Properties

Label 93.3.l.b.2.16
Level $93$
Weight $3$
Character 93.2
Analytic conductor $2.534$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [93,3,Mod(2,93)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("93.2"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(93, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 93 = 3 \cdot 31 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 93.l (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.53406645855\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 2.16
Character \(\chi\) \(=\) 93.2
Dual form 93.3.l.b.47.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.72290 - 2.37137i) q^{2} +(0.220544 - 2.99188i) q^{3} +(-1.41895 - 4.36707i) q^{4} -1.18691i q^{5} +(-6.71489 - 5.67772i) q^{6} +(2.57067 + 7.91172i) q^{7} +(-1.64979 - 0.536048i) q^{8} +(-8.90272 - 1.31968i) q^{9} +(-2.81460 - 2.04493i) q^{10} +(1.50860 - 0.490174i) q^{11} +(-13.3787 + 3.28219i) q^{12} +(-4.41547 + 3.20803i) q^{13} +(23.1906 + 7.53510i) q^{14} +(-3.55109 - 0.261765i) q^{15} +(10.7458 - 7.80728i) q^{16} +(15.9907 + 5.19568i) q^{17} +(-18.4680 + 18.8380i) q^{18} +(-10.5154 - 7.63990i) q^{19} +(-5.18331 + 1.68416i) q^{20} +(24.2379 - 5.94627i) q^{21} +(1.43679 - 4.42197i) q^{22} +(-23.7062 - 7.70260i) q^{23} +(-1.96764 + 4.81774i) q^{24} +23.5912 q^{25} +15.9979i q^{26} +(-5.91177 + 26.3448i) q^{27} +(30.9033 - 22.4526i) q^{28} +(-16.2622 + 22.3830i) q^{29} +(-6.73893 + 7.96996i) q^{30} +(30.8279 - 3.26159i) q^{31} -45.8723i q^{32} +(-1.13383 - 4.62166i) q^{33} +(39.8713 - 28.9682i) q^{34} +(9.39048 - 3.05115i) q^{35} +(6.86934 + 40.7513i) q^{36} -36.9813 q^{37} +(-36.2341 + 11.7732i) q^{38} +(8.62424 + 13.9181i) q^{39} +(-0.636240 + 1.95815i) q^{40} +(-24.3085 + 33.4578i) q^{41} +(27.6587 - 67.7219i) q^{42} +(31.1808 + 22.6541i) q^{43} +(-4.28124 - 5.89262i) q^{44} +(-1.56634 + 10.5667i) q^{45} +(-59.1092 + 42.9453i) q^{46} +(22.1879 + 30.5390i) q^{47} +(-20.9886 - 33.8720i) q^{48} +(-16.3451 + 11.8754i) q^{49} +(40.6454 - 55.9436i) q^{50} +(19.0715 - 46.6963i) q^{51} +(20.2750 + 14.7306i) q^{52} +(-89.4756 - 29.0724i) q^{53} +(52.2880 + 59.4086i) q^{54} +(-0.581791 - 1.79057i) q^{55} -14.4306i q^{56} +(-25.1768 + 29.7760i) q^{57} +(25.0603 + 77.1276i) q^{58} +(33.1246 + 45.5922i) q^{59} +(3.89566 + 15.8793i) q^{60} -87.3157 q^{61} +(45.3791 - 78.7240i) q^{62} +(-12.4450 - 73.8283i) q^{63} +(-65.7970 - 47.8043i) q^{64} +(3.80764 + 5.24076i) q^{65} +(-12.9132 - 5.27393i) q^{66} -46.1911 q^{67} -77.2047i q^{68} +(-28.2735 + 69.2273i) q^{69} +(8.94347 - 27.5252i) q^{70} +(-19.6473 - 6.38380i) q^{71} +(13.9802 + 6.94948i) q^{72} +(-34.2810 - 105.506i) q^{73} +(-63.7153 + 87.6966i) q^{74} +(5.20290 - 70.5822i) q^{75} +(-18.4431 + 56.7621i) q^{76} +(7.75623 + 10.6755i) q^{77} +(47.8637 + 3.52823i) q^{78} +(42.2073 - 129.901i) q^{79} +(-9.26653 - 12.7543i) q^{80} +(77.5169 + 23.4975i) q^{81} +(37.4597 + 115.289i) q^{82} +(-7.27204 + 10.0091i) q^{83} +(-60.3600 - 97.4110i) q^{84} +(6.16680 - 18.9795i) q^{85} +(107.443 - 34.9103i) q^{86} +(63.3808 + 53.5911i) q^{87} -2.75162 q^{88} +(94.5161 - 30.7102i) q^{89} +(22.3590 + 21.9198i) q^{90} +(-36.7318 - 26.6872i) q^{91} +114.456i q^{92} +(-2.95940 - 92.9529i) q^{93} +110.647 q^{94} +(-9.06786 + 12.4808i) q^{95} +(-137.244 - 10.1168i) q^{96} +(37.9940 + 116.933i) q^{97} +59.2204i q^{98} +(-14.0775 + 2.37301i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 5 q^{3} + 36 q^{4} - 10 q^{6} - 54 q^{7} + 5 q^{9} + 114 q^{10} + 14 q^{12} + 26 q^{13} + 35 q^{15} - 184 q^{16} + 15 q^{18} - 90 q^{19} + 71 q^{21} - 114 q^{22} - 101 q^{24} - 188 q^{25} + 116 q^{27}+ \cdots - 616 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/93\mathbb{Z}\right)^\times\).

\(n\) \(32\) \(34\)
\(\chi(n)\) \(-1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.72290 2.37137i 0.861452 1.18569i −0.119770 0.992802i \(-0.538216\pi\)
0.981221 0.192885i \(-0.0617844\pi\)
\(3\) 0.220544 2.99188i 0.0735146 0.997294i
\(4\) −1.41895 4.36707i −0.354736 1.09177i
\(5\) 1.18691i 0.237382i −0.992931 0.118691i \(-0.962130\pi\)
0.992931 0.118691i \(-0.0378697\pi\)
\(6\) −6.71489 5.67772i −1.11915 0.946286i
\(7\) 2.57067 + 7.91172i 0.367239 + 1.13025i 0.948567 + 0.316576i \(0.102533\pi\)
−0.581328 + 0.813669i \(0.697467\pi\)
\(8\) −1.64979 0.536048i −0.206223 0.0670060i
\(9\) −8.90272 1.31968i −0.989191 0.146631i
\(10\) −2.81460 2.04493i −0.281460 0.204493i
\(11\) 1.50860 0.490174i 0.137145 0.0445612i −0.239640 0.970862i \(-0.577029\pi\)
0.376785 + 0.926301i \(0.377029\pi\)
\(12\) −13.3787 + 3.28219i −1.11489 + 0.273516i
\(13\) −4.41547 + 3.20803i −0.339652 + 0.246772i −0.744515 0.667606i \(-0.767319\pi\)
0.404863 + 0.914377i \(0.367319\pi\)
\(14\) 23.1906 + 7.53510i 1.65647 + 0.538221i
\(15\) −3.55109 0.261765i −0.236739 0.0174510i
\(16\) 10.7458 7.80728i 0.671613 0.487955i
\(17\) 15.9907 + 5.19568i 0.940627 + 0.305628i 0.738901 0.673814i \(-0.235345\pi\)
0.201726 + 0.979442i \(0.435345\pi\)
\(18\) −18.4680 + 18.8380i −1.02600 + 1.04655i
\(19\) −10.5154 7.63990i −0.553443 0.402100i 0.275610 0.961269i \(-0.411120\pi\)
−0.829053 + 0.559170i \(0.811120\pi\)
\(20\) −5.18331 + 1.68416i −0.259165 + 0.0842079i
\(21\) 24.2379 5.94627i 1.15418 0.283156i
\(22\) 1.43679 4.42197i 0.0653085 0.200999i
\(23\) −23.7062 7.70260i −1.03070 0.334896i −0.255635 0.966773i \(-0.582284\pi\)
−0.775068 + 0.631878i \(0.782284\pi\)
\(24\) −1.96764 + 4.81774i −0.0819851 + 0.200739i
\(25\) 23.5912 0.943650
\(26\) 15.9979i 0.615302i
\(27\) −5.91177 + 26.3448i −0.218955 + 0.975735i
\(28\) 30.9033 22.4526i 1.10369 0.801878i
\(29\) −16.2622 + 22.3830i −0.560766 + 0.771828i −0.991424 0.130687i \(-0.958282\pi\)
0.430658 + 0.902515i \(0.358282\pi\)
\(30\) −6.73893 + 7.96996i −0.224631 + 0.265665i
\(31\) 30.8279 3.26159i 0.994450 0.105213i
\(32\) 45.8723i 1.43351i
\(33\) −1.13383 4.62166i −0.0343585 0.140050i
\(34\) 39.8713 28.9682i 1.17268 0.852005i
\(35\) 9.39048 3.05115i 0.268299 0.0871758i
\(36\) 6.86934 + 40.7513i 0.190815 + 1.13198i
\(37\) −36.9813 −0.999496 −0.499748 0.866171i \(-0.666574\pi\)
−0.499748 + 0.866171i \(0.666574\pi\)
\(38\) −36.2341 + 11.7732i −0.953529 + 0.309820i
\(39\) 8.62424 + 13.9181i 0.221134 + 0.356874i
\(40\) −0.636240 + 1.95815i −0.0159060 + 0.0489536i
\(41\) −24.3085 + 33.4578i −0.592890 + 0.816043i −0.995034 0.0995330i \(-0.968265\pi\)
0.402144 + 0.915576i \(0.368265\pi\)
\(42\) 27.6587 67.7219i 0.658540 1.61243i
\(43\) 31.1808 + 22.6541i 0.725134 + 0.526841i 0.888020 0.459804i \(-0.152080\pi\)
−0.162886 + 0.986645i \(0.552080\pi\)
\(44\) −4.28124 5.89262i −0.0973010 0.133923i
\(45\) −1.56634 + 10.5667i −0.0348076 + 0.234816i
\(46\) −59.1092 + 42.9453i −1.28498 + 0.933594i
\(47\) 22.1879 + 30.5390i 0.472083 + 0.649766i 0.976959 0.213425i \(-0.0684620\pi\)
−0.504877 + 0.863192i \(0.668462\pi\)
\(48\) −20.9886 33.8720i −0.437262 0.705667i
\(49\) −16.3451 + 11.8754i −0.333573 + 0.242355i
\(50\) 40.6454 55.9436i 0.812909 1.11887i
\(51\) 19.0715 46.6963i 0.373951 0.915614i
\(52\) 20.2750 + 14.7306i 0.389904 + 0.283282i
\(53\) −89.4756 29.0724i −1.68822 0.548535i −0.701741 0.712432i \(-0.747594\pi\)
−0.986477 + 0.163897i \(0.947594\pi\)
\(54\) 52.2880 + 59.4086i 0.968297 + 1.10016i
\(55\) −0.581791 1.79057i −0.0105780 0.0325558i
\(56\) 14.4306i 0.257690i
\(57\) −25.1768 + 29.7760i −0.441698 + 0.522385i
\(58\) 25.0603 + 77.1276i 0.432074 + 1.32979i
\(59\) 33.1246 + 45.5922i 0.561435 + 0.772748i 0.991508 0.130045i \(-0.0415123\pi\)
−0.430073 + 0.902794i \(0.641512\pi\)
\(60\) 3.89566 + 15.8793i 0.0649277 + 0.264655i
\(61\) −87.3157 −1.43140 −0.715702 0.698406i \(-0.753893\pi\)
−0.715702 + 0.698406i \(0.753893\pi\)
