Properties

Label 93.4.c.b.92.1
Level $93$
Weight $4$
Character 93.92
Analytic conductor $5.487$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [93,4,Mod(92,93)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("93.92"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(93, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 93 = 3 \cdot 31 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 93.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.48717763053\)
Analytic rank: \(0\)
Dimension: \(28\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 92.1
Character \(\chi\) \(=\) 93.92
Dual form 93.4.c.b.92.27

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.24508i q^{2} +(-5.08240 + 1.08131i) q^{3} -19.5109 q^{4} -7.60471i q^{5} +(5.67158 + 26.6576i) q^{6} -11.1491 q^{7} +60.3756i q^{8} +(24.6615 - 10.9913i) q^{9} -39.8873 q^{10} +35.9161 q^{11} +(99.1621 - 21.0974i) q^{12} +45.7305i q^{13} +58.4779i q^{14} +(8.22308 + 38.6502i) q^{15} +160.588 q^{16} -126.000 q^{17} +(-57.6505 - 129.352i) q^{18} -41.2122 q^{19} +148.375i q^{20} +(56.6641 - 12.0557i) q^{21} -188.383i q^{22} -13.0795 q^{23} +(-65.2850 - 306.853i) q^{24} +67.1684 q^{25} +239.860 q^{26} +(-113.455 + 82.5292i) q^{27} +217.529 q^{28} -161.652 q^{29} +(202.723 - 43.1308i) q^{30} +(-136.507 + 105.625i) q^{31} -359.291i q^{32} +(-182.540 + 38.8366i) q^{33} +660.881i q^{34} +84.7856i q^{35} +(-481.168 + 214.451i) q^{36} -135.083i q^{37} +216.161i q^{38} +(-49.4490 - 232.420i) q^{39} +459.139 q^{40} -393.359i q^{41} +(-63.2330 - 297.208i) q^{42} +421.163i q^{43} -700.755 q^{44} +(-83.5860 - 187.544i) q^{45} +68.6029i q^{46} +538.321i q^{47} +(-816.170 + 173.646i) q^{48} -218.698 q^{49} -352.304i q^{50} +(640.382 - 136.246i) q^{51} -892.242i q^{52} -174.894 q^{53} +(432.872 + 595.078i) q^{54} -273.132i q^{55} -673.133i q^{56} +(209.457 - 44.5634i) q^{57} +847.880i q^{58} -506.952i q^{59} +(-160.440 - 754.099i) q^{60} -695.438i q^{61} +(554.014 + 715.992i) q^{62} +(-274.954 + 122.543i) q^{63} -599.810 q^{64} +347.767 q^{65} +(203.701 + 957.437i) q^{66} +273.706 q^{67} +2458.37 q^{68} +(66.4751 - 14.1430i) q^{69} +444.708 q^{70} +188.613i q^{71} +(663.608 + 1488.95i) q^{72} -882.796i q^{73} -708.520 q^{74} +(-341.376 + 72.6301i) q^{75} +804.087 q^{76} -400.432 q^{77} +(-1219.06 + 259.364i) q^{78} -400.853i q^{79} -1221.22i q^{80} +(487.381 - 542.126i) q^{81} -2063.20 q^{82} -805.095 q^{83} +(-1105.57 + 235.217i) q^{84} +958.194i q^{85} +2209.03 q^{86} +(821.581 - 174.797i) q^{87} +2168.45i q^{88} -1244.40 q^{89} +(-983.682 + 438.415i) q^{90} -509.853i q^{91} +255.192 q^{92} +(579.570 - 684.438i) q^{93} +2823.54 q^{94} +313.407i q^{95} +(388.507 + 1826.06i) q^{96} -157.045 q^{97} +1147.09i q^{98} +(885.746 - 394.766i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 144 q^{4} - 64 q^{7} + 20 q^{9} - 8 q^{10} + 248 q^{16} + 88 q^{18} + 308 q^{19} - 840 q^{25} - 420 q^{28} + 328 q^{31} - 180 q^{33} + 540 q^{36} + 1152 q^{39} + 44 q^{40} - 1568 q^{45} - 84 q^{49}+ \cdots - 988 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/93\mathbb{Z}\right)^\times\).

\(n\) \(32\) \(34\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.24508i 1.85442i −0.374546 0.927208i \(-0.622201\pi\)
0.374546 0.927208i \(-0.377799\pi\)
\(3\) −5.08240 + 1.08131i −0.978108 + 0.208099i
\(4\) −19.5109 −2.43886
\(5\) 7.60471i 0.680186i −0.940392 0.340093i \(-0.889541\pi\)
0.940392 0.340093i \(-0.110459\pi\)
\(6\) 5.67158 + 26.6576i 0.385902 + 1.81382i
\(7\) −11.1491 −0.601994 −0.300997 0.953625i \(-0.597319\pi\)
−0.300997 + 0.953625i \(0.597319\pi\)
\(8\) 60.3756i 2.66825i
\(9\) 24.6615 10.9913i 0.913390 0.407087i
\(10\) −39.8873 −1.26135
\(11\) 35.9161 0.984465 0.492232 0.870464i \(-0.336181\pi\)
0.492232 + 0.870464i \(0.336181\pi\)
\(12\) 99.1621 21.0974i 2.38547 0.507525i
\(13\) 45.7305i 0.975642i 0.872944 + 0.487821i \(0.162208\pi\)
−0.872944 + 0.487821i \(0.837792\pi\)
\(14\) 58.4779i 1.11635i
\(15\) 8.22308 + 38.6502i 0.141546 + 0.665295i
\(16\) 160.588 2.50918
\(17\) −126.000 −1.79762 −0.898809 0.438341i \(-0.855566\pi\)
−0.898809 + 0.438341i \(0.855566\pi\)
\(18\) −57.6505 129.352i −0.754908 1.69380i
\(19\) −41.2122 −0.497617 −0.248809 0.968553i \(-0.580039\pi\)
−0.248809 + 0.968553i \(0.580039\pi\)
\(20\) 148.375i 1.65888i
\(21\) 56.6641 12.0557i 0.588815 0.125274i
\(22\) 188.383i 1.82561i
\(23\) −13.0795 −0.118576 −0.0592882 0.998241i \(-0.518883\pi\)
−0.0592882 + 0.998241i \(0.518883\pi\)
\(24\) −65.2850 306.853i −0.555260 2.60983i
\(25\) 67.1684 0.537347
\(26\) 239.860 1.80925
\(27\) −113.455 + 82.5292i −0.808679 + 0.588250i
\(28\) 217.529 1.46818
\(29\) −161.652 −1.03511 −0.517553 0.855651i \(-0.673157\pi\)
−0.517553 + 0.855651i \(0.673157\pi\)
\(30\) 202.723 43.1308i 1.23373 0.262485i
\(31\) −136.507 + 105.625i −0.790886 + 0.611964i
\(32\) 359.291i 1.98482i
\(33\) −182.540 + 38.8366i −0.962913 + 0.204866i
\(34\) 660.881i 3.33353i
\(35\) 84.7856i 0.409468i
\(36\) −481.168 + 214.451i −2.22763 + 0.992828i
\(37\) 135.083i 0.600202i −0.953907 0.300101i \(-0.902980\pi\)
0.953907 0.300101i \(-0.0970204\pi\)
\(38\) 216.161i 0.922790i
\(39\) −49.4490 232.420i −0.203030 0.954283i
\(40\) 459.139 1.81491
\(41\) 393.359i 1.49835i −0.662372 0.749175i \(-0.730450\pi\)
0.662372 0.749175i \(-0.269550\pi\)
\(42\) −63.2330 297.208i −0.232311 1.09191i
\(43\) 421.163i 1.49365i 0.665023 + 0.746823i \(0.268422\pi\)
−0.665023 + 0.746823i \(0.731578\pi\)
\(44\) −700.755 −2.40097
\(45\) −83.5860 187.544i −0.276895 0.621275i
\(46\) 68.6029i 0.219890i
\(47\) 538.321i 1.67069i 0.549730 + 0.835343i \(0.314731\pi\)
−0.549730 + 0.835343i \(0.685269\pi\)
\(48\) −816.170 + 173.646i −2.45425 + 0.522159i
\(49\) −218.698 −0.637603
\(50\) 352.304i 0.996465i
\(51\) 640.382 136.246i 1.75826 0.374083i
\(52\) 892.242i 2.37946i
\(53\) −174.894 −0.453273 −0.226637 0.973979i \(-0.572773\pi\)
−0.226637 + 0.973979i \(0.572773\pi\)
\(54\) 432.872 + 595.078i 1.09086 + 1.49963i
\(55\) 273.132i 0.669619i
\(56\) 673.133i 1.60627i
\(57\) 209.457 44.5634i 0.486723 0.103554i
\(58\) 847.880i 1.91952i
\(59\) 506.952i 1.11864i −0.828953 0.559318i \(-0.811063\pi\)
0.828953 0.559318i \(-0.188937\pi\)
