Properties

Label 93.2
Level 93
Weight 2
Dimension 209
Nonzero newspaces 8
Newform subspaces 18
Sturm bound 1280
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 93 = 3 \cdot 31 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 18 \)
Sturm bound: \(1280\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(93))\).

Total New Old
Modular forms 380 269 111
Cusp forms 261 209 52
Eisenstein series 119 60 59

Trace form

\( 209 q - 3 q^{2} - 16 q^{3} - 37 q^{4} - 6 q^{5} - 18 q^{6} - 38 q^{7} - 15 q^{8} - 16 q^{9} - 48 q^{10} - 12 q^{11} - 22 q^{12} - 44 q^{13} - 24 q^{14} - 21 q^{15} - 61 q^{16} - 18 q^{17} - 18 q^{18} - 50 q^{19}+ \cdots - 102 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(93))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
93.2.a \(\chi_{93}(1, \cdot)\) 93.2.a.a 2 1
93.2.a.b 3
93.2.c \(\chi_{93}(92, \cdot)\) 93.2.c.a 8 1
93.2.e \(\chi_{93}(25, \cdot)\) 93.2.e.a 4 2
93.2.e.b 6
93.2.f \(\chi_{93}(4, \cdot)\) 93.2.f.a 8 4
93.2.f.b 16
93.2.g \(\chi_{93}(26, \cdot)\) 93.2.g.a 2 2
93.2.g.b 2
93.2.g.c 2
93.2.g.d 4
93.2.g.e 4
93.2.g.f 4
93.2.k \(\chi_{93}(23, \cdot)\) 93.2.k.a 32 4
93.2.m \(\chi_{93}(7, \cdot)\) 93.2.m.a 16 8
93.2.m.b 24
93.2.p \(\chi_{93}(11, \cdot)\) 93.2.p.a 8 8
93.2.p.b 64

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(93))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(93)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(31))\)\(^{\oplus 2}\)