\(62\) 45.3791 78.7240i 0.731921 1.26974i
\(63\) −12.4450 73.8283i −0.197540 1.17188i
\(64\) −65.7970 47.8043i −1.02808 0.746943i
\(65\) 3.80764 + 5.24076i 0.0585790 + 0.0806271i
\(66\) −12.9132 5.27393i −0.195654 0.0799081i
\(67\) −46.1911 −0.689420 −0.344710 0.938709i \(-0.612023\pi\)
−0.344710 + 0.938709i \(0.612023\pi\)
\(68\) 77.2047i 1.13536i
\(69\) −28.2735 + 69.2273i −0.409761 + 1.00329i
\(70\) 8.94347 27.5252i 0.127764 0.393217i
\(71\) −19.6473 6.38380i −0.276723 0.0899127i 0.167368 0.985895i \(-0.446473\pi\)
−0.444091 + 0.895982i \(0.646473\pi\)
\(72\) 13.9802 + 6.94948i 0.194169 + 0.0965205i
\(73\) −34.2810 105.506i −0.469603 1.44529i −0.853101 0.521746i \(-0.825281\pi\)
0.383498 0.923542i \(-0.374719\pi\)
\(74\) −63.7153 + 87.6966i −0.861017 + 1.18509i
\(75\) 5.20290 70.5822i 0.0693720 0.941097i
\(76\) −18.4431 + 56.7621i −0.242673 + 0.746870i
\(77\) 7.75623 + 10.6755i 0.100730 + 0.138643i
\(78\) 47.8637 + 3.52823i 0.613637 + 0.0452337i
\(79\) 42.2073 129.901i 0.534269 1.64431i −0.210953 0.977496i \(-0.567657\pi\)
0.745222 0.666816i \(-0.232343\pi\)
\(80\) −9.26653 12.7543i −0.115832 0.159429i
\(81\) 77.5169 + 23.4975i 0.956999 + 0.290093i
\(82\) 37.4597 + 115.289i 0.456825 + 1.40596i
\(83\) −7.27204 + 10.0091i −0.0876149 + 0.120592i −0.850574 0.525855i \(-0.823746\pi\)
0.762959 + 0.646446i \(0.223746\pi\)
\(84\) −60.3600 97.4110i −0.718571 1.15965i
\(85\) 6.16680 18.9795i 0.0725506 0.223288i
\(86\) 107.443 34.9103i 1.24934 0.405934i
\(87\) 63.3808 + 53.5911i 0.728515 + 0.615989i
\(88\) −2.75162 −0.0312684
\(89\) 94.5161 30.7102i 1.06198 0.345058i 0.274620 0.961553i \(-0.411448\pi\)
0.787359 + 0.616495i \(0.211448\pi\)
\(90\) 22.3590 + 21.9198i 0.248433 + 0.243553i
\(91\) −36.7318 26.6872i −0.403646 0.293266i
\(92\) 114.456i 1.24409i
\(93\) −2.95940 92.9529i −0.0318215 0.999494i
\(94\) 110.647 1.17710
\(95\) −9.06786 + 12.4808i −0.0954511 + 0.131377i
\(96\) −137.244 10.1168i −1.42963 0.105384i
\(97\) 37.9940 + 116.933i 0.391690 + 1.20550i 0.931509 + 0.363718i \(0.118493\pi\)
−0.539819 + 0.841781i \(0.681507\pi\)
\(98\) 59.2204i 0.604289i
\(99\) −14.0775 + 2.37301i −0.142197 + 0.0239698i
\(100\) −33.4747 103.025i −0.334747 1.03025i
\(101\) −108.279 35.1820i −1.07207 0.348337i −0.280777 0.959773i \(-0.590592\pi\)
−0.791294 + 0.611436i \(0.790592\pi\)
\(102\) −77.8760 125.679i −0.763490 1.23215i
\(103\) 44.4579 + 32.3006i 0.431631 + 0.313598i 0.782301 0.622901i \(-0.214046\pi\)
−0.350670 + 0.936499i \(0.614046\pi\)
\(104\) 9.00425 2.92566i 0.0865793 0.0281313i
\(105\) −7.05768 28.7681i −0.0672160 0.273982i
\(106\) −223.099 + 162.091i −2.10471 + 1.52916i
\(107\) 85.9943 + 27.9412i 0.803685 + 0.261133i 0.681921 0.731426i \(-0.261145\pi\)
0.121764 + 0.992559i \(0.461145\pi\)
\(108\) 123.438 11.5648i 1.14295 0.107082i
\(109\) −122.418 + 88.9422i −1.12310 + 0.815983i −0.984677 0.174389i \(-0.944205\pi\)
−0.138428 + 0.990373i \(0.544205\pi\)
\(110\) −5.24848 1.70533i −0.0477134 0.0155030i
\(111\) −8.15600 + 110.644i −0.0734775 + 0.996791i
\(112\) 89.3929 + 64.9478i 0.798151 + 0.579891i
\(113\) 139.878 45.4492i 1.23786 0.402205i 0.384304 0.923207i \(-0.374441\pi\)
0.853556 + 0.521002i \(0.174441\pi\)
\(114\) 27.2327 + 111.005i 0.238884 + 0.973725i
\(115\) −9.14228 + 28.1370i −0.0794981 + 0.244670i
\(116\) 120.823 + 39.2579i 1.04158 + 0.338430i
\(117\) 43.5433 22.7332i 0.372165 0.194301i
\(118\) 165.187 1.39989
\(119\) 139.870i 1.17538i
\(120\) 5.71822 + 2.33541i 0.0476518 + 0.0194618i
\(121\) −95.8555 + 69.6431i −0.792194 + 0.575563i
\(122\) −150.436 + 207.058i −1.23309 + 1.69720i
\(123\) 94.7407 + 80.1071i 0.770249 + 0.651277i
\(124\) −57.9868 130.000i −0.467635 1.04838i
\(125\) 57.6734i 0.461387i
\(126\) −196.516 97.6872i −1.55965 0.775295i
\(127\) 122.727 89.1667i 0.966358 0.702100i 0.0117392 0.999931i \(-0.496263\pi\)
0.954619 + 0.297831i \(0.0962632\pi\)
\(128\) −52.2153 + 16.9658i −0.407932 + 0.132545i
\(129\) 74.6553 88.2929i 0.578723 0.684441i
\(130\) 18.9880 0.146062
\(131\) 144.081 46.8148i 1.09986 0.357365i 0.297809 0.954625i \(-0.403744\pi\)
0.802047 + 0.597260i \(0.203744\pi\)
\(132\) −18.5742 + 11.5094i −0.140714 + 0.0871924i
\(133\) 33.4130 102.835i 0.251226 0.773193i
\(134\) −79.5829 + 109.536i −0.593902 + 0.817436i
\(135\) 31.2689 + 7.01673i 0.231622 + 0.0519758i
\(136\) −23.5960 17.1435i −0.173500 0.126055i
\(137\) −31.6778 43.6008i −0.231225 0.318254i 0.677601 0.735430i \(-0.263020\pi\)
−0.908826 + 0.417176i \(0.863020\pi\)
\(138\) 115.451 + 186.319i 0.836603 + 1.35014i
\(139\) −46.8961 + 34.0720i −0.337382 + 0.245123i −0.743557 0.668673i \(-0.766863\pi\)
0.406174 + 0.913796i \(0.366863\pi\)
\(140\) −26.6492 36.6794i −0.190351 0.261996i
\(141\) 96.2625 59.6484i 0.682713 0.423038i
\(142\) −48.9888 + 35.5925i −0.344992 + 0.250651i
\(143\) −5.08869 + 7.00398i −0.0355852 + 0.0489789i
\(144\) −105.970 + 55.3250i −0.735903 + 0.384202i
\(145\) 26.5666 + 19.3018i 0.183218 + 0.133116i
\(146\) −309.257 100.484i −2.11820 0.688244i
\(147\) 31.9249 + 51.5215i 0.217176 + 0.350487i
\(148\) 52.4745 + 161.500i 0.354558 + 1.09122i
\(149\) 209.253i 1.40438i −0.711988 0.702192i \(-0.752205\pi\)
0.711988 0.702192i \(-0.247795\pi\)
\(150\) −158.413 133.944i −1.05608 0.892963i
\(151\) −65.9661 203.023i −0.436862 1.34452i −0.891167 0.453676i \(-0.850112\pi\)
0.454305 0.890846i \(-0.349888\pi\)
\(152\) 13.2528 + 18.2410i 0.0871897 + 0.120006i
\(153\) −135.504 67.3583i −0.885646 0.440250i
\(154\) 38.6789 0.251162
\(155\) −3.87121 36.5899i −0.0249756 0.236064i
\(156\) 48.5439 57.4117i 0.311179 0.368023i
\(157\) 55.7837 + 40.5293i 0.355310 + 0.258148i 0.751093 0.660196i \(-0.229527\pi\)
−0.395783 + 0.918344i \(0.629527\pi\)
\(158\) −235.324 323.896i −1.48939 2.04997i
\(159\) −106.714 + 261.289i −0.671160 + 1.64332i
\(160\) −54.4462 −0.340288
\(161\) 207.357i 1.28793i
\(162\) 189.275 143.337i 1.16837 0.884799i
\(163\) 89.3469 274.981i 0.548140 1.68700i −0.165264 0.986249i \(-0.552848\pi\)
0.713404 0.700753i \(-0.247152\pi\)
\(164\) 180.605 + 58.6821i 1.10125 + 0.357817i
\(165\) −5.48548 + 1.34575i −0.0332454 + 0.00815607i
\(166\) 11.2063 + 34.4894i 0.0675078 + 0.207768i
\(167\) 63.6406 87.5938i 0.381081 0.524514i −0.574789 0.818302i \(-0.694916\pi\)
0.955871 + 0.293788i \(0.0949159\pi\)
\(168\) −43.1748 3.18259i −0.256993 0.0189440i
\(169\) −43.0189 + 132.399i −0.254550 + 0.783424i
\(170\) −34.3826 47.3235i −0.202250 0.278374i
\(171\) 83.5336 + 81.8929i 0.488500 + 0.478906i
\(172\) 54.6884 168.313i 0.317956 0.978567i
\(173\) 63.4628 + 87.3490i 0.366837 + 0.504908i 0.952038 0.305981i \(-0.0989843\pi\)
−0.585201 + 0.810888i \(0.698984\pi\)
\(174\) 236.284 57.9674i 1.35795 0.333146i
\(175\) 60.6454 + 186.647i 0.346545 + 1.06656i
\(176\) 12.3842 17.0454i 0.0703647 0.0968487i
\(177\) 143.712 89.0500i 0.811931 0.503107i
\(178\) 90.0169 277.044i 0.505713 1.55642i
\(179\) −100.078 + 32.5172i −0.559092 + 0.181660i −0.574913 0.818215i \(-0.694964\pi\)
0.0158204 + 0.999875i \(0.494964\pi\)
\(180\) 48.3681 8.15328i 0.268712 0.0452960i
\(181\) −111.385 −0.615386 −0.307693 0.951486i \(-0.599557\pi\)
−0.307693 + 0.951486i \(0.599557\pi\)
\(182\) −126.571 + 41.1253i −0.695442 + 0.225963i
\(183\) −19.2569 + 261.238i −0.105229 + 1.42753i
\(184\) 34.9811 + 25.4153i 0.190115 + 0.138127i
\(185\) 43.8935i 0.237262i
\(186\) −225.525 153.131i −1.21250 0.823285i
\(187\) 26.6703 0.142622
\(188\) 101.882 140.229i 0.541928 0.745900i
\(189\) −223.630 + 20.9517i −1.18323 + 0.110856i
\(190\) 13.9737 + 43.0065i 0.0735456 + 0.226350i
\(191\) 202.275i 1.05903i 0.848300 + 0.529516i \(0.177627\pi\)
−0.848300 + 0.529516i \(0.822373\pi\)
\(192\) −157.536 + 186.314i −0.820500 + 0.970385i
