966 + 0.945726i \(0.394647\pi\)
\(90\) 549.056 445.600i 0.643062 0.521893i
\(91\) 431.427i 0.496988i
\(92\) 104.010 0.117867
\(93\) 125.621 + 888.018i 0.140068 + 0.990142i
\(94\) 932.090 1.02274
\(95\) 80.9145i 0.0873858i
\(96\) 65.3542 + 184.238i 0.0694811 + 0.195872i
\(97\) −487.900 −0.510708 −0.255354 0.966848i \(-0.582192\pi\)
−0.255354 + 0.966848i \(0.582192\pi\)
\(98\) 241.219i 0.248641i
\(99\) −299.920 + 243.408i −0.304476 + 0.247105i
\(100\) −39.5292 −0.0395292
\(101\) 897.314i 0.884020i 0.897010 + 0.442010i \(0.145734\pi\)
−0.897010 + 0.442010i \(0.854266\pi\)
\(102\) 374.774 + 1056.52i 0.363806 + 1.02559i
\(103\) 1853.14 1.77277 0.886385 0.462949i \(-0.153209\pi\)
0.886385 + 0.462949i \(0.153209\pi\)
\(104\) 446.147 0.420657
\(105\) 315.238 + 888.679i 0.292991 + 0.825963i
\(106\) 2092.59i 1.91746i
\(107\) 510.380i 0.461124i −0.973058 0.230562i \(-0.925944\pi\)
0.973058 0.230562i \(-0.0740565\pi\)
\(108\) −61.0192 + 99.9376i −0.0543665 + 0.0890417i
\(109\) −1211.60 −1.06468 −0.532340 0.846531i \(-0.678687\pi\)
−0.532340 + 0.846531i \(0.678687\pi\)
\(110\) −374.671 −0.324759
\(111\) −286.608 807.968i −0.245077 0.690891i
\(112\) −1441.25 −1.21594
\(113\) 67.5004i 0.0561938i −0.999605 0.0280969i \(-0.991055\pi\)
0.999605 0.0280969i \(-0.00894470\pi\)
\(114\) −47.4157 133.668i −0.0389552 0.109817i
\(115\) 1098.05i 0.890384i
\(116\) 3.81939 0.00305708
\(117\) 356.418 + 439.168i 0.281631 + 0.347018i
\(118\) −242.468 −0.189161
\(119\) −1494.86 −1.15154
\(120\) 919.000 325.994i 0.699107 0.247992i
\(121\) −1126.34 −0.846234
\(122\) 624.767 0.463637
\(123\) 523.929 + 1476.99i 0.384074 + 1.08273i
\(124\) 28.6687 141.174i 0.0207623 0.102240i
\(125\) 1518.72i 1.08671i
\(126\) −1041.53 1283.34i −0.736402 0.907374i
\(127\) 2487.42i 1.73798i −0.494833 0.868988i \(-0.664771\pi\)
0.494833 0.868988i \(-0.335229\pi\)
\(128\) 1632.63i 1.12738i
\(129\) 199.233 + 561.652i 0.135980 + 0.383339i
\(130\) 548.625i 0.370136i
\(131\) 1191.93i 0.794956i −0.917612 0.397478i \(-0.869885\pi\)
0.917612 0.397478i \(-0.130115\pi\)
\(132\) 58.4725 20.7418i 0.0385559 0.0136768i
\(133\) 189.126 0.123303
\(134\) 2346.64i 1.51283i
\(135\) 1055.06 + 644.194i 0.672633 + 0.410692i
\(136\) 1545.86i 0.974680i
\(137\) 1022.92 0.637912 0.318956 0.947770i \(-0.396668\pi\)
0.318956 + 0.947770i \(0.396668\pi\)
\(138\) 643.458 + 1813.95i 0.396919 + 1.11894i
\(139\) 1035.37i 0.631791i 0.948794 + 0.315896i \(0.102305\pi\)
−0.948794 + 0.315896i \(0.897695\pi\)
\(140\) 151.456i 0.0914312i
\(141\) 544.758 + 1535.71i 0.325368 + 0.917235i
\(142\) −1933.85 −1.14285
\(143\) 299.685i 0.175251i
\(144\) −1467.11 + 1190.67i −0.849021 + 0.689044i
\(145\) 40.3222i 0.0230936i
\(146\) −2855.32 −1.61855
\(147\) 397.432 140.980i 0.222991 0.0791009i
\(148\) 137.700i 0.0764791i
\(149\) 613.700i 0.337425i −0.985665 0.168712i \(-0.946039\pi\)
0.985665 0.168712i \(-0.0539609\pi\)
\(150\) −244.548 689.398i −0.133115 0.375261i
\(151\) 3139.09i 1.69176i −0.533373 0.845880i \(-0.679076\pi\)
0.533373 0.845880i \(-0.320924\pi\)
\(152\) 195.579i 0.104366i
\(153\) −1521.68 + 1234.96i −0.804055 + 0.652551i
\(154\) 875.741i 0.458242i
\(155\) −1490.40 302.663i −0.772337 0.156842i
\(156\) −30.3718 85.6204i −0.0155878 0.0439431i
\(157\) −666.763 −0.338939 −0.169470 0.985535i \(-0.554205\pi\)
−0.169470 + 0.985535i \(0.554205\pi\)
\(158\) 3389.73 1.70679
\(159\) 3447.76 1223.01i 1.71965 0.610007i
\(160\) −331.490 −0.163791
\(161\) −2566.55 −1.25635
\(162\) −2120.43 445.924i −1.02838 0.216266i
\(163\) 1557.11 0.748235 0.374117 0.927381i \(-0.377946\pi\)
0.374117 + 0.927381i \(0.377946\pi\)
\(164\) 251.722i 0.119855i
\(165\) −218.976 617.308i −0.103316 0.291257i
\(166\) 3209.80i 1.50077i
\(167\) 1909.74 0.884909 0.442455 0.896791i \(-0.354108\pi\)
0.442455 + 0.896791i \(0.354108\pi\)
\(168\) −761.965 2148.03i −0.349922 0.986455i
\(169\) 1758.18 0.800262
\(170\) −1900.94 −0.857619
\(171\) 192.520 156.244i 0.0860957 0.0698731i
\(172\) 95.7213i 0.0424342i
\(173\) 698.415i 0.306933i 0.988154 + 0.153467i \(0.0490438\pi\)
−0.988154 + 0.153467i \(0.950956\pi\)
\(174\) 23.6287 + 66.6110i 0.0102948 + 0.0290217i
\(175\) 975.424 0.421344
\(176\) 1001.14 0.428772
\(177\) −141.710 399.491i −0.0601784 0.169647i
\(178\) 1621.99i 0.682994i
\(179\) 1176.98 0.491459 0.245730 0.969338i \(-0.420972\pi\)
0.245730 + 0.969338i \(0.420972\pi\)
\(180\) −125.123 154.173i −0.0518119 0.0638412i
\(181\) 4007.03i 1.64553i −0.568383 0.822764i \(-0.692431\pi\)
0.568383 0.822764i \(-0.307569\pi\)
\(182\) 1282.33 0.522269
\(183\) 365.143 + 1029.37i 0.147498 + 0.415808i
\(184\) 2654.12i 1.06339i
\(185\) 1453.74 0.577734
\(186\) 2639.46 373.385i 1.04051 0.147193i
\(187\) 1038.38 0.406064
\(188\) 261.729i 0.101535i
\(189\) 1505.71 2466.07i 0.579495 0.949100i
\(190\) 240.503 0.0918311
\(191\) 5138.70i 1.94672i −0.229281 0.973360i \(-0.573638\pi\)
0.229281 0.973360i \(-0.426362\pi\)
\(192\) −2194.03 + 778.282i −0.824691 + 0.292540i
\(193\) 3075.52 1.14705 0.573524 0.819188i \(-0.305576\pi\)
0.573524 + 0.819188i \(0.305576\pi\)
\(194\) 1450.19i 0.536688i
\(195\) −903.914 + 320.643i −0.331952 + 0.117752i
\(196\) −67.7337 −0.0246843
\(197\) 2912.20 1.05323 0.526613 0.850105i \(-0.323462\pi\)
0.526613 + 0.850105i \(0.323462\pi\)
\(198\) 723.482 + 891.455i 0.259675 + 0.319964i