\(60\) −160.440 754.099i −0.345211 1.62256i
\(61\) 695.438i 1.45970i −0.683607 0.729850i \(-0.739590\pi\)
0.683607 0.729850i \(-0.260410\pi\)
\(62\) 554.014 + 715.992i 1.13484 + 1.46663i
\(63\) −274.954 + 122.543i −0.549855 + 0.245064i
\(64\) −599.810 −1.17150
\(65\) 347.767 0.663618
\(66\) 203.701 + 957.437i 0.379907 + 1.78564i
\(67\) 273.706 0.499082 0.249541 0.968364i \(-0.419720\pi\)
0.249541 + 0.968364i \(0.419720\pi\)
\(68\) 2458.37 4.38414
\(69\) 66.4751 14.1430i 0.115981 0.0246757i
\(70\) 444.708 0.759325
\(71\) 188.613i 0.315270i 0.987497 + 0.157635i \(0.0503870\pi\)
−0.987497 + 0.157635i \(0.949613\pi\)
\(72\) 663.608 + 1488.95i 1.08621 + 2.43715i
\(73\) 882.796i 1.41539i −0.706518 0.707695i \(-0.749735\pi\)
0.706518 0.707695i \(-0.250265\pi\)
\(74\) −708.520 −1.11302
\(75\) −341.376 + 72.6301i −0.525583 + 0.111821i
\(76\) 804.087 1.21362
\(77\) −400.432 −0.592642
\(78\) −1219.06 + 259.364i −1.76964 + 0.376503i
\(79\) 400.853i 0.570879i −0.958397 0.285439i \(-0.907860\pi\)
0.958397 0.285439i \(-0.0921395\pi\)
\(80\) 1221.22i 1.70671i
\(81\) 487.381 542.126i 0.668561 0.743657i
\(82\) −2063.20 −2.77856
\(83\) −805.095 −1.06471 −0.532353 0.846522i \(-0.678692\pi\)
−0.532353 + 0.846522i \(0.678692\pi\)
\(84\) −1105.57 + 235.217i −1.43604 + 0.305527i
\(85\) 958.194i 1.22271i
\(86\) 2209.03 2.76984
\(87\) 821.581 174.797i 1.01245 0.215405i
\(88\) 2168.45i 2.62680i
\(89\) −1244.40 −1.48209 −0.741045 0.671455i \(-0.765670\pi\)
−0.741045 + 0.671455i \(0.765670\pi\)
\(90\) −983.682 + 438.415i −1.15210 + 0.513478i
\(91\) 509.853i 0.587331i
\(92\) 255.192 0.289192
\(93\) 579.570 684.438i 0.646222 0.763149i
\(94\) 2823.54 3.09815
\(95\) 313.407i 0.338472i
\(96\) 388.507 + 1826.06i 0.413040 + 1.94137i
\(97\) −157.045 −0.164386 −0.0821931 0.996616i \(-0.526192\pi\)
−0.0821931 + 0.996616i \(0.526192\pi\)
\(98\) 1147.09i 1.18238i
\(99\) 885.746 394.766i 0.899200 0.400762i
\(100\) −1310.51 −1.31051
\(101\) 1499.34i 1.47713i 0.674182 + 0.738565i \(0.264496\pi\)
−0.674182 + 0.738565i \(0.735504\pi\)
\(102\) −714.620 3358.86i −0.693705 3.26055i
\(103\) 107.472 0.102811 0.0514054 0.998678i \(-0.483630\pi\)
0.0514054 + 0.998678i \(0.483630\pi\)
\(104\) −2761.00 −2.60325
\(105\) −91.6799 430.914i −0.0852099 0.400504i
\(106\) 917.331i 0.840557i
\(107\) 158.454i 0.143162i 0.997435 + 0.0715811i \(0.0228045\pi\)
−0.997435 + 0.0715811i \(0.977196\pi\)
\(108\) 2213.60 1610.22i 1.97226 1.43466i
\(109\) −54.8227 −0.0481749 −0.0240874 0.999710i \(-0.507668\pi\)
−0.0240874 + 0.999710i \(0.507668\pi\)
\(110\) −1432.60 −1.24175
\(111\) 146.067 + 686.544i 0.124901 + 0.587062i
\(112\) −1790.41 −1.51051
\(113\) 1215.39i 1.01181i 0.862589 + 0.505905i \(0.168841\pi\)
−0.862589 + 0.505905i \(0.831159\pi\)
\(114\) −233.739 1098.62i −0.192032 0.902588i
\(115\) 99.4656i 0.0806541i
\(116\) 3153.98 2.52448
\(117\) 502.639 + 1127.78i 0.397171 + 0.891141i
\(118\) −2659.01 −2.07442
\(119\) 1404.79 1.08216
\(120\) −2333.53 + 496.473i −1.77517 + 0.377680i
\(121\) −41.0335 −0.0308291
\(122\) −3647.63 −2.70689
\(123\) 425.345 + 1999.21i 0.311805 + 1.46555i
\(124\) 2663.38 2060.85i 1.92886 1.49250i
\(125\) 1461.38i 1.04568i
\(126\) 642.750 + 1442.15i 0.454450 + 1.01966i
\(127\) 1068.97i 0.746894i 0.927652 + 0.373447i \(0.121824\pi\)
−0.927652 + 0.373447i \(0.878176\pi\)
\(128\) 271.724i 0.187634i
\(129\) −455.410 2140.52i −0.310826 1.46095i
\(130\) 1824.07i 1.23062i
\(131\) 144.937i 0.0966660i 0.998831 + 0.0483330i \(0.0153909\pi\)
−0.998831 + 0.0483330i \(0.984609\pi\)
\(132\) 3561.52 757.737i 2.34841 0.499640i
\(133\) 459.479 0.299563
\(134\) 1435.61i 0.925506i
\(135\) 627.611 + 862.789i 0.400120 + 0.550052i
\(136\) 7607.32i 4.79649i
\(137\) −253.316 −0.157972 −0.0789862 0.996876i \(-0.525168\pi\)
−0.0789862 + 0.996876i \(0.525168\pi\)
\(138\) −74.1813 348.667i −0.0457589 0.215076i
\(139\) 1595.55i 0.973619i −0.873508 0.486809i \(-0.838161\pi\)
0.873508 0.486809i \(-0.161839\pi\)
\(140\) 1654.24i 0.998636i
\(141\) −582.094 2735.96i −0.347668 1.63411i
\(142\) 989.289 0.584643
\(143\) 1642.46i 0.960485i
\(144\) 3960.34 1765.07i 2.29186 1.02145i
\(145\) 1229.32i 0.704065i
\(146\) −4630.34 −2.62472
\(147\) 1111.51 236.481i 0.623644 0.132685i
\(148\) 2635.58i 1.46381i
\(149\) 1103.17i 0.606542i −0.952904 0.303271i \(-0.901921\pi\)
0.952904 0.303271i \(-0.0980788\pi\)
\(150\) 380.951 + 1790.55i 0.207363 + 0.974650i
\(151\) 134.369i 0.0724157i −0.999344 0.0362078i \(-0.988472\pi\)
0.999344 0.0362078i \(-0.0115278\pi\)
\(152\) 2488.21i 1.32777i
\(153\) −3107.35 + 1384.91i −1.64193 + 0.731786i
\(154\) 2100.30i 1.09901i
\(155\) 803.251 + 1038.10i 0.416249 + 0.537949i
\(156\) 964.794 + 4534.73i 0.495162 + 2.32736i
\(157\) −2282.15 −1.16010 −0.580050 0.814581i \(-0.696967\pi\)
−0.580050 + 0.814581i \(0.696967\pi\)
\(158\) −2102.50 −1.05865
\(159\) 888.879 189.115i 0.443350 0.0943257i
\(160\) −2732.30 −1.35005
\(161\) 145.824 0.0713824
\(162\) −2843.50 2556.35i −1.37905 1.23979i
\(163\) −2338.66 −1.12379 −0.561895 0.827208i \(-0.689928\pi\)
−0.561895 + 0.827208i \(0.689928\pi\)
\(164\) 7674.78i 3.65427i
\(165\) 295.341 + 1388.16i 0.139347 + 0.654960i
\(166\) 4222.79i 1.97441i
\(167\) 3130.72 1.45067 0.725336 0.688395i \(-0.241684\pi\)
0.725336 + 0.688395i \(0.241684\pi\)
\(168\) 727.868 + 3421.13i 0.334263 + 1.57111i
\(169\) 105.726 0.0481228
\(170\) 5025.81 2.26742
\(171\) −1016.36 + 452.977i −0.454519 + 0.202573i
\(172\) 8217.26i 3.64279i
\(173\) 770.165i 0.338466i −0.985576 0.169233i \(-0.945871\pi\)
0.985576 0.169233i \(-0.0541290\pi\)
\(174\) −916.825 4309.26i −0.399450 1.87750i
\(175\) −748.866 −0.323480
\(176\) 5767.68 2.47020
\(177\) 548.175 + 2576.53i 0.232787 + 1.09415i
\(178\) 6526.97i 2.74841i
\(179\) −722.064 −0.301506 −0.150753 0.988571i \(-0.548170\pi\)
−0.150753 + 0.988571i \(0.548170\pi\)
\(180\) 1630.84 + 3659.14i 0.675308 + 1.51520i
\(181\) 1334.51i 0.548029i 0.961726 + 0.274014i \(0.0883516\pi\)
−0.961726 + 0.274014i \(0.911648\pi\)
\(182\) −2674.22 −1.08916
\(183\) 751.987 + 3534.49i 0.303762 + 1.42774i
\(184\) 789.680i 0.316391i
\(185\) −1027.27 −0.408249
\(186\) −3589.93 3039.89i −1.41520 1.19836i
\(187\) −4525.43 −1.76969
\(188\) 10503.1i 4.07457i
\(189\) 1264.91 920.126i 0.486820 0.354123i