\(193\) −87.6122 269.643i −0.453949 1.39711i −0.872364 0.488856i \(-0.837414\pi\)
0.418415 0.908256i \(-0.362586\pi\)
\(194\) 342.753 + 111.367i 1.76677 + 0.574057i
\(195\) 16.5195 10.2362i 0.0847154 0.0524933i
\(196\) 75.0533 + 54.5294i 0.382925 + 0.278211i
\(197\) −221.853 + 72.0843i −1.12616 + 0.365910i −0.812114 0.583499i \(-0.801683\pi\)
−0.314042 + 0.949409i \(0.601683\pi\)
\(198\) −18.6269 + 37.4715i −0.0940753 + 0.189250i
\(199\) 55.4667 40.2989i 0.278727 0.202507i −0.439635 0.898177i \(-0.644892\pi\)
0.718362 + 0.695669i \(0.244892\pi\)
\(200\) −38.9205 12.6460i −0.194603 0.0632302i
\(201\) −10.1872 + 138.198i −0.0506824 + 0.687555i
\(202\) −269.984 + 196.155i −1.33656 + 0.971065i
\(203\) −218.893 71.1226i −1.07829 0.350358i
\(204\) −230.987 17.0270i −1.13229 0.0834657i
\(205\) 39.7113 + 28.8520i 0.193714 + 0.140741i
\(206\) 153.193 49.7756i 0.743658 0.241629i
\(207\) 200.884 + 99.8587i 0.970456 + 0.482409i
\(208\) −22.4018 + 68.9457i −0.107701 + 0.331470i
\(209\) −19.6084 6.37116i −0.0938202 0.0304840i
\(210\) −80.3797 32.8283i −0.382760 0.156325i
\(211\) −97.9627 −0.464278 −0.232139 0.972683i \(-0.574572\pi\)
−0.232139 + 0.972683i \(0.574572\pi\)
\(212\) 431.998i 2.03773i
\(213\) −23.4327 + 57.3746i −0.110013 + 0.269364i
\(214\) 214.419 155.784i 1.00196 0.727965i
\(215\) 26.8884 37.0087i 0.125062 0.172133i
\(216\) 23.8753 40.2944i 0.110534 0.186548i
\(217\) 105.053 + 235.517i 0.484117 + 1.08533i
\(218\) 443.538i 2.03458i
\(219\) −323.222 + 79.2960i −1.47590 + 0.362082i
\(220\) −6.99400 + 5.08144i −0.0317909 + 0.0230975i
\(221\) −87.2743 + 28.3571i −0.394906 + 0.128313i
\(222\) 248.326 + 209.970i 1.11858 + 0.945809i
\(223\) −97.6519 −0.437901 −0.218950 0.975736i \(-0.570263\pi\)
−0.218950 + 0.975736i \(0.570263\pi\)
\(224\) 362.928 117.923i 1.62022 0.526440i
\(225\) −210.026 31.1329i −0.933450 0.138369i
\(226\) 133.220 410.008i 0.589467 1.81419i
\(227\) 19.9862 27.5087i 0.0880450 0.121184i −0.762722 0.646726i \(-0.776138\pi\)
0.850767 + 0.525543i \(0.176138\pi\)
\(228\) 165.758 + 67.6982i 0.727009 + 0.296922i
\(229\) 112.014 + 81.3832i 0.489146 + 0.355385i 0.804856 0.593470i \(-0.202243\pi\)
−0.315710 + 0.948856i \(0.602243\pi\)
\(230\) 50.9722 + 70.1571i 0.221618 + 0.305031i
\(231\) 33.6505 20.8513i 0.145673 0.0902654i
\(232\) 38.8276 28.2099i 0.167360 0.121594i
\(233\) −249.722 343.713i −1.07177 1.47516i −0.868272 0.496088i \(-0.834769\pi\)
−0.203497 0.979076i \(-0.565231\pi\)
\(234\) 21.1121 142.424i 0.0902226 0.608652i
\(235\) 36.2470 26.3350i 0.154243 0.112064i
\(236\) 152.102 209.350i 0.644500 0.887078i
\(237\) −379.339 154.928i −1.60059 0.653705i
\(238\) 331.684 + 240.982i 1.39363 + 1.01253i
\(239\) 52.8039 + 17.1570i 0.220937 + 0.0717867i 0.417394 0.908726i \(-0.362944\pi\)
−0.196457 + 0.980512i \(0.562944\pi\)
\(240\) −40.2030 + 24.9115i −0.167512 + 0.103798i
\(241\) 55.6894 + 171.394i 0.231076 + 0.711179i 0.997618 + 0.0689847i \(0.0219760\pi\)
−0.766542 + 0.642195i \(0.778024\pi\)
\(242\) 347.297i 1.43511i
\(243\) 87.3977 226.739i 0.359661 0.933083i
\(244\) 123.896 + 381.313i 0.507771 + 1.56276i
\(245\) 14.0950 + 19.4001i 0.0575306 + 0.0791840i
\(246\) 353.193 86.6487i 1.43574 0.352230i
\(247\) 70.9396 0.287205
\(248\) −52.6079 11.1443i −0.212129 0.0449368i
\(249\) 28.3422 + 23.9645i 0.113824 + 0.0962431i
\(250\) −136.765 99.3656i −0.547060 0.397462i
\(251\) 145.984 + 200.930i 0.581611 + 0.800519i 0.993871 0.110547i \(-0.0352603\pi\)
−0.412259 + 0.911066i \(0.635260\pi\)
\(252\) −304.754 + 159.107i −1.20934 + 0.631375i
\(253\) −39.5387 −0.156279
\(254\) 444.658i 1.75062i
\(255\) −55.4242 22.6361i −0.217350 0.0887692i
\(256\) 50.7991 156.344i 0.198434 0.610717i
\(257\) 324.659 + 105.488i 1.26326 + 0.410460i 0.862657 0.505790i \(-0.168799\pi\)
0.400608 + 0.916250i \(0.368799\pi\)
\(258\) −80.7517 329.156i −0.312991 1.27580i
\(259\) −95.0669 292.586i −0.367054 1.12968i
\(260\) 17.4839 24.0646i 0.0672459 0.0925560i
\(261\) 174.316 177.809i 0.667879 0.681260i
\(262\) 137.223 422.328i 0.523750 1.61194i
\(263\) 50.1214 + 68.9861i 0.190576 + 0.262305i 0.893603 0.448858i \(-0.148169\pi\)
−0.703028 + 0.711162i \(0.748169\pi\)
\(264\) −0.606853 + 8.23253i −0.00229869 + 0.0311838i
\(265\) −34.5062 + 106.199i −0.130212 + 0.400752i
\(266\) −186.292 256.409i −0.700346 0.963943i
\(267\) −71.0362 289.554i −0.266053 1.08447i
\(268\) 65.5427 + 201.720i 0.244562 + 0.752686i
\(269\) −253.760 + 349.270i −0.943345 + 1.29840i 0.0110760 + 0.999939i \(0.496474\pi\)
−0.954421 + 0.298464i \(0.903526\pi\)
\(270\) 70.5126 62.0611i 0.261158 0.229856i
\(271\) −17.0358 + 52.4309i −0.0628629 + 0.193472i −0.977555 0.210678i \(-0.932433\pi\)
0.914693 + 0.404150i \(0.132433\pi\)
\(272\) 212.397 69.0119i 0.780870 0.253720i
\(273\) −87.9459 + 104.011i −0.322146 + 0.380994i
\(274\) −157.972 −0.576538
\(275\) 35.5897 11.5638i 0.129417 0.0420502i
\(276\) 342.439 + 25.2425i 1.24072 + 0.0914585i
\(277\) 146.427 + 106.386i 0.528618 + 0.384063i 0.819840 0.572592i \(-0.194062\pi\)
−0.291223 + 0.956655i \(0.594062\pi\)
\(278\) 169.911i 0.611191i
\(279\) −278.757 11.6460i −0.999128 0.0417419i
\(280\) −17.1279 −0.0611709
\(281\) 100.565 138.416i 0.357882 0.492582i −0.591675 0.806176i \(-0.701533\pi\)
0.949557 + 0.313594i \(0.101533\pi\)
\(282\) 24.4025 331.043i 0.0865337 1.17391i
\(283\) 29.3166 + 90.2273i 0.103592 + 0.318824i 0.989397 0.145233i \(-0.0463931\pi\)
−0.885805 + 0.464057i \(0.846393\pi\)
\(284\) 94.8595i 0.334012i
\(285\) 35.3413 + 29.8825i 0.124005 + 0.104851i
\(286\) 7.84173 + 24.1344i 0.0274186 + 0.0843859i
\(287\) −327.198 106.313i −1.14006 0.370428i
\(288\) −60.5368 + 408.388i −0.210197 + 1.41801i
\(289\) −5.09965 3.70512i −0.0176459 0.0128205i
\(290\) 91.5434 29.7442i 0.315667 0.102566i
\(291\) 358.230 87.8845i 1.23103 0.302009i
\(292\) −412.109 + 299.415i −1.41133 + 1.02539i
\(293\) 234.087 + 76.0595i 0.798932 + 0.259589i 0.679903 0.733302i \(-0.262022\pi\)
0.119029 + 0.992891i \(0.462022\pi\)
\(294\) 177.180 + 13.0607i 0.602654 + 0.0444241i
\(295\) 54.1137 39.3159i 0.183436 0.133274i
\(296\) 61.0113 + 19.8238i 0.206119 + 0.0669722i
\(297\) 3.99505 + 42.6416i 0.0134514 + 0.143574i
\(298\) −496.217 360.523i −1.66516 1.20981i
\(299\) 129.384 42.0394i 0.432723 0.140600i
\(300\) −315.620 + 77.4310i −1.05207 + 0.258103i
\(301\) −99.0777 + 304.930i −0.329162 + 1.01306i
\(302\) −595.096 193.358i −1.97052 0.640260i
\(303\) −129.141 + 316.199i −0.426207 + 1.04356i
\(304\) −172.643 −0.567906
\(305\) 103.636i 0.339789i
\(306\) −393.192 + 205.278i −1.28494 + 0.670844i
\(307\) 39.0136 28.3450i 0.127080 0.0923291i −0.522430 0.852682i \(-0.674974\pi\)
0.649510 + 0.760353i \(0.274974\pi\)
\(308\) 35.6151 49.0200i 0.115633 0.159156i
\(309\) 106.444 125.889i 0.344481 0.407409i
\(310\) −93.4381 53.8608i −0.301413 0.173745i
\(311\) 163.395i 0.525387i 0.964879 + 0.262693i \(0.0846108\pi\)
−0.964879 + 0.262693i \(0.915389\pi\)
\(312\) −6.76739 27.5849i −0.0216904 0.0884131i
\(313\) −141.363 + 102.706i −0.451639 + 0.328135i −0.790243 0.612794i \(-0.790045\pi\)
0.338603 + 0.940929i \(0.390045\pi\)
\(314\) 192.220 62.4561i 0.612166 0.198905i
\(315\) −87.6274 + 14.7711i −0.278182 + 0.0468924i
\(316\) −627.175 −1.98473
\(317\) 225.253 73.1890i 0.710576 0.230880i 0.0686434 0.997641i \(-0.478133\pi\)
0.641933 + 0.766761i \(0.278133\pi\)
\(318\) 435.754 + 703.235i 1.37030 + 2.21143i
\(319\) −13.5616 + 41.7383i −0.0425129 + 0.130841i
\(320\) −56.7394 + 78.0950i −0.177310 + 0.244047i
\(321\) 102.562 251.123i 0.319509 0.782313i
\(322\) −491.721 357.256i −1.52708 1.10949i
\(323\) −128.454 176.802i −0.397690 0.547374i
\(324\) −7.37705 371.863i −0.0227687 1.14773i