\(199\) 1476.08i 0.525812i −0.964821 0.262906i \(-0.915319\pi\)
0.964821 0.262906i \(-0.0846809\pi\)
\(200\) 1008.71i 0.356631i
\(201\) −3866.32 + 1371.49i −1.35676 + 0.481280i
\(202\) 2667.09 0.928990
\(203\) −94.2474 −0.0325856
\(204\) 296.667 105.236i 0.101818 0.0361175i
\(205\) −2657.48 −0.905398
\(206\) 5508.10i 1.86295i
\(207\) −2612.60 + 2120.32i −0.877238 + 0.711944i
\(208\) 1465.96i 0.488682i
\(209\) −131.374 −0.0434800
\(210\) 2641.43 936.985i 0.867980 0.307896i
\(211\) −2951.37 −0.962940 −0.481470 0.876462i \(-0.659897\pi\)
−0.481470 + 0.876462i \(0.659897\pi\)
\(212\) −587.595 −0.190359
\(213\) −1130.23 3186.21i −0.363579 1.02495i
\(214\) −1517.01 −0.484581
\(215\) −1010.55 −0.320554
\(216\) −2550.21 1557.09i −0.803331 0.490493i
\(217\) −707.431 + 3483.61i −0.221307 + 1.08978i
\(218\) 3601.25i 1.11884i
\(219\) −1668.78 4704.42i −0.514913 1.45158i
\(220\) 105.207i 0.0322411i
\(221\) 1520.48i 0.462800i
\(222\) −2401.53 + 851.886i −0.726036 + 0.257544i
\(223\) 2635.34i 0.791368i 0.918387 + 0.395684i \(0.129493\pi\)
−0.918387 + 0.395684i \(0.870507\pi\)
\(224\) 774.813i 0.231113i
\(225\) 992.926 805.834i 0.294200 0.238766i
\(226\) −200.632 −0.0590524
\(227\) 303.631i 0.0887783i 0.999014 + 0.0443892i \(0.0141342\pi\)
−0.999014 + 0.0443892i \(0.985866\pi\)
\(228\) −37.5337 + 13.3142i −0.0109023 + 0.00386735i
\(229\) 4395.86i 1.26850i 0.773127 + 0.634251i \(0.218691\pi\)
−0.773127 + 0.634251i \(0.781309\pi\)
\(230\) −3263.76 −0.935677
\(231\) −1442.87 + 511.825i −0.410969 + 0.145782i
\(232\) 97.4631i 0.0275809i
\(233\) 2353.50i 0.661728i −0.943678 0.330864i \(-0.892660\pi\)
0.943678 0.330864i \(-0.107340\pi\)
\(234\) 1305.34 1059.38i 0.364671 0.295958i
\(235\) −2763.13 −0.767007
\(236\) 68.0845i 0.0187793i
\(237\) 1981.12 + 5584.92i 0.542985 + 1.53071i
\(238\) 4443.17i 1.21012i
\(239\) 2368.19 0.640943 0.320472 0.947258i \(-0.396159\pi\)
0.320472 + 0.947258i \(0.396159\pi\)
\(240\) −1071.15 3019.66i −0.288095 0.812160i
\(241\) 5033.17i 1.34529i 0.739965 + 0.672645i \(0.234842\pi\)
−0.739965 + 0.672645i \(0.765158\pi\)
\(242\) 3347.82i 0.889281i
\(243\) −504.576 3754.24i −0.133204 0.991089i
\(244\) 175.433i 0.0460284i
\(245\) 715.080i 0.186469i
\(246\) 4390.08 1557.28i 1.13781 0.403612i
\(247\) 192.369i 0.0495552i
\(248\) 3602.47 + 731.569i 0.922408 + 0.187317i
\(249\) −5288.45 + 1875.96i −1.34595 + 0.477445i
\(250\) 4514.11 1.14199
\(251\) 6226.01 1.56567 0.782834 0.622231i \(-0.213774\pi\)
0.782834 + 0.622231i \(0.213774\pi\)
\(252\) −360.359 + 292.458i −0.0900813 + 0.0731077i
\(253\) 1782.82 0.443022
\(254\) −7393.38 −1.82639
\(255\) −1111.00 3131.98i −0.272837 0.769146i
\(256\) 1268.50 0.309693
\(257\) 4278.00i 1.03834i 0.854670 + 0.519172i \(0.173760\pi\)
−0.854670 + 0.519172i \(0.826240\pi\)
\(258\) 1669.40 592.181i 0.402839 0.142898i
\(259\) 3397.90i 0.815195i
\(260\) 154.053 0.0367459
\(261\) −95.9385 + 77.8613i −0.0227527 + 0.0184655i
\(262\) −3542.78 −0.835395
\(263\) −5141.20 −1.20540 −0.602699 0.797969i \(-0.705908\pi\)
−0.602699 + 0.797969i \(0.705908\pi\)
\(264\) 529.288 + 1492.10i 0.123392 + 0.347850i
\(265\) 6203.38i 1.43800i
\(266\) 562.142i 0.129576i
\(267\) 2672.38 947.965i 0.612536 0.217283i
\(268\) 658.930 0.150189
\(269\) −3194.61 −0.724085 −0.362043 0.932162i \(-0.617921\pi\)
−0.362043 + 0.932162i \(0.617921\pi\)
\(270\) 1914.74 3135.98i 0.431584 0.706850i
\(271\) 7237.20i 1.62225i −0.584876 0.811123i \(-0.698857\pi\)
0.584876 0.811123i \(-0.301143\pi\)
\(272\) 5079.41 1.13230
\(273\) 749.457 + 2112.77i 0.166151 + 0.468391i
\(274\) 3040.43i 0.670362i
\(275\) −677.564 −0.148577
\(276\) 509.353 180.681i 0.111085 0.0394048i
\(277\) 3547.29i 0.769445i −0.923032 0.384722i \(-0.874297\pi\)
0.923032 0.384722i \(-0.125703\pi\)
\(278\) 3077.44 0.663930
\(279\) 2157.82 + 4130.55i 0.463029 + 0.886343i
\(280\) 3864.85 0.824889
\(281\) 8051.56i 1.70931i 0.519197 + 0.854655i \(0.326231\pi\)
−0.519197 + 0.854655i \(0.673769\pi\)
\(282\) 4564.61 1619.19i 0.963895 0.341919i
\(283\) −2362.20 −0.496177 −0.248088 0.968737i \(-0.579802\pi\)
−0.248088 + 0.968737i \(0.579802\pi\)
\(284\) 543.020i 0.113459i
\(285\) 140.561 + 396.252i 0.0292145 + 0.0823577i
\(286\) −890.755 −0.184166
\(287\) 6211.50i 1.27754i
\(288\) 640.101 + 788.715i 0.130966 + 0.161373i
\(289\) 355.341 0.0723267
\(290\) −119.850 −0.0242684
\(291\) −2389.33 + 847.559i −0.481323 + 0.170738i
\(292\) 801.765i 0.160684i
\(293\) 1224.20i 0.244091i 0.992525 + 0.122045i \(0.0389453\pi\)
−0.992525 + 0.122045i \(0.961055\pi\)
\(294\) −419.036 1181.29i −0.0831247 0.234334i
\(295\) 718.784 0.141862
\(296\) −3513.84 −0.689993
\(297\) −1045.92 + 1713.02i −0.204345 + 0.334678i
\(298\) −1824.11 −0.354589
\(299\) 2610.55i 0.504923i
\(300\) −193.581 + 68.6684i −0.0372547 + 0.0132152i
\(301\) 2362.02i 0.452308i
\(302\) −9330.36 −1.77782
\(303\) 1558.78 + 4394.30i 0.295542 + 0.833155i
\(304\) −642.637 −0.121243
\(305\) −1852.09 −0.347705
\(306\) 3670.67 + 4522.90i 0.685746 + 0.844957i
\(307\) 399.180 0.0742098 0.0371049 0.999311i \(-0.488186\pi\)
0.0371049 + 0.999311i \(0.488186\pi\)
\(308\) 245.906 0.0454928
\(309\) 9075.14 3219.20i 1.67077 0.592666i
\(310\) −899.606 + 4429.94i −0.164820 + 0.811625i
\(311\) 9440.04i 1.72121i −0.509275 0.860604i \(-0.670086\pi\)
0.509275 0.860604i \(-0.329914\pi\)
