Properties

Label 93.2.e
Level $93$
Weight $2$
Character orbit 93.e
Rep. character $\chi_{93}(25,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $10$
Newform subspaces $2$
Sturm bound $21$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 93 = 3 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 93.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 31 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(21\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(93, [\chi])\).

Total New Old
Modular forms 26 10 16
Cusp forms 18 10 8
Eisenstein series 8 0 8

Trace form

\( 10 q - q^{3} + 4 q^{4} + 12 q^{8} - 5 q^{9} - 8 q^{10} + 2 q^{11} - 2 q^{12} - 5 q^{13} - 18 q^{14} + 16 q^{15} - 24 q^{16} - 6 q^{17} + 7 q^{19} - 18 q^{20} - 8 q^{21} + 16 q^{22} + 16 q^{23} - 6 q^{24}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(93, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
93.2.e.a 93.e 31.c $4$ $0.743$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 93.2.e.a \(0\) \(2\) \(4\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{3}q^{2}+(1+\beta _{2})q^{3}+(-\beta _{1}-2\beta _{2}+\cdots)q^{5}+\cdots\)
93.2.e.b 93.e 31.c $6$ $0.743$ 6.0.591408.1 None 93.2.e.b \(0\) \(-3\) \(-4\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{3}q^{2}-\beta _{4}q^{3}+(1-\beta _{2}+\beta _{3})q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(93, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(93, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(31, [\chi])\)\(^{\oplus 2}\)