\(325\) −104.167 + 75.6814i −0.320512 + 0.232866i
\(326\) −498.147 685.641i −1.52806 2.10319i
\(327\) 239.106 + 385.877i 0.731211 + 1.18005i
\(328\) 58.0388 42.1677i 0.176948 0.128560i
\(329\) −184.578 + 254.050i −0.561028 + 0.772189i
\(330\) −6.25968 + 15.3267i −0.0189687 + 0.0464446i
\(331\) 110.715 + 80.4393i 0.334487 + 0.243019i 0.742332 0.670032i \(-0.233720\pi\)
−0.407845 + 0.913051i \(0.633720\pi\)
\(332\) 54.0290 + 17.5551i 0.162738 + 0.0528768i
\(333\) 329.235 + 48.8036i 0.988692 + 0.146557i
\(334\) −98.0709 301.831i −0.293625 0.903686i
\(335\) 54.8247i 0.163656i
\(336\) 214.031 253.129i 0.636997 0.753361i
\(337\) 101.739 + 313.121i 0.301897 + 0.929143i 0.980817 + 0.194931i \(0.0624482\pi\)
−0.678920 + 0.734212i \(0.737552\pi\)
\(338\) 239.849 + 330.124i 0.709613 + 0.976698i
\(339\) −105.129 428.523i −0.310116 1.26408i
\(340\) −91.6349 −0.269514
\(341\) 44.9083 20.0315i 0.131696 0.0587434i
\(342\) 338.119 56.9958i 0.988651 0.166654i
\(343\) 193.803 + 140.806i 0.565023 + 0.410513i
\(344\) −39.2979 54.0889i −0.114238 0.157235i
\(345\) 82.1664 + 33.5581i 0.238164 + 0.0972698i
\(346\) 316.477 0.914674
\(347\) 476.545i 1.37333i −0.726974 0.686665i \(-0.759074\pi\)
0.726974 0.686665i \(-0.240926\pi\)
\(348\) 144.102 352.831i 0.414086 1.01388i
\(349\) 59.9175 184.407i 0.171683 0.528387i −0.827783 0.561048i \(-0.810398\pi\)
0.999466 + 0.0326613i \(0.0103983\pi\)
\(350\) 547.096 + 177.762i 1.56313 + 0.507893i
\(351\) −58.4118 135.290i −0.166415 0.385442i
\(352\) −22.4854 69.2029i −0.0638789 0.196599i
\(353\) −58.1247 + 80.0018i −0.164659 + 0.226634i −0.883371 0.468674i \(-0.844732\pi\)
0.718712 + 0.695308i \(0.244732\pi\)
\(354\) 36.4309 494.219i 0.102912 1.39610i
\(355\) −7.57699 + 23.3196i −0.0213436 + 0.0656889i
\(356\) −268.227 369.182i −0.753445 1.03703i
\(357\) 418.475 + 30.8474i 1.17220 + 0.0864074i
\(358\) −95.3136 + 293.345i −0.266239 + 0.819400i
\(359\) −10.3003 14.1772i −0.0286917 0.0394907i 0.794430 0.607356i \(-0.207770\pi\)
−0.823122 + 0.567865i \(0.807770\pi\)
\(360\) 8.24839 16.5932i 0.0229122 0.0460922i
\(361\) −59.3492 182.658i −0.164402 0.505978i
\(362\) −191.905 + 264.135i −0.530126 + 0.729655i
\(363\) 187.224 + 302.148i 0.515767 + 0.832363i
\(364\) −64.4243 + 198.278i −0.176990 + 0.544719i
\(365\) −125.226 + 40.6884i −0.343085 + 0.111475i
\(366\) 586.315 + 495.754i 1.60195 + 1.35452i
\(367\) 575.094 1.56701 0.783507 0.621382i \(-0.213429\pi\)
0.783507 + 0.621382i \(0.213429\pi\)
\(368\) −314.878 + 102.310i −0.855647 + 0.278017i
\(369\) 260.565 265.786i 0.706139 0.720287i
\(370\) 104.088 + 75.6242i 0.281318 + 0.204390i
\(371\) 782.641i 2.10954i
\(372\) −401.732 + 144.819i −1.07993 + 0.389299i
\(373\) 22.6117 0.0606212 0.0303106 0.999541i \(-0.490350\pi\)
0.0303106 + 0.999541i \(0.490350\pi\)
\(374\) 45.9503 63.2452i 0.122862 0.169105i
\(375\) −172.552 12.7195i −0.460138 0.0339187i
\(376\) −20.2349 62.2766i −0.0538162 0.165629i
\(377\) 151.001i 0.400534i
\(378\) −335.609 + 566.408i −0.887854 + 1.49843i
\(379\) 91.4229 + 281.371i 0.241221 + 0.742403i 0.996235 + 0.0866939i \(0.0276302\pi\)
−0.755014 + 0.655709i \(0.772370\pi\)
\(380\) 67.3714 + 21.8903i 0.177293 + 0.0576061i
\(381\) −239.710 386.851i −0.629159 1.01536i
\(382\) 479.670 + 348.501i 1.25568 + 0.912305i
\(383\) −490.549 + 159.389i −1.28081 + 0.416160i −0.868865 0.495050i \(-0.835150\pi\)
−0.411943 + 0.911209i \(0.635150\pi\)
\(384\) 39.2439 + 159.964i 0.102198 + 0.416573i
\(385\) 12.6709 9.20593i 0.0329114 0.0239115i
\(386\) −790.370 256.807i −2.04759 0.665303i
\(387\) −247.697 242.832i −0.640045 0.627473i
\(388\) 456.745 331.844i 1.17718 0.855269i
\(389\) 683.603 + 222.116i 1.75733 + 0.570992i 0.996918 0.0784455i \(-0.0249957\pi\)
0.760415 + 0.649438i \(0.224996\pi\)
\(390\) 4.18768 56.8098i 0.0107376 0.145666i
\(391\) −339.057 246.339i −0.867153 0.630024i
\(392\) 33.3316 10.8301i 0.0850296 0.0276278i
\(393\) −108.288 441.399i −0.275543 1.12315i
\(394\) −211.292 + 650.290i −0.536274 + 1.65048i
\(395\) −154.180 50.0962i −0.390330 0.126826i
\(396\) 30.3383 + 58.1103i 0.0766119 + 0.146743i
\(397\) −192.096 −0.483869 −0.241934 0.970293i \(-0.577782\pi\)
−0.241934 + 0.970293i \(0.577782\pi\)
\(398\) 200.963i 0.504933i
\(399\) −300.300 122.647i −0.752632 0.307387i
\(400\) 253.507 184.184i 0.633767 0.460459i
\(401\) −402.274 + 553.682i −1.00318 + 1.38075i −0.0798203 + 0.996809i \(0.525435\pi\)
−0.923356 + 0.383945i \(0.874565\pi\)
\(402\) 310.169 + 262.260i 0.771564 + 0.652388i
\(403\) −125.657 + 113.298i −0.311803 + 0.281138i
\(404\) 522.784i 1.29402i
\(405\) 27.8894 92.0054i 0.0688627 0.227174i
\(406\) −545.790 + 396.539i −1.34431 + 0.976698i
\(407\) −55.7900 + 18.1273i −0.137076 + 0.0445388i
\(408\) −56.4954 + 66.8157i −0.138469 + 0.163764i
\(409\) 423.204 1.03473 0.517364 0.855765i \(-0.326913\pi\)
0.517364 + 0.855765i \(0.326913\pi\)
\(410\) 136.838 44.4612i 0.333750 0.108442i
\(411\) −137.435 + 85.1604i −0.334391 + 0.207203i
\(412\) 77.9754 239.984i 0.189261 0.582484i
\(413\) −275.560 + 379.275i −0.667214 + 0.918342i
\(414\) 582.906 304.325i 1.40799 0.735084i
\(415\) 11.8799 + 8.63124i 0.0286262 + 0.0207982i
\(416\) 147.160 + 202.548i 0.353749 + 0.486894i
\(417\) 91.5969 + 147.822i 0.219657 + 0.354489i
\(418\) −48.8918 + 35.5220i −0.116966 + 0.0849808i
\(419\) 438.296 + 603.262i 1.04605 + 1.43977i 0.892182 + 0.451676i \(0.149174\pi\)
0.153870 + 0.988091i \(0.450826\pi\)
\(420\) −115.618 + 71.6418i −0.275281 + 0.170576i
\(421\) 195.522 142.055i 0.464422 0.337423i −0.330841 0.943686i \(-0.607332\pi\)
0.795264 + 0.606264i \(0.207332\pi\)
\(422\) −168.780 + 232.306i −0.399953 + 0.550489i
\(423\) −157.231 301.161i −0.371704 0.711965i
\(424\) 132.031 + 95.9264i 0.311395 + 0.226242i
\(425\) 377.240 + 122.573i 0.887623 + 0.288406i
\(426\) 95.6843 + 154.418i 0.224611 + 0.362485i
\(427\) −224.460 690.817i −0.525667 1.61784i
\(428\) 415.190i 0.970070i
\(429\) 19.8328 + 16.7694i 0.0462303 + 0.0390896i
\(430\) −41.4353 127.525i −0.0963612 0.296569i
\(431\) −44.7946 61.6545i −0.103932 0.143050i 0.753883 0.657009i \(-0.228178\pi\)
−0.857815 + 0.513959i \(0.828178\pi\)
\(432\) 142.155 + 329.251i 0.329062 + 0.762156i
\(433\) −316.128 −0.730088 −0.365044 0.930990i \(-0.618946\pi\)
−0.365044 + 0.930990i \(0.618946\pi\)
\(434\) 739.496 + 156.653i 1.70391 + 0.360952i
\(435\) 63.6077 75.2273i 0.146225 0.172936i
\(436\) 562.121 + 408.405i 1.28927 + 0.936709i
\(437\) 190.433 + 262.109i 0.435774 + 0.599791i
\(438\) −368.840 + 903.099i −0.842101 + 2.06187i
\(439\) 464.085 1.05714 0.528571 0.848889i \(-0.322728\pi\)
0.528571 + 0.848889i \(0.322728\pi\)
\(440\) 3.26592i 0.00742256i
\(441\) 161.187 84.1529i 0.365504 0.190823i
\(442\) −83.1198 + 255.816i −0.188054 + 0.578770i
\(443\) 531.659 + 172.747i 1.20013 + 0.389947i 0.839810 0.542880i \(-0.182666\pi\)
0.360323 + 0.932827i \(0.382666\pi\)
\(444\) 494.762 121.380i 1.11433 0.273378i
\(445\) −36.4501 112.182i −0.0819104 0.252094i
\(446\) −168.245 + 231.569i −0.377230 + 0.519213i
\(447\) −626.061 46.1494i −1.40058 0.103243i
\(448\) 209.072 643.456i 0.466678 1.43629i
\(449\) −91.2814 125.638i −0.203299 0.279818i 0.695178 0.718838i \(-0.255326\pi\)
−0.898477 + 0.439020i \(0.855326\pi\)
\(450\) −435.683 + 444.412i −0.968184 + 0.987581i
\(451\) −20.2717 + 62.3898i −0.0449483 + 0.138337i
\(452\) −396.959 546.367i −0.878228 1.20878i
\(453\) −621.969 + 152.587i −1.37300 + 0.336838i
\(454\) −30.7990 94.7895i −0.0678392 0.208787i
\(455\) −31.6752 + 43.5972i −0.0696159 + 0.0958181i
\(456\) 57.4976 35.6280i 0.126091 0.0781316i
\(457\) 118.627 365.095i 0.259577 0.798895i −0.733317 0.679887i \(-0.762029\pi\)
0.992893 0.119008i \(-0.0379714\pi\)