\(312\) 2184.86 775.028i 0.396453 0.140632i
\(313\) 1973.12i 0.356317i −0.984002 0.178158i \(-0.942986\pi\)
0.984002 0.178158i \(-0.0570140\pi\)
\(314\) 1981.82i 0.356181i
\(315\) 3087.55 + 3804.39i 0.552266 + 0.680487i
\(316\) 951.828i 0.169445i
\(317\) 3958.90i 0.701431i 0.936482 + 0.350716i \(0.114062\pi\)
−0.936482 + 0.350716i \(0.885938\pi\)
\(318\) −3635.17 10247.8i −0.641038 1.80713i
\(319\) 65.4676 0.0114905
\(320\) 3947.62i 0.689620i
\(321\) −886.610 2499.42i −0.154161 0.434591i
\(322\) 7628.57i 1.32026i
\(323\) −666.540 −0.114821
\(324\) −125.214 + 595.411i −0.0214702 + 0.102094i
\(325\) 992.147i 0.169337i
\(326\) 4628.21i 0.786297i
\(327\) −5933.41 + 2104.74i −1.00342 + 0.355940i
\(328\) 6423.43 1.08132
\(329\) 6458.43i 1.08226i
\(330\) −1834.83 + 650.863i −0.306073 + 0.108572i
\(331\) 401.496i 0.0666714i 0.999444 + 0.0333357i \(0.0106130\pi\)
−0.999444 + 0.0333357i \(0.989387\pi\)
\(332\) 901.302 0.148992
\(333\) −2807.13 3458.87i −0.461952 0.569204i
\(334\) 5676.33i 0.929924i
\(335\) 6956.48i 1.13455i
\(336\) −7058.04 + 2503.67i −1.14597 + 0.406508i
\(337\) 1273.53i 0.205857i −0.994689 0.102928i \(-0.967179\pi\)
0.994689 0.102928i \(-0.0328213\pi\)
\(338\) 5225.84i 0.840971i
\(339\) −117.259 330.561i −0.0187865 0.0529605i
\(340\) 533.778i 0.0851417i
\(341\) 491.407 2419.84i 0.0780386 0.384287i
\(342\) −464.406 572.228i −0.0734275 0.0904753i
\(343\) −5392.70 −0.848916
\(344\) 2442.62 0.382840
\(345\) −1907.49 5377.36i −0.297670 0.839152i
\(346\) 2075.90 0.322547
\(347\) −3855.03 −0.596394 −0.298197 0.954504i \(-0.596385\pi\)
−0.298197 + 0.954504i \(0.596385\pi\)
\(348\) 18.7042 6.63488i 0.00288118 0.00102203i
\(349\) −7764.24 −1.19086 −0.595430 0.803407i \(-0.703018\pi\)
−0.595430 + 0.803407i \(0.703018\pi\)
\(350\) 2899.26i 0.442777i
\(351\) 2508.34 + 1531.53i 0.381440 + 0.232897i
\(352\) 538.212i 0.0814966i
\(353\) 5710.92 0.861081 0.430540 0.902571i \(-0.358323\pi\)
0.430540 + 0.902571i \(0.358323\pi\)
\(354\) −1187.41 + 421.206i −0.178277 + 0.0632397i
\(355\) 5732.78 0.857083
\(356\) −455.449 −0.0678055
\(357\) −7320.57 + 2596.80i −1.08528 + 0.384978i
\(358\) 3498.33i 0.516460i
\(359\) 38.0667i 0.00559633i 0.999996 + 0.00279816i \(0.000890684\pi\)
−0.999996 + 0.00279816i \(0.999109\pi\)
\(360\) 3934.20 3192.90i 0.575973 0.467445i
\(361\) −6774.67 −0.987705
\(362\) −11910.1 −1.72924
\(363\) −5515.87 + 1956.62i −0.797542 + 0.282910i
\(364\) 360.076i 0.0518492i
\(365\) 8464.42 1.21383
\(366\) 3059.59 1085.32i 0.436960 0.155001i
\(367\) 5616.01i 0.798783i −0.916781 0.399391i \(-0.869221\pi\)
0.916781 0.399391i \(-0.130779\pi\)
\(368\) 8720.94 1.23535
\(369\) 5131.54 + 6322.95i 0.723950 + 0.892031i
\(370\) 4320.95i 0.607123i
\(371\) 14499.5 2.02905
\(372\) −104.845 741.154i −0.0146129 0.103299i
\(373\) −1904.03 −0.264308 −0.132154 0.991229i \(-0.542189\pi\)
−0.132154 + 0.991229i \(0.542189\pi\)
\(374\) 3086.39i 0.426720i
\(375\) 2638.26 + 7437.45i 0.363305 + 1.02418i
\(376\) 6678.79 0.916043
\(377\) 95.8632i 0.0130960i
\(378\) −7329.91 4475.45i −0.997380 0.608974i
\(379\) 5603.29 0.759424 0.379712 0.925105i \(-0.376023\pi\)
0.379712 + 0.925105i \(0.376023\pi\)
\(380\) 67.5326i 0.00911670i
\(381\) −4321.04 12181.3i −0.581033 1.63797i
\(382\) −15273.8 −2.04575
\(383\) 4230.36 0.564390 0.282195 0.959357i \(-0.408937\pi\)
0.282195 + 0.959357i \(0.408937\pi\)
\(384\) 2836.13 + 7995.25i 0.376903 + 1.06252i
\(385\) 2596.09i 0.343659i
\(386\) 9141.38i 1.20540i
\(387\) 1951.35 + 2404.41i 0.256312 + 0.315821i
\(388\) 407.209 0.0532807
\(389\) −2788.06 −0.363394 −0.181697 0.983355i \(-0.558159\pi\)
−0.181697 + 0.983355i \(0.558159\pi\)
\(390\) 953.048 + 2686.71i 0.123742 + 0.348838i
\(391\) 9045.32 1.16993
\(392\) 1728.43i 0.222701i
\(393\) −2070.57 5837.08i −0.265767 0.749215i
\(394\) 8655.95i 1.10680i
\(395\) −10048.7 −1.28001
\(396\) 250.318 203.152i 0.0317650 0.0257797i
\(397\) 11012.8 1.39223 0.696115 0.717931i \(-0.254911\pi\)
0.696115 + 0.717931i \(0.254911\pi\)
\(398\) −4387.36 −0.552560
\(399\) 926.184 328.542i 0.116209 0.0412223i
\(400\) −3314.42 −0.414302
\(401\) −564.094 −0.0702481 −0.0351241 0.999383i \(-0.511183\pi\)
−0.0351241 + 0.999383i \(0.511183\pi\)
\(402\) 4076.48 + 11491.9i 0.505762 + 1.42578i
\(403\) −3543.34 719.560i −0.437981 0.0889425i
\(404\) 748.913i 0.0922272i
\(405\) 6285.90 + 1321.92i 0.771231 + 0.162189i
\(406\) 280.132i 0.0342432i
\(407\) 2360.31i 0.287459i
\(408\) 2685.40 + 7570.34i 0.325851 + 0.918598i
\(409\) 97.0623i 0.0117345i 0.999983 + 0.00586726i \(0.00186762\pi\)
−0.999983 + 0.00586726i \(0.998132\pi\)
\(410\) 7898.86i 0.951456i
\(411\) 5009.41 1776.97i 0.601207 0.213264i
\(412\) −1546.66 −0.184948
\(413\) 1680.06i 0.200170i
\(414\) 6302.25 + 7765.45i 0.748161 + 0.921863i
\(415\) 9515.25i 1.12551i
\(416\) −788.096 −0.0928836
\(417\) 1798.60 + 5070.39i 0.211218 + 0.595438i
\(418\) 390.484i 0.0456918i
\(419\) 14853.7i 1.73186i 0.500163 + 0.865932i \(0.333274\pi\)
−0.500163 + 0.865932i \(0.666726\pi\)
\(420\) −263.103 741.706i −0.0305669 0.0861703i
\(421\) 15742.8 1.82246 0.911230 0.411898i \(-0.135134\pi\)
0.911230 + 0.411898i \(0.135134\pi\)
\(422\) 8772.37i 1.01192i
\(423\) 5335.54 + 6574.31i 0.613293 + 0.755683i
\(424\) 14994.2i 1.71742i
\(425\) −3437.70 −0.392360
\(426\) −9470.39 + 3359.40i −1.07709 + 0.382074i
