Properties

Label 925.2.t.b.843.15
Level $925$
Weight $2$
Character 925.843
Analytic conductor $7.386$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(82,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.t (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(17\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 843.15
Character \(\chi\) \(=\) 925.843
Dual form 925.2.t.b.282.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.16559 + 2.01885i) q^{2} +(-0.0549274 - 0.204992i) q^{3} +(-1.71718 + 2.97424i) q^{4} +(0.349826 - 0.349826i) q^{6} +(-1.26188 - 4.70941i) q^{7} -3.34372 q^{8} +(2.55907 - 1.47748i) q^{9} -0.366430i q^{11} +(0.704015 + 0.188640i) q^{12} +(1.46458 - 2.53673i) q^{13} +(8.03678 - 8.03678i) q^{14} +(-0.463041 - 0.802010i) q^{16} +(4.75903 - 2.74763i) q^{17} +(5.96563 + 3.44426i) q^{18} +(1.36274 - 0.365145i) q^{19} +(-0.896080 + 0.517352i) q^{21} +(0.739767 - 0.427105i) q^{22} -4.57650 q^{23} +(0.183662 + 0.685437i) q^{24} +6.82838 q^{26} +(-0.893629 - 0.893629i) q^{27} +(16.1738 + 4.33375i) q^{28} +(-4.08509 + 4.08509i) q^{29} +(-0.328846 - 0.328846i) q^{31} +(-2.26430 + 3.92188i) q^{32} +(-0.0751151 + 0.0201270i) q^{33} +(11.0941 + 6.40518i) q^{34} +10.1484i q^{36} +(-5.51420 - 2.56780i) q^{37} +(2.32556 + 2.32556i) q^{38} +(-0.600455 - 0.160892i) q^{39} +(7.08118 + 4.08832i) q^{41} +(-2.08891 - 1.20604i) q^{42} +6.04631 q^{43} +(1.08985 + 0.629224i) q^{44} +(-5.33430 - 9.23928i) q^{46} +(4.97863 - 4.97863i) q^{47} +(-0.138972 + 0.138972i) q^{48} +(-14.5240 + 8.38545i) q^{49} +(-0.824643 - 0.824643i) q^{51} +(5.02990 + 8.71203i) q^{52} +(-1.32960 + 4.96214i) q^{53} +(0.762504 - 2.84570i) q^{54} +(4.21939 + 15.7470i) q^{56} +(-0.149703 - 0.259294i) q^{57} +(-13.0087 - 3.48567i) q^{58} +(2.31870 - 8.65349i) q^{59} +(-0.665487 + 0.178317i) q^{61} +(0.280594 - 1.04719i) q^{62} +(-10.1873 - 10.1873i) q^{63} -12.4091 q^{64} +(-0.128187 - 0.128187i) q^{66} +(4.84572 - 1.29841i) q^{67} +18.8726i q^{68} +(0.251376 + 0.938146i) q^{69} +(5.17637 - 8.96573i) q^{71} +(-8.55683 + 4.94029i) q^{72} +(-8.94360 + 8.94360i) q^{73} +(-1.24326 - 14.1253i) q^{74} +(-1.25404 + 4.68013i) q^{76} +(-1.72567 + 0.462391i) q^{77} +(-0.375066 - 1.39976i) q^{78} +(1.85388 - 0.496745i) q^{79} +(4.29834 - 7.44494i) q^{81} +19.0612i q^{82} +(0.386169 - 1.44120i) q^{83} -3.55354i q^{84} +(7.04749 + 12.2066i) q^{86} +(1.06179 + 0.613027i) q^{87} +1.22524i q^{88} +(7.19530 + 1.92798i) q^{89} +(-13.7946 - 3.69626i) q^{91} +(7.85867 - 13.6116i) q^{92} +(-0.0493482 + 0.0854735i) q^{93} +(15.8541 + 4.24810i) q^{94} +(0.928326 + 0.248744i) q^{96} +0.442430i q^{97} +(-33.8580 - 19.5479i) q^{98} +(-0.541393 - 0.937719i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 4 q^{2} + 8 q^{3} - 30 q^{4} - 8 q^{6} + 2 q^{7} - 12 q^{8} - 14 q^{12} + 6 q^{13} - 26 q^{16} - 12 q^{17} - 18 q^{18} + 4 q^{19} - 12 q^{21} - 6 q^{22} + 12 q^{23} - 24 q^{26} + 68 q^{27} + 26 q^{28}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.16559 + 2.01885i 0.824193 + 1.42754i 0.902534 + 0.430618i \(0.141704\pi\)
−0.0783413 + 0.996927i \(0.524962\pi\)
\(3\) −0.0549274 0.204992i −0.0317124 0.118352i 0.948255 0.317509i \(-0.102846\pi\)
−0.979968 + 0.199157i \(0.936180\pi\)
\(4\) −1.71718 + 2.97424i −0.858589 + 1.48712i
\(5\) 0 0
\(6\) 0.349826 0.349826i 0.142816 0.142816i
\(7\) −1.26188 4.70941i −0.476947 1.77999i −0.613868 0.789408i \(-0.710387\pi\)
0.136922 0.990582i \(-0.456279\pi\)
\(8\) −3.34372 −1.18219
\(9\) 2.55907 1.47748i 0.853024 0.492494i
\(10\) 0 0
\(11\) 0.366430i 0.110483i −0.998473 0.0552413i \(-0.982407\pi\)
0.998473 0.0552413i \(-0.0175928\pi\)
\(12\) 0.704015 + 0.188640i 0.203232 + 0.0544558i
\(13\) 1.46458 2.53673i 0.406202 0.703563i −0.588258 0.808673i \(-0.700186\pi\)
0.994461 + 0.105110i \(0.0335196\pi\)
\(14\) 8.03678 8.03678i 2.14792 2.14792i
\(15\) 0 0
\(16\) −0.463041 0.802010i −0.115760 0.200503i
\(17\) 4.75903 2.74763i 1.15423 0.666397i 0.204319 0.978904i \(-0.434502\pi\)
0.949915 + 0.312507i \(0.101169\pi\)
\(18\) 5.96563 + 3.44426i 1.40611 + 0.811820i
\(19\) 1.36274 0.365145i 0.312634 0.0837699i −0.0990906 0.995078i \(-0.531593\pi\)
0.411724 + 0.911308i \(0.364927\pi\)
\(20\) 0 0
\(21\) −0.896080 + 0.517352i −0.195541 + 0.112895i
\(22\) 0.739767 0.427105i 0.157719 0.0910591i
\(23\) −4.57650 −0.954267 −0.477133 0.878831i \(-0.658324\pi\)
−0.477133 + 0.878831i \(0.658324\pi\)
\(24\) 0.183662 + 0.685437i 0.0374899 + 0.139914i
\(25\) 0 0
\(26\) 6.82838 1.33916
\(27\) −0.893629 0.893629i −0.171979 0.171979i
\(28\) 16.1738 + 4.33375i 3.05656 + 0.819002i
\(29\) −4.08509 + 4.08509i −0.758582 + 0.758582i −0.976064 0.217482i \(-0.930216\pi\)
0.217482 + 0.976064i \(0.430216\pi\)
\(30\) 0 0
\(31\) −0.328846 0.328846i −0.0590625 0.0590625i 0.676959 0.736021i \(-0.263298\pi\)
−0.736021 + 0.676959i \(0.763298\pi\)
\(32\) −2.26430 + 3.92188i −0.400275 + 0.693297i
\(33\) −0.0751151 + 0.0201270i −0.0130759 + 0.00350367i
\(34\) 11.0941 + 6.40518i 1.90262 + 1.09848i
\(35\) 0 0
\(36\) 10.1484i 1.69140i
\(37\) −5.51420 2.56780i −0.906529 0.422144i
\(38\) 2.32556 + 2.32556i 0.377256 + 0.377256i
\(39\) −0.600455 0.160892i −0.0961498 0.0257633i
\(40\) 0 0
\(41\) 7.08118 + 4.08832i 1.10590 + 0.638489i 0.937763 0.347276i \(-0.112893\pi\)
0.168132 + 0.985764i \(0.446226\pi\)
\(42\) −2.08891 1.20604i −0.322326 0.186095i
\(43\) 6.04631 0.922054 0.461027 0.887386i \(-0.347481\pi\)
0.461027 + 0.887386i \(0.347481\pi\)
\(44\) 1.08985 + 0.629224i 0.164301 + 0.0948592i
\(45\) 0 0
\(46\) −5.33430 9.23928i −0.786500 1.36226i
\(47\) 4.97863 4.97863i 0.726208 0.726208i −0.243654 0.969862i \(-0.578346\pi\)
0.969862 + 0.243654i \(0.0783462\pi\)
\(48\) −0.138972 + 0.138972i −0.0200589 + 0.0200589i
\(49\) −14.5240 + 8.38545i −2.07486 + 1.19792i
\(50\) 0 0