\(458\) 385.980 125.412i 0.842751 0.273826i
\(459\) −231.413 + 390.556i −0.504167 + 0.850884i
\(460\) 135.849 0.295323
\(461\) 390.343 126.830i 0.846731 0.275120i 0.146655 0.989188i \(-0.453149\pi\)
0.700076 + 0.714068i \(0.253149\pi\)
\(462\) 8.53039 115.723i 0.0184640 0.250482i
\(463\) 125.750 + 91.3624i 0.271597 + 0.197327i 0.715244 0.698875i \(-0.246316\pi\)
−0.443647 + 0.896202i \(0.646316\pi\)
\(464\) 367.487i 0.791998i
\(465\) −110.327 + 3.51254i −0.237261 + 0.00755384i
\(466\) −1245.32 −2.67236
\(467\) 327.208 450.364i 0.700660 0.964376i −0.299288 0.954163i \(-0.596749\pi\)
0.999948 0.0102130i \(-0.00325095\pi\)
\(468\) −161.063 157.899i −0.344151 0.337392i
\(469\) −118.742 365.451i −0.253182 0.779214i
\(470\) 131.328i 0.279421i
\(471\) 133.562 157.960i 0.283570 0.335371i
\(472\) −30.2090 92.9737i −0.0640021 0.196978i
\(473\) 58.1437 + 18.8920i 0.122925 + 0.0399409i
\(474\) −1020.96 + 632.628i −2.15392 + 1.33466i
\(475\) −248.072 180.235i −0.522256 0.379441i
\(476\) 610.822 198.468i 1.28324 0.416950i
\(477\) 758.210 + 376.903i 1.58954 + 0.790152i
\(478\) 131.662 95.6578i 0.275443 0.200121i
\(479\) −487.498 158.398i −1.01774 0.330684i −0.247808 0.968809i \(-0.579710\pi\)
−0.769932 + 0.638125i \(0.779710\pi\)
\(480\) −12.0078 + 162.897i −0.0250162 + 0.339368i
\(481\) 163.290 118.637i 0.339481 0.246647i
\(482\) 502.387 + 163.235i 1.04230 + 0.338663i
\(483\) −620.388 45.7313i −1.28445 0.0946819i
\(484\) 440.150 + 319.787i 0.909400 + 0.660718i
\(485\) 138.789 45.0953i 0.286163 0.0929801i
\(486\) −387.105 597.902i −0.796513 1.23025i
\(487\) −101.999 + 313.922i −0.209444 + 0.644603i 0.790057 + 0.613033i \(0.210051\pi\)
−0.999502 + 0.0315703i \(0.989949\pi\)
\(488\) 144.052 + 46.8054i 0.295189 + 0.0959127i
\(489\) −803.007 327.961i −1.64214 0.670676i
\(490\) 70.2891 0.143447
\(491\) 252.085i 0.513412i 0.966489 + 0.256706i \(0.0826373\pi\)
−0.966489 + 0.256706i \(0.917363\pi\)
\(492\) 215.401 527.406i 0.437807 1.07196i
\(493\) −376.339 + 273.426i −0.763365 + 0.554617i
\(494\) 122.222 168.224i 0.247413 0.340535i
\(495\) 2.81654 + 16.7087i 0.00568999 + 0.0337550i
\(496\) 305.807 275.731i 0.616546 0.555909i
\(497\) 171.855i 0.345784i
\(498\) 105.660 25.9215i 0.212168 0.0520512i
\(499\) −704.527 + 511.868i −1.41188 + 1.02579i −0.418831 + 0.908064i \(0.637560\pi\)
−0.993046 + 0.117724i \(0.962440\pi\)
\(500\) −251.863 + 81.8354i −0.503727 + 0.163671i
\(501\) −248.035 209.723i −0.495079 0.418610i
\(502\) 727.998 1.45020
\(503\) −531.874 + 172.816i −1.05740 + 0.343571i −0.785570 0.618773i \(-0.787630\pi\)
−0.271834 + 0.962344i \(0.587630\pi\)
\(504\) −19.0439 + 128.472i −0.0377854 + 0.254905i
\(505\) −41.7579 + 128.517i −0.0826888 + 0.254490i
\(506\) −68.1214 + 93.7610i −0.134627 + 0.185298i
\(507\) 386.634 + 157.907i 0.762591 + 0.311454i
\(508\) −563.541 409.436i −1.10933 0.805977i
\(509\) −409.663 563.853i −0.804839 1.10777i −0.992099 0.125455i \(-0.959961\pi\)
0.187261 0.982310i \(-0.440039\pi\)
\(510\) −149.169 + 92.4317i −0.292489 + 0.181239i
\(511\) 746.609 542.443i 1.46107 1.06153i
\(512\) −412.310 567.497i −0.805294 1.10839i
\(513\) 263.437 231.862i 0.513522 0.451972i
\(514\) 809.508 588.142i 1.57492 1.14424i
\(515\) 38.3378 52.7675i 0.0744424 0.102461i
\(516\) −491.513 200.742i −0.952544 0.389034i
\(517\) 48.4421 + 35.1952i 0.0936984 + 0.0680758i
\(518\) −857.621 278.658i −1.65564 0.537950i
\(519\) 275.334 170.609i 0.530509 0.328726i
\(520\) −3.47249 10.6872i −0.00667786 0.0205523i
\(521\) 765.661i 1.46960i 0.678285 + 0.734799i \(0.262724\pi\)
−0.678285 + 0.734799i \(0.737276\pi\)
\(522\) −121.321 719.717i −0.232415 1.37877i
\(523\) −110.474 340.005i −0.211232 0.650104i −0.999400 0.0346442i \(-0.988970\pi\)
0.788168 0.615460i \(-0.211030\pi\)
\(524\) −408.887 562.785i −0.780319 1.07402i
\(525\) 571.802 140.280i 1.08915 0.267200i
\(526\) 249.946 0.475183
\(527\) 509.906 + 108.017i 0.967563 + 0.204966i
\(528\) −48.2665 40.8113i −0.0914138 0.0772941i
\(529\) 74.6820 + 54.2596i 0.141176 + 0.102570i
\(530\) 192.387 + 264.798i 0.362995 + 0.499619i
\(531\) −234.732 449.608i −0.442057 0.846720i
\(532\) −496.497 −0.933265
\(533\) 225.714i 0.423479i
\(534\) −809.029 330.420i −1.51504 0.618765i
\(535\) 33.1637 102.067i 0.0619882 0.190780i
\(536\) 76.2055 + 24.7607i 0.142174 + 0.0461953i
\(537\) 75.2160 + 306.592i 0.140067 + 0.570934i
\(538\) 391.047 + 1203.52i 0.726853 + 2.23702i
\(539\) −18.8371 + 25.9271i −0.0349483 + 0.0481022i
\(540\) −13.7264 146.510i −0.0254192 0.271314i
\(541\) −306.707 + 943.946i −0.566925 + 1.74482i 0.0952346 + 0.995455i \(0.469640\pi\)
−0.662160 + 0.749362i \(0.730360\pi\)
\(542\) 94.9822 + 130.732i 0.175244 + 0.241203i
\(543\) −24.5652 + 333.251i −0.0452399 + 0.613721i
\(544\) 238.338 733.528i 0.438121 1.34840i
\(545\) 105.566 + 145.299i 0.193699 + 0.266604i
\(546\) 95.1276 + 387.754i 0.174226 + 0.710172i
\(547\) −80.2192 246.889i −0.146653 0.451352i 0.850567 0.525867i \(-0.176259\pi\)
−0.997220 + 0.0745154i \(0.976259\pi\)
\(548\) −145.458 + 200.206i −0.265435 + 0.365340i
\(549\) 777.347 + 115.229i 1.41593 + 0.209889i
\(550\) 33.8956 104.320i 0.0616283 0.189673i
\(551\) 342.008 111.125i 0.620704 0.201679i
\(552\) 83.7544 99.0543i 0.151729 0.179446i
\(553\) 1136.24 2.05468
\(554\) 504.560 163.941i 0.910757 0.295923i
\(555\) 131.324 + 9.68043i 0.236620 + 0.0174422i
\(556\) 215.338 + 156.452i 0.387298 + 0.281389i
\(557\) 368.636i 0.661824i −0.943662 0.330912i \(-0.892644\pi\)
0.943662 0.330912i \(-0.107356\pi\)
\(558\) −507.888 + 640.971i −0.910194 + 1.14869i
\(559\) −210.353 −0.376302
\(560\) 77.0871 106.101i 0.137655 0.189466i
\(561\) 5.88197 79.7944i 0.0104848 0.142236i
\(562\) −154.972 476.953i −0.275750 0.848671i
\(563\) 572.005i 1.01599i −0.861359 0.507997i \(-0.830386\pi\)
0.861359 0.507997i \(-0.169614\pi\)
\(564\) −397.080 335.747i −0.704042 0.595296i
\(565\) −53.9440 166.023i −0.0954761 0.293845i
\(566\) 264.472 + 85.9323i 0.467266 + 0.151824i
\(567\) 13.3648 + 673.696i 0.0235711 + 1.18818i
\(568\) 28.9919 + 21.0638i 0.0510420 + 0.0370842i
\(569\) −246.925 + 80.2307i −0.433963 + 0.141003i −0.517848 0.855472i \(-0.673267\pi\)
0.0838859 + 0.996475i \(0.473267\pi\)
\(570\) 131.752 32.3228i 0.231144 0.0567066i
\(571\) −406.065 + 295.024i −0.711148 + 0.516679i −0.883544 0.468349i \(-0.844849\pi\)
0.172396 + 0.985028i \(0.444849\pi\)
\(572\) 37.8074 + 12.2844i 0.0660969 + 0.0214762i
\(573\) 605.184 + 44.6105i 1.05617 + 0.0778543i
\(574\) −815.838 + 592.741i −1.42132 + 1.03265i
\(575\) −559.258 181.714i −0.972622 0.316024i
\(576\) 522.686 + 512.420i 0.907441 + 0.889617i
\(577\) −315.362 229.124i −0.546555 0.397096i 0.279959 0.960012i \(-0.409679\pi\)
−0.826514 + 0.562916i \(0.809679\pi\)
\(578\) −17.5724 + 5.70963i −0.0304021 + 0.00987824i
\(579\) −826.061 + 202.657i −1.42670 + 0.350013i
\(580\) 46.5955 143.406i 0.0803371 0.247252i
\(581\) −97.8832 31.8042i −0.168474 0.0547404i
\(582\) 408.789 1000.91i 0.702387 1.71978i
\(583\) −149.233 −0.255975
\(584\) 192.439i 0.329518i
\(585\) −26.9822 51.6819i −0.0461234 0.0883452i
\(586\) 583.675 424.065i 0.996033 0.723660i
\(587\) 33.6677 46.3396i 0.0573555 0.0789431i −0.779376 0.626557i \(-0.784464\pi\)
0.836731 + 0.547614i \(0.184464\pi\)
\(588\) 179.698 212.525i 0.305609 0.361436i
\(589\) −349.087 201.225i −0.592677 0.341639i
\(590\) 196.061i 0.332307i
\(591\) 166.740 + 679.655i 0.282131 + 1.15001i
\(592\) −397.394 + 288.724i −0.671274 + 0.487709i
\(593\) 599.877 194.912i 1.01160 0.328688i 0.244107 0.969748i \(-0.421505\pi\)
0.767490 + 0.641061i \(0.221505\pi\)
\(594\) 108.002 + 63.9936i 0.181822 + 0.107733i
\(595\) 166.013 0.279013
\(596\) −913.822 + 296.919i −1.53326 + 0.498186i