\(427\) 4328.99i 0.490620i
\(428\) 425.971i 0.0481077i
\(429\) −520.600 1467.61i −0.0585892 0.165167i
\(430\) 3003.67i 0.336860i
\(431\) 5617.52i 0.627810i −0.949454 0.313905i \(-0.898363\pi\)
0.949454 0.313905i \(-0.101637\pi\)
\(432\) −5116.30 + 8379.50i −0.569810 + 0.933238i
\(433\) 5536.92i 0.614521i 0.951625 + 0.307260i \(0.0994123\pi\)
−0.951625 + 0.307260i \(0.900588\pi\)
\(434\) 10354.4 + 2102.70i 1.14522 + 0.232565i
\(435\) −70.0460 197.465i −0.00772057 0.0217648i
\(436\) 1011.22 0.111075
\(437\) −1144.40 −0.125272
\(438\) −13983.0 + 4960.14i −1.52542 + 0.541106i
\(439\) −8842.62 −0.961356 −0.480678 0.876897i \(-0.659609\pi\)
−0.480678 + 0.876897i \(0.659609\pi\)
\(440\) −2684.66 −0.290878
\(441\) 1701.39 1380.81i 0.183716 0.149099i
\(442\) −4519.35 −0.486343
\(443\) 3372.59i 0.361708i 0.983510 + 0.180854i \(0.0578861\pi\)
−0.983510 + 0.180854i \(0.942114\pi\)
\(444\) 239.207 + 674.343i 0.0255682 + 0.0720786i
\(445\) 4808.28i 0.512212i
\(446\) 7833.03 0.831625
\(447\) −1066.09 3005.40i −0.112807 0.318010i
\(448\) −9227.00 −0.973069
\(449\) −10281.5 −1.08065 −0.540325 0.841456i \(-0.681699\pi\)
−0.540325 + 0.841456i \(0.681699\pi\)
\(450\) −2395.19 2951.28i −0.250911 0.309166i
\(451\) 4314.73i 0.450493i
\(452\) 56.3369i 0.00586254i
\(453\) −5453.10 15372.7i −0.565583 1.59442i
\(454\) 902.484 0.0932944
\(455\) −3801.41 −0.391676
\(456\) −339.752 957.785i −0.0348911 0.0983605i
\(457\) 3641.99i 0.372791i 0.982475 + 0.186395i \(0.0596805\pi\)
−0.982475 + 0.186395i \(0.940319\pi\)
\(458\) 13065.9 1.33303
\(459\) −5306.61 + 8691.18i −0.539632 + 0.883812i
\(460\) 916.454i 0.0928911i
\(461\) 8668.14 0.875738 0.437869 0.899039i \(-0.355733\pi\)
0.437869 + 0.899039i \(0.355733\pi\)
\(462\) 1521.30 + 4288.66i 0.153198 + 0.431875i
\(463\) 14408.6i 1.44628i 0.690703 + 0.723138i \(0.257301\pi\)
−0.690703 + 0.723138i \(0.742699\pi\)
\(464\) 320.246 0.0320410
\(465\) −7824.54 + 1106.88i −0.780332 + 0.110388i
\(466\) −6995.32 −0.695390
\(467\) 13348.0i 1.32264i 0.750104 + 0.661320i \(0.230004\pi\)
−0.750104 + 0.661320i \(0.769996\pi\)
\(468\) −297.472 366.537i −0.0293817 0.0362034i
\(469\) −16259.8 −1.60087
\(470\) 8212.87i 0.806024i
\(471\) −3265.25 + 1158.27i −0.319437 + 0.113313i
\(472\) −1737.38 −0.169427
\(473\) 1640.75i 0.159496i
\(474\) 16600.1 5888.50i 1.60858 0.570607i
\(475\) 434.931 0.0420126
\(476\) 1247.63 0.120137
\(477\) 14759.7 11978.6i 1.41677 1.14982i
\(478\) 7038.99i 0.673548i
\(479\) 12332.9i 1.17642i −0.808709 0.588208i \(-0.799833\pi\)
0.808709 0.588208i \(-0.200167\pi\)
\(480\) −1623.37 + 575.851i −0.154367 + 0.0547581i
\(481\) 3456.16 0.327624
\(482\) 14960.1 1.41372
\(483\) −12568.8 + 4458.50i −1.18406 + 0.420018i
\(484\) 940.059 0.0882851
\(485\) 4299.00i 0.402490i
\(486\) −11158.8 + 1499.76i −1.04150 + 0.139980i
\(487\) 8959.38i 0.833651i 0.908986 + 0.416826i \(0.136857\pi\)
−0.908986 + 0.416826i \(0.863143\pi\)
\(488\) 4476.69 0.415267
\(489\) 7625.43 2704.95i 0.705182 0.250147i
\(490\) 2125.44 0.195954
\(491\) −19485.3 −1.79096 −0.895478 0.445105i \(-0.853166\pi\)
−0.895478 + 0.445105i \(0.853166\pi\)
\(492\) −437.280 1232.72i −0.0400693 0.112958i
\(493\) 332.157 0.0303440
\(494\) 571.779 0.0520760
\(495\) −2144.72 2642.67i −0.194744 0.239958i
\(496\) 2403.80 11837.0i 0.217608 1.07157i
\(497\) 13399.6i 1.20936i
\(498\) 5575.92 + 15718.9i 0.501733 + 1.41442i
\(499\) 19575.1i 1.75612i 0.478554 + 0.878058i \(0.341161\pi\)
−0.478554 + 0.878058i \(0.658839\pi\)
\(500\) 1267.55i 0.113373i
\(501\) 9352.31 3317.51i 0.833992 0.295839i
\(502\) 18505.6i 1.64531i
\(503\) 5482.86i 0.486021i 0.970024 + 0.243011i \(0.0781350\pi\)
−0.970024 + 0.243011i \(0.921865\pi\)
\(504\) −7462.95 9195.64i −0.659575 0.812711i
\(505\) −7906.44 −0.696697
\(506\) 5299.08i 0.465559i
\(507\) 8610.09 3054.23i 0.754216 0.267541i
\(508\) 2076.04i 0.181318i
\(509\) −16074.3 −1.39976 −0.699882 0.714258i \(-0.746764\pi\)
−0.699882 + 0.714258i \(0.746764\pi\)
\(510\) −9309.21 + 3302.23i −0.808272 + 0.286716i
\(511\) 19784.4i 1.71274i
\(512\) 9290.63i 0.801937i
\(513\) 671.382 1099.59i 0.0577821 0.0946358i
\(514\) 12715.5 1.09116
\(515\) 16328.5i 1.39712i
\(516\) −166.283 468.764i −0.0141864 0.0399926i
\(517\) 4486.25i 0.381635i
\(518\) −10099.6 −0.856664
\(519\) 1213.26 + 3420.26i 0.102613 + 0.289273i
\(520\) 3931.11i 0.331520i
\(521\) 14626.0i 1.22990i −0.788566 0.614950i \(-0.789176\pi\)
0.788566 0.614950i \(-0.210824\pi\)
\(522\) 231.428 + 285.159i 0.0194048 + 0.0239101i
\(523\) 7530.66i 0.629623i 0.949154 + 0.314811i \(0.101941\pi\)
−0.949154 + 0.314811i \(0.898059\pi\)
\(524\) 994.803i 0.0829354i
\(525\) 4776.82 1694.47i 0.397100 0.140862i
\(526\) 15281.2i 1.26672i
\(527\) 2493.21 12277.3i 0.206083 1.01482i
\(528\) 4902.76 1739.14i 0.404101 0.143345i
\(529\) 3363.09 0.276411
\(530\) 18438.3 1.51115
\(531\) −1387.96 1710.20i −0.113432 0.139767i
\(532\) −157.848 −0.0128639
\(533\) −6317.99 −0.513438
\(534\) −2817.64 7943.14i −0.228336 0.643695i
\(535\) 4497.08 0.363412
\(536\) 16814.6i 1.35500i
\(537\) 5763.85 2044.59i 0.463181 0.164303i
\(538\) 9495.37i 0.760919i
\(539\) −1161.01 −0.0927800
\(540\) −880.574 537.655i −0.0701738 0.0428463i
\(541\) 9029.58 0.717582 0.358791 0.933418i \(-0.383189\pi\)
0.358791 + 0.933418i \(0.383189\pi\)