\(51\) −0.824643 0.824643i −0.115473 0.115473i
\(52\) 5.02990 + 8.71203i 0.697521 + 1.20814i
\(53\) −1.32960 + 4.96214i −0.182635 + 0.681603i 0.812490 + 0.582976i \(0.198112\pi\)
−0.995124 + 0.0986269i \(0.968555\pi\)
\(54\) 0.762504 2.84570i 0.103764 0.387251i
\(55\) 0 0
\(56\) 4.21939 + 15.7470i 0.563840 + 2.10428i
\(57\) −0.149703 0.259294i −0.0198287 0.0343443i
\(58\) −13.0087 3.48567i −1.70813 0.457691i
\(59\) 2.31870 8.65349i 0.301869 1.12659i −0.633739 0.773547i \(-0.718481\pi\)
0.935608 0.353042i \(-0.114853\pi\)
\(60\) 0 0
\(61\) −0.665487 + 0.178317i −0.0852069 + 0.0228311i −0.301171 0.953570i \(-0.597377\pi\)
0.215964 + 0.976401i \(0.430711\pi\)
\(62\) 0.280594 1.04719i 0.0356355 0.132993i
\(63\) −10.1873 10.1873i −1.28348 1.28348i
\(64\) −12.4091 −1.55114
\(65\) 0 0
\(66\) −0.128187 0.128187i −0.0157787 0.0157787i
\(67\) 4.84572 1.29841i 0.591999 0.158626i 0.0496322 0.998768i \(-0.484195\pi\)
0.542367 + 0.840142i \(0.317528\pi\)
\(68\) 18.8726i 2.28864i
\(69\) 0.251376 + 0.938146i 0.0302621 + 0.112940i
\(70\) 0 0
\(71\) 5.17637 8.96573i 0.614322 1.06404i −0.376181 0.926546i \(-0.622763\pi\)
0.990503 0.137491i \(-0.0439037\pi\)
\(72\) −8.55683 + 4.94029i −1.00843 + 0.582219i
\(73\) −8.94360 + 8.94360i −1.04677 + 1.04677i −0.0479181 + 0.998851i \(0.515259\pi\)
−0.998851 + 0.0479181i \(0.984741\pi\)
\(74\) −1.24326 14.1253i −0.144526 1.64204i
\(75\) 0 0
\(76\) −1.25404 + 4.68013i −0.143848 + 0.536847i
\(77\) −1.72567 + 0.462391i −0.196658 + 0.0526944i
\(78\) −0.375066 1.39976i −0.0424678 0.158492i
\(79\) 1.85388 0.496745i 0.208578 0.0558882i −0.153017 0.988224i \(-0.548899\pi\)
0.361595 + 0.932335i \(0.382232\pi\)
\(80\) 0 0
\(81\) 4.29834 7.44494i 0.477593 0.827216i
\(82\) 19.0612i 2.10495i
\(83\) 0.386169 1.44120i 0.0423875 0.158192i −0.941488 0.337046i \(-0.890572\pi\)
0.983876 + 0.178854i \(0.0572389\pi\)
\(84\) 3.55354i 0.387723i
\(85\) 0 0
\(86\) 7.04749 + 12.2066i 0.759951 + 1.31627i
\(87\) 1.06179 + 0.613027i 0.113836 + 0.0657234i
\(88\) 1.22524i 0.130611i
\(89\) 7.19530 + 1.92798i 0.762701 + 0.204365i 0.619144 0.785277i \(-0.287480\pi\)
0.143556 + 0.989642i \(0.454146\pi\)
\(90\) 0 0
\(91\) −13.7946 3.69626i −1.44607 0.387474i
\(92\) 7.85867 13.6116i 0.819323 1.41911i
\(93\) −0.0493482 + 0.0854735i −0.00511717 + 0.00886319i
\(94\) 15.8541 + 4.24810i 1.63523 + 0.438158i
\(95\) 0 0
\(96\) 0.928326 + 0.248744i 0.0947468 + 0.0253873i
\(97\) 0.442430i 0.0449220i 0.999748 + 0.0224610i \(0.00715016\pi\)
−0.999748 + 0.0224610i \(0.992850\pi\)
\(98\) −33.8580 19.5479i −3.42017 1.97464i
\(99\) −0.541393 0.937719i −0.0544120 0.0942443i
\(100\) 0 0
\(101\) 18.3189i 1.82280i 0.411519 + 0.911401i \(0.364999\pi\)
−0.411519 + 0.911401i \(0.635001\pi\)
\(102\) 0.703641 2.62602i 0.0696708 0.260015i
\(103\) 14.5303i 1.43171i 0.698248 + 0.715856i \(0.253963\pi\)
−0.698248 + 0.715856i \(0.746037\pi\)
\(104\) −4.89716 + 8.48213i −0.480206 + 0.831741i
\(105\) 0 0
\(106\) −11.5676 + 3.09953i −1.12354 + 0.301053i
\(107\) 4.94961 + 18.4722i 0.478497 + 1.78577i 0.607712 + 0.794158i \(0.292088\pi\)
−0.129215 + 0.991617i \(0.541246\pi\)
\(108\) 4.19238 1.12335i 0.403412 0.108094i
\(109\) 0.385986 1.44052i 0.0369708 0.137977i −0.944974 0.327146i \(-0.893913\pi\)
0.981944 + 0.189170i \(0.0605796\pi\)
\(110\) 0 0
\(111\) −0.223498 + 1.27141i −0.0212135 + 0.120677i
\(112\) −3.19269 + 3.19269i −0.301681 + 0.301681i
\(113\) 2.42128 1.39793i 0.227775 0.131506i −0.381770 0.924257i \(-0.624685\pi\)
0.609545 + 0.792751i \(0.291352\pi\)
\(114\) 0.348984 0.604459i 0.0326854 0.0566127i
\(115\) 0 0
\(116\) −5.13521 19.1649i −0.476792 1.77941i
\(117\) 8.65557i 0.800208i
\(118\) 20.1728 5.40528i 1.85705 0.497596i
\(119\) −18.9450 18.9450i −1.73669 1.73669i
\(120\) 0 0
\(121\) 10.8657 0.987794
\(122\) −1.13568 1.13568i −0.102819 0.102819i
\(123\) 0.449122 1.67615i 0.0404960 0.151133i
\(124\) 1.54275 0.413380i 0.138543 0.0371226i
\(125\) 0 0
\(126\) 8.69250 32.4409i 0.774390 2.89006i
\(127\) −13.9871 3.74783i −1.24115 0.332566i −0.422241 0.906484i \(-0.638756\pi\)
−0.818913 + 0.573918i \(0.805423\pi\)
\(128\) −9.93525 17.2084i −0.878161 1.52102i
\(129\) −0.332108 1.23945i −0.0292405 0.109127i
\(130\) 0 0
\(131\) −1.05224 + 3.92700i −0.0919344 + 0.343104i −0.996537 0.0831524i \(-0.973501\pi\)
0.904602 + 0.426256i \(0.140168\pi\)
\(132\) 0.0691234 0.257972i 0.00601642 0.0224536i
\(133\) −3.43923 5.95693i −0.298219 0.516531i
\(134\) 8.26939 + 8.26939i 0.714366 + 0.714366i
\(135\) 0 0
\(136\) −15.9129 + 9.18731i −1.36452 + 0.787805i
\(137\) 5.83166 5.83166i 0.498233 0.498233i −0.412655 0.910887i \(-0.635398\pi\)
0.910887 + 0.412655i \(0.135398\pi\)
\(138\) −1.60098 + 1.60098i −0.136284 + 0.136284i
\(139\) −4.47197 7.74568i −0.379307 0.656980i 0.611654 0.791125i \(-0.290504\pi\)
−0.990962 + 0.134146i \(0.957171\pi\)
\(140\) 0 0
\(141\) −1.29404 0.747116i −0.108978 0.0629185i
\(142\) 24.1340 2.02528
\(143\) −0.929533 0.536666i −0.0777315 0.0448783i
\(144\) −2.36991 1.36827i −0.197492 0.114022i
\(145\) 0 0
\(146\) −28.4803 7.63128i −2.35705 0.631570i
\(147\) 2.51672 + 2.51672i 0.207575 + 0.207575i
\(148\) 17.1061 11.9912i 1.40611 0.985668i
\(149\) 0.433951i 0.0355507i 0.999842 + 0.0177753i \(0.00565836\pi\)
−0.999842 + 0.0177753i \(0.994342\pi\)
\(150\) 0 0
\(151\) 2.72909 + 1.57564i 0.222090 + 0.128224i 0.606918 0.794765i \(-0.292406\pi\)
−0.384827 + 0.922989i \(0.625739\pi\)
\(152\) −4.55662 + 1.22094i −0.369591 + 0.0990316i
\(153\) 8.11913 14.0627i 0.656393 1.13691i
\(154\) −2.94491 2.94491i −0.237308 0.237308i
\(155\) 0 0
\(156\) 1.50962 1.50962i 0.120866 0.120866i
\(157\) −2.61914 0.701796i −0.209030 0.0560094i 0.152785 0.988260i \(-0.451176\pi\)
−0.361814 + 0.932250i \(0.617843\pi\)
\(158\) 3.16371 + 3.16371i 0.251691 + 0.251691i
