Newspace parameters
| Level: | \( N \) | \(=\) | \( 93 = 3 \cdot 31 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 93.l (of order \(10\), degree \(4\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(2.53406645855\) |
| Analytic rank: | \(0\) |
| Dimension: | \(72\) |
| Relative dimension: | \(18\) over \(\Q(\zeta_{10})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2.1 | −2.30253 | + | 3.16915i | −1.34522 | − | 2.68149i | −3.50585 | − | 10.7899i | 0.369845i | 11.5955 | + | 1.91099i | 2.37994 | + | 7.32470i | 27.3649 | + | 8.89139i | −5.38077 | + | 7.21439i | −1.17210 | − | 0.851578i | ||
| 2.2 | −2.17320 | + | 2.99115i | 0.124604 | + | 2.99741i | −2.98814 | − | 9.19654i | − | 5.36452i | −9.23651 | − | 6.14127i | −3.32687 | − | 10.2391i | 19.9368 | + | 6.47787i | −8.96895 | + | 0.746980i | 16.0461 | + | 11.6582i | |
| 2.3 | −1.72290 | + | 2.37137i | 2.91360 | + | 0.714793i | −1.41895 | − | 4.36707i | 1.18691i | −6.71489 | + | 5.67772i | 2.57067 | + | 7.91172i | 1.64979 | + | 0.536048i | 7.97814 | + | 4.16524i | −2.81460 | − | 2.04493i | ||
| 2.4 | −1.51008 | + | 2.07845i | 1.83238 | − | 2.37537i | −0.803542 | − | 2.47305i | − | 5.23090i | 2.17003 | + | 7.39553i | −2.44289 | − | 7.51843i | −3.41994 | − | 1.11121i | −2.28474 | − | 8.70517i | 10.8722 | + | 7.89911i | |
| 2.5 | −1.27198 | + | 1.75074i | −2.99978 | + | 0.0359714i | −0.211065 | − | 0.649592i | − | 6.70333i | 3.75270 | − | 5.29759i | −0.186362 | − | 0.573564i | −6.82672 | − | 2.21814i | 8.99741 | − | 0.215813i | 11.7358 | + | 8.52653i | |
| 2.6 | −1.06274 | + | 1.46274i | −1.77299 | − | 2.42002i | 0.225888 | + | 0.695211i | 3.73375i | 5.42408 | − | 0.0215715i | −0.683387 | − | 2.10325i | −8.13517 | − | 2.64328i | −2.71298 | + | 8.58136i | −5.46149 | − | 3.96801i | ||
| 2.7 | −0.556283 | + | 0.765658i | −0.525348 | + | 2.95364i | 0.959286 | + | 2.95238i | − | 2.58079i | −1.96924 | − | 2.04530i | 1.96270 | + | 6.04057i | −6.39449 | − | 2.07770i | −8.44802 | − | 3.10338i | 1.97600 | + | 1.43565i | |
| 2.8 | −0.545338 | + | 0.750594i | 2.29503 | + | 1.93206i | 0.970071 | + | 2.98557i | 4.88462i | −2.70176 | + | 0.669006i | −3.26048 | − | 10.0347i | −6.29947 | − | 2.04682i | 1.53429 | + | 8.86826i | −3.66636 | − | 2.66377i | ||
| 2.9 | −0.170762 | + | 0.235034i | 1.53643 | − | 2.57670i | 1.20999 | + | 3.72396i | 6.49329i | 0.343247 | + | 0.801117i | 1.26783 | + | 3.90197i | −2.18707 | − | 0.710624i | −4.27874 | − | 7.91785i | −1.52614 | − | 1.10881i | ||
| 2.10 | 0.170762 | − | 0.235034i | 2.92537 | − | 0.664992i | 1.20999 | + | 3.72396i | − | 6.49329i | 0.343247 | − | 0.801117i | 1.26783 | + | 3.90197i | 2.18707 | + | 0.710624i | 8.11557 | − | 3.89069i | −1.52614 | − | 1.10881i | |
| 2.11 | 0.545338 | − | 0.750594i | −1.12830 | − | 2.77974i | 0.970071 | + | 2.98557i | − | 4.88462i | −2.70176 | − | 0.669006i | −3.26048 | − | 10.0347i | 6.29947 | + | 2.04682i | −6.45390 | + | 6.27274i | −3.66636 | − | 2.66377i | |