\(597\) −108.337 174.838i −0.181469 0.292860i
\(598\) 123.225 379.248i 0.206062 0.634194i
\(599\) −333.787 + 459.418i −0.557240 + 0.766975i −0.990972 0.134067i \(-0.957196\pi\)
0.433732 + 0.901042i \(0.357196\pi\)
\(600\) −46.4191 + 113.657i −0.0773652 + 0.189428i
\(601\) 476.466 + 346.173i 0.792789 + 0.575995i 0.908790 0.417254i \(-0.137008\pi\)
−0.116001 + 0.993249i \(0.537008\pi\)
\(602\) 552.401 + 760.314i 0.917609 + 1.26298i
\(603\) 411.227 + 60.9576i 0.681968 + 0.101091i
\(604\) −793.012 + 576.157i −1.31293 + 0.953902i
\(605\) 82.6599 + 113.772i 0.136628 + 0.188052i
\(606\) 527.330 + 851.022i 0.870181 + 1.40433i
\(607\) −598.444 + 434.795i −0.985904 + 0.716301i −0.959020 0.283337i \(-0.908558\pi\)
−0.0268840 + 0.999639i \(0.508558\pi\)
\(608\) −350.459 + 482.366i −0.576413 + 0.793365i
\(609\) −261.066 + 639.216i −0.428680 + 1.04962i
\(610\) 245.759 + 178.554i 0.402883 + 0.292712i
\(611\) −195.940 63.6648i −0.320688 0.104198i
\(612\) −101.886 + 687.332i −0.166480 + 1.12309i
\(613\) 243.923 + 750.717i 0.397916 + 1.22466i 0.926667 + 0.375883i \(0.122661\pi\)
−0.528751 + 0.848777i \(0.677339\pi\)
\(614\) 141.351i 0.230214i
\(615\) 95.0798 112.448i 0.154601 0.182843i
\(616\) −7.07352 21.7701i −0.0114830 0.0353410i
\(617\) −379.143 521.846i −0.614495 0.845780i 0.382443 0.923979i \(-0.375083\pi\)
−0.996938 + 0.0781995i \(0.975083\pi\)
\(618\) −115.137 469.315i −0.186306 0.759409i
\(619\) 373.731 0.603766 0.301883 0.953345i \(-0.402385\pi\)
0.301883 + 0.953345i \(0.402385\pi\)
\(620\) −154.298 + 68.8250i −0.248867 + 0.111008i
\(621\) 343.069 578.999i 0.552446 0.932366i
\(622\) 387.471 + 281.514i 0.622944 + 0.452595i
\(623\) 485.940 + 668.839i 0.780000 + 1.07358i
\(624\) 201.337 + 82.2292i 0.322655 + 0.131777i
\(625\) 521.328 0.834125
\(626\) 512.177i 0.818175i
\(627\) −23.3863 + 57.2610i −0.0372987 + 0.0913253i
\(628\) 97.8399 301.120i 0.155796 0.479491i
\(629\) −591.356 192.143i −0.940153 0.305474i
\(630\) −115.946 + 233.246i −0.184041 + 0.370232i
\(631\) 37.6818 + 115.973i 0.0597175 + 0.183792i 0.976465 0.215675i \(-0.0691953\pi\)
−0.916748 + 0.399467i \(0.869195\pi\)
\(632\) −139.266 + 191.683i −0.220358 + 0.303296i
\(633\) −21.6051 + 293.093i −0.0341312 + 0.463022i
\(634\) 214.530 660.255i 0.338375 1.04141i
\(635\) −105.833 145.666i −0.166666 0.229396i
\(636\) 1292.49 + 95.2744i 2.03221 + 0.149803i
\(637\) 34.0746 104.871i 0.0534923 0.164632i
\(638\) 75.6118 + 104.071i 0.118514 + 0.163120i
\(639\) 166.490 + 82.7614i 0.260548 + 0.129517i
\(640\) 20.1368 + 61.9748i 0.0314638 + 0.0968357i
\(641\) −150.551 + 207.215i −0.234868 + 0.323269i −0.910140 0.414300i \(-0.864026\pi\)
0.675272 + 0.737569i \(0.264026\pi\)
\(642\) −418.800 675.874i −0.652337 1.05276i
\(643\) 150.132 462.057i 0.233486 0.718596i −0.763833 0.645414i \(-0.776685\pi\)
0.997319 0.0731817i \(-0.0233153\pi\)
\(644\) −905.543 + 294.229i −1.40612 + 0.456877i
\(645\) −104.796 88.6090i −0.162474 0.137378i
\(646\) −640.577 −0.991605
\(647\) −55.8034 + 18.1316i −0.0862495 + 0.0280241i −0.351824 0.936066i \(-0.614438\pi\)
0.265574 + 0.964090i \(0.414438\pi\)
\(648\) −115.290 80.3187i −0.177917 0.123949i
\(649\) 72.3199 + 52.5435i 0.111433 + 0.0809607i
\(650\) 377.410i 0.580630i
\(651\) 727.809 262.365i 1.11799 0.403019i
\(652\) −1327.64 −2.03626
\(653\) 670.621 923.031i 1.02698 1.41352i 0.119796 0.992798i \(-0.461776\pi\)
0.907188 0.420725i \(-0.138224\pi\)
\(654\) 1327.01 + 97.8196i 2.02907 + 0.149571i
\(655\) −55.5649 171.011i −0.0848319 0.261086i
\(656\) 549.314i 0.837369i
\(657\) 165.960 + 984.531i 0.252602 + 1.49852i
\(658\) 284.437 + 875.407i 0.432275 + 1.33041i
\(659\) −642.898 208.890i −0.975566 0.316980i −0.222505 0.974932i \(-0.571423\pi\)
−0.753061 + 0.657951i \(0.771423\pi\)
\(660\) 13.6606 + 22.0459i 0.0206979 + 0.0334029i
\(661\) −504.661 366.658i −0.763481 0.554702i 0.136495 0.990641i \(-0.456416\pi\)
−0.899976 + 0.435939i \(0.856416\pi\)
\(662\) 381.503 123.958i 0.576289 0.187248i
\(663\) 65.5934 + 267.368i 0.0989342 + 0.403271i
\(664\) 17.3627 12.6147i 0.0261486 0.0189981i
\(665\) −122.055 39.6582i −0.183542 0.0596363i
\(666\) 682.971 696.654i 1.02548 1.04603i
\(667\) 557.922 405.354i 0.836465 0.607727i
\(668\) −472.830 153.632i −0.707830 0.229988i
\(669\) −21.5365 + 292.163i −0.0321921 + 0.436716i
\(670\) 130.010 + 94.4576i 0.194044 + 0.140981i
\(671\) −131.724 + 42.7998i −0.196311 + 0.0637852i
\(672\) −272.769 1111.85i −0.405906 1.65453i
\(673\) 202.004 621.704i 0.300154 0.923780i −0.681287 0.732016i \(-0.738579\pi\)
0.981441 0.191763i \(-0.0614206\pi\)
\(674\) 917.814 + 298.216i 1.36174 + 0.442457i
\(675\) −139.466 + 621.508i −0.206616 + 0.920752i
\(676\) 639.235 0.945614
\(677\) 66.2687i 0.0978858i −0.998802 0.0489429i \(-0.984415\pi\)
0.998802 0.0489429i \(-0.0155852\pi\)
\(678\) −1197.31 489.002i −1.76595 0.721242i
\(679\) −827.474 + 601.195i −1.21867 + 0.885412i
\(680\) −20.3478 + 28.0063i −0.0299232 + 0.0411858i
\(681\) −77.8948 65.8633i −0.114383 0.0967155i
\(682\) 29.8705 141.007i 0.0437984 0.206754i
\(683\) 65.0347i 0.0952192i −0.998866 0.0476096i \(-0.984840\pi\)
0.998866 0.0476096i \(-0.0151603\pi\)
\(684\) 239.102 480.998i 0.349564 0.703214i
\(685\) −51.7501 + 37.5987i −0.0755476 + 0.0548886i
\(686\) 667.807 216.984i 0.973480 0.316303i
\(687\) 268.193 317.185i 0.390383 0.461696i
\(688\) 511.930 0.744084
\(689\) 488.342 158.672i 0.708769 0.230293i
\(690\) 221.144 137.030i 0.320498 0.198594i
\(691\) 170.310 524.161i 0.246469 0.758554i −0.748922 0.662658i \(-0.769428\pi\)
0.995391 0.0958959i \(-0.0305716\pi\)
\(692\) 291.409 401.090i 0.421111 0.579609i
\(693\) −54.9632 105.277i −0.0793120 0.151915i
\(694\) −1130.07 821.041i −1.62834 1.18306i
\(695\) 40.4404 + 55.6614i 0.0581876 + 0.0800884i
\(696\) −75.8375 122.389i −0.108962 0.175846i
\(697\) −562.545 + 408.713i −0.807095 + 0.586389i
\(698\) −334.066 459.802i −0.478604 0.658742i
\(699\) −1083.42 + 671.336i −1.54996 + 0.960423i
\(700\) 729.048 529.685i 1.04150 0.756692i
\(701\) −125.631 + 172.916i −0.179217 + 0.246671i −0.889169 0.457579i \(-0.848717\pi\)
0.709952 + 0.704250i \(0.248717\pi\)
\(702\) −421.461 94.5757i −0.600372 0.134723i
\(703\) 388.874 + 282.534i 0.553164 + 0.401897i
\(704\) −122.694 39.8656i −0.174281 0.0566273i
\(705\) −70.7972 114.255i −0.100421 0.162064i
\(706\) 89.5709 + 275.671i 0.126871 + 0.390468i
\(707\) 947.116i 1.33963i
\(708\) −592.806 501.242i −0.837297 0.707969i
\(709\) 177.578 + 546.528i 0.250462 + 0.770844i 0.994690 + 0.102918i \(0.0328178\pi\)
−0.744228 + 0.667926i \(0.767182\pi\)
\(710\) 42.2450 + 58.1452i 0.0595000 + 0.0818947i
\(711\) −547.187 + 1100.77i −0.769602 + 1.54820i
\(712\) −172.394 −0.242126
\(713\) −755.935 160.135i −1.06022 0.224594i
\(714\) 794.142 939.212i 1.11224 1.31542i
\(715\) 8.31308 + 6.03981i 0.0116267 + 0.00844728i
\(716\) 284.009 + 390.905i 0.396661 + 0.545957i
\(717\) 62.9773 154.199i 0.0878345 0.215061i
\(718\) −51.3658 −0.0715401
\(719\) 1402.29i 1.95033i −0.221475 0.975166i \(-0.571087\pi\)
0.221475 0.975166i \(-0.428913\pi\)
\(720\) 65.6657 + 125.777i 0.0912024 + 0.174690i
\(721\) −141.266 + 434.773i −0.195931 + 0.603014i
\(722\) −535.403 173.963i −0.741556 0.240946i
\(723\) 525.073 128.816i 0.726243 0.178169i
\(724\) 158.049 + 486.425i 0.218300 + 0.671858i
\(725\) −383.646 + 528.043i −0.529167 + 0.728336i
\(726\) 1039.07 + 76.5942i 1.43123 + 0.105502i
\(727\) −226.673 + 697.627i −0.311792 + 0.959597i 0.665263 + 0.746609i \(0.268320\pi\)
−0.977055 + 0.212988i \(0.931680\pi\)
\(728\) 46.2939 + 63.7181i 0.0635906 + 0.0875249i
\(729\) −659.102 311.489i −0.904118 0.427283i
\(730\) −119.265 + 367.060i −0.163377 + 0.502821i