\(159\) 1.09023 0.0864609
\(160\) 0 0
\(161\) 5.77501 + 21.5526i 0.455135 + 1.69859i
\(162\) 20.0403 1.57452
\(163\) −14.7778 + 8.53197i −1.15749 + 0.668275i −0.950700 0.310111i \(-0.899634\pi\)
−0.206787 + 0.978386i \(0.566301\pi\)
\(164\) −24.3193 + 14.0408i −1.89902 + 1.09640i
\(165\) 0 0
\(166\) 3.35968 0.900225i 0.260762 0.0698710i
\(167\) −17.4420 10.0702i −1.34970 0.779252i −0.361496 0.932374i \(-0.617734\pi\)
−0.988207 + 0.153122i \(0.951067\pi\)
\(168\) 2.99624 1.72988i 0.231165 0.133463i
\(169\) 2.21000 + 3.82783i 0.170000 + 0.294448i
\(170\) 0 0
\(171\) 2.94785 2.94785i 0.225428 0.225428i
\(172\) −10.3826 + 17.9832i −0.791665 + 1.37120i
\(173\) 7.46566 + 2.00042i 0.567604 + 0.152089i 0.531197 0.847248i \(-0.321742\pi\)
0.0364063 + 0.999337i \(0.488409\pi\)
\(174\) 2.85814i 0.216675i
\(175\) 0 0
\(176\) −0.293880 + 0.169672i −0.0221521 + 0.0127895i
\(177\) −1.90126 −0.142907
\(178\) 4.49444 + 16.7735i 0.336873 + 1.25723i
\(179\) 1.06842 1.06842i 0.0798575 0.0798575i −0.666050 0.745907i \(-0.732016\pi\)
0.745907 + 0.666050i \(0.232016\pi\)
\(180\) 0 0
\(181\) −2.22142 + 3.84761i −0.165117 + 0.285990i −0.936697 0.350142i \(-0.886133\pi\)
0.771580 + 0.636132i \(0.219467\pi\)
\(182\) −8.61662 32.1577i −0.638706 2.38368i
\(183\) 0.0731070 + 0.126625i 0.00540423 + 0.00936040i
\(184\) 15.3026 1.12812
\(185\) 0 0
\(186\) −0.230078 −0.0168701
\(187\) −1.00681 1.74385i −0.0736253 0.127523i
\(188\) 6.25844 + 23.3568i 0.456444 + 1.70347i
\(189\) −3.08081 + 5.33612i −0.224096 + 0.388146i
\(190\) 0 0
\(191\) 3.14026 3.14026i 0.227221 0.227221i −0.584310 0.811531i \(-0.698635\pi\)
0.811531 + 0.584310i \(0.198635\pi\)
\(192\) 0.681599 + 2.54376i 0.0491902 + 0.183580i
\(193\) −17.9118 −1.28932 −0.644660 0.764469i \(-0.723001\pi\)
−0.644660 + 0.764469i \(0.723001\pi\)
\(194\) −0.893201 + 0.515690i −0.0641281 + 0.0370244i
\(195\) 0 0
\(196\) 57.5972i 4.11409i
\(197\) −9.19196 2.46298i −0.654900 0.175480i −0.0839569 0.996469i \(-0.526756\pi\)
−0.570943 + 0.820989i \(0.693422\pi\)
\(198\) 1.26208 2.18598i 0.0896920 0.155351i
\(199\) −2.18010 + 2.18010i −0.154543 + 0.154543i −0.780143 0.625601i \(-0.784854\pi\)
0.625601 + 0.780143i \(0.284854\pi\)
\(200\) 0 0
\(201\) −0.532326 0.922015i −0.0375474 0.0650339i
\(202\) −36.9832 + 21.3523i −2.60213 + 1.50234i
\(203\) 24.3933 + 14.0835i 1.71207 + 0.988465i
\(204\) 3.86874 1.03663i 0.270866 0.0725783i
\(205\) 0 0
\(206\) −29.3345 + 16.9363i −2.04383 + 1.18001i
\(207\) −11.7116 + 6.76169i −0.814012 + 0.469970i
\(208\) −2.71265 −0.188088
\(209\) −0.133800 0.499348i −0.00925513 0.0345406i
\(210\) 0 0
\(211\) 1.89866 0.130709 0.0653544 0.997862i \(-0.479182\pi\)
0.0653544 + 0.997862i \(0.479182\pi\)
\(212\) −12.4754 12.4754i −0.856816 0.856816i
\(213\) −2.12223 0.568649i −0.145413 0.0389632i
\(214\) −31.5234 + 31.5234i −2.15490 + 2.15490i
\(215\) 0 0
\(216\) 2.98805 + 2.98805i 0.203311 + 0.203311i
\(217\) −1.13371 + 1.96364i −0.0769610 + 0.133300i
\(218\) 3.35810 0.899800i 0.227439 0.0609421i
\(219\) 2.32462 + 1.34212i 0.157083 + 0.0906919i
\(220\) 0 0
\(221\) 16.0965i 1.08277i
\(222\) −2.82729 + 1.03073i −0.189756 + 0.0691778i
\(223\) 6.21109 + 6.21109i 0.415925 + 0.415925i 0.883797 0.467871i \(-0.154979\pi\)
−0.467871 + 0.883797i \(0.654979\pi\)
\(224\) 21.3270 + 5.71456i 1.42497 + 0.381820i
\(225\) 0 0
\(226\) 5.64442 + 3.25881i 0.375461 + 0.216773i
\(227\) 5.91235 + 3.41350i 0.392417 + 0.226562i 0.683207 0.730225i \(-0.260585\pi\)
−0.290790 + 0.956787i \(0.593918\pi\)
\(228\) 1.02827 0.0680988
\(229\) −1.40787 0.812833i −0.0930345 0.0537135i 0.452761 0.891632i \(-0.350439\pi\)
−0.545795 + 0.837918i \(0.683772\pi\)
\(230\) 0 0
\(231\) 0.189573 + 0.328350i 0.0124730 + 0.0216038i
\(232\) 13.6594 13.6594i 0.896784 0.896784i
\(233\) 11.5898 11.5898i 0.759276 0.759276i −0.216915 0.976191i \(-0.569599\pi\)
0.976191 + 0.216915i \(0.0695993\pi\)
\(234\) 17.4743 10.0888i 1.14233 0.659526i
\(235\) 0 0
\(236\) 21.7559 + 21.7559i 1.41619 + 1.41619i
\(237\) −0.203658 0.352745i −0.0132290 0.0229133i
\(238\) 16.1652 60.3293i 1.04783 3.91057i
\(239\) −1.42895 + 5.33292i −0.0924313 + 0.344958i −0.996617 0.0821803i \(-0.973812\pi\)
0.904186 + 0.427138i \(0.140478\pi\)
\(240\) 0 0
\(241\) 5.06390 + 18.8987i 0.326194 + 1.21737i 0.913106 + 0.407723i \(0.133677\pi\)
−0.586911 + 0.809651i \(0.699656\pi\)
\(242\) 12.6649 + 21.9363i 0.814133 + 1.41012i
\(243\) −5.42441 1.45347i −0.347976 0.0932399i
\(244\) 0.612403 2.28552i 0.0392051 0.146315i
\(245\) 0 0
\(246\) 3.90738 1.04698i 0.249126 0.0667530i
\(247\) 1.06957 3.99169i 0.0680551 0.253985i
\(248\) 1.09957 + 1.09957i 0.0698229 + 0.0698229i
\(249\) −0.316646 −0.0200666
\(250\) 0 0
\(251\) −3.50434 3.50434i −0.221192 0.221192i 0.587808 0.809000i \(-0.299991\pi\)
−0.809000 + 0.587808i \(0.799991\pi\)
\(252\) 47.7929 12.8061i 3.01067 0.806707i
\(253\) 1.67697i 0.105430i
\(254\) −8.73683 32.6063i −0.548197 2.04590i
\(255\) 0 0
\(256\) 10.7517 18.6225i 0.671980 1.16390i
\(257\) 6.93002 4.00105i 0.432283 0.249579i −0.268036 0.963409i \(-0.586375\pi\)
0.700319 + 0.713830i \(0.253041\pi\)
\(258\) 2.11516 2.11516i 0.131684 0.131684i
\(259\) −5.13456 + 29.2089i −0.319046 + 1.81495i
\(260\) 0 0
\(261\) −4.41840 + 16.4897i −0.273492 + 1.02069i
\(262\) −9.15452 + 2.45295i −0.565568 + 0.151543i
\(263\) −4.35453 16.2513i −0.268512 1.00210i −0.960066 0.279775i \(-0.909740\pi\)
0.691553 0.722325i \(-0.256927\pi\)
\(264\) 0.251164 0.0672993i 0.0154581 0.00414198i
\(265\) 0 0
\(266\) 8.01744 13.8866i 0.491581 0.851443i
\(267\) 1.58088i 0.0967482i
\(268\) −4.45919 + 16.6419i −0.272388 + 1.01657i
\(269\) 19.7929i 1.20680i 0.797440 + 0.603398i \(0.206187\pi\)
−0.797440 + 0.603398i \(0.793813\pi\)
\(270\) 0 0
\(271\) −12.7667 22.1125i −0.775519 1.34324i −0.934502 0.355958i \(-0.884155\pi\)