\(190\) 1643.85 0.627669
\(191\) 1378.42i 0.522194i −0.965313 0.261097i \(-0.915916\pi\)
0.965313 0.261097i \(-0.0840842\pi\)
\(192\) 3048.47 648.583i 1.14586 0.243789i
\(193\) 3959.12 1.47660 0.738299 0.674474i \(-0.235629\pi\)
0.738299 + 0.674474i \(0.235629\pi\)
\(194\) 823.711i 0.304840i
\(195\) −1767.49 + 376.045i −0.649090 + 0.138098i
\(196\) 4266.99 1.55502
\(197\) −521.480 −0.188599 −0.0942993 0.995544i \(-0.530061\pi\)
−0.0942993 + 0.995544i \(0.530061\pi\)
\(198\) −2070.58 4645.81i −0.743181 1.66749i
\(199\) 2173.97i 0.774416i 0.921992 + 0.387208i \(0.126560\pi\)
−0.921992 + 0.387208i \(0.873440\pi\)
\(200\) 4055.33i 1.43377i
\(201\) −1391.08 + 295.962i −0.488156 + 0.103859i
\(202\) 7864.17 2.73921
\(203\) 1802.28 0.623128
\(204\) −12494.4 + 2658.27i −4.28816 + 0.912335i
\(205\) −2991.38 −1.01916
\(206\) 563.699i 0.190654i
\(207\) −322.560 + 143.761i −0.108306 + 0.0482709i
\(208\) 7343.75i 2.44806i
\(209\) −1480.18 −0.489887
\(210\) −2260.18 + 480.869i −0.742701 + 0.158015i
\(211\) −1122.40 −0.366204 −0.183102 0.983094i \(-0.558614\pi\)
−0.183102 + 0.983094i \(0.558614\pi\)
\(212\) 3412.33 1.10547
\(213\) −203.950 958.604i −0.0656075 0.308368i
\(214\) 831.106 0.265482
\(215\) 3202.82 1.01596
\(216\) −4982.75 6849.88i −1.56960 2.15776i
\(217\) 1521.93 1177.63i 0.476109 0.368399i
\(218\) 287.550i 0.0893363i
\(219\) 954.580 + 4486.72i 0.294541 + 1.38440i
\(220\) 5329.04i 1.63311i
\(221\) 5762.04i 1.75383i
\(222\) 3600.98 766.133i 1.08866 0.231619i
\(223\) 4929.71i 1.48035i −0.672416 0.740174i \(-0.734743\pi\)
0.672416 0.740174i \(-0.265257\pi\)
\(224\) 4005.77i 1.19485i
\(225\) 1656.47 738.270i 0.490807 0.218747i
\(226\) 6374.83 1.87632
\(227\) 3138.25i 0.917591i −0.888542 0.458795i \(-0.848281\pi\)
0.888542 0.458795i \(-0.151719\pi\)
\(228\) −4086.69 + 869.471i −1.18705 + 0.252553i
\(229\) 252.783i 0.0729448i −0.999335 0.0364724i \(-0.988388\pi\)
0.999335 0.0364724i \(-0.0116121\pi\)
\(230\) 521.705 0.149566
\(231\) 2035.15 432.993i 0.579668 0.123328i
\(232\) 9759.85i 2.76192i
\(233\) 1525.72i 0.428985i 0.976726 + 0.214493i \(0.0688098\pi\)
−0.976726 + 0.214493i \(0.931190\pi\)
\(234\) 5915.31 2636.38i 1.65255 0.736520i
\(235\) 4093.78 1.13638
\(236\) 9891.09i 2.72820i
\(237\) 433.448 + 2037.29i 0.118799 + 0.558381i
\(238\) 7368.22i 2.00677i
\(239\) 6322.11 1.71106 0.855530 0.517753i \(-0.173231\pi\)
0.855530 + 0.517753i \(0.173231\pi\)
\(240\) 1320.53 + 6206.74i 0.355165 + 1.66935i
\(241\) 1373.49i 0.367114i −0.983009 0.183557i \(-0.941239\pi\)
0.983009 0.183557i \(-0.0587612\pi\)
\(242\) 215.224i 0.0571700i
\(243\) −1890.85 + 3282.31i −0.499170 + 0.866504i
\(244\) 13568.6i 3.56001i
\(245\) 1663.13i 0.433689i
\(246\) 10486.0 2230.97i 2.71774 0.578217i
\(247\) 1884.65i 0.485496i
\(248\) −6377.19 8241.71i −1.63287 2.11028i
\(249\) 4091.81 870.561i 1.04140 0.221565i
\(250\) −7665.08 −1.93913
\(251\) −2038.88 −0.512720 −0.256360 0.966581i \(-0.582523\pi\)
−0.256360 + 0.966581i \(0.582523\pi\)
\(252\) 5364.59 2390.93i 1.34102 0.597677i
\(253\) −469.764 −0.116734
\(254\) 5606.82 1.38505
\(255\) −1036.11 4869.92i −0.254446 1.19595i
\(256\) −3373.27 −0.823551
\(257\) 2743.56i 0.665908i 0.942943 + 0.332954i \(0.108045\pi\)
−0.942943 + 0.332954i \(0.891955\pi\)
\(258\) −11227.2 + 2388.66i −2.70920 + 0.576401i
\(259\) 1506.05i 0.361318i
\(260\) −6785.24 −1.61847
\(261\) −3986.59 + 1776.78i −0.945455 + 0.421378i
\(262\) 760.209 0.179259
\(263\) −3870.45 −0.907461 −0.453731 0.891139i \(-0.649907\pi\)
−0.453731 + 0.891139i \(0.649907\pi\)
\(264\) −2344.78 11020.9i −0.546634 2.56929i
\(265\) 1330.02i 0.308310i
\(266\) 2410.00i 0.555514i
\(267\) 6324.53 1345.59i 1.44964 0.308422i
\(268\) −5340.25 −1.21719
\(269\) −65.3717 −0.0148170 −0.00740852 0.999973i \(-0.502358\pi\)
−0.00740852 + 0.999973i \(0.502358\pi\)
\(270\) 4525.40 3291.87i 1.02003 0.741988i
\(271\) 2737.99i 0.613732i −0.951753 0.306866i \(-0.900720\pi\)
0.951753 0.306866i \(-0.0992803\pi\)
\(272\) −20234.1 −4.51055
\(273\) 551.311 + 2591.28i 0.122223 + 0.574473i
\(274\) 1328.66i 0.292947i
\(275\) 2412.43 0.528999
\(276\) −1296.99 + 275.943i −0.282860 + 0.0601805i
\(277\) 7095.18i 1.53902i −0.638636 0.769509i \(-0.720501\pi\)
0.638636 0.769509i \(-0.279499\pi\)
\(278\) −8368.80 −1.80549
\(279\) −2205.51 + 4105.28i −0.473264 + 0.880921i
\(280\) −5118.98 −1.09256
\(281\) 1010.99i 0.214628i 0.994225 + 0.107314i \(0.0342250\pi\)
−0.994225 + 0.107314i \(0.965775\pi\)
\(282\) −14350.3 + 3053.13i −3.03032 + 0.644721i
\(283\) −794.678 −0.166921 −0.0834606 0.996511i \(-0.526597\pi\)
−0.0834606 + 0.996511i \(0.526597\pi\)
\(284\) 3680.00i 0.768901i
\(285\) −338.892 1592.86i −0.0704358 0.331063i
\(286\) 8614.84 1.78114
\(287\) 4385.59i 0.901998i
\(288\) −3949.09 8860.66i −0.807994 1.81292i
\(289\) 10963.0 2.23143
\(290\) 6447.88 1.30563
\(291\) 798.163 169.815i 0.160787 0.0342086i
\(292\) 17224.1i 3.45194i
\(293\) 8797.40i 1.75409i −0.480404 0.877047i \(-0.659510\pi\)
0.480404 0.877047i \(-0.340490\pi\)
\(294\) −1240.36 5829.96i −0.246052 1.15650i
\(295\) −3855.23 −0.760881
\(296\) 8155.70 1.60149
\(297\) −4074.84 + 2964.13i −0.796116 + 0.579112i
\(298\) −5786.19 −1.12478
\(299\) 598.130i 0.115688i
\(300\) 6660.55 1417.08i 1.28182 0.272717i
\(301\) 4695.58i 0.899166i
\(302\) −704.775 −0.134289
\(303\) −1621.26 7620.25i −0.307389 1.44479i
\(304\) −6618.17 −1.24861
\(305\) −5288.61 −0.992868
\(306\) 7263.96 + 16298.3i 1.35704 + 3.04481i
\(307\) −3164.68 −0.588332 −0.294166 0.955754i \(-0.595042\pi\)
−0.294166 + 0.955754i \(0.595042\pi\)
\(308\) 7812.78 1.44537
\(309\) −546.215 + 116.211i −0.100560 + 0.0213948i
\(310\) 5444.92 4213.12i 0.997582 0.771900i
\(311\) 4394.69i 0.801285i 0.916234 + 0.400643i \(0.131213\pi\)
−0.916234 + 0.400643i \(0.868787\pi\)
\(312\) 14032.5 2985.51i 2.54626 0.541735i
\(313\) 7328.71i 1.32346i 0.749742 + 0.661731i \(0.230178\pi\)
−0.749742 + 0.661731i \(0.769822\pi\)
\(314\) 11970.1i 2.15131i
\(315\) 931.908 + 2090.94i 0.166689 + 0.374004i
\(316\) 7820.99i 1.39229i
\(317\) 3968.92i 0.703208i −0.936149 0.351604i \(-0.885636\pi\)
0.936149 0.351604i \(-0.114364\pi\)
\(318\) −991.924 4662.24i −0.174919 0.822156i
\(319\) −5805.92 −1.01903