\(731\) 380.897 + 524.260i 0.521063 + 0.717182i
\(732\) 1168.17 286.587i 1.59586 0.391512i
\(733\) −150.454 463.051i −0.205258 0.631720i −0.999703 0.0243830i \(-0.992238\pi\)
0.794445 0.607337i \(-0.207762\pi\)
\(734\) 990.832 1363.76i 1.34991 1.85799i
\(735\) 61.1513 37.8920i 0.0831991 0.0515537i
\(736\) −353.336 + 1087.45i −0.480075 + 1.47752i
\(737\) −69.6839 + 22.6417i −0.0945508 + 0.0307214i
\(738\) −181.348 1075.82i −0.245729 1.45775i
\(739\) 438.481 0.593343 0.296672 0.954980i \(-0.404123\pi\)
0.296672 + 0.954980i \(0.404123\pi\)
\(740\) 191.686 62.2825i 0.259035 0.0841655i
\(741\) 15.6453 212.243i 0.0211137 0.286428i
\(742\) −1855.93 1348.41i −2.50126 1.81727i
\(743\) 729.590i 0.981952i 0.871173 + 0.490976i \(0.163360\pi\)
−0.871173 + 0.490976i \(0.836640\pi\)
\(744\) −44.9448 + 154.939i −0.0604097 + 0.208251i
\(745\) −248.364 −0.333375
\(746\) 38.9578 53.6208i 0.0522222 0.0718778i
\(747\) 77.9497 79.5115i 0.104350 0.106441i
\(748\) −37.8437 116.471i −0.0505932 0.155710i
\(749\) 752.190i 1.00426i
\(750\) −327.453 + 387.270i −0.436604 + 0.516361i
\(751\) 73.2843 + 225.546i 0.0975823 + 0.300327i 0.987918 0.154977i \(-0.0495304\pi\)
−0.890336 + 0.455304i \(0.849530\pi\)
\(752\) 476.853 + 154.939i 0.634114 + 0.206036i
\(753\) 633.356 392.454i 0.841110 0.521188i
\(754\) −358.080 260.161i −0.474908 0.345041i
\(755\) −240.970 + 78.2957i −0.319165 + 0.103703i
\(756\) 408.817 + 946.879i 0.540763 + 1.25248i
\(757\) 559.493 406.495i 0.739092 0.536982i −0.153335 0.988174i \(-0.549001\pi\)
0.892427 + 0.451193i \(0.149001\pi\)
\(758\) 824.748 + 267.977i 1.08806 + 0.353531i
\(759\) −8.72001 + 118.295i −0.0114888 + 0.155857i
\(760\) 21.6504 15.7299i 0.0284873 0.0206972i
\(761\) 208.181 + 67.6422i 0.273563 + 0.0888860i 0.442586 0.896726i \(-0.354061\pi\)
−0.169023 + 0.985612i \(0.554061\pi\)
\(762\) −1330.36 98.0666i −1.74589 0.128696i
\(763\) −1018.38 739.898i −1.33471 0.969723i
\(764\) 883.349 287.018i 1.15622 0.375677i
\(765\) −79.9481 + 160.831i −0.104507 + 0.210236i
\(766\) −467.198 + 1437.89i −0.609919 + 1.87714i
\(767\) −292.522 95.0462i −0.381385 0.123919i
\(768\) −456.558 186.466i −0.594477 0.242794i
\(769\) −1400.37 −1.82103 −0.910514 0.413478i \(-0.864314\pi\)
−0.910514 + 0.413478i \(0.864314\pi\)
\(770\) 45.9083i 0.0596212i
\(771\) 387.210 948.077i 0.502217 1.22967i
\(772\) −1053.23 + 765.217i −1.36429 + 0.991213i
\(773\) 414.808 570.934i 0.536620 0.738595i −0.451501 0.892271i \(-0.649111\pi\)
0.988121 + 0.153676i \(0.0491112\pi\)
\(774\) −1002.60 + 169.006i −1.29535 + 0.218354i
\(775\) 727.270 76.9451i 0.938412 0.0992840i
\(776\) 213.282i 0.274848i
\(777\) −896.349 + 219.901i −1.15360 + 0.283013i
\(778\) 1704.50 1238.39i 2.19088 1.59176i
\(779\) 511.228 166.108i 0.656262 0.213232i
\(780\) −68.1424 57.6172i −0.0873620 0.0738681i
\(781\) −32.7691 −0.0419579
\(782\) −1168.32 + 379.612i −1.49402 + 0.485437i
\(783\) −493.539 560.749i −0.630318 0.716154i
\(784\) −82.9263 + 255.221i −0.105773 + 0.325537i
\(785\) 48.1045 66.2102i 0.0612796 0.0843442i
\(786\) −1233.29 503.696i −1.56907 0.640834i
\(787\) −524.846 381.323i −0.666894 0.484527i 0.202090 0.979367i \(-0.435227\pi\)
−0.868984 + 0.494840i \(0.835227\pi\)
\(788\) 629.594 + 866.562i 0.798977 + 1.09970i
\(789\) 217.452 134.743i 0.275605 0.170777i
\(790\) −384.434 + 279.308i −0.486626 + 0.353554i
\(791\) 719.162 + 989.841i 0.909181 + 1.25138i
\(792\) 24.4969 + 3.63127i 0.0309305 + 0.00458493i
\(793\) 385.540 280.111i 0.486179 0.353230i
\(794\) −330.963 + 455.531i −0.416830 + 0.573717i
\(795\) 310.126 + 126.660i 0.390095 + 0.159321i
\(796\) −254.692 185.045i −0.319965 0.232468i
\(797\) 836.524 + 271.803i 1.04959 + 0.341033i 0.782508 0.622641i \(-0.213940\pi\)
0.267083 + 0.963673i \(0.413940\pi\)
\(798\) −808.231 + 500.814i −1.01282 + 0.627587i
\(799\) 196.128 + 603.620i 0.245467 + 0.755470i
\(800\) 1082.18i 1.35273i
\(801\) −881.978 + 148.673i −1.10110 + 0.185609i
\(802\) 619.909 + 1907.88i 0.772953 + 2.37891i
\(803\) −103.433 142.363i −0.128808 0.177289i
\(804\) 617.977 151.608i 0.768628 0.188567i
\(805\) −246.114 −0.305732
\(806\) 52.1785 + 493.181i 0.0647376 + 0.611887i
\(807\) 989.011 + 836.249i 1.22554 + 1.03624i
\(808\) 159.778 + 116.086i 0.197745 + 0.143670i
\(809\) −348.170 479.215i −0.430371 0.592355i 0.537667 0.843157i \(-0.319306\pi\)
−0.968038 + 0.250802i \(0.919306\pi\)
\(810\) −170.128 224.653i −0.210035 0.277349i
\(811\) −981.426 −1.21014 −0.605071 0.796171i \(-0.706855\pi\)
−0.605071 + 0.796171i \(0.706855\pi\)
\(812\) 1056.84i 1.30153i
\(813\) 153.110 + 62.5326i 0.188327 + 0.0769158i
\(814\) −53.1343 + 163.531i −0.0652755 + 0.200897i
\(815\) −326.378 106.047i −0.400463 0.130118i
\(816\) −159.633 650.686i −0.195628 0.797409i
\(817\) −154.803 476.435i −0.189478 0.583152i
\(818\) 729.140 1003.57i 0.891369 1.22686i
\(819\) 291.794 + 286.063i 0.356281 + 0.349283i
\(820\) 69.6502 214.361i 0.0849393 0.261416i
\(821\) 480.148 + 660.867i 0.584833 + 0.804954i 0.994215 0.107409i \(-0.0342556\pi\)
−0.409382 + 0.912363i \(0.634256\pi\)
\(822\) −34.8396 + 472.632i −0.0423840 + 0.574978i
\(823\) 101.764 313.196i 0.123650 0.380554i −0.870003 0.493046i \(-0.835883\pi\)
0.993653 + 0.112492i \(0.0358833\pi\)
\(824\) −56.0314 77.1207i −0.0679993 0.0935930i
\(825\) −26.7485 109.031i −0.0324224 0.132158i
\(826\) 424.641 + 1306.91i 0.514093 + 1.58221i
\(827\) −80.2377 + 110.438i −0.0970226 + 0.133540i −0.854768 0.519010i \(-0.826301\pi\)
0.757746 + 0.652550i \(0.226301\pi\)
\(828\) 151.045 1018.97i 0.182422 1.23064i
\(829\) 4.46082 13.7290i 0.00538096 0.0165609i −0.948330 0.317286i \(-0.897229\pi\)
0.953711 + 0.300725i \(0.0972286\pi\)
\(830\) 40.9358 13.3008i 0.0493202 0.0160251i
\(831\) 350.587 414.630i 0.421885 0.498953i
\(832\) 443.883 0.533513
\(833\) −323.069 + 104.971i −0.387838 + 0.126016i
\(834\) 508.354 + 37.4728i 0.609537 + 0.0449314i
\(835\) −103.966 75.5356i −0.124510 0.0904618i
\(836\) 94.6716i 0.113244i
\(837\) −96.3215 + 831.439i −0.115079 + 0.993356i
\(838\) 2185.70 2.60824
\(839\) −914.140 + 1258.21i −1.08956 + 1.49965i −0.241016 + 0.970521i \(0.577481\pi\)
−0.848542 + 0.529127i \(0.822519\pi\)
\(840\) −3.77744 + 51.2445i −0.00449695 + 0.0610054i
\(841\) 23.3433 + 71.8433i 0.0277566 + 0.0854261i
\(842\) 708.402i 0.841333i
\(843\) −391.944 331.405i −0.464940 0.393125i
\(844\) 139.004 + 427.810i 0.164696 + 0.506884i
\(845\) 157.145 + 51.0595i 0.185970 + 0.0604255i
\(846\) −985.059 146.019i −1.16437 0.172599i
\(847\) −797.409 579.352i −0.941451 0.684004i
\(848\) −1188.46 + 386.155i −1.40149 + 0.455372i
\(849\) 276.415 67.8129i 0.325577 0.0798738i
\(850\) 940.613 683.395i 1.10660 0.803995i
\(851\) 876.686 + 284.852i 1.03018 + 0.334727i
\(852\) 283.808 + 20.9207i 0.333108 + 0.0245548i
\(853\) −41.2660 + 29.9815i −0.0483774 + 0.0351483i −0.611711 0.791081i \(-0.709519\pi\)
0.563334 + 0.826229i \(0.309519\pi\)
\(854\) −2024.91 657.932i −2.37109 0.770412i
\(855\) 97.1993 99.1467i 0.113683 0.115961i
\(856\) −126.894 92.1941i −0.148241 0.107703i
\(857\) −623.196 + 202.489i −0.727183 + 0.236276i −0.649135 0.760674i \(-0.724869\pi\)
−0.0780482 + 0.996950i \(0.524869\pi\)
\(858\) 73.9366 18.1389i 0.0861732 0.0211409i
\(859\) 507.171 1560.91i 0.590420 1.81713i 0.0141014 0.999901i \(-0.495511\pi\)
0.576319 0.817225i \(-0.304489\pi\)
\(860\) −199.773 64.9101i −0.232294 0.0754768i
\(861\) −390.237 + 955.490i −0.453237 + 1.10974i
\(862\) −223.383 −0.259145
\(863\) 39.3450i 0.0455909i −0.999740 0.0227955i \(-0.992743\pi\)
0.999740 0.0227955i \(-0.00725665\pi\)
\(864\) 1208.50 + 271.186i 1.39872 + 0.313873i
\(865\) 103.675 75.3245i 0.119856 0.0870803i
\(866\) −544.658 + 749.657i −0.628935 + 0.865655i