0.158983 0.987281i \(-0.449179\pi\)
\(272\) −4.40725 2.54453i −0.267229 0.154285i
\(273\) 3.03082i 0.183433i
\(274\) 18.5706 + 4.97597i 1.12189 + 0.300609i
\(275\) 0 0
\(276\) −3.22193 0.863313i −0.193937 0.0519653i
\(277\) −13.2864 + 23.0128i −0.798305 + 1.38270i 0.122415 + 0.992479i \(0.460936\pi\)
−0.920720 + 0.390225i \(0.872397\pi\)
\(278\) 10.4249 18.0565i 0.625245 1.08296i
\(279\) −1.32741 0.355677i −0.0794697 0.0212938i
\(280\) 0 0
\(281\) −6.65406 1.78295i −0.396948 0.106362i 0.0548223 0.998496i \(-0.482541\pi\)
−0.451771 + 0.892134i \(0.649207\pi\)
\(282\) 3.48331i 0.207428i
\(283\) −5.34172 3.08404i −0.317532 0.183327i 0.332760 0.943012i \(-0.392020\pi\)
−0.650292 + 0.759684i \(0.725354\pi\)
\(284\) 17.7775 + 30.7915i 1.05490 + 1.82714i
\(285\) 0 0
\(286\) 2.50212i 0.147954i
\(287\) 10.3180 38.5072i 0.609051 2.27301i
\(288\) 13.3818i 0.788531i
\(289\) 6.59890 11.4296i 0.388171 0.672331i
\(290\) 0 0
\(291\) 0.0906946 0.0243016i 0.00531661 0.00142458i
\(292\) −11.2427 41.9582i −0.657926 2.45542i
\(293\) 14.8916 3.99019i 0.869975 0.233109i 0.203898 0.978992i \(-0.434639\pi\)
0.666077 + 0.745883i \(0.267972\pi\)
\(294\) −2.14743 + 8.01433i −0.125241 + 0.467405i
\(295\) 0 0
\(296\) 18.4380 + 8.58602i 1.07168 + 0.499052i
\(297\) −0.327452 + 0.327452i −0.0190007 + 0.0190007i
\(298\) −0.876083 + 0.505807i −0.0507501 + 0.0293006i
\(299\) −6.70267 + 11.6094i −0.387625 + 0.671386i
\(300\) 0 0
\(301\) −7.62974 28.4746i −0.439771 1.64125i
\(302\) 7.34618i 0.422725i
\(303\) 3.75524 1.00621i 0.215733 0.0578054i
\(304\) −0.923854 0.923854i −0.0529866 0.0529866i
\(305\) 0 0
\(306\) 37.8541 2.16398
\(307\) −13.0226 13.0226i −0.743237 0.743237i 0.229962 0.973199i \(-0.426140\pi\)
−0.973199 + 0.229962i \(0.926140\pi\)
\(308\) 1.58802 5.92655i 0.0904856 0.337697i
\(309\) 2.97859 0.798112i 0.169446 0.0454030i
\(310\) 0 0
\(311\) 0.130184 0.485853i 0.00738205 0.0275502i −0.962137 0.272568i \(-0.912127\pi\)
0.969519 + 0.245018i \(0.0787938\pi\)
\(312\) 2.00776 + 0.537977i 0.113667 + 0.0304569i
\(313\) −8.25875 14.3046i −0.466812 0.808543i 0.532469 0.846450i \(-0.321264\pi\)
−0.999281 + 0.0379068i \(0.987931\pi\)
\(314\) −1.63601 6.10566i −0.0923251 0.344562i
\(315\) 0 0
\(316\) −1.70600 + 6.36688i −0.0959700 + 0.358165i
\(317\) −4.96290 + 18.5218i −0.278744 + 1.04029i 0.674546 + 0.738232i \(0.264339\pi\)
−0.953291 + 0.302055i \(0.902327\pi\)
\(318\) 1.27076 + 2.20102i 0.0712605 + 0.123427i
\(319\) 1.49690 + 1.49690i 0.0838102 + 0.0838102i
\(320\) 0 0
\(321\) 3.51478 2.02926i 0.196176 0.113262i
\(322\) −36.7803 + 36.7803i −2.04969 + 2.04969i
\(323\) 5.48203 5.48203i 0.305028 0.305028i
\(324\) 14.7620 + 25.5686i 0.820112 + 1.42048i
\(325\) 0 0
\(326\) −34.4496 19.8895i −1.90799 1.10158i
\(327\) −0.316496 −0.0175023
\(328\) −23.6775 13.6702i −1.30737 0.754812i
\(329\) −29.7289 17.1640i −1.63901 0.946280i
\(330\) 0 0
\(331\) 9.44128 + 2.52978i 0.518940 + 0.139049i 0.508776 0.860899i \(-0.330098\pi\)
0.0101636 + 0.999948i \(0.496765\pi\)
\(332\) 3.62335 + 3.62335i 0.198857 + 0.198857i
\(333\) −17.9051 + 1.57593i −0.981194 + 0.0863607i
\(334\) 46.9505i 2.56902i
\(335\) 0 0
\(336\) 0.829843 + 0.479110i 0.0452717 + 0.0261376i
\(337\) 31.2631 8.37692i 1.70301 0.456320i 0.729315 0.684178i \(-0.239839\pi\)
0.973694 + 0.227858i \(0.0731723\pi\)
\(338\) −5.15188 + 8.92331i −0.280225 + 0.485364i
\(339\) −0.419559 0.419559i −0.0227873 0.0227873i
\(340\) 0 0
\(341\) −0.120499 + 0.120499i −0.00652539 + 0.00652539i
\(342\) 9.38725 + 2.51531i 0.507604 + 0.136012i
\(343\) 33.6855 + 33.6855i 1.81884 + 1.81884i
\(344\) −20.2172 −1.09004
\(345\) 0 0
\(346\) 4.66331 + 17.4037i 0.250701 + 0.935630i
\(347\) −4.31321 −0.231545 −0.115773 0.993276i \(-0.536934\pi\)
−0.115773 + 0.993276i \(0.536934\pi\)
\(348\) −3.64658 + 2.10535i −0.195477 + 0.112859i
\(349\) 11.5422 6.66391i 0.617841 0.356711i −0.158187 0.987409i \(-0.550565\pi\)
0.776028 + 0.630698i \(0.217231\pi\)
\(350\) 0 0
\(351\) −3.57569 + 0.958103i −0.190856 + 0.0511397i
\(352\) 1.43709 + 0.829705i 0.0765973 + 0.0442234i
\(353\) −17.6672 + 10.2002i −0.940332 + 0.542901i −0.890064 0.455835i \(-0.849341\pi\)
−0.0502677 + 0.998736i \(0.516007\pi\)
\(354\) −2.21608 3.83836i −0.117783 0.204006i
\(355\) 0 0
\(356\) −18.0899 + 18.0899i −0.958761 + 0.958761i
\(357\) −2.84298 + 4.92418i −0.150466 + 0.260615i
\(358\) 3.40232 + 0.911649i 0.179818 + 0.0481821i
\(359\) 34.9558i 1.84489i −0.386123 0.922447i \(-0.626186\pi\)
0.386123 0.922447i \(-0.373814\pi\)
\(360\) 0 0
\(361\) −14.7308 + 8.50481i −0.775303 + 0.447621i
\(362\) −10.3570 −0.544352
\(363\) −0.596827 2.22739i −0.0313253 0.116908i
\(364\) 34.6814 34.6814i 1.81780 1.81780i
\(365\) 0 0
\(366\) −0.170425 + 0.295185i −0.00890825 + 0.0154295i
\(367\) 3.53325 + 13.1863i 0.184434 + 0.688318i 0.994751 + 0.102326i \(0.0326285\pi\)
−0.810317 + 0.585992i \(0.800705\pi\)
\(368\) 2.11911 + 3.67040i 0.110466 + 0.191333i
\(369\) 24.1617 1.25781
\(370\) 0 0
\(371\) 25.0466 1.30035
\(372\) −0.169479 0.293546i −0.00878708 0.0152197i
\(373\) 9.24926 + 34.5187i 0.478908 + 1.78731i 0.606051 + 0.795426i \(0.292753\pi\)
−0.127143 + 0.991884i \(0.540581\pi\)
\(374\) 2.34705 4.06521i 0.121363 0.210207i
\(375\) 0 0
\(376\) −16.6472 + 16.6472i −0.858512 + 0.858512i
\(377\) 4.37982 + 16.3457i 0.225572 + 0.841848i
\(378\) −14.3638 −0.738793
\(379\) −7.67834 + 4.43309i −0.394410 + 0.227713i −0.684069 0.729417i \(-0.739791\pi\)
0.289659 + 0.957130i \(0.406458\pi\)
\(380\) 0 0
\(381\) 3.07310i 0.157440i
\(382\) 9.99996 + 2.67948i 0.511643 + 0.137094i
\(383\) −14.5143 + 25.1396i −0.741648 + 1.28457i 0.210097 + 0.977681i \(0.432622\pi\)
−0.951745 + 0.306891i \(0.900711\pi\)
\(384\) −2.98186 + 2.98186i −0.152167 + 0.152167i
\(385\) 0 0
\(386\) −20.8777 36.1613i −1.06265 1.84056i