\(320\) 4561.38i 0.796840i
\(321\) −171.339 805.327i −0.0297919 0.140028i
\(322\) 764.860i 0.132373i
\(323\) 5192.74 0.894526
\(324\) −9509.23 + 10577.4i −1.63053 + 1.81368i
\(325\) 3071.64i 0.524258i
\(326\) 12266.5i 2.08398i
\(327\) 278.631 59.2806i 0.0471202 0.0100252i
\(328\) 23749.3 3.99797
\(329\) 6001.79i 1.00574i
\(330\) 7281.03 1549.09i 1.21457 0.258408i
\(331\) 6257.48i 1.03910i 0.854440 + 0.519550i \(0.173901\pi\)
−0.854440 + 0.519550i \(0.826099\pi\)
\(332\) 15708.1 2.59667
\(333\) −1484.74 3331.35i −0.244334 0.548218i
\(334\) 16420.9i 2.69015i
\(335\) 2081.45i 0.339469i
\(336\) 9099.56 1935.99i 1.47745 0.314336i
\(337\) 903.472i 0.146039i 0.997331 + 0.0730197i \(0.0232636\pi\)
−0.997331 + 0.0730197i \(0.976736\pi\)
\(338\) 554.540i 0.0892396i
\(339\) −1314.22 6177.10i −0.210557 0.989658i
\(340\) 18695.2i 2.98203i
\(341\) −4902.81 + 3793.65i −0.778599 + 0.602457i
\(342\) 2375.90 + 5330.87i 0.375656 + 0.842867i
\(343\) 6262.42 0.985828
\(344\) −25427.9 −3.98542
\(345\) −107.554 505.524i −0.0167840 0.0788884i
\(346\) −4039.58 −0.627657
\(347\) −10373.3 −1.60481 −0.802404 0.596781i \(-0.796446\pi\)
−0.802404 + 0.596781i \(0.796446\pi\)
\(348\) −16029.8 + 3410.44i −2.46921 + 0.525342i
\(349\) 8913.01 1.36706 0.683528 0.729925i \(-0.260445\pi\)
0.683528 + 0.729925i \(0.260445\pi\)
\(350\) 3927.87i 0.599866i
\(351\) −3774.10 5188.33i −0.573922 0.788981i
\(352\) 12904.3i 1.95399i
\(353\) 3416.10 0.515072 0.257536 0.966269i \(-0.417089\pi\)
0.257536 + 0.966269i \(0.417089\pi\)
\(354\) 13514.1 2875.22i 2.02901 0.431685i
\(355\) 1434.34 0.214443
\(356\) 24279.3 3.61461
\(357\) −7139.68 + 1519.02i −1.05846 + 0.225196i
\(358\) 3787.29i 0.559118i
\(359\) 794.525i 0.116806i −0.998293 0.0584031i \(-0.981399\pi\)
0.998293 0.0584031i \(-0.0186009\pi\)
\(360\) 11323.1 5046.55i 1.65772 0.738824i
\(361\) −5160.55 −0.752377
\(362\) 6999.61 1.01627
\(363\) 208.549 44.3701i 0.0301542 0.00641550i
\(364\) 9947.68i 1.43242i
\(365\) −6713.41 −0.962728
\(366\) 18538.7 3944.23i 2.64763 0.563302i
\(367\) 3189.38i 0.453636i 0.973937 + 0.226818i \(0.0728322\pi\)
−0.973937 + 0.226818i \(0.927168\pi\)
\(368\) −2100.40 −0.297530
\(369\) −4323.54 9700.83i −0.609958 1.36858i
\(370\) 5388.09i 0.757064i
\(371\) 1949.90 0.272868
\(372\) −11307.9 + 13354.0i −1.57605 + 1.86122i
\(373\) 887.280 0.123168 0.0615839 0.998102i \(-0.480385\pi\)
0.0615839 + 0.998102i \(0.480385\pi\)
\(374\) 23736.3i 3.28175i
\(375\) 1580.22 + 7427.34i 0.217605 + 1.02279i
\(376\) −32501.4 −4.45780
\(377\) 7392.43i 1.00989i
\(378\) −4826.13 6634.58i −0.656692 0.902767i
\(379\) 1188.78 0.161118 0.0805588 0.996750i \(-0.474330\pi\)
0.0805588 + 0.996750i \(0.474330\pi\)
\(380\) 6114.85i 0.825487i
\(381\) −1155.89 5432.91i −0.155428 0.730542i
\(382\) −7229.93 −0.968365
\(383\) −896.407 −0.119593 −0.0597967 0.998211i \(-0.519045\pi\)
−0.0597967 + 0.998211i \(0.519045\pi\)
\(384\) −293.819 1381.01i −0.0390466 0.183527i
\(385\) 3045.17i 0.403107i
\(386\) 20765.9i 2.73823i
\(387\) 4629.14 + 10386.5i 0.608043 + 1.36428i
\(388\) 3064.08 0.400915
\(389\) 5726.34 0.746368 0.373184 0.927757i \(-0.378266\pi\)
0.373184 + 0.927757i \(0.378266\pi\)
\(390\) 1972.39 + 9270.63i 0.256092 + 1.20368i
\(391\) 1648.01 0.213155
\(392\) 13204.0i 1.70128i
\(393\) −156.723 736.629i −0.0201161 0.0945497i
\(394\) 2735.21i 0.349740i
\(395\) −3048.37 −0.388304
\(396\) −17281.7 + 7702.24i −2.19302 + 0.977404i
\(397\) −14562.0 −1.84092 −0.920460 0.390837i \(-0.872186\pi\)
−0.920460 + 0.390837i \(0.872186\pi\)
\(398\) 11402.7 1.43609
\(399\) −2335.25 + 496.841i −0.293005 + 0.0623388i
\(400\) 10786.4 1.34830
\(401\) 8393.97 1.04532 0.522662 0.852540i \(-0.324939\pi\)
0.522662 + 0.852540i \(0.324939\pi\)
\(402\) 1552.35 + 7296.34i 0.192597 + 0.905245i
\(403\) −4830.30 6242.54i −0.597058 0.771621i
\(404\) 29253.5i 3.60251i
\(405\) −4122.71 3706.39i −0.505825 0.454746i
\(406\) 9453.09i 1.15554i
\(407\) 4851.65i 0.590878i
\(408\) 8225.91 + 38663.4i 0.998145 + 4.69148i
\(409\) 6527.83i 0.789194i −0.918854 0.394597i \(-0.870884\pi\)
0.918854 0.394597i \(-0.129116\pi\)
\(410\) 15690.0i 1.88994i
\(411\) 1287.45 273.914i 0.154514 0.0328739i
\(412\) −2096.87 −0.250741
\(413\) 5652.06i 0.673413i
\(414\) 754.038 + 1691.85i 0.0895143 + 0.200845i
\(415\) 6122.52i 0.724199i
\(416\) 16430.5 1.93648
\(417\) 1725.29 + 8109.23i 0.202609 + 0.952304i
\(418\) 7763.68i 0.908454i
\(419\) 4793.25i 0.558868i 0.960165 + 0.279434i \(0.0901468\pi\)
−0.960165 + 0.279434i \(0.909853\pi\)
\(420\) 1788.76 + 8407.52i 0.207815 + 0.976774i
\(421\) −5971.90 −0.691336 −0.345668 0.938357i \(-0.612348\pi\)
−0.345668 + 0.938357i \(0.612348\pi\)
\(422\) 5887.06i 0.679094i
\(423\) 5916.87 + 13275.8i 0.680114 + 1.52599i
\(424\) 10559.3i 1.20945i
\(425\) −8463.22 −0.965944
\(426\) −5027.96 + 1069.73i −0.571843 + 0.121664i
\(427\) 7753.50i 0.878731i
\(428\) 3091.58i 0.349153i
\(429\) −1776.02 8347.63i −0.199876 0.939458i
\(430\) 16799.1i 1.88401i
\(431\) 14271.1i 1.59492i 0.603369 + 0.797462i \(0.293825\pi\)
−0.603369 + 0.797462i \(0.706175\pi\)
\(432\) −18219.4 + 13253.2i −2.02912 + 1.47603i
\(433\) 15516.1i 1.72207i 0.508546 + 0.861035i \(0.330183\pi\)
−0.508546 + 0.861035i \(0.669817\pi\)
\(434\) −6176.75 7982.67i −0.683165 0.882904i
\(435\) −1329.28 6247.89i −0.146515 0.688651i
\(436\) 1069.64 0.117492
\(437\) 539.034 0.0590057
\(438\) 23533.2 5006.85i 2.56726 0.546202i
\(439\) 13521.1 1.46999 0.734996 0.678071i \(-0.237184\pi\)
0.734996 + 0.678071i \(0.237184\pi\)
\(440\) 16490.5 1.78671
\(441\) −5393.42 + 2403.78i −0.582380 + 0.259560i
\(442\) −30222.4 −3.25233
\(443\) 14964.1i 1.60489i −0.596725 0.802446i \(-0.703532\pi\)
0.596725 0.802446i \(-0.296468\pi\)
\(444\) −2849.90 13395.1i −0.304617 1.43176i
\(445\) 9463.29i 1.00810i
\(446\) −25856.7 −2.74518
\(447\) 1192.87 + 5606.72i 0.126221 + 0.593264i
\(448\) 6687.34 0.705239
\(449\) −6353.80 −0.667827 −0.333913 0.942604i \(-0.608369\pi\)
−0.333913 + 0.942604i \(0.608369\pi\)
\(450\) −3872.29 8688.34i −0.405648 0.910161i
\(451\) 14127.9i 1.47507i
\(452\) 23713.4i 2.46766i
\(453\) 145.295 + 682.915i 0.0150696 + 0.0708303i
\(454\) −16460.4 −1.70160
\(455\) −3877.28 −0.399494
\(456\) 2690.54 + 12646.1i 0.276307 + 1.29870i