\(542\) −21511.2 −1.70477
\(543\) −6960.85 19623.1i −0.550127 1.55085i
\(544\) 2730.68i 0.215215i
\(545\) 10675.7i 0.839075i
\(546\) 6279.81 2227.62i 0.492218 0.174603i
\(547\) −163.580 −0.0127864 −0.00639322 0.999980i \(-0.502035\pi\)
−0.00639322 + 0.999980i \(0.502035\pi\)
\(548\) −853.745 −0.0665514
\(549\) 3576.34 + 4406.67i 0.278023 + 0.342572i
\(550\) 2013.93i 0.156135i
\(551\) −42.0239 −0.00324914
\(552\) 4610.62 + 12997.7i 0.355509 + 1.00221i
\(553\) 23487.4i 1.80612i
\(554\) −10543.6 −0.808586
\(555\) 7119.19 2525.37i 0.544492 0.193146i
\(556\) 864.137i 0.0659129i
\(557\) −5158.90 −0.392441 −0.196221 0.980560i \(-0.562867\pi\)
−0.196221 + 0.980560i \(0.562867\pi\)
\(558\) 12277.3 6413.69i 0.931431 0.486583i
\(559\) −2402.52 −0.181781
\(560\) 12699.2i 0.958282i
\(561\) 5085.13 1803.83i 0.382699 0.135754i
\(562\) 23931.7 1.79626
\(563\) 9206.84i 0.689204i −0.938749 0.344602i \(-0.888014\pi\)
0.938749 0.344602i \(-0.111986\pi\)
\(564\) −454.664 1281.73i −0.0339447 0.0956924i
\(565\) 594.762 0.0442864
\(566\) 7021.18i 0.521417i
\(567\) 3089.80 14692.4i 0.228852 1.08822i
\(568\) −13856.8 −1.02362
\(569\) 9467.71 0.697552 0.348776 0.937206i \(-0.386597\pi\)
0.348776 + 0.937206i \(0.386597\pi\)
\(570\) 1177.78 417.791i 0.0865472 0.0307006i
\(571\) 2989.83i 0.219125i 0.993980 + 0.109563i \(0.0349450\pi\)
−0.993980 + 0.109563i \(0.965055\pi\)
\(572\) 250.122i 0.0182834i
\(573\) −8926.74 25165.1i −0.650820 1.83471i
\(574\) 18462.5 1.34252
\(575\) −5902.26 −0.428071
\(576\) −9392.56 + 7622.76i −0.679439 + 0.551415i
\(577\) 17108.6 1.23438 0.617191 0.786813i \(-0.288270\pi\)
0.617191 + 0.786813i \(0.288270\pi\)
\(578\) 1056.18i 0.0760059i
\(579\) 15061.3 5342.65i 1.08105 0.383477i
\(580\) 33.6535i 0.00240929i
\(581\) −22240.6 −1.58811
\(582\) 2519.21 + 7101.82i 0.179423 + 0.505807i
\(583\) −10071.9 −0.715497
\(584\) −20459.4 −1.44969
\(585\) −3869.62 + 3140.48i −0.273485 + 0.221954i
\(586\) 3638.70 0.256507
\(587\) 24548.3 1.72610 0.863048 0.505121i \(-0.168552\pi\)
0.863048 + 0.505121i \(0.168552\pi\)
\(588\) −331.704 + 117.664i −0.0232640 + 0.00825236i
\(589\) −315.436 + 1553.31i −0.0220667 + 0.108664i
\(590\) 2136.45i 0.149078i
\(591\) 14261.5 5058.95i 0.992624 0.352110i
\(592\) 11545.8i 0.801571i
\(593\) 10603.5i 0.734287i −0.930164 0.367144i \(-0.880336\pi\)
0.930164 0.367144i \(-0.119664\pi\)
\(594\) 5091.61 + 3108.80i 0.351703 + 0.214740i
\(595\) 13171.5i 0.907530i
\(596\) 512.204i 0.0352025i
\(597\) −2564.18 7228.62i −0.175787 0.495557i
\(598\) −7759.36 −0.530608
\(599\) 5005.13i 0.341409i 0.985322 + 0.170705i \(0.0546044\pi\)
−0.985322 + 0.170705i \(0.945396\pi\)
\(600\) −1752.28 4939.80i −0.119228 0.336111i
\(601\) 18720.9i 1.27062i −0.772258 0.635310i \(-0.780873\pi\)
0.772258 0.635310i \(-0.219127\pi\)
\(602\) 7020.66 0.475317
\(603\) −16551.5 + 13432.8i −1.11780 + 0.907175i
\(604\) 2619.94i 0.176496i
\(605\) 9924.42i 0.666918i
\(606\) 13061.2 4633.16i 0.875537 0.310576i
\(607\) −2711.94 −0.181341 −0.0906707 0.995881i \(-0.528901\pi\)
−0.0906707 + 0.995881i \(0.528901\pi\)
\(608\) 345.481i 0.0230445i
\(609\) −461.546 + 163.723i −0.0307106 + 0.0108939i
\(610\) 5504.97i 0.365393i
\(611\) −6569.15 −0.434958
\(612\) 1270.02 1030.71i 0.0838847 0.0680787i
\(613\) 24789.5i 1.63334i 0.577104 + 0.816671i \(0.304183\pi\)
−0.577104 + 0.816671i \(0.695817\pi\)
\(614\) 1186.49i 0.0779848i
\(615\) −13014.1 + 4616.47i −0.853303 + 0.302689i
\(616\) 6275.02i 0.410435i
\(617\) 12412.2i 0.809879i 0.914343 + 0.404940i \(0.132707\pi\)
−0.914343 + 0.404940i \(0.867293\pi\)
\(618\) −9568.44 26974.1i −0.622814 1.75576i
\(619\) 14277.4i 0.927072i −0.886078 0.463536i \(-0.846581\pi\)
0.886078 0.463536i \(-0.153419\pi\)
\(620\) 1243.92 + 252.607i 0.0805756 + 0.0163628i
\(621\) −9111.02 + 14922.1i −0.588748 + 0.964254i
\(622\) −28058.7 −1.80876
\(623\) 11238.7 0.722743
\(624\) −2546.60 7179.04i −0.163374 0.460564i
\(625\) −7461.57 −0.477540
\(626\) −5864.71 −0.374443
\(627\) −643.360 + 228.217i −0.0409782 + 0.0145361i
\(628\) 556.491 0.0353605
\(629\) 11975.3i 0.759119i
\(630\) 11307.8 9177.15i 0.715103 0.580359i
\(631\) 7379.14i 0.465545i −0.972531 0.232773i \(-0.925220\pi\)
0.972531 0.232773i \(-0.0747798\pi\)
\(632\) 24288.7 1.52872
\(633\) −14453.3 + 5126.99i −0.907534 + 0.321927i
\(634\) 11767.1 0.737113
\(635\) 21917.3 1.36970
\(636\) −2877.55 + 1020.75i −0.179406 + 0.0636402i
\(637\) 1700.06i 0.105744i
\(638\) 194.590i 0.0120751i
\(639\) −11069.9 13640.0i −0.685318 0.844429i
\(640\) −14385.5 −0.888492
\(641\) 28893.9 1.78041 0.890204 0.455563i \(-0.150562\pi\)
0.890204 + 0.455563i \(0.150562\pi\)
\(642\) −7429.04 + 2635.28i −0.456699 + 0.162003i
\(643\) 7057.87i 0.432870i 0.976297 + 0.216435i \(0.0694429\pi\)
−0.976297 + 0.216435i \(0.930557\pi\)
\(644\) 2142.08 0.131071
\(645\) −4948.85 + 1755.49i −0.302109 + 0.107166i
\(646\) 1981.16i 0.120662i
\(647\) −13569.4 −0.824525 −0.412262 0.911065i \(-0.635261\pi\)
−0.412262 + 0.911065i \(0.635261\pi\)
\(648\) −15193.7 3195.22i −0.921088 0.193704i
\(649\) 1167.03i 0.0705852i
\(650\) 2948.97 0.177951
\(651\) 2587.17 + 18288.8i 0.155759 + 1.10106i
\(652\) −1299.59 −0.0780611
\(653\) 21670.4i 1.29867i −0.760504 0.649333i \(-0.775048\pi\)
0.760504 0.649333i \(-0.224952\pi\)
\(654\) 6255.93 + 17635.9i 0.374046 + 1.05446i