\(387\) 15.4729 8.93331i 0.786534 0.454106i
\(388\) −1.31589 0.759731i −0.0668043 0.0385695i
\(389\) 7.17950 1.92374i 0.364015 0.0975376i −0.0721752 0.997392i \(-0.522994\pi\)
0.436190 + 0.899854i \(0.356327\pi\)
\(390\) 0 0
\(391\) −21.7797 + 12.5745i −1.10145 + 0.635921i
\(392\) 48.5644 28.0386i 2.45287 1.41617i
\(393\) 0.862801 0.0435226
\(394\) −5.74162 21.4280i −0.289259 1.07953i
\(395\) 0 0
\(396\) 3.71867 0.186870
\(397\) 20.5464 + 20.5464i 1.03119 + 1.03119i 0.999498 + 0.0316970i \(0.0100912\pi\)
0.0316970 + 0.999498i \(0.489909\pi\)
\(398\) −6.94238 1.86020i −0.347990 0.0932436i
\(399\) −1.03221 + 1.03221i −0.0516753 + 0.0516753i
\(400\) 0 0
\(401\) −12.1819 12.1819i −0.608337 0.608337i 0.334174 0.942511i \(-0.391543\pi\)
−0.942511 + 0.334174i \(0.891543\pi\)
\(402\) 1.24094 2.14937i 0.0618926 0.107201i
\(403\) −1.31582 + 0.352572i −0.0655455 + 0.0175629i
\(404\) −54.4849 31.4569i −2.71072 1.56504i
\(405\) 0 0
\(406\) 65.6619i 3.25874i
\(407\) −0.940918 + 2.02057i −0.0466396 + 0.100156i
\(408\) 2.75738 + 2.75738i 0.136511 + 0.136511i
\(409\) 26.5759 + 7.12099i 1.31409 + 0.352110i 0.846762 0.531972i \(-0.178549\pi\)
0.467331 + 0.884082i \(0.345216\pi\)
\(410\) 0 0
\(411\) −1.51576 0.875126i −0.0747670 0.0431668i
\(412\) −43.2165 24.9511i −2.12913 1.22925i
\(413\) −43.6788 −2.14929
\(414\) −27.3017 15.7627i −1.34181 0.774692i
\(415\) 0 0
\(416\) 6.63250 + 11.4878i 0.325185 + 0.563237i
\(417\) −1.34217 + 1.34217i −0.0657262 + 0.0657262i
\(418\) 0.852154 0.852154i 0.0416802 0.0416802i
\(419\) −23.1243 + 13.3508i −1.12969 + 0.652229i −0.943858 0.330352i \(-0.892833\pi\)
−0.185836 + 0.982581i \(0.559499\pi\)
\(420\) 0 0
\(421\) 4.02616 + 4.02616i 0.196223 + 0.196223i 0.798379 0.602156i \(-0.205691\pi\)
−0.602156 + 0.798379i \(0.705691\pi\)
\(422\) 2.21304 + 3.83311i 0.107729 + 0.186593i
\(423\) 5.38484 20.0965i 0.261820 0.977125i
\(424\) 4.44582 16.5920i 0.215908 0.805780i
\(425\) 0 0
\(426\) −1.32562 4.94727i −0.0642264 0.239696i
\(427\) 1.67953 + 2.90904i 0.0812784 + 0.140778i
\(428\) −63.4401 16.9987i −3.06649 0.821664i
\(429\) −0.0589554 + 0.220025i −0.00284639 + 0.0106229i
\(430\) 0 0
\(431\) 8.13625 2.18010i 0.391909 0.105012i −0.0574826 0.998347i \(-0.518307\pi\)
0.449392 + 0.893335i \(0.351641\pi\)
\(432\) −0.302913 + 1.13049i −0.0145739 + 0.0543905i
\(433\) 1.88301 + 1.88301i 0.0904917 + 0.0904917i 0.750904 0.660412i \(-0.229618\pi\)
−0.660412 + 0.750904i \(0.729618\pi\)
\(434\) −5.28573 −0.253723
\(435\) 0 0
\(436\) 3.62164 + 3.62164i 0.173445 + 0.173445i
\(437\) −6.23658 + 1.67109i −0.298336 + 0.0799389i
\(438\) 6.25741i 0.298991i
\(439\) 7.80392 + 29.1246i 0.372461 + 1.39004i 0.857019 + 0.515284i \(0.172314\pi\)
−0.484559 + 0.874759i \(0.661020\pi\)
\(440\) 0 0
\(441\) −24.7787 + 42.9179i −1.17994 + 2.04371i
\(442\) 32.4965 18.7618i 1.54570 0.892410i
\(443\) 20.2428 20.2428i 0.961764 0.961764i −0.0375315 0.999295i \(-0.511949\pi\)
0.999295 + 0.0375315i \(0.0119495\pi\)
\(444\) −3.39769 2.84797i −0.161247 0.135159i
\(445\) 0 0
\(446\) −5.29972 + 19.7788i −0.250949 + 0.936554i
\(447\) 0.0889565 0.0238358i 0.00420750 0.00112740i
\(448\) 15.6588 + 58.4395i 0.739810 + 2.76101i
\(449\) 4.29808 1.15167i 0.202839 0.0543505i −0.155969 0.987762i \(-0.549850\pi\)
0.358808 + 0.933411i \(0.383183\pi\)
\(450\) 0 0
\(451\) 1.49808 2.59476i 0.0705420 0.122182i
\(452\) 9.60196i 0.451638i
\(453\) 0.173092 0.645988i 0.00813257 0.0303512i
\(454\) 15.9149i 0.746923i
\(455\) 0 0
\(456\) 0.500567 + 0.867008i 0.0234412 + 0.0406014i
\(457\) 21.7236 + 12.5421i 1.01619 + 0.586696i 0.912997 0.407966i \(-0.133762\pi\)
0.103190 + 0.994662i \(0.467095\pi\)
\(458\) 3.78970i 0.177081i
\(459\) −6.70816 1.79745i −0.313110 0.0838976i
\(460\) 0 0
\(461\) −23.4572 6.28532i −1.09251 0.292737i −0.332798 0.942998i \(-0.607993\pi\)
−0.759711 + 0.650261i \(0.774659\pi\)
\(462\) −0.441927 + 0.765440i −0.0205603 + 0.0356115i
\(463\) 17.3725 30.0901i 0.807370 1.39841i −0.107309 0.994226i \(-0.534223\pi\)
0.914679 0.404181i \(-0.132443\pi\)
\(464\) 5.16785 + 1.38472i 0.239911 + 0.0642840i
\(465\) 0 0
\(466\) 36.9071 + 9.88924i 1.70969 + 0.458110i
\(467\) 36.2490i 1.67740i 0.544591 + 0.838702i \(0.316685\pi\)
−0.544591 + 0.838702i \(0.683315\pi\)
\(468\) 25.7437 + 14.8631i 1.19000 + 0.687049i
\(469\) −12.2295 21.1820i −0.564704 0.978096i
\(470\) 0 0
\(471\) 0.575450i 0.0265153i
\(472\) −7.75308 + 28.9349i −0.356865 + 1.33184i
\(473\) 2.21555i 0.101871i
\(474\) 0.474761 0.822310i 0.0218065 0.0377699i
\(475\) 0 0
\(476\) 88.8791 23.8151i 4.07376 1.09156i
\(477\) 3.92892 + 14.6629i 0.179893 + 0.671370i
\(478\) −12.4320 + 3.33113i −0.568624 + 0.152362i
\(479\) −5.57069 + 20.7901i −0.254532 + 0.949925i 0.713819 + 0.700330i \(0.246964\pi\)
−0.968350 + 0.249594i \(0.919703\pi\)
\(480\) 0 0
\(481\) −14.5898 + 10.2273i −0.665239 + 0.466324i
\(482\) −32.2513 + 32.2513i −1.46901 + 1.46901i
\(483\) 4.10091 2.36766i 0.186598 0.107732i
\(484\) −18.6584 + 32.3173i −0.848108 + 1.46897i
\(485\) 0 0
\(486\) −3.38828 12.6452i −0.153695 0.573599i
\(487\) 21.0177i 0.952404i 0.879336 + 0.476202i \(0.157987\pi\)
−0.879336 + 0.476202i \(0.842013\pi\)
\(488\) 2.22521 0.596242i 0.100730 0.0269906i
\(489\) 2.56069 + 2.56069i 0.115799 + 0.115799i
\(490\) 0 0
\(491\) 19.3337 0.872519 0.436260 0.899821i \(-0.356303\pi\)
0.436260 + 0.899821i \(0.356303\pi\)
\(492\) 4.21404 + 4.21404i 0.189984 + 0.189984i
\(493\) −8.21676 + 30.6654i −0.370064 + 1.38110i
\(494\) 9.30530 2.49335i 0.418665 0.112181i
\(495\) 0 0
\(496\) −0.111469 + 0.416007i −0.00500510 + 0.0186793i
\(497\) −48.7553 13.0639i −2.18697 0.585998i
\(498\) −0.369078 0.639261i −0.0165388 0.0286460i
\(499\) 0.213597 + 0.797157i 0.00956194 + 0.0356856i 0.970542 0.240932i \(-0.0774531\pi\)
−0.960980 + 0.276618i \(0.910786\pi\)