\(457\) 10334.0i 1.05777i −0.848693 0.528886i \(-0.822610\pi\)
0.848693 0.528886i \(-0.177390\pi\)
\(458\) −1325.87 −0.135270
\(459\) 14295.3 10398.7i 1.45370 1.05745i
\(460\) 1940.66i 0.196704i
\(461\) 13174.9 1.33106 0.665530 0.746371i \(-0.268206\pi\)
0.665530 + 0.746371i \(0.268206\pi\)
\(462\) −2271.08 10674.5i −0.228702 1.07495i
\(463\) 1161.98i 0.116635i −0.998298 0.0583174i \(-0.981426\pi\)
0.998298 0.0583174i \(-0.0185735\pi\)
\(464\) −25959.4 −2.59727
\(465\) −5204.95 4407.47i −0.519084 0.439551i
\(466\) 8002.55 0.795517
\(467\) 4200.45i 0.416218i 0.978106 + 0.208109i \(0.0667308\pi\)
−0.978106 + 0.208109i \(0.933269\pi\)
\(468\) −9806.93 22004.0i −0.968644 2.17337i
\(469\) −3051.57 −0.300445
\(470\) 21472.2i 2.10732i
\(471\) 11598.8 2467.73i 1.13470 0.241416i
\(472\) 30607.5 2.98480
\(473\) 15126.5i 1.47044i
\(474\) 10685.8 2273.47i 1.03547 0.220304i
\(475\) −2768.16 −0.267393
\(476\) −27408.6 −2.63923
\(477\) −4313.14 + 1922.31i −0.414015 + 0.184521i
\(478\) 33160.0i 3.17302i
\(479\) 14239.2i 1.35825i 0.734021 + 0.679127i \(0.237641\pi\)
−0.734021 + 0.679127i \(0.762359\pi\)
\(480\) 13886.7 2954.48i 1.32049 0.280944i
\(481\) 6177.40 0.585582
\(482\) −7204.09 −0.680783
\(483\) −741.137 + 157.682i −0.0698196 + 0.0148546i
\(484\) 800.600 0.0751879
\(485\) 1194.28i 0.111813i
\(486\) 17216.0 + 9917.69i 1.60686 + 0.925670i
\(487\) 10602.4i 0.986532i 0.869878 + 0.493266i \(0.164197\pi\)
−0.869878 + 0.493266i \(0.835803\pi\)
\(488\) 41987.5 3.89484
\(489\) 11886.0 2528.83i 1.09919 0.233860i
\(490\) 8723.27 0.804239
\(491\) −13413.3 −1.23286 −0.616432 0.787409i \(-0.711422\pi\)
−0.616432 + 0.787409i \(0.711422\pi\)
\(492\) −8298.85 39006.3i −0.760450 3.57427i
\(493\) 20368.2 1.86073
\(494\) −9885.16 −0.900313
\(495\) −3002.08 6735.84i −0.272593 0.611623i
\(496\) −21921.4 + 16962.1i −1.98448 + 1.53553i
\(497\) 2102.86i 0.189791i
\(498\) −4566.16 21461.9i −0.410873 1.93119i
\(499\) 18982.2i 1.70293i −0.524412 0.851464i \(-0.675715\pi\)
0.524412 0.851464i \(-0.324285\pi\)
\(500\) 28512.9i 2.55027i
\(501\) −15911.6 + 3385.29i −1.41891 + 0.301884i
\(502\) 10694.1i 0.950796i
\(503\) 10109.7i 0.896161i 0.893993 + 0.448080i \(0.147892\pi\)
−0.893993 + 0.448080i \(0.852108\pi\)
\(504\) −7398.63 16600.5i −0.653891 1.46715i
\(505\) 11402.1 1.00472
\(506\) 2463.95i 0.216474i
\(507\) −537.340 + 114.323i −0.0470692 + 0.0100143i
\(508\) 20856.5i 1.82157i
\(509\) 4022.57 0.350289 0.175145 0.984543i \(-0.443961\pi\)
0.175145 + 0.984543i \(0.443961\pi\)
\(510\) −25543.1 + 5434.48i −2.21778 + 0.471848i
\(511\) 9842.37i 0.852056i
\(512\) 19866.8i 1.71484i
\(513\) 4675.71 3401.21i 0.402413 0.292724i
\(514\) 14390.2 1.23487
\(515\) 817.292i 0.0699305i
\(516\) 8885.45 + 41763.4i 0.758062 + 3.56304i
\(517\) 19334.4i 1.64473i
\(518\) 7899.36 0.670034
\(519\) 832.791 + 3914.29i 0.0704344 + 0.331056i
\(520\) 20996.6i 1.77070i
\(521\) 7667.60i 0.644767i 0.946609 + 0.322383i \(0.104484\pi\)
−0.946609 + 0.322383i \(0.895516\pi\)
\(522\) 9319.33 + 20910.0i 0.781410 + 1.75327i
\(523\) 12969.4i 1.08434i −0.840269 0.542170i \(-0.817603\pi\)
0.840269 0.542170i \(-0.182397\pi\)
\(524\) 2827.86i 0.235755i
\(525\) 3806.04 809.760i 0.316398 0.0673159i
\(526\) 20300.8i 1.68281i
\(527\) 17199.9 13308.8i 1.42171 1.10008i
\(528\) −29313.7 + 6236.68i −2.41612 + 0.514047i
\(529\) −11995.9 −0.985940
\(530\) 6976.04 0.571735
\(531\) −5572.09 12502.2i −0.455382 1.02175i
\(532\) −8964.84 −0.730592
\(533\) 17988.5 1.46185
\(534\) −7057.71 33172.7i −0.571942 2.68824i
\(535\) 1205.00 0.0973769
\(536\) 16525.1i 1.33167i
\(537\) 3669.82 780.779i 0.294906 0.0627432i
\(538\) 342.880i 0.0274770i
\(539\) −7854.77 −0.627698
\(540\) −12245.2 16833.8i −0.975836 1.34150i
\(541\) 21991.8 1.74770 0.873848 0.486200i \(-0.161617\pi\)
0.873848 + 0.486200i \(0.161617\pi\)
\(542\) −14361.0 −1.13811
\(543\) −1443.02 6782.50i −0.114044 0.536031i
\(544\) 45270.7i 3.56795i
\(545\) 416.911i 0.0327679i
\(546\) 13591.5 2891.67i 1.06531 0.226652i
\(547\) 11207.0 0.876011 0.438006 0.898972i \(-0.355685\pi\)
0.438006 + 0.898972i \(0.355685\pi\)
\(548\) 4942.42 0.385273
\(549\) −7643.80 17150.6i −0.594224 1.33327i
\(550\) 12653.4i 0.980985i
\(551\) 6662.05 0.515087
\(552\) 853.893 + 4013.47i 0.0658408 + 0.309465i
\(553\) 4469.14i 0.343666i
\(554\) −37214.8 −2.85398
\(555\) 5220.97 1110.80i 0.399311 0.0849562i
\(556\) 31130.6i 2.37452i
\(557\) −1649.84 −0.125505 −0.0627524 0.998029i \(-0.519988\pi\)
−0.0627524 + 0.998029i \(0.519988\pi\)
\(558\) 21532.5 + 11568.1i 1.63359 + 0.877629i
\(559\) −19260.0 −1.45726
\(560\) 13615.5i 1.02743i
\(561\) 23000.0 4893.41i 1.73095 0.368271i
\(562\) 5302.70 0.398009
\(563\) 1282.72i 0.0960218i 0.998847 + 0.0480109i \(0.0152882\pi\)
−0.998847 + 0.0480109i \(0.984712\pi\)
\(564\) 11357.2 + 53381.0i 0.847914 + 3.98537i
\(565\) 9242.70 0.688218
\(566\) 4168.15i 0.309541i
\(567\) −5433.85 + 6044.21i −0.402470 + 0.447678i
\(568\) −11387.6 −0.841220
\(569\) −12303.1 −0.906456 −0.453228 0.891395i \(-0.649728\pi\)
−0.453228 + 0.891395i \(0.649728\pi\)
\(570\) −8354.68 + 1777.51i −0.613928 + 0.130617i
\(571\) 11706.4i 0.857963i −0.903313 0.428982i \(-0.858873\pi\)
0.903313 0.428982i \(-0.141127\pi\)
\(572\) 32045.8i 2.34249i
\(573\) 1490.51 + 7005.68i 0.108668 + 0.510762i
\(574\) 23002.8 1.67268
\(575\) −878.527 −0.0637167
\(576\) −14792.2 + 6592.71i −1.07004 + 0.476904i
\(577\) −8416.46 −0.607247 −0.303624 0.952792i \(-0.598197\pi\)
−0.303624 + 0.952792i \(0.598197\pi\)
\(578\) 57501.9i 4.13800i
\(579\) −20121.8 + 4281.05i −1.44427 + 0.307279i
\(580\) 23985.1i 1.71712i
\(581\) 8976.08 0.640947
\(582\) −890.691 4186.43i −0.0634370 0.298167i
\(583\) −6281.50 −0.446232
\(584\) 53299.3 3.77661
\(585\) 8576.46 3822.42i 0.606142 0.270150i
\(586\) −46143.1 −3.25282
\(587\) −15473.9 −1.08803 −0.544017 0.839074i \(-0.683097\pi\)
−0.544017 + 0.839074i \(0.683097\pi\)
\(588\) −21686.5 + 4613.96i −1.52098 + 0.323599i
\(589\) 5625.77 4353.06i 0.393558 0.304524i
\(590\) 20221.0i 1.41099i
\(591\) 2650.37 563.884i 0.184470 0.0392472i
\(592\) 21692.6i 1.50602i
\(593\) 14279.1i 0.988821i 0.869229 + 0.494410i \(0.164616\pi\)
−0.869229 + 0.494410i \(0.835384\pi\)
\(594\) 15547.1 + 21372.9i 1.07391 + 1.47633i