\(655\) 10502.4 0.626506
\(656\) 21106.2i 1.25619i
\(657\) −16344.6 20139.4i −0.970570 1.19591i
\(658\) 19196.4 1.13732
\(659\) 23225.1i 1.37287i 0.727191 + 0.686435i \(0.240825\pi\)
−0.727191 + 0.686435i \(0.759175\pi\)
\(660\) 182.761 + 515.215i 0.0107787 + 0.0303859i
\(661\) 2397.07 0.141052 0.0705260 0.997510i \(-0.477532\pi\)
0.0705260 + 0.997510i \(0.477532\pi\)
\(662\) 1193.37 0.0700629
\(663\) −2641.32 7446.07i −0.154722 0.436171i
\(664\) 22999.4i 1.34420i
\(665\) 1666.44i 0.0971754i
\(666\) −10280.8 + 8343.67i −0.598160 + 0.485451i
\(667\) 570.288 0.0331059
\(668\) −1593.90 −0.0923199
\(669\) 4577.99 + 12905.7i 0.264567 + 0.745834i
\(670\) −20676.8 −1.19226
\(671\) 3007.07i 0.173005i
\(672\) 1345.97 + 3794.39i 0.0772648 + 0.217815i
\(673\) 14022.1i 0.803139i 0.915828 + 0.401570i \(0.131535\pi\)
−0.915828 + 0.401570i \(0.868465\pi\)
\(674\) −3785.33 −0.216329
\(675\) 3462.67 5671.17i 0.197449 0.323383i
\(676\) −1467.40 −0.0834890
\(677\) 18829.6 1.06895 0.534477 0.845183i \(-0.320509\pi\)
0.534477 + 0.845183i \(0.320509\pi\)
\(678\) −982.529 + 348.529i −0.0556546 + 0.0197422i
\(679\) −10048.3 −0.567922
\(680\) −13620.9 −0.768146
\(681\) 527.454 + 1486.93i 0.0296800 + 0.0836701i
\(682\) −7192.51 1460.61i −0.403835 0.0820084i
\(683\) 4208.36i 0.235766i 0.993027 + 0.117883i \(0.0376108\pi\)
−0.993027 + 0.117883i \(0.962389\pi\)
\(684\) −160.680 + 130.404i −0.00898210 + 0.00728965i
\(685\) 9013.18i 0.502739i
\(686\) 16028.8i 0.892100i
\(687\) 7636.31 + 21527.3i 0.424080 + 1.19551i
\(688\) 8025.98i 0.444749i
\(689\) 14748.1i 0.815469i
\(690\) −15983.2 + 5669.66i −0.881839 + 0.312812i
\(691\) −30904.4 −1.70139 −0.850695 0.525660i \(-0.823818\pi\)
−0.850695 + 0.525660i \(0.823818\pi\)
\(692\) 582.908i 0.0320214i
\(693\) −6176.86 + 5012.99i −0.338585 + 0.274787i
\(694\) 11458.3i 0.626732i
\(695\) −9122.89 −0.497915
\(696\) 169.309 + 477.294i 0.00922074 + 0.0259939i
\(697\) 21891.3i 1.18966i
\(698\) 23077.7i 1.25144i
\(699\) −4088.39 11525.5i −0.221226 0.623653i
\(700\) −814.105 −0.0439575
\(701\) 30479.0i 1.64219i 0.570789 + 0.821097i \(0.306637\pi\)
−0.570789 + 0.821097i \(0.693363\pi\)
\(702\) 4552.17 7455.57i 0.244745 0.400844i
\(703\) 1515.09i 0.0812840i
\(704\) 6409.40 0.343130
\(705\) −13531.5 + 4799.99i −0.722874 + 0.256423i
\(706\) 16974.6i 0.904884i
\(707\) 18480.2i 0.983055i
\(708\) 118.273 + 333.421i 0.00627823 + 0.0176988i
\(709\) 20137.8i 1.06670i 0.845894 + 0.533352i \(0.179068\pi\)
−0.845894 + 0.533352i \(0.820932\pi\)
\(710\) 17039.6i 0.900683i
\(711\) 19403.8 + 23908.8i 1.02349 + 1.26111i
\(712\) 11622.2i 0.611739i
\(713\) 4280.64 21079.2i 0.224840 1.10718i
\(714\) 7718.49 + 21759.0i 0.404562 + 1.14049i
\(715\) 2640.59 0.138115
\(716\) −982.322 −0.0512725
\(717\) 11597.4 4113.92i 0.604064 0.214278i
\(718\) 113.146 0.00588101
\(719\) −19685.9 −1.02109 −0.510544 0.859852i \(-0.670556\pi\)
−0.510544 + 0.859852i \(0.670556\pi\)
\(720\) −10491.3 12927.0i −0.543036 0.669114i
\(721\) 38165.5 1.97137
\(722\) 20136.4i 1.03795i
\(723\) 8743.41 + 24648.3i 0.449752 + 1.26788i
\(724\) 3344.34i 0.171673i
\(725\) −216.739 −0.0111028
\(726\) 5815.69 + 16394.9i 0.297301 + 0.838113i
\(727\) 33311.1 1.69937 0.849683 0.527294i \(-0.176793\pi\)
0.849683 + 0.527294i \(0.176793\pi\)
\(728\) 9188.42 0.467782
\(729\) −8992.70 17508.6i −0.456877 0.889530i
\(730\) 25158.9i 1.27558i
\(731\) 8324.51i 0.421194i
\(732\) −304.755 859.125i −0.0153880 0.0433800i
\(733\) 20598.6 1.03796 0.518982 0.854785i \(-0.326311\pi\)
0.518982 + 0.854785i \(0.326311\pi\)
\(734\) −16692.5 −0.839416
\(735\) 1242.21 + 3501.87i 0.0623395 + 0.175739i
\(736\) 4688.36i 0.234803i
\(737\) 11294.6 0.564509
\(738\) 18793.7 15252.5i 0.937408 0.760777i
\(739\) 17265.4i 0.859427i −0.902965 0.429713i \(-0.858615\pi\)
0.902965 0.429713i \(-0.141385\pi\)
\(740\) −1213.31 −0.0602733
\(741\) 334.175 + 942.063i 0.0165671 + 0.0467038i
\(742\) 43097.1i 2.13227i
\(743\) 22772.4 1.12441 0.562206 0.826997i \(-0.309953\pi\)
0.562206 + 0.826997i \(0.309953\pi\)
\(744\) 18912.8 2675.44i 0.931957 0.131837i
\(745\) 5407.46 0.265925
\(746\) 5659.36i 0.277753i
\(747\) −22639.6 + 18373.8i −1.10889 + 0.899947i
\(748\) −866.649 −0.0423634
\(749\) 10511.3i 0.512783i
\(750\) 22106.4 7841.73i 1.07628 0.381786i
\(751\) −4265.09 −0.207237 −0.103619 0.994617i \(-0.533042\pi\)
−0.103619 + 0.994617i \(0.533042\pi\)
\(752\) 21945.2i 1.06418i
\(753\) 30489.9 10815.6i 1.47558 0.523428i
\(754\) −284.935 −0.0137622
\(755\) 27659.3 1.33328
\(756\) −1256.69 + 2058.22i −0.0604570 + 0.0990168i
\(757\) 21433.9i 1.02910i 0.857461 + 0.514550i \(0.172041\pi\)
−0.857461 + 0.514550i \(0.827959\pi\)
\(758\) 16654.7i 0.798056i
\(759\) 8730.75 3097.03i 0.417531 0.148110i
\(760\) 1723.30 0.0822506
\(761\) 2976.92 0.141805 0.0709023 0.997483i \(-0.477412\pi\)
0.0709023 + 0.997483i \(0.477412\pi\)
\(762\) −36206.7 + 12843.5i −1.72130 + 0.610590i
\(763\) −24952.9 −1.18395
\(764\) 4288.85i 0.203096i
\(765\) −10881.5 13407.9i −0.514276 0.633676i
\(766\) 12573.9i 0.593100i
\(767\) 1708.86 0.0804477
\(768\) 6212.07 2203.59i 0.291874 0.103535i
\(769\) −25904.8 −1.21476 −0.607381 0.794410i \(-0.707780\pi\)
−0.607381 + 0.794410i \(0.707780\pi\)
\(770\) −7716.37 −0.361141
\(771\) 7431.56 + 20950.1i 0.347135 + 0.978599i
\(772\) −2566.87 −0.119668