\(500\) 0 0
\(501\) −1.10626 + 4.12860i −0.0494238 + 0.184452i
\(502\) 2.99014 11.1594i 0.133456 0.498066i
\(503\) 11.5673 + 20.0352i 0.515761 + 0.893324i 0.999833 + 0.0182956i \(0.00582400\pi\)
−0.484072 + 0.875028i \(0.660843\pi\)
\(504\) 34.0636 + 34.0636i 1.51731 + 1.51731i
\(505\) 0 0
\(506\) −3.38555 + 1.95465i −0.150506 + 0.0868946i
\(507\) 0.663284 0.663284i 0.0294575 0.0294575i
\(508\) 35.1652 35.1652i 1.56021 1.56021i
\(509\) 14.9954 + 25.9727i 0.664658 + 1.15122i 0.979378 + 0.202036i \(0.0647559\pi\)
−0.314720 + 0.949184i \(0.601911\pi\)
\(510\) 0 0
\(511\) 53.4049 + 30.8333i 2.36249 + 1.36399i
\(512\) 10.3870 0.459044
\(513\) −1.54409 0.891478i −0.0681731 0.0393597i
\(514\) 16.1551 + 9.32713i 0.712569 + 0.411402i
\(515\) 0 0
\(516\) 4.25670 + 1.14058i 0.187391 + 0.0502112i
\(517\) −1.82432 1.82432i −0.0802334 0.0802334i
\(518\) −64.9532 + 23.6795i −2.85388 + 1.04042i
\(519\) 1.64028i 0.0720002i
\(520\) 0 0
\(521\) 4.56151 + 2.63359i 0.199843 + 0.115380i 0.596582 0.802552i \(-0.296525\pi\)
−0.396739 + 0.917931i \(0.629858\pi\)
\(522\) −38.4402 + 10.3000i −1.68248 + 0.450820i
\(523\) 7.46593 12.9314i 0.326462 0.565449i −0.655345 0.755330i \(-0.727477\pi\)
0.981807 + 0.189881i \(0.0608101\pi\)
\(524\) −9.87297 9.87297i −0.431303 0.431303i
\(525\) 0 0
\(526\) 27.7335 27.7335i 1.20924 1.20924i
\(527\) −2.46854 0.661442i −0.107531 0.0288129i
\(528\) 0.0509235 + 0.0509235i 0.00221616 + 0.00221616i
\(529\) −2.05563 −0.0893751
\(530\) 0 0
\(531\) −6.85166 25.5707i −0.297337 1.10968i
\(532\) 23.6231 1.02419
\(533\) 20.7420 11.9754i 0.898434 0.518711i
\(534\) 3.19156 1.84265i 0.138112 0.0797392i
\(535\) 0 0
\(536\) −16.2027 + 4.34151i −0.699852 + 0.187525i
\(537\) −0.277703 0.160332i −0.0119838 0.00691884i
\(538\) −39.9590 + 23.0703i −1.72275 + 0.994633i
\(539\) 3.07268 + 5.32203i 0.132350 + 0.229236i
\(540\) 0 0
\(541\) −16.9353 + 16.9353i −0.728105 + 0.728105i −0.970242 0.242137i \(-0.922152\pi\)
0.242137 + 0.970242i \(0.422152\pi\)
\(542\) 29.7613 51.5480i 1.27836 2.21418i
\(543\) 0.910745 + 0.244033i 0.0390838 + 0.0104725i
\(544\) 24.8858i 1.06697i
\(545\) 0 0
\(546\) −6.11877 + 3.53268i −0.261859 + 0.151185i
\(547\) 0.870417 0.0372163 0.0186082 0.999827i \(-0.494076\pi\)
0.0186082 + 0.999827i \(0.494076\pi\)
\(548\) 7.33076 + 27.3588i 0.313154 + 1.16871i
\(549\) −1.43957 + 1.43957i −0.0614394 + 0.0614394i
\(550\) 0 0
\(551\) −4.07526 + 7.05856i −0.173612 + 0.300705i
\(552\) −0.840531 3.13690i −0.0357754 0.133515i
\(553\) −4.67876 8.10385i −0.198961 0.344611i
\(554\) −61.9459 −2.63183
\(555\) 0 0
\(556\) 30.7166 1.30268
\(557\) −17.1411 29.6892i −0.726291 1.25797i −0.958440 0.285293i \(-0.907909\pi\)
0.232149 0.972680i \(-0.425424\pi\)
\(558\) −0.829144 3.09441i −0.0351005 0.130997i
\(559\) 8.85532 15.3379i 0.374540 0.648723i
\(560\) 0 0
\(561\) −0.302173 + 0.302173i −0.0127578 + 0.0127578i
\(562\) −4.15636 15.5118i −0.175326 0.654324i
\(563\) 19.7674 0.833098 0.416549 0.909113i \(-0.363239\pi\)
0.416549 + 0.909113i \(0.363239\pi\)
\(564\) 4.44420 2.56586i 0.187135 0.108042i
\(565\) 0 0
\(566\) 14.3789i 0.604389i
\(567\) −40.4853 10.8480i −1.70022 0.455573i
\(568\) −17.3084 + 29.9789i −0.726242 + 1.25789i
\(569\) 15.7339 15.7339i 0.659600 0.659600i −0.295685 0.955285i \(-0.595548\pi\)
0.955285 + 0.295685i \(0.0955480\pi\)
\(570\) 0 0
\(571\) −23.2159 40.2112i −0.971557 1.68279i −0.690858 0.722990i \(-0.742767\pi\)
−0.280699 0.959796i \(-0.590566\pi\)
\(572\) 3.19235 1.84310i 0.133479 0.0770640i
\(573\) −0.816215 0.471242i −0.0340979 0.0196864i
\(574\) 89.7668 24.0530i 3.74680 1.00395i
\(575\) 0 0
\(576\) −31.7557 + 18.3342i −1.32316 + 0.763924i
\(577\) 8.06980 4.65910i 0.335950 0.193961i −0.322530 0.946559i \(-0.604533\pi\)
0.658480 + 0.752598i \(0.271200\pi\)
\(578\) 30.7663 1.27971
\(579\) 0.983849 + 3.67178i 0.0408874 + 0.152594i
\(580\) 0 0
\(581\) −7.27451 −0.301797
\(582\) 0.154774 + 0.154774i 0.00641557 + 0.00641557i
\(583\) 1.81828 + 0.487205i 0.0753053 + 0.0201780i
\(584\) 29.9049 29.9049i 1.23748 1.23748i
\(585\) 0 0
\(586\) 25.4130 + 25.4130i 1.04980 + 1.04980i
\(587\) −6.93015 + 12.0034i −0.286038 + 0.495433i −0.972860 0.231393i \(-0.925672\pi\)
0.686822 + 0.726825i \(0.259005\pi\)
\(588\) −11.8070 + 3.16367i −0.486911 + 0.130467i
\(589\) −0.568208 0.328055i −0.0234126 0.0135173i
\(590\) 0 0
\(591\) 2.01956i 0.0830738i
\(592\) 0.493896 + 5.61144i 0.0202990 + 0.230629i
\(593\) −8.34054 8.34054i −0.342505 0.342505i 0.514803 0.857308i \(-0.327865\pi\)
−0.857308 + 0.514803i \(0.827865\pi\)
\(594\) −1.04275 0.279404i −0.0427846 0.0114641i
\(595\) 0 0
\(596\) −1.29067 0.745171i −0.0528681 0.0305234i
\(597\) 0.566649 + 0.327155i 0.0231914 + 0.0133896i
\(598\) −31.2501 −1.27791
\(599\) 6.26237 + 3.61558i 0.255874 + 0.147729i 0.622451 0.782659i \(-0.286137\pi\)
−0.366577 + 0.930388i \(0.619470\pi\)
\(600\) 0 0
\(601\) −2.21805 3.84178i −0.0904763 0.156709i 0.817235 0.576304i \(-0.195506\pi\)
−0.907712 + 0.419595i \(0.862172\pi\)
\(602\) 48.5929 48.5929i 1.98050 1.98050i
\(603\) 10.4822 10.4822i 0.426867 0.426867i
\(604\) −9.37267 + 5.41131i −0.381368 + 0.220183i
\(605\) 0 0
\(606\) 6.40844 + 6.40844i 0.260325 + 0.260325i
\(607\) −12.1001 20.9580i −0.491129 0.850661i 0.508819 0.860874i \(-0.330082\pi\)
−0.999948 + 0.0102130i \(0.996749\pi\)
\(608\) −1.65359 + 6.17129i −0.0670620 + 0.250279i
\(609\) 1.54714 5.77399i 0.0626931 0.233974i
\(610\) 0 0
\(611\) −5.33783 19.9211i −0.215946 0.805920i
\(612\) 27.8840 + 48.2964i 1.12714 + 1.95227i
\(613\) −3.64410 0.976435i −0.147184 0.0394378i 0.184475 0.982837i \(-0.440942\pi\)
−0.331659 + 0.943399i \(0.607608\pi\)
\(614\) 11.1117 41.4695i 0.448433 1.67357i
\(615\) 0 0
\(616\) 5.77016 1.54611i 0.232486 0.0622945i
\(617\) 3.01209 11.2413i 0.121262 0.452556i −0.878417 0.477895i \(-0.841400\pi\)