\(595\) 10683.0i 0.736067i
\(596\) 21523.7i 1.47927i
\(597\) −2350.75 11049.0i −0.161155 0.757462i
\(598\) −3137.24 −0.214534
\(599\) 1639.56i 0.111837i 0.998435 + 0.0559187i \(0.0178088\pi\)
−0.998435 + 0.0559187i \(0.982191\pi\)
\(600\) −4385.08 20610.8i −0.298367 1.40239i
\(601\) 22297.5i 1.51337i 0.653779 + 0.756685i \(0.273182\pi\)
−0.653779 + 0.756685i \(0.726818\pi\)
\(602\) −24628.7 −1.66743
\(603\) 6750.00 3008.39i 0.455856 0.203170i
\(604\) 2621.65i 0.176612i
\(605\) 312.048i 0.0209695i
\(606\) −39968.8 + 8503.64i −2.67925 + 0.570028i
\(607\) −13716.0 −0.917160 −0.458580 0.888653i \(-0.651642\pi\)
−0.458580 + 0.888653i \(0.651642\pi\)
\(608\) 14807.2i 0.987682i
\(609\) −9159.88 + 1948.83i −0.609486 + 0.129672i
\(610\) 27739.2i 1.84119i
\(611\) −24617.7 −1.62999
\(612\) 60627.2 27020.8i 4.00443 1.78472i
\(613\) 5110.82i 0.336744i −0.985724 0.168372i \(-0.946149\pi\)
0.985724 0.168372i \(-0.0538510\pi\)
\(614\) 16599.0i 1.09101i
\(615\) 15203.4 3234.62i 0.996845 0.212086i
\(616\) 24176.3i 1.58132i
\(617\) 629.658i 0.0410844i 0.999789 + 0.0205422i \(0.00653925\pi\)
−0.999789 + 0.0205422i \(0.993461\pi\)
\(618\) 609.536 + 2864.94i 0.0396749 + 0.186480i
\(619\) 16612.4i 1.07869i 0.842086 + 0.539343i \(0.181327\pi\)
−0.842086 + 0.539343i \(0.818673\pi\)
\(620\) −15672.1 20254.2i −1.01517 1.31198i
\(621\) 1483.93 1079.44i 0.0958903 0.0697526i
\(622\) 23050.5 1.48592
\(623\) 13873.9 0.892210
\(624\) −7940.90 37323.8i −0.509440 2.39447i
\(625\) −2717.36 −0.173911
\(626\) 38439.7 2.45425
\(627\) 7522.87 1600.54i 0.479162 0.101945i
\(628\) 44526.8 2.82932
\(629\) 17020.4i 1.07893i
\(630\) 10967.2 4887.93i 0.693559 0.309111i
\(631\) 5138.45i 0.324181i −0.986776 0.162091i \(-0.948176\pi\)
0.986776 0.162091i \(-0.0518237\pi\)
\(632\) 24201.7 1.52325
\(633\) 5704.46 1213.66i 0.358186 0.0762066i
\(634\) −20817.3 −1.30404
\(635\) 8129.19 0.508027
\(636\) −17342.8 + 3689.80i −1.08127 + 0.230047i
\(637\) 10001.1i 0.622072i
\(638\) 30452.5i 1.88970i
\(639\) 2073.10 + 4651.47i 0.128342 + 0.287965i
\(640\) 2066.38 0.127626
\(641\) 10368.2 0.638877 0.319439 0.947607i \(-0.396506\pi\)
0.319439 + 0.947607i \(0.396506\pi\)
\(642\) −4224.01 + 898.686i −0.259670 + 0.0552466i
\(643\) 2776.45i 0.170284i −0.996369 0.0851418i \(-0.972866\pi\)
0.996369 0.0851418i \(-0.0271343\pi\)
\(644\) −2845.16 −0.174092
\(645\) −16278.0 + 3463.26i −0.993715 + 0.211420i
\(646\) 27236.4i 1.65882i
\(647\) −7220.00 −0.438713 −0.219357 0.975645i \(-0.570396\pi\)
−0.219357 + 0.975645i \(0.570396\pi\)
\(648\) 32731.2 + 29425.9i 1.98426 + 1.78389i
\(649\) 18207.8i 1.10126i
\(650\) 16111.0 0.972193
\(651\) −6461.68 + 7630.86i −0.389022 + 0.459412i
\(652\) 45629.3 2.74077
\(653\) 4529.92i 0.271469i −0.990745 0.135735i \(-0.956661\pi\)
0.990745 0.135735i \(-0.0433395\pi\)
\(654\) −310.932 1461.44i −0.0185908 0.0873805i
\(655\) 1102.21 0.0657508
\(656\) 63168.6i 3.75963i
\(657\) −9703.11 21771.1i −0.576186 1.29280i
\(658\) −31479.9 −1.86507
\(659\) 9335.83i 0.551855i −0.961179 0.275927i \(-0.911015\pi\)
0.961179 0.275927i \(-0.0889849\pi\)
\(660\) −5762.37 27084.3i −0.339848 1.59736i
\(661\) 9047.62 0.532393 0.266197 0.963919i \(-0.414233\pi\)
0.266197 + 0.963919i \(0.414233\pi\)
\(662\) 32821.0 1.92693
\(663\) 6230.58 + 29285.0i 0.364971 + 1.71544i
\(664\) 48608.1i 2.84090i
\(665\) 3494.20i 0.203758i
\(666\) −17473.2 + 7787.59i −1.01662 + 0.453097i
\(667\) 2114.33 0.122739
\(668\) −61083.1 −3.53799
\(669\) 5330.56 + 25054.7i 0.308059 + 1.44794i
\(670\) −10917.4 −0.629516
\(671\) 24977.4i 1.43702i
\(672\) −4331.50 20358.9i −0.248647 1.16869i
\(673\) 27863.3i 1.59591i −0.602714 0.797957i \(-0.705914\pi\)
0.602714 0.797957i \(-0.294086\pi\)
\(674\) 4738.79 0.270818
\(675\) −7620.56 + 5543.35i −0.434541 + 0.316094i
\(676\) −2062.80 −0.117365
\(677\) 15295.3 0.868310 0.434155 0.900838i \(-0.357047\pi\)
0.434155 + 0.900838i \(0.357047\pi\)
\(678\) −32399.4 + 6893.19i −1.83524 + 0.390460i
\(679\) 1750.90 0.0989595
\(680\) −57851.5 −3.26251
\(681\) 3393.44 + 15949.8i 0.190950 + 0.897503i
\(682\) 19898.0 + 25715.7i 1.11721 + 1.44385i
\(683\) 4193.67i 0.234943i 0.993076 + 0.117472i \(0.0374790\pi\)
−0.993076 + 0.117472i \(0.962521\pi\)
\(684\) 19830.0 8837.99i 1.10851 0.494048i
\(685\) 1926.39i 0.107451i
\(686\) 32846.9i 1.82814i
\(687\) 273.338 + 1284.74i 0.0151797 + 0.0713478i
\(688\) 67633.6i 3.74783i
\(689\) 7997.96i 0.442232i
\(690\) −2651.51 + 564.128i −0.146292 + 0.0311246i
\(691\) −23903.9 −1.31599 −0.657995 0.753023i \(-0.728595\pi\)
−0.657995 + 0.753023i \(0.728595\pi\)
\(692\) 15026.6i 0.825471i
\(693\) −9875.26 + 4401.28i −0.541313 + 0.241257i
\(694\) 54408.9i 2.97598i
\(695\) −12133.7 −0.662242
\(696\) 10553.5 + 49603.4i 0.574753 + 2.70146i
\(697\) 49563.2i 2.69346i
\(698\) 46749.5i 2.53509i
\(699\) −1649.79 7754.34i −0.0892714 0.419594i
\(700\) 14611.0 0.788922
\(701\) 15335.8i 0.826282i 0.910667 + 0.413141i \(0.135568\pi\)
−0.910667 + 0.413141i \(0.864432\pi\)
\(702\) −27213.2 + 19795.5i −1.46310 + 1.06429i
\(703\) 5567.06i 0.298671i
\(704\) −21542.8 −1.15330
\(705\) −20806.2 + 4426.66i −1.11150 + 0.236479i
\(706\) 17917.7i 0.955159i
\(707\) 16716.3i 0.889224i
\(708\) −10695.4 50270.5i −0.567736 2.66847i
\(709\) 19801.4i 1.04888i 0.851447 + 0.524440i \(0.175725\pi\)
−0.851447 + 0.524440i \(0.824275\pi\)
\(710\) 7523.25i 0.397666i
\(711\) −4405.91 9885.63i −0.232397 0.521435i
\(712\) 75131.3i 3.95458i
\(713\) 1785.44 1381.52i 0.0937804 0.0725645i
\(714\) 7967.36 + 37448.2i 0.417606 + 1.96283i
\(715\) 12490.4 0.653309
\(716\) 14088.1 0.735332
\(717\) −32131.5 + 6836.19i −1.67360 + 0.356070i
\(718\) −4167.35 −0.216607
\(719\) −8399.35 −0.435665 −0.217832 0.975986i \(-0.569899\pi\)
−0.217832 + 0.975986i \(0.569899\pi\)
\(720\) −13422.9 30117.2i −0.694779 1.55889i
\(721\) −1198.21 −0.0618915
\(722\) 27067.5i 1.39522i
\(723\) 1485.18 + 6980.64i 0.0763962 + 0.359077i
\(724\) 26037.4i 1.33657i
\(725\) −10857.9 −0.556211
\(726\) −232.725 1093.85i −0.0118970 0.0559184i
\(727\) −33328.5 −1.70025 −0.850127 0.526578i \(-0.823475\pi\)
−0.850127 + 0.526578i \(0.823475\pi\)
\(728\) 30782.7 1.56714
\(729\) 6060.86 18726.6i 0.307924 0.951411i
\(730\) 35212.4i 1.78530i