| 2.12 | 0.556283 | − | 0.765658i | −2.97142 | − | 0.413090i | 0.959286 | + | 2.95238i | 2.58079i | −1.96924 | + | 2.04530i | 1.96270 | + | 6.04057i | 6.39449 | + | 2.07770i | 8.65871 | + | 2.45493i | 1.97600 | + | 1.43565i | ||
| 2.13 | 1.06274 | − | 1.46274i | 1.75369 | + | 2.43404i | 0.225888 | + | 0.695211i | − | 3.73375i | 5.42408 | + | 0.0215715i | −0.683387 | − | 2.10325i | 8.13517 | + | 2.64328i | −2.84915 | + | 8.53712i | −5.46149 | − | 3.96801i | |
| 2.14 | 1.27198 | − | 1.75074i | −0.961195 | + | 2.84185i | −0.211065 | − | 0.649592i | 6.70333i | 3.75270 | + | 5.29759i | −0.186362 | − | 0.573564i | 6.82672 | + | 2.21814i | −7.15221 | − | 5.46314i | 11.7358 | + | 8.52653i | ||
| 2.15 | 1.51008 | − | 2.07845i | 2.82535 | − | 1.00867i | −0.803542 | − | 2.47305i | 5.23090i | 2.17003 | − | 7.39553i | −2.44289 | − | 7.51843i | 3.41994 | + | 1.11121i | 6.96516 | − | 5.69969i | 10.8722 | + | 7.89911i | ||
| 2.16 | 1.72290 | − | 2.37137i | 0.220544 | − | 2.99188i | −1.41895 | − | 4.36707i | − | 1.18691i | −6.71489 | − | 5.67772i | 2.57067 | + | 7.91172i | −1.64979 | − | 0.536048i | −8.90272 | − | 1.31968i | −2.81460 | − | 2.04493i | |
| 2.17 | 2.17320 | − | 2.99115i | −2.81220 | − | 1.04476i | −2.98814 | − | 9.19654i | 5.36452i | −9.23651 | + | 6.14127i | −3.32687 | − | 10.2391i | −19.9368 | − | 6.47787i | 6.81697 | + | 5.87613i | 16.0461 | + | 11.6582i | ||
| 2.18 | 2.30253 | − | 3.16915i | 2.13455 | + | 2.10801i | −3.50585 | − | 10.7899i | − | 0.369845i | 11.5955 | − | 1.91099i | 2.37994 | + | 7.32470i | −27.3649 | − | 8.89139i | 0.112621 | + | 8.99930i | −1.17210 | − | 0.851578i | |
| 8.1 | −3.46751 | − | 1.12666i | 2.05322 | + | 2.18730i | 7.51820 | + | 5.46229i | 5.25837i | −4.65521 | − | 9.89779i | −8.69344 | − | 6.31616i | −11.3431 | − | 15.6125i | −0.568590 | + | 8.98202i | 5.92441 | − | 18.2335i | ||
| 8.2 | −3.20669 | − | 1.04192i | −0.616051 | − | 2.93607i | 5.96120 | + | 4.33106i | 6.02940i | −1.08365 | + | 10.0569i | 4.41911 | + | 3.21067i | −6.67573 | − | 9.18835i | −8.24096 | + | 3.61753i | 6.28213 | − | 19.3344i | ||
| See all 72 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 3.b | odd | 2 | 1 | inner |
| 31.d | even | 5 | 1 | inner |
| 93.l | odd | 10 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 93.3.l.b | ✓ | 72 |
| 3.b | odd | 2 | 1 | inner | 93.3.l.b | ✓ | 72 |
| 31.d | even | 5 | 1 | inner | 93.3.l.b | ✓ | 72 |
| 93.l | odd | 10 | 1 | inner | 93.3.l.b | ✓ | 72 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 93.3.l.b | ✓ | 72 | 1.a | even | 1 | 1 | trivial |
| 93.3.l.b | ✓ | 72 | 3.b | odd | 2 | 1 | inner |
| 93.3.l.b | ✓ | 72 | 31.d | even | 5 | 1 | inner |
| 93.3.l.b | ✓ | 72 | 93.l | odd | 10 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{72} - 54 T_{2}^{70} + 1756 T_{2}^{68} - 45015 T_{2}^{66} + 990028 T_{2}^{64} + \cdots + 25\!\cdots\!01 \)
acting on \(S_{3}^{\mathrm{new}}(93, [\chi])\).