0.999679 + 0.0253391i \(0.00806654\pi\)
\(618\) 5.08307 + 5.08307i 0.204471 + 0.204471i
\(619\) 26.3769 1.06018 0.530089 0.847942i \(-0.322159\pi\)
0.530089 + 0.847942i \(0.322159\pi\)
\(620\) 0 0
\(621\) 4.08969 + 4.08969i 0.164114 + 0.164114i
\(622\) 1.13261 0.303481i 0.0454133 0.0121685i
\(623\) 36.3185i 1.45507i
\(624\) 0.148999 + 0.556071i 0.00596472 + 0.0222606i
\(625\) 0 0
\(626\) 19.2526 33.3464i 0.769487 1.33279i
\(627\) −0.0950130 + 0.0548558i −0.00379445 + 0.00219073i
\(628\) 6.58483 6.58483i 0.262763 0.262763i
\(629\) −33.2976 + 2.93072i −1.32766 + 0.116855i
\(630\) 0 0
\(631\) −2.96939 + 11.0819i −0.118210 + 0.441164i −0.999507 0.0313980i \(-0.990004\pi\)
0.881297 + 0.472562i \(0.156671\pi\)
\(632\) −6.19886 + 1.66098i −0.246577 + 0.0660702i
\(633\) −0.104288 0.389209i −0.00414509 0.0154697i
\(634\) −43.1774 + 11.5694i −1.71480 + 0.459478i
\(635\) 0 0
\(636\) −1.87212 + 3.24261i −0.0742344 + 0.128578i
\(637\) 49.1247i 1.94639i
\(638\) −1.27725 + 4.76678i −0.0505670 + 0.188718i
\(639\) 30.5919i 1.21020i
\(640\) 0 0
\(641\) −15.1448 26.2315i −0.598183 1.03608i −0.993089 0.117362i \(-0.962556\pi\)
0.394906 0.918722i \(-0.370777\pi\)
\(642\) 8.19356 + 4.73055i 0.323374 + 0.186700i
\(643\) 32.4250i 1.27872i 0.768909 + 0.639358i \(0.220800\pi\)
−0.768909 + 0.639358i \(0.779200\pi\)
\(644\) −74.0194 19.8334i −2.91677 0.781547i
\(645\) 0 0
\(646\) 17.4572 + 4.67764i 0.686844 + 0.184039i
\(647\) 2.01003 3.48147i 0.0790223 0.136871i −0.823806 0.566872i \(-0.808153\pi\)
0.902828 + 0.430001i \(0.141487\pi\)
\(648\) −14.3725 + 24.8938i −0.564604 + 0.977922i
\(649\) −3.17090 0.849639i −0.124469 0.0333512i
\(650\) 0 0
\(651\) 0.464802 + 0.124543i 0.0182170 + 0.00488123i
\(652\) 58.6036i 2.29509i
\(653\) 18.1616 + 10.4856i 0.710720 + 0.410334i 0.811328 0.584592i \(-0.198745\pi\)
−0.100607 + 0.994926i \(0.532079\pi\)
\(654\) −0.368903 0.638960i −0.0144253 0.0249853i
\(655\) 0 0
\(656\) 7.57225i 0.295647i
\(657\) −9.67332 + 36.1013i −0.377392 + 1.40845i
\(658\) 80.0243i 3.11967i
\(659\) −13.9788 + 24.2120i −0.544538 + 0.943167i 0.454098 + 0.890952i \(0.349961\pi\)
−0.998636 + 0.0522152i \(0.983372\pi\)
\(660\) 0 0
\(661\) −15.3797 + 4.12099i −0.598203 + 0.160288i −0.545199 0.838306i \(-0.683546\pi\)
−0.0530034 + 0.998594i \(0.516879\pi\)
\(662\) 5.89736 + 22.0092i 0.229207 + 0.855413i
\(663\) −3.29965 + 0.884140i −0.128148 + 0.0343371i
\(664\) −1.29124 + 4.81898i −0.0501099 + 0.187013i
\(665\) 0 0
\(666\) −24.0515 34.3109i −0.931977 1.32952i
\(667\) 18.6954 18.6954i 0.723890 0.723890i
\(668\) 59.9021 34.5845i 2.31768 1.33811i
\(669\) 0.932064 1.61438i 0.0360357 0.0624156i
\(670\) 0 0
\(671\) 0.0653405 + 0.243854i 0.00252244 + 0.00941389i
\(672\) 4.68575i 0.180757i
\(673\) 2.59711 0.695893i 0.100111 0.0268247i −0.208416 0.978040i \(-0.566831\pi\)
0.308527 + 0.951216i \(0.400164\pi\)
\(674\) 53.3516 + 53.3516i 2.05503 + 2.05503i
\(675\) 0 0
\(676\) −15.1798 −0.583839
\(677\) −21.7292 21.7292i −0.835122 0.835122i 0.153090 0.988212i \(-0.451078\pi\)
−0.988212 + 0.153090i \(0.951078\pi\)
\(678\) 0.357996 1.33606i 0.0137487 0.0513110i
\(679\) 2.08359 0.558295i 0.0799607 0.0214254i
\(680\) 0 0
\(681\) 0.374990 1.39948i 0.0143696 0.0536282i
\(682\) −0.383722 0.102818i −0.0146935 0.00393710i
\(683\) −16.0373 27.7774i −0.613650 1.06287i −0.990620 0.136647i \(-0.956367\pi\)
0.376970 0.926225i \(-0.376966\pi\)
\(684\) 3.70563 + 13.8296i 0.141688 + 0.528788i
\(685\) 0 0
\(686\) −28.7427 + 107.269i −1.09740 + 4.09556i
\(687\) −0.0892936 + 0.333248i −0.00340677 + 0.0127142i
\(688\) −2.79969 4.84921i −0.106737 0.184874i
\(689\) 10.6403 + 10.6403i 0.405363 + 0.405363i
\(690\) 0 0
\(691\) 21.6651 12.5084i 0.824181 0.475841i −0.0276751 0.999617i \(-0.508810\pi\)
0.851856 + 0.523776i \(0.175477\pi\)
\(692\) −18.7696 + 18.7696i −0.713512 + 0.713512i
\(693\) −3.73293 + 3.73293i −0.141802 + 0.141802i
\(694\) −5.02741 8.70773i −0.190838 0.330541i
\(695\) 0 0
\(696\) −3.55035 2.04979i −0.134576 0.0776972i
\(697\) 44.9327 1.70195
\(698\) 26.9069 + 15.5347i 1.01844 + 0.587997i
\(699\) −3.01243 1.73923i −0.113940 0.0657835i
\(700\) 0 0
\(701\) −19.4813 5.22000i −0.735799 0.197157i −0.128589 0.991698i \(-0.541045\pi\)
−0.607210 + 0.794541i \(0.707711\pi\)
\(702\) −6.10204 6.10204i −0.230307 0.230307i
\(703\) −8.45203 1.48576i −0.318774 0.0560366i
\(704\) 4.54706i 0.171374i
\(705\) 0 0
\(706\) −41.1853 23.7784i −1.55003 0.894911i
\(707\) 86.2714 23.1164i 3.24457 0.869380i
\(708\) 3.26479 5.65479i 0.122698 0.212520i
\(709\) 13.2911 + 13.2911i 0.499158 + 0.499158i 0.911176 0.412018i \(-0.135176\pi\)
−0.412018 + 0.911176i \(0.635176\pi\)
\(710\) 0 0
\(711\) 4.01028 4.01028i 0.150397 0.150397i
\(712\) −24.0591 6.44662i −0.901653 0.241597i
\(713\) 1.50497 + 1.50497i 0.0563614 + 0.0563614i
\(714\) −13.2549 −0.496053
\(715\) 0 0
\(716\) 1.34307 + 5.01240i 0.0501929 + 0.187322i
\(717\) 1.17170 0.0437578
\(718\) 70.5705 40.7439i 2.63367 1.52055i
\(719\) 31.4778 18.1737i 1.17392 0.677765i 0.219323 0.975652i \(-0.429615\pi\)
0.954601 + 0.297887i \(0.0962820\pi\)
\(720\) 0 0
\(721\) 68.4291 18.3355i 2.54843 0.682851i
\(722\) −34.3399 19.8262i −1.27800 0.737853i
\(723\) 3.59594 2.07612i 0.133734 0.0772116i
\(724\) −7.62913 13.2140i −0.283534 0.491096i
\(725\) 0 0
\(726\) 3.80111 3.80111i 0.141073 0.141073i
\(727\) −4.77979 + 8.27884i −0.177273 + 0.307045i −0.940945 0.338558i \(-0.890061\pi\)
0.763673 + 0.645604i \(0.223394\pi\)
\(728\) 46.1255 + 12.3593i 1.70952 + 0.458066i
\(729\) 24.5982i 0.911046i
\(730\) 0 0
\(731\) 28.7746 16.6130i 1.06427 0.614454i
\(732\) −0.502151 −0.0185600
\(733\) 3.11673 + 11.6318i 0.115119 + 0.429630i 0.999296 0.0375224i \(-0.0119465\pi\)
−0.884177 + 0.467153i \(0.845280\pi\)