\(731\) 53066.6i 2.68500i
\(732\) −14671.9 68961.1i −0.740834 3.48207i
\(733\) 20061.9 1.01092 0.505459 0.862851i \(-0.331323\pi\)
0.505459 + 0.862851i \(0.331323\pi\)
\(734\) 16728.6 0.841230
\(735\) −1798.37 8452.70i −0.0902502 0.424194i
\(736\) 4699.34i 0.235353i
\(737\) 9830.45 0.491329
\(738\) −50881.6 + 22677.3i −2.53791 + 1.13112i
\(739\) 10383.5i 0.516865i 0.966029 + 0.258433i \(0.0832060\pi\)
−0.966029 + 0.258433i \(0.916794\pi\)
\(740\) 20042.9 0.995662
\(741\) 2037.90 + 9578.56i 0.101031 + 0.474868i
\(742\) 10227.4i 0.506011i
\(743\) 399.839 0.0197425 0.00987123 0.999951i \(-0.496858\pi\)
0.00987123 + 0.999951i \(0.496858\pi\)
\(744\) 41323.3 + 34991.9i 2.03627 + 1.72428i
\(745\) −8389.25 −0.412562
\(746\) 4653.86i 0.228405i
\(747\) −19854.9 + 8849.07i −0.972492 + 0.433428i
\(748\) 88295.2 4.31603
\(749\) 1766.62i 0.0861828i
\(750\) 38957.0 8288.37i 1.89668 0.403531i
\(751\) 216.634 0.0105261 0.00526304 0.999986i \(-0.498325\pi\)
0.00526304 + 0.999986i \(0.498325\pi\)
\(752\) 86447.7i 4.19205i
\(753\) 10362.4 2204.67i 0.501495 0.106697i
\(754\) −38773.9 −1.87276
\(755\) −1021.83 −0.0492561
\(756\) −24679.6 + 17952.5i −1.18729 + 0.863657i
\(757\) 32436.9i 1.55738i 0.627407 + 0.778692i \(0.284116\pi\)
−0.627407 + 0.778692i \(0.715884\pi\)
\(758\) 6235.25i 0.298779i
\(759\) 2387.53 507.962i 0.114179 0.0242923i
\(760\) −18922.1 −0.903128
\(761\) −2899.07 −0.138096 −0.0690480 0.997613i \(-0.521996\pi\)
−0.0690480 + 0.997613i \(0.521996\pi\)
\(762\) −28496.1 + 6062.74i −1.35473 + 0.288228i
\(763\) 611.223 0.0290010
\(764\) 26894.2i 1.27356i
\(765\) 10531.8 + 23630.5i 0.497751 + 1.11681i
\(766\) 4701.73i 0.221776i
\(767\) 23183.2 1.09139
\(768\) 17144.3 3647.56i 0.805522 0.171380i
\(769\) 11670.8 0.547280 0.273640 0.961832i \(-0.411772\pi\)
0.273640 + 0.961832i \(0.411772\pi\)
\(770\) 15972.2 0.747528
\(771\) −2966.65 13943.8i −0.138575 0.651330i
\(772\) −77245.9 −3.60122
\(773\) −10565.9 −0.491627 −0.245814 0.969317i \(-0.579055\pi\)
−0.245814 + 0.969317i \(0.579055\pi\)
\(774\) 54478.1 24280.2i 2.52994 1.12757i
\(775\) −9168.98 + 7094.69i −0.424980 + 0.328837i
\(776\) 9481.65i 0.438623i
\(777\) −1628.51 7654.34i −0.0751900 0.353408i
\(778\) 30035.1i 1.38408i
\(779\) 16211.2i 0.745605i
\(780\) 34485.3 7336.98i 1.58304 0.336803i
\(781\) 6774.23i 0.310373i
\(782\) 8643.97i 0.395278i
\(783\) 18340.2 13341.0i 0.837069 0.608901i
\(784\) −35120.2 −1.59986
\(785\) 17355.1i 0.789084i
\(786\) −3863.68 + 822.025i −0.175335 + 0.0373036i
\(787\) 31547.7i 1.42891i 0.699681 + 0.714455i \(0.253325\pi\)
−0.699681 + 0.714455i \(0.746675\pi\)
\(788\) 10174.5 0.459966
\(789\) 19671.2 4185.18i 0.887595 0.188842i
\(790\) 15988.9i 0.720077i
\(791\) 13550.5i 0.609103i
\(792\) 23834.2 + 53477.4i 1.06933 + 2.39929i
\(793\) 31802.7 1.42414
\(794\) 76378.8i 3.41383i
\(795\) −1438.16 6759.67i −0.0641591 0.301561i
\(796\) 42416.1i 1.88869i
\(797\) −1610.41 −0.0715731 −0.0357866 0.999359i \(-0.511394\pi\)
−0.0357866 + 0.999359i \(0.511394\pi\)
\(798\) 2605.97 + 12248.6i 0.115602 + 0.543353i
\(799\) 67828.5i 3.00325i
\(800\) 24133.0i 1.06654i
\(801\) −30688.8 + 13677.6i −1.35373 + 0.603339i
\(802\) 44027.0i 1.93847i
\(803\) 31706.6i 1.39340i
\(804\) 27141.2 5774.48i 1.19054 0.253296i
\(805\) 1108.95i 0.0485533i
\(806\) −32742.7 + 25335.3i −1.43091 + 1.10719i
\(807\) 332.245 70.6873i 0.0144927 0.00308341i
\(808\) −90523.6 −3.94135
\(809\) 3031.92 0.131763 0.0658817 0.997827i \(-0.479014\pi\)
0.0658817 + 0.997827i \(0.479014\pi\)
\(810\) −19440.3 + 21624.0i −0.843288 + 0.938011i
\(811\) −13508.0 −0.584872 −0.292436 0.956285i \(-0.594466\pi\)
−0.292436 + 0.956285i \(0.594466\pi\)
\(812\) −35164.0 −1.51972
\(813\) 2960.63 + 13915.6i 0.127717 + 0.600296i
\(814\) −25447.3 −1.09573
\(815\) 17784.8i 0.764387i
\(816\) 102837. 21879.4i 4.41180 0.938641i
\(817\) 17357.1i 0.743264i
\(818\) −34239.0 −1.46349
\(819\) −5603.97 12573.7i −0.239095 0.536462i
\(820\) 58364.5 2.48558
\(821\) −1315.83 −0.0559352 −0.0279676 0.999609i \(-0.508904\pi\)
−0.0279676 + 0.999609i \(0.508904\pi\)
\(822\) −1436.70 6752.79i −0.0609620 0.286534i
\(823\) 14084.8i 0.596556i −0.954479 0.298278i \(-0.903588\pi\)
0.954479 0.298278i \(-0.0964122\pi\)
\(824\) 6488.67i 0.274325i
\(825\) −12260.9 + 2608.59i −0.517418 + 0.110084i
\(826\) 29645.5 1.24879
\(827\) −41894.6 −1.76157 −0.880784 0.473518i \(-0.842984\pi\)
−0.880784 + 0.473518i \(0.842984\pi\)
\(828\) 6293.43 2804.90i 0.264144 0.117726i
\(829\) 6454.61i 0.270420i −0.990817 0.135210i \(-0.956829\pi\)
0.990817 0.135210i \(-0.0431708\pi\)
\(830\) 32113.1 1.34297
\(831\) 7672.12 + 36060.5i 0.320268 + 1.50533i
\(832\) 27429.6i 1.14297i
\(833\) 27555.9 1.14617
\(834\) 42533.6 9049.31i 1.76597 0.375722i
\(835\) 23808.2i 0.986727i
\(836\) 28879.7 1.19477
\(837\) 6770.20 23249.5i 0.279585 0.960121i
\(838\) 25141.0 1.03637
\(839\) 8429.94i 0.346882i −0.984844 0.173441i \(-0.944511\pi\)
0.984844 0.173441i \(-0.0554886\pi\)
\(840\) 26016.7 5535.23i 1.06864 0.227361i
\(841\) 1742.47 0.0714451
\(842\) 31323.1i 1.28202i
\(843\) −1093.19 5138.23i −0.0446638 0.209929i
\(844\) 21898.9 0.893119
\(845\) 804.013i 0.0327324i
\(846\) 69632.7 31034.5i 2.82981 1.26121i
\(847\) 457.486 0.0185589
\(848\) −28085.8 −1.13735
\(849\) 4038.87 859.297i 0.163267 0.0347361i
\(850\) 44390.3i 1.79126i
\(851\) 1766.81i 0.0711698i
\(852\) 3979.24 + 18703.2i 0.160008 + 0.752068i
\(853\) −25744.3 −1.03337 −0.516686 0.856175i \(-0.672835\pi\)
−0.516686 + 0.856175i \(0.672835\pi\)
\(854\) 40667.8 1.62953
\(855\) 3444.76 + 7729.09i 0.137788 + 0.309157i
\(856\) −9566.76 −0.381992
\(857\) 8134.36i 0.324229i −0.986772 0.162115i \(-0.948169\pi\)
0.986772 0.162115i \(-0.0518314\pi\)
\(858\) −43784.0 + 9315.35i −1.74215 + 0.370654i
\(859\) 38757.1i 1.53944i −0.638384 0.769718i \(-0.720397\pi\)
0.638384 0.769718i \(-0.279603\pi\)
\(860\) −62489.9 −2.47778
\(861\) −4742.21 22289.3i −0.187705 0.882251i
\(862\) 74852.9 2.95765
\(863\) −18864.6 −0.744099 −0.372049 0.928213i \(-0.621345\pi\)
−0.372049 + 0.928213i \(0.621345\pi\)
\(864\) 29652.0 + 40763.2i 1.16757 + 1.60508i
\(865\) −5856.89 −0.230220
\(866\) 81383.2 3.19343
\(867\) −55718.4 + 11854.5i −2.18258 + 0.464358i