\(773\) −25452.7 −1.18431 −0.592155 0.805824i \(-0.701723\pi\)
−0.592155 + 0.805824i \(0.701723\pi\)
\(774\) 7146.63 5800.03i 0.331887 0.269351i
\(775\) −1626.87 + 8011.21i −0.0754050 + 0.371318i
\(776\) 10391.2i 0.480697i
\(777\) −5902.70 16640.1i −0.272533 0.768290i
\(778\) 8286.97i 0.381880i
\(779\) 2769.64i 0.127385i
\(780\) 754.421 267.613i 0.0346316 0.0122847i
\(781\) 9307.83i 0.426454i
\(782\) 26885.5i 1.22944i
\(783\) −334.570 + 547.960i −0.0152702 + 0.0250096i
\(784\) −5679.29 −0.258714
\(785\) 5875.00i 0.267118i
\(786\) −17349.6 + 6154.36i −0.787327 + 0.279286i
\(787\) 34774.5i 1.57506i −0.616273 0.787532i \(-0.711358\pi\)
0.616273 0.787532i \(-0.288642\pi\)
\(788\) −2430.57 −0.109880
\(789\) −25177.3 + 8931.07i −1.13604 + 0.402984i
\(790\) 29867.7i 1.34512i
\(791\) 1390.17i 0.0624891i
\(792\) 5184.03 + 6387.61i 0.232584 + 0.286583i
\(793\) −4403.21 −0.197178
\(794\) 32733.3i 1.46305i
\(795\) 10776.2 + 30379.0i 0.480747 + 1.35526i
\(796\) 1231.96i 0.0548564i
\(797\) 8714.80 0.387320 0.193660 0.981069i \(-0.437964\pi\)
0.193660 + 0.981069i \(0.437964\pi\)
\(798\) −976.529 2752.90i −0.0433192 0.122120i
\(799\) 22761.5i 1.00782i
\(800\) 1781.82i 0.0787463i
\(801\) 11440.3 9284.69i 0.504650 0.409561i
\(802\) 1676.66i 0.0738216i
\(803\) 13743.0i 0.603958i
\(804\) 3226.89 1144.67i 0.141547 0.0502105i
\(805\) 22614.5i 0.990131i
\(806\) −2138.75 + 10531.9i −0.0934670 + 0.460260i
\(807\) −15644.6 + 5549.54i −0.682422 + 0.242073i
\(808\) 19110.7 0.832071
\(809\) −44038.8 −1.91387 −0.956936 0.290299i \(-0.906245\pi\)
−0.956936 + 0.290299i \(0.906245\pi\)
\(810\) 3929.14 18683.6i 0.170440 0.810464i
\(811\) −19919.2 −0.862461 −0.431231 0.902242i \(-0.641920\pi\)
−0.431231 + 0.902242i \(0.641920\pi\)
\(812\) 78.6604 0.00339956
\(813\) −12572.2 35441.8i −0.542343 1.52890i
\(814\) 7015.55 0.302082
\(815\) 13720.1i 0.589685i
\(816\) 24874.7 8823.73i 1.06714 0.378545i
\(817\) 1053.20i 0.0451002i
\(818\) 288.499 0.0123315
\(819\) 7340.44 + 9044.69i 0.313182 + 0.385894i
\(820\) 2217.98 0.0944575
\(821\) 4036.09 0.171572 0.0857860 0.996314i \(-0.472660\pi\)
0.0857860 + 0.996314i \(0.472660\pi\)
\(822\) −5281.71 14889.5i −0.224113 0.631790i
\(823\) 18584.9i 0.787154i −0.919292 0.393577i \(-0.871238\pi\)
0.919292 0.393577i \(-0.128762\pi\)
\(824\) 39467.7i 1.66859i
\(825\) −3318.15 + 1177.04i −0.140028 + 0.0496717i
\(826\) −4993.65 −0.210353
\(827\) −23115.7 −0.971962 −0.485981 0.873970i \(-0.661537\pi\)
−0.485981 + 0.873970i \(0.661537\pi\)
\(828\) 2180.52 1769.65i 0.0915196 0.0742750i
\(829\) 31598.8i 1.32385i 0.749570 + 0.661925i \(0.230260\pi\)
−0.749570 + 0.661925i \(0.769740\pi\)
\(830\) −28282.3 −1.18276
\(831\) −6162.21 17371.7i −0.257238 0.725172i
\(832\) 9385.19i 0.391073i
\(833\) −5890.54 −0.245012
\(834\) 15070.7 5346.00i 0.625728 0.221963i
\(835\) 16827.1i 0.697398i
\(836\) 109.647 0.00453614
\(837\) 17742.6 + 16479.6i 0.732705 + 0.680546i
\(838\) 44149.8 1.81996
\(839\) 4104.00i 0.168875i 0.996429 + 0.0844373i \(0.0269093\pi\)
−0.996429 + 0.0844373i \(0.973091\pi\)
\(840\) 18926.8 6713.85i 0.777426 0.275774i
\(841\) −24368.1 −0.999141
\(842\) 46792.4i 1.91517i
\(843\) 13986.8 + 39429.9i 0.571450 + 1.61096i
\(844\) 2463.26 0.100461
\(845\) 15491.7i 0.630688i
\(846\) 19540.9 15858.9i 0.794124 0.644491i
\(847\) −23197.0 −0.941035
\(848\) −49268.3 −1.99514
\(849\) −11568.1 + 4103.51i −0.467627 + 0.165880i
\(850\) 10217.9i 0.412319i
\(851\) 20560.6i 0.828212i
\(852\) 943.311 + 2659.26i 0.0379311 + 0.106930i
\(853\) 24686.6 0.990918 0.495459 0.868631i \(-0.335000\pi\)
0.495459 + 0.868631i \(0.335000\pi\)
\(854\) 12867.1 0.515577
\(855\) 1376.70 + 1696.34i 0.0550670 + 0.0678521i
\(856\) −10869.9 −0.434026
\(857\) 34020.0i 1.35601i −0.735057 0.678006i \(-0.762845\pi\)
0.735057 0.678006i \(-0.237155\pi\)
\(858\) −4362.18 + 1547.38i −0.173569 + 0.0615696i
\(859\) 8931.78i 0.354771i −0.984141 0.177386i \(-0.943236\pi\)
0.984141 0.177386i \(-0.0567640\pi\)
\(860\) 843.423 0.0334424
\(861\) 10790.3 + 30418.8i 0.427101 + 1.20403i
\(862\) −16697.0 −0.659747
\(863\) 18976.2 0.748502 0.374251 0.927327i \(-0.377900\pi\)
0.374251 + 0.927327i \(0.377900\pi\)
\(864\) 4504.81 + 2750.52i 0.177380 + 0.108304i
\(865\) −6153.90 −0.241895
\(866\) 16457.4 0.645781
\(867\) 1740.17 617.283i 0.0681651 0.0241800i
\(868\) 590.434 2907.48i 0.0230883 0.113694i
\(869\) 16315.1i 0.636886i
\(870\) −586.925 + 208.198i −0.0228720 + 0.00811331i
\(871\) 16538.6i 0.643384i
\(872\) 25804.3i 1.00211i
\(873\) −10228.6 + 8301.28i −0.396547 + 0.321828i
\(874\) 3401.50i 0.131645i
\(875\) 31278.2i 1.20845i
\(876\) 1392.79 + 3926.38i 0.0537193 + 0.151439i
\(877\) 6449.07 0.248312 0.124156 0.992263i \(-0.460378\pi\)
0.124156 + 0.992263i \(0.460378\pi\)
\(878\) 26283.0i 1.01026i
\(879\) 2126.63 + 5995.12i 0.0816034 + 0.230046i
\(880\) 8821.30i 0.337916i
\(881\) −2648.84 −0.101296 −0.0506479 0.998717i \(-0.516129\pi\)
−0.0506479 + 0.998717i \(0.516129\pi\)
\(882\) −4104.18 5057.06i −0.156684 0.193061i
\(883\) 34477.6i 1.31400i −0.753889 0.657001i \(-0.771825\pi\)
0.753889 0.657001i \(-0.228175\pi\)
\(884\) 1269.02i 0.0482826i
\(885\) 3520.01 1248.64i 0.133699 0.0474267i
\(886\) 10024.4 0.380107
\(887\) 37405.5i 1.41596i −0.706233 0.707979i \(-0.749607\pi\)
0.706233 0.707979i \(-0.250393\pi\)