\(867\) −12.2100 + 14.4404i −0.0140830 + 0.0166556i
\(868\) 879.455 792.961i 1.01320 0.913550i
\(869\) 216.657i 0.249318i
\(870\) −68.8020 280.447i −0.0790827 0.322353i
\(871\) 203.956 148.183i 0.234163 0.170129i
\(872\) 249.641 81.1134i 0.286286 0.0930200i
\(873\) −183.935 1091.17i −0.210693 1.24990i
\(874\) 949.655 1.08656
\(875\) 456.295 148.259i 0.521480 0.169439i
\(876\) 804.926 + 1299.02i 0.918865 + 1.48289i
\(877\) −219.436 + 675.354i −0.250212 + 0.770073i 0.744524 + 0.667596i \(0.232677\pi\)
−0.994735 + 0.102477i \(0.967323\pi\)
\(878\) 799.574 1100.52i 0.910677 1.25344i
\(879\) 279.188 683.587i 0.317620 0.777687i
\(880\) −20.2313 14.6989i −0.0229901 0.0167033i
\(881\) −372.976 513.357i −0.423355 0.582698i 0.543057 0.839696i \(-0.317267\pi\)
−0.966412 + 0.256997i \(0.917267\pi\)
\(882\) 78.1520 527.222i 0.0886077 0.597758i
\(883\) −123.885 + 90.0076i −0.140300 + 0.101934i −0.655721 0.755003i \(-0.727635\pi\)
0.515421 + 0.856937i \(0.327635\pi\)
\(884\) 247.675 + 340.895i 0.280175 + 0.385628i
\(885\) −105.694 170.573i −0.119428 0.192738i
\(886\) 1325.64 963.136i 1.49621 1.08706i
\(887\) 984.997 1355.73i 1.11048 1.52845i 0.289777 0.957094i \(-0.406419\pi\)
0.820705 0.571353i \(-0.193581\pi\)
\(888\) 72.7661 178.167i 0.0819438 0.200638i
\(889\) 1020.95 + 741.766i 1.14843 + 0.834383i
\(890\) −328.825 106.842i −0.369467 0.120047i
\(891\) 128.460 2.54839i 0.144175 0.00286015i
\(892\) 138.563 + 426.452i 0.155339 + 0.478085i
\(893\) 490.644i 0.549433i
\(894\) −1188.08 + 1405.11i −1.32895 + 1.57171i
\(895\) 38.5949 + 118.783i 0.0431228 + 0.132718i
\(896\) −268.457 369.499i −0.299617 0.412388i
\(897\) −97.2422 396.374i −0.108408 0.441888i
\(898\) −455.204 −0.506908
\(899\) −428.326 + 743.063i −0.476448 + 0.826544i
\(900\) 162.056 + 961.375i 0.180063 + 1.06819i
\(901\) −1279.72 929.773i −1.42034 1.03193i
\(902\) 113.023 + 155.563i 0.125303 + 0.172465i
\(903\) 890.463 + 363.679i 0.986116 + 0.402745i
\(904\) −255.132 −0.282226
\(905\) 132.204i 0.146081i
\(906\) −709.750 + 1737.81i −0.783389 + 1.91812i
\(907\) 192.606 592.779i 0.212355 0.653561i −0.786976 0.616983i \(-0.788355\pi\)
0.999331 0.0365771i \(-0.0116455\pi\)
\(908\) −148.492 48.2478i −0.163537 0.0531364i
\(909\) 917.550 + 456.110i 1.00941 + 0.501771i
\(910\) 48.8119 + 150.228i 0.0536395 + 0.165085i
\(911\) 235.308 323.874i 0.258297 0.355515i −0.660099 0.751179i \(-0.729486\pi\)
0.918395 + 0.395664i \(0.129486\pi\)
\(912\) −38.0754 + 516.529i −0.0417494 + 0.566369i
\(913\) −6.06439 + 18.6643i −0.00664227 + 0.0204428i
\(914\) −661.395 910.332i −0.723626 0.995986i
\(915\) 310.066 + 22.8562i 0.338870 + 0.0249795i
\(916\) 196.464 604.653i 0.214480 0.660101i
\(917\) 740.771 + 1019.58i 0.807820 + 1.11187i
\(918\) 527.452 + 1221.66i 0.574567 + 1.33078i
\(919\) 128.078 + 394.185i 0.139367 + 0.428928i 0.996244 0.0865937i \(-0.0275982\pi\)
−0.856877 + 0.515522i \(0.827598\pi\)
\(920\) 30.1656 41.5194i 0.0327887 0.0451298i
\(921\) −76.2008 122.975i −0.0827370 0.133524i
\(922\) 371.762 1144.17i 0.403212 1.24096i
\(923\) 107.232 34.8417i 0.116177 0.0377483i
\(924\) −138.807 117.367i −0.150224 0.127021i
\(925\) −872.436 −0.943174
\(926\) 433.309 140.791i 0.467936 0.152042i
\(927\) −353.170 346.233i −0.380982 0.373499i
\(928\) 1026.76 + 745.985i 1.10642 + 0.803863i
\(929\) 354.879i 0.382001i 0.981590 + 0.191001i \(0.0611732\pi\)
−0.981590 + 0.191001i \(0.938827\pi\)
\(930\) −181.752 + 267.677i −0.195433 + 0.287825i
\(931\) 262.602 0.282064
\(932\) −1146.68 + 1578.26i −1.23034 + 1.69342i
\(933\) 488.860 + 36.0358i 0.523965 + 0.0386236i
\(934\) −504.232 1551.87i −0.539863 1.66153i
\(935\) 31.6552i 0.0338558i
\(936\) −84.0232 + 14.1636i −0.0897684 + 0.0151320i
\(937\) 111.377 + 342.783i 0.118866 + 0.365831i 0.992734 0.120332i \(-0.0383961\pi\)
−0.873868 + 0.486163i \(0.838396\pi\)
\(938\) −1071.20 348.055i −1.14201 0.371061i
\(939\) 276.108 + 445.593i 0.294045 + 0.474540i
\(940\) −166.439 120.925i −0.177063 0.128644i
\(941\) −1227.50 + 398.838i −1.30446 + 0.423845i −0.877131 0.480251i \(-0.840546\pi\)
−0.427329 + 0.904096i \(0.640546\pi\)
\(942\) −144.468 588.874i −0.153363 0.625132i
\(943\) 833.973 605.917i 0.884383 0.642542i
\(944\) 711.902 + 231.311i 0.754133 + 0.245033i
\(945\) 24.8678 + 265.429i 0.0263151 + 0.280877i
\(946\) 144.976 105.331i 0.153252 0.111344i
\(947\) −388.615 126.269i −0.410364 0.133335i 0.0965576 0.995327i \(-0.469217\pi\)
−0.506922 + 0.861992i \(0.669217\pi\)
\(948\) −138.319 + 1876.43i −0.145907 + 1.97936i
\(949\) 489.833 + 355.885i 0.516157 + 0.375010i
\(950\) −854.807 + 277.744i −0.899797 + 0.292362i
\(951\) −169.295 690.071i −0.178018 0.725626i
\(952\) 74.9770 230.756i 0.0787574 0.242390i
\(953\) 567.853 + 184.507i 0.595858 + 0.193606i 0.591392 0.806384i \(-0.298578\pi\)
0.00446592 + 0.999990i \(0.498578\pi\)
\(954\) 2200.10 1148.63i 2.30618 1.20402i
\(955\) 240.082 0.251395
\(956\) 254.943i 0.266677i
\(957\) 121.885 + 49.7798i 0.127362 + 0.0520166i
\(958\) −1215.53 + 883.135i −1.26882 + 0.921853i
\(959\) 263.524 362.709i 0.274790 0.378216i
\(960\) 221.138 + 186.981i 0.230352 + 0.194772i
\(961\) 939.724 201.097i 0.977861 0.209258i
\(962\) 591.622i 0.614992i
\(963\) −728.710 362.238i −0.756708 0.376156i
\(964\) 669.470 486.398i 0.694471 0.504563i
\(965\) −320.041 + 103.988i −0.331649 + 0.107759i
\(966\) −1177.32 + 1392.38i −1.21875 + 1.44139i
\(967\) 440.596 0.455632 0.227816 0.973704i \(-0.426842\pi\)
0.227816 + 0.973704i \(0.426842\pi\)
\(968\) 195.473 63.5130i 0.201935 0.0656126i
\(969\) −557.300 + 345.327i −0.575129 + 0.356374i
\(970\) 132.183 406.816i 0.136271 0.419398i
\(971\) −54.9606 + 75.6468i −0.0566021 + 0.0779061i −0.836380 0.548150i \(-0.815332\pi\)
0.779778 + 0.626057i \(0.215332\pi\)
\(972\) −1114.20 59.9408i −1.14629 0.0616675i
\(973\) −390.123 283.441i −0.400948 0.291306i
\(974\) 568.691 + 782.736i 0.583871 + 0.803630i
\(975\) 203.457 + 328.345i 0.208673 + 0.336764i
\(976\) −938.277 + 681.698i −0.961349 + 0.698461i
\(977\) 165.720 + 228.094i 0.169622 + 0.233464i 0.885362 0.464902i \(-0.153911\pi\)
−0.715740 + 0.698366i \(0.753911\pi\)
\(978\) −2161.22 + 1339.18i −2.20984 + 1.36931i
\(979\) 127.534 92.6586i 0.130269 0.0946462i
\(980\) 64.7214 89.0814i 0.0660423 0.0908994i
\(981\) 1207.23 630.274i 1.23061 0.642481i
\(982\) 597.789 + 434.319i 0.608746 + 0.442280i
\(983\) −343.953 111.757i −0.349902 0.113690i 0.128793 0.991672i \(-0.458890\pi\)
−0.478694 + 0.877982i \(0.658890\pi\)
\(984\) −113.361 182.945i −0.115204 0.185920i
\(985\) 85.5575 + 263.319i 0.0868604 + 0.267329i
\(986\) 1363.53i 1.38289i
\(987\) 719.380 + 608.265i 0.728856 + 0.616277i
\(988\) −100.659 309.798i −0.101882 0.313560i
\(989\) −564.680 777.216i −0.570961 0.785860i
\(990\) 44.4752 + 22.1084i 0.0449245 + 0.0223317i
\(991\) −830.830 −0.838376 −0.419188 0.907900i \(-0.637685\pi\)
−0.419188 + 0.907900i \(0.637685\pi\)
\(992\) −149.617 1414.15i −0.150823 1.42555i
\(993\) 265.082 313.506i 0.266951 0.315716i
\(994\) −407.532 296.089i −0.409992 0.297876i
\(995\) −47.8311 65.8339i −0.0480715 0.0661647i
\(996\) 64.4386 157.777i 0.0646973 0.158411i
\(997\) −1159.32 −1.16281 −0.581406 0.813614i \(-0.697497\pi\)
−0.581406 + 0.813614i \(0.697497\pi\)
\(998\) 2552.60i 2.55771i
\(999\) 218.625 974.268i 0.218844 0.975243i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 93.3.l.b.2.16 yes 72
3.2 odd 2 inner 93.3.l.b.2.3 72
31.16 even 5 inner 93.3.l.b.47.3 yes 72
93.47 odd 10 inner 93.3.l.b.47.16 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
93.3.l.b.2.3 72 3.2 odd 2 inner
93.3.l.b.2.16 yes 72 1.1 even 1 trivial
93.3.l.b.47.3 yes 72 31.16 even 5 inner
93.3.l.b.47.16 yes 72 93.47 odd 10 inner