\(868\) −29694.3 + 22976.6i −1.16116 + 0.898474i
\(869\) 14397.1i 0.562010i
\(870\) −32770.7 + 6972.19i −1.27705 + 0.271700i
\(871\) 12516.7i 0.486925i
\(872\) 3309.95i 0.128543i
\(873\) −3872.96 + 1726.13i −0.150149 + 0.0669194i
\(874\) 2827.28i 0.109421i
\(875\) 16293.1i 0.629495i
\(876\) −18624.7 87539.8i −0.718345 3.37637i
\(877\) −16405.4 −0.631664 −0.315832 0.948815i \(-0.602284\pi\)
−0.315832 + 0.948815i \(0.602284\pi\)
\(878\) 70919.2i 2.72598i
\(879\) 9512.76 + 44711.9i 0.365025 + 1.71569i
\(880\) 43861.6i 1.68020i
\(881\) 13141.6 0.502555 0.251277 0.967915i \(-0.419149\pi\)
0.251277 + 0.967915i \(0.419149\pi\)
\(882\) 12608.0 + 28288.9i 0.481332 + 1.07997i
\(883\) 8215.22i 0.313096i −0.987670 0.156548i \(-0.949963\pi\)
0.987670 0.156548i \(-0.0500367\pi\)
\(884\) 112423.i 4.27735i
\(885\) 19593.8 4168.71i 0.744224 0.158339i
\(886\) −78488.1 −2.97614
\(887\) 4798.95i 0.181661i 0.995866 + 0.0908304i \(0.0289521\pi\)
−0.995866 + 0.0908304i \(0.971048\pi\)
\(888\) −41450.5 + 8818.87i −1.56643 + 0.333268i
\(889\) 11918.0i 0.449626i
\(890\) 49635.8 1.86943
\(891\) 17504.8 19471.1i 0.658175 0.732104i
\(892\) 96182.9i 3.61036i
\(893\) 22185.4i 0.831362i
\(894\) 29407.7 6256.69i 1.10016 0.234066i
\(895\) 5491.09i 0.205080i
\(896\) 3029.47i 0.112955i
\(897\) 646.767 + 3039.94i 0.0240746 + 0.113155i
\(898\) 33326.2i 1.23843i
\(899\) 22066.7 17074.6i 0.818651 0.633448i
\(900\) −32319.3 + 14404.3i −1.19701 + 0.533493i
\(901\) 22036.6 0.814812
\(902\) −74102.1 −2.73540
\(903\) 5077.40 + 23864.8i 0.187116 + 0.879481i
\(904\) −73379.9 −2.69976
\(905\) 10148.6 0.372762
\(906\) 3581.94 762.083i 0.131349 0.0279454i
\(907\) 32681.1 1.19643 0.598214 0.801337i \(-0.295877\pi\)
0.598214 + 0.801337i \(0.295877\pi\)
\(908\) 61230.1i 2.23788i
\(909\) 16479.8 + 36976.0i 0.601320 + 1.34919i
\(910\) 20336.7i 0.740829i
\(911\) 28487.6 1.03604 0.518021 0.855368i \(-0.326669\pi\)
0.518021 + 0.855368i \(0.326669\pi\)
\(912\) 33636.2 7156.33i 1.22128 0.259835i
\(913\) −28915.9 −1.04817
\(914\) −54202.4 −1.96155
\(915\) 26878.8 5718.65i 0.971132 0.206615i
\(916\) 4932.02i 0.177902i
\(917\) 1615.92i 0.0581924i
\(918\) −54542.0 74979.9i −1.96095 2.69576i
\(919\) 42200.8 1.51477 0.757385 0.652968i \(-0.226476\pi\)
0.757385 + 0.652968i \(0.226476\pi\)
\(920\) −6005.29 −0.215205
\(921\) 16084.2 3422.02i 0.575452 0.122431i
\(922\) 69103.7i 2.46834i
\(923\) −8625.34 −0.307591
\(924\) −39707.7 + 8448.08i −1.41373 + 0.300781i
\(925\) 9073.29i 0.322517i
\(926\) −6094.69 −0.216289
\(927\) 2650.42 1181.26i 0.0939063 0.0418529i
\(928\) 58080.2i 2.05450i
\(929\) −42972.6 −1.51764 −0.758818 0.651303i \(-0.774223\pi\)
−0.758818 + 0.651303i \(0.774223\pi\)
\(930\) −23117.5 + 27300.4i −0.815111 + 0.962597i
\(931\) 9013.02 0.317282
\(932\) 29768.2i 1.04624i
\(933\) −4752.04 22335.5i −0.166747 0.783743i
\(934\) 22031.7 0.771841
\(935\) 34414.6i 1.20372i
\(936\) −68090.5 + 30347.1i −2.37779 + 1.05975i
\(937\) −39920.8 −1.39184 −0.695920 0.718119i \(-0.745003\pi\)
−0.695920 + 0.718119i \(0.745003\pi\)
\(938\) 16005.7i 0.557149i
\(939\) −7924.64 37247.4i −0.275411 1.29449i
\(940\) −79873.2 −2.77146
\(941\) −33894.3 −1.17420 −0.587100 0.809514i \(-0.699731\pi\)
−0.587100 + 0.809514i \(0.699731\pi\)
\(942\) −12943.4 60836.7i −0.447685 2.10421i
\(943\) 5144.93i 0.177669i
\(944\) 81410.3i 2.80686i
\(945\) −6997.29 9619.31i −0.240870 0.331128i
\(946\) 79339.9 2.72681
\(947\) 32476.7 1.11442 0.557208 0.830373i \(-0.311873\pi\)
0.557208 + 0.830373i \(0.311873\pi\)
\(948\) −8456.95 39749.4i −0.289735 1.36181i
\(949\) 40370.6 1.38091
\(950\) 14519.2i 0.495858i
\(951\) 4291.65 + 20171.6i 0.146337 + 0.687813i
\(952\) 84814.7i 2.88746i
\(953\) 5064.87 0.172159 0.0860794 0.996288i \(-0.472566\pi\)
0.0860794 + 0.996288i \(0.472566\pi\)
\(954\) 10082.7 + 22622.8i 0.342180 + 0.767756i
\(955\) −10482.5 −0.355189
\(956\) −123350. −4.17304
\(957\) 29508.0 6278.03i 0.996717 0.212058i
\(958\) 74685.5 2.51877
\(959\) 2824.24 0.0950985
\(960\) −4932.29 23182.7i −0.165822 0.779396i
\(961\) 7477.53 28837.3i 0.251000 0.967987i
\(962\) 32401.0i 1.08591i
\(963\) 1741.62 + 3907.72i 0.0582794 + 0.130763i
\(964\) 26798.1i 0.895341i
\(965\) 30107.9i 1.00436i
\(966\) 827.054 + 3887.32i 0.0275466 + 0.129475i
\(967\) 57244.6i 1.90368i −0.306590 0.951842i \(-0.599188\pi\)
0.306590 0.951842i \(-0.400812\pi\)
\(968\) 2477.42i 0.0822596i
\(969\) −26391.6 + 5614.99i −0.874943 + 0.186150i
\(970\) 6264.09 0.207348
\(971\) 1433.79i 0.0473867i 0.999719 + 0.0236934i \(0.00754254\pi\)
−0.999719 + 0.0236934i \(0.992457\pi\)
\(972\) 36892.2 64040.8i 1.21741 2.11328i
\(973\) 17789.0i 0.586113i
\(974\) 55610.5 1.82944
\(975\) −3321.41 15611.3i −0.109098 0.512781i
\(976\) 111679.i 3.66265i
\(977\) 4303.85i 0.140934i −0.997514 0.0704669i \(-0.977551\pi\)
0.997514 0.0704669i \(-0.0224489\pi\)
\(978\) −13263.9 62343.0i −0.433674 2.03835i
\(979\) −44694.0 −1.45907
\(980\) 32449.2i 1.05771i
\(981\) −1352.01 + 602.575i −0.0440024 + 0.0196114i
\(982\) 70354.1i 2.28624i
\(983\) 46474.3 1.50794 0.753968 0.656911i \(-0.228137\pi\)
0.753968 + 0.656911i \(0.228137\pi\)
\(984\) −120703. + 25680.4i −3.91044 + 0.831974i
\(985\) 3965.71i 0.128282i
\(986\) 106833.i 3.45056i
\(987\) 6489.82 + 30503.5i 0.209294 + 0.983725i
\(988\) 36771.3i 1.18406i
\(989\) 5508.59i 0.177111i
\(990\) −35330.0 + 15746.2i −1.13420 + 0.505501i
\(991\) 24764.7i 0.793820i 0.917857 + 0.396910i \(0.129918\pi\)
−0.917857 + 0.396910i \(0.870082\pi\)
\(992\) 37950.3 + 49045.9i 1.21464 + 1.56977i
\(993\) −6766.31 31803.0i −0.216236 1.01635i
\(994\) −11029.7 −0.351952
\(995\) 16532.4 0.526747
\(996\) −79834.9 + 16985.4i −2.53983 + 0.540365i
\(997\) 4065.55 0.129145 0.0645724 0.997913i \(-0.479432\pi\)
0.0645724 + 0.997913i \(0.479432\pi\)
\(998\) −99563.4 −3.15794
\(999\) 11148.3 + 15325.8i 0.353069 + 0.485371i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 93.4.c.b.92.1 28
3.2 odd 2 inner 93.4.c.b.92.28 yes 28
31.30 odd 2 inner 93.4.c.b.92.2 yes 28
93.92 even 2 inner 93.4.c.b.92.27 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
93.4.c.b.92.1 28 1.1 even 1 trivial
93.4.c.b.92.2 yes 28 31.30 odd 2 inner
93.4.c.b.92.27 yes 28 93.92 even 2 inner
93.4.c.b.92.28 yes 28 3.2 odd 2 inner