\(888\) −17207.9 + 6104.09i −0.650291 + 0.230676i
\(889\) 51228.5i 1.93268i
\(890\) 14291.7 0.538268
\(891\) −2146.28 + 10205.9i −0.0806994 + 0.383737i
\(892\) 2199.49i 0.0825611i
\(893\) 2879.74i 0.107914i
\(894\) −8932.96 + 3168.76i −0.334187 + 0.118545i
\(895\) 10370.6i 0.387320i
\(896\) 33624.0i 1.25368i
\(897\) −4534.94 12784.3i −0.168804 0.475870i
\(898\) 30559.6i 1.13562i
\(899\) 157.191 774.059i 0.00583162 0.0287167i
\(900\) −828.712 + 672.562i −0.0306930 + 0.0249097i
\(901\) −51100.9 −1.88947
\(902\) −12824.7 −0.473410
\(903\) 4103.21 + 11567.2i 0.151214 + 0.426283i
\(904\) −1437.61 −0.0528916
\(905\) 35306.9 1.29684
\(906\) −45692.3 + 16208.3i −1.67553 + 0.594354i
\(907\) 4284.28 0.156844 0.0784219 0.996920i \(-0.475012\pi\)
0.0784219 + 0.996920i \(0.475012\pi\)
\(908\) 253.415i 0.00926198i
\(909\) 15267.2 + 18811.8i 0.557074 + 0.686411i
\(910\) 11299.0i 0.411601i
\(911\) −27054.7 −0.983931 −0.491966 0.870615i \(-0.663721\pi\)
−0.491966 + 0.870615i \(0.663721\pi\)
\(912\) −3147.10 + 1116.36i −0.114266 + 0.0405334i
\(913\) 15449.1 0.560011
\(914\) 10825.1 0.391754
\(915\) −9069.98 + 3217.36i −0.327699 + 0.116243i
\(916\) 3668.86i 0.132339i
\(917\) 24547.8i 0.884013i
\(918\) 25832.9 + 15772.9i 0.928771 + 0.567083i
\(919\) 17395.7 0.624408 0.312204 0.950015i \(-0.398933\pi\)
0.312204 + 0.950015i \(0.398933\pi\)
\(920\) −23386.1 −0.838061
\(921\) 1954.85 693.439i 0.0699398 0.0248095i
\(922\) 25764.4i 0.920287i
\(923\) 13629.3 0.486039
\(924\) 1204.24 427.177i 0.0428752 0.0152090i
\(925\) 7814.11i 0.277758i
\(926\) 42826.9 1.51985
\(927\) 38850.3 31529.9i 1.37649 1.11713i
\(928\) 172.163i 0.00609003i
\(929\) 10683.9 0.377317 0.188659 0.982043i \(-0.439586\pi\)
0.188659 + 0.982043i \(0.439586\pi\)
\(930\) 3289.98 + 23256.9i 0.116003 + 0.820027i
\(931\) 745.260 0.0262351
\(932\) 1964.27i 0.0690362i
\(933\) −16398.8 46229.5i −0.575427 1.62217i
\(934\) 39674.5 1.38992
\(935\) 9149.42i 0.320019i
\(936\) 9353.29 7590.89i 0.326626 0.265081i
\(937\) 10610.6 0.369940 0.184970 0.982744i \(-0.440781\pi\)
0.184970 + 0.982744i \(0.440781\pi\)
\(938\) 48329.1i 1.68231i
\(939\) −3427.62 9662.69i −0.119122 0.335815i
\(940\) 2306.15 0.0800196
\(941\) −3765.52 −0.130449 −0.0652244 0.997871i \(-0.520776\pi\)
−0.0652244 + 0.997871i \(0.520776\pi\)
\(942\) 3442.74 + 9705.33i 0.119077 + 0.335687i
\(943\) 37585.5i 1.29794i
\(944\) 5708.70i 0.196825i
\(945\) 21729.1 + 13267.2i 0.747986 + 0.456701i
\(946\) −4876.80 −0.167609
\(947\) −26664.5 −0.914974 −0.457487 0.889216i \(-0.651250\pi\)
−0.457487 + 0.889216i \(0.651250\pi\)
\(948\) −1653.47 4661.26i −0.0566481 0.159695i
\(949\) 20123.6 0.688345
\(950\) 1292.75i 0.0441498i
\(951\) 6877.23 + 19387.4i 0.234500 + 0.661072i
\(952\) 31837.0i 1.08387i
\(953\) 16304.8 0.554211 0.277105 0.960840i \(-0.410625\pi\)
0.277105 + 0.960840i \(0.410625\pi\)
\(954\) −35604.1 43870.3i −1.20831 1.48884i
\(955\) 45278.3 1.53421
\(956\) −1976.53 −0.0668677
\(957\) 320.606 113.728i 0.0108294 0.00384147i
\(958\) −36657.1 −1.23626
\(959\) 21067.1 0.709375
\(960\) −6857.63 19332.1i −0.230551 0.649940i
\(961\) −27431.2 11620.3i −0.920788 0.390062i
\(962\) 10272.8i 0.344290i
\(963\) −8683.76 10699.9i −0.290582 0.358047i
\(964\) 4200.76i 0.140350i
\(965\) 27099.1i 0.903990i
\(966\) 13252.0 + 37358.4i 0.441384 + 1.24429i
\(967\) 35496.8i 1.18045i 0.807237 + 0.590227i \(0.200962\pi\)
−0.807237 + 0.590227i \(0.799038\pi\)
\(968\) 23988.4i 0.796505i
\(969\) −3264.16 + 1157.89i −0.108215 + 0.0383866i
\(970\) −12778.0 −0.422964
\(971\) 3340.68i 0.110409i 0.998475 + 0.0552047i \(0.0175811\pi\)
−0.998475 + 0.0552047i \(0.982419\pi\)
\(972\) 421.128 + 3133.35i 0.0138968 + 0.103397i
\(973\) 21323.5i 0.702569i
\(974\) 26630.0 0.876059
\(975\) 1723.52 + 4858.71i 0.0566120 + 0.159593i
\(976\) 14709.6i 0.482420i
\(977\) 36129.2i 1.18309i 0.806273 + 0.591544i \(0.201481\pi\)
−0.806273 + 0.591544i \(0.798519\pi\)
\(978\) −8039.93 22665.1i −0.262872 0.741054i
\(979\) −7806.79 −0.254858
\(980\) 596.818i 0.0194537i
\(981\) −25400.6 + 20614.5i −0.826687 + 0.670919i
\(982\) 57916.4i 1.88206i
\(983\) −26337.7 −0.854568 −0.427284 0.904117i \(-0.640530\pi\)
−0.427284 + 0.904117i \(0.640530\pi\)
\(984\) 31456.6 11158.5i 1.01911 0.361504i
\(985\) 25660.1i 0.830048i
\(986\) 987.274i 0.0318876i
\(987\) 11219.3 + 31628.0i 0.361818 + 1.01999i
\(988\) 160.554i 0.00516995i
\(989\) 14292.5i 0.459531i
\(990\) −7854.82 + 6374.77i −0.252164 + 0.204650i
\(991\) 8193.25i 0.262631i 0.991341 + 0.131315i \(0.0419201\pi\)
−0.991341 + 0.131315i \(0.958080\pi\)
\(992\) −6363.58 1292.28i −0.203673 0.0413607i
\(993\) 697.462 + 1966.20i 0.0222893 + 0.0628352i
\(994\) −39827.7 −1.27088
\(995\) 13006.1 0.414393
\(996\) 4413.83 1565.70i 0.140419 0.0498105i
\(997\) −52032.0 −1.65283 −0.826414 0.563063i \(-0.809623\pi\)
−0.826414 + 0.563063i \(0.809623\pi\)
\(998\) 58183.2 1.84545
\(999\) −19755.6 12062.3i −0.625666 0.382015i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 93.4.c.b.92.10 yes 28
3.2 odd 2 inner 93.4.c.b.92.19 yes 28
31.30 odd 2 inner 93.4.c.b.92.9 28
93.92 even 2 inner 93.4.c.b.92.20 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
93.4.c.b.92.9 28 31.30 odd 2 inner
93.4.c.b.92.10 yes 28 1.1 even 1 trivial
93.4.c.b.92.19 yes 28 3.2 odd 2 inner
93.4.c.b.92.20 yes 28 93.92 even 2 inner