\(734\) −22.5029 + 22.5029i −0.830596 + 0.830596i
\(735\) 0 0
\(736\) 10.3626 17.9485i 0.381969 0.661590i
\(737\) −0.475774 1.77561i −0.0175254 0.0654056i
\(738\) 28.1625 + 48.7789i 1.03668 + 1.79557i
\(739\) 0.812918 0.0299037 0.0149518 0.999888i \(-0.495241\pi\)
0.0149518 + 0.999888i \(0.495241\pi\)
\(740\) 0 0
\(741\) −0.877012 −0.0322179
\(742\) 29.1939 + 50.5653i 1.07174 + 1.85631i
\(743\) −7.48298 27.9269i −0.274524 1.02454i −0.956160 0.292846i \(-0.905398\pi\)
0.681636 0.731692i \(-0.261269\pi\)
\(744\) 0.165007 0.285800i 0.00604944 0.0104779i
\(745\) 0 0
\(746\) −58.9074 + 58.9074i −2.15675 + 2.15675i
\(747\) −1.14111 4.25869i −0.0417511 0.155817i
\(748\) 6.91549 0.252856
\(749\) 80.7473 46.6195i 2.95044 1.70344i
\(750\) 0 0
\(751\) 24.6777i 0.900504i 0.892902 + 0.450252i \(0.148666\pi\)
−0.892902 + 0.450252i \(0.851334\pi\)
\(752\) −6.29822 1.68760i −0.229673 0.0615406i
\(753\) −0.525877 + 0.910846i −0.0191640 + 0.0331931i
\(754\) −27.8946 + 27.8946i −1.01586 + 1.01586i
\(755\) 0 0
\(756\) −10.5806 18.3261i −0.384812 0.666515i
\(757\) 4.64953 2.68441i 0.168990 0.0975664i −0.413120 0.910677i \(-0.635561\pi\)
0.582109 + 0.813110i \(0.302228\pi\)
\(758\) −17.8995 10.3343i −0.650140 0.375358i
\(759\) 0.343765 0.0921114i 0.0124779 0.00334343i
\(760\) 0 0
\(761\) 2.47876 1.43111i 0.0898548 0.0518777i −0.454399 0.890798i \(-0.650146\pi\)
0.544254 + 0.838920i \(0.316813\pi\)
\(762\) −6.20414 + 3.58196i −0.224752 + 0.129761i
\(763\) −7.27107 −0.263231
\(764\) 3.94750 + 14.7323i 0.142815 + 0.532995i
\(765\) 0 0
\(766\) −67.6708 −2.44504
\(767\) −18.5557 18.5557i −0.670006 0.670006i
\(768\) −4.40802 1.18112i −0.159061 0.0426202i
\(769\) −7.89866 + 7.89866i −0.284833 + 0.284833i −0.835033 0.550200i \(-0.814552\pi\)
0.550200 + 0.835033i \(0.314552\pi\)
\(770\) 0 0
\(771\) −1.20083 1.20083i −0.0432469 0.0432469i
\(772\) 30.7577 53.2740i 1.10700 1.91737i
\(773\) 2.70117 0.723776i 0.0971543 0.0260324i −0.209914 0.977720i \(-0.567319\pi\)
0.307069 + 0.951687i \(0.400652\pi\)
\(774\) 36.0701 + 20.8251i 1.29651 + 0.748542i
\(775\) 0 0
\(776\) 1.47936i 0.0531061i
\(777\) 6.26962 0.551826i 0.224921 0.0197967i
\(778\) 12.2521 + 12.2521i 0.439258 + 0.439258i
\(779\) 11.1426 + 2.98566i 0.399226 + 0.106972i
\(780\) 0 0
\(781\) −3.28531 1.89677i −0.117558 0.0678719i
\(782\) −50.7722 29.3133i −1.81561 1.04824i
\(783\) 7.30110 0.260920
\(784\) 13.4504 + 7.76562i 0.480373 + 0.277343i
\(785\) 0 0
\(786\) 1.00567 + 1.74187i 0.0358710 + 0.0621304i
\(787\) −16.6179 + 16.6179i −0.592366 + 0.592366i −0.938270 0.345904i \(-0.887572\pi\)
0.345904 + 0.938270i \(0.387572\pi\)
\(788\) 23.1097 23.1097i 0.823250 0.823250i
\(789\) −3.09221 + 1.78529i −0.110086 + 0.0635580i
\(790\) 0 0
\(791\) −9.63879 9.63879i −0.342716 0.342716i
\(792\) 1.81027 + 3.13548i 0.0643251 + 0.111414i
\(793\) −0.522319 + 1.94932i −0.0185481 + 0.0692225i
\(794\) −17.5316 + 65.4287i −0.622173 + 2.32198i
\(795\) 0 0
\(796\) −2.74051 10.2277i −0.0971349 0.362512i
\(797\) −10.7864 18.6826i −0.382074 0.661772i 0.609284 0.792952i \(-0.291457\pi\)
−0.991359 + 0.131180i \(0.958124\pi\)
\(798\) −3.28702 0.880755i −0.116359 0.0311784i
\(799\) 10.0140 37.3729i 0.354271 1.32216i
\(800\) 0 0
\(801\) 21.2618 5.69709i 0.751250 0.201297i
\(802\) 10.3945 38.7926i 0.367041 1.36982i
\(803\) 3.27720 + 3.27720i 0.115650 + 0.115650i
\(804\) 3.65639 0.128951
\(805\) 0 0
\(806\) −2.24549 2.24549i −0.0790939 0.0790939i
\(807\) 4.05739 1.08717i 0.142827 0.0382704i
\(808\) 61.2535i 2.15489i
\(809\) −6.16251 22.9988i −0.216662 0.808595i −0.985575 0.169241i \(-0.945868\pi\)
0.768912 0.639354i \(-0.220798\pi\)
\(810\) 0 0
\(811\) 21.2556 36.8158i 0.746385 1.29278i −0.203160 0.979146i \(-0.565121\pi\)
0.949545 0.313631i \(-0.101545\pi\)
\(812\) −83.7751 + 48.3676i −2.93993 + 1.69737i
\(813\) −3.83165 + 3.83165i −0.134382 + 0.134382i
\(814\) −5.17594 + 0.455566i −0.181417 + 0.0159676i
\(815\) 0 0
\(816\) −0.279529 + 1.04322i −0.00978546 + 0.0365198i
\(817\) 8.23954 2.20778i 0.288265 0.0772404i
\(818\) 16.6002 + 61.9529i 0.580413 + 2.16613i
\(819\) −40.7626 + 10.9223i −1.42436 + 0.381657i
\(820\) 0 0
\(821\) 11.2509 19.4872i 0.392660 0.680107i −0.600140 0.799895i \(-0.704888\pi\)
0.992799 + 0.119789i \(0.0382217\pi\)
\(822\) 4.08013i 0.142311i
\(823\) −9.88834 + 36.9038i −0.344686 + 1.28639i 0.548293 + 0.836286i \(0.315278\pi\)
−0.892979 + 0.450099i \(0.851389\pi\)
\(824\) 48.5853i 1.69255i
\(825\) 0 0
\(826\) −50.9113 88.1810i −1.77143 3.06821i
\(827\) 8.91890 + 5.14933i 0.310141 + 0.179060i 0.646989 0.762499i \(-0.276028\pi\)
−0.336849 + 0.941559i \(0.609361\pi\)
\(828\) 46.4441i 1.61404i
\(829\) −18.0806 4.84467i −0.627964 0.168262i −0.0692181 0.997602i \(-0.522050\pi\)
−0.558745 + 0.829339i \(0.688717\pi\)
\(830\) 0 0
\(831\) 5.44723 + 1.45958i 0.188962 + 0.0506323i
\(832\) −18.1741 + 31.4785i −0.630075 + 1.09132i
\(833\) −46.0802 + 79.8132i −1.59658 + 2.76536i
\(834\) −4.27405 1.14523i −0.147998 0.0396560i
\(835\) 0 0
\(836\) 1.71494 + 0.459516i 0.0593123 + 0.0158927i
\(837\) 0.587733i 0.0203150i
\(838\) −53.9066 31.1230i −1.86217 1.07513i
\(839\) −11.7523 20.3556i −0.405736 0.702755i 0.588671 0.808373i \(-0.299651\pi\)
−0.994407 + 0.105618i \(0.966318\pi\)
\(840\) 0 0
\(841\) 4.37591i 0.150893i
\(842\) −3.43539 + 12.8210i −0.118391 + 0.441843i
\(843\) 1.46196i 0.0503527i
\(844\) −3.26033 + 5.64705i −0.112225 + 0.194380i
\(845\) 0 0
\(846\) 46.8484 12.5530i 1.61068 0.431580i
\(847\) −13.7113 51.1712i −0.471125 1.75826i
\(848\) 4.59535 1.23132i 0.157805 0.0422837i
\(849\) −0.338797 + 1.26441i −0.0116275 + 0.0433944i
\(850\) 0 0
\(851\) 25.2357 + 11.7515i 0.865070 + 0.402838i
\(852\) 5.33554 5.33554i 0.182793 0.182793i
\(853\) 45.7978 26.4414i 1.56809 0.905336i 0.571696 0.820466i \(-0.306286\pi\)
0.996392 0.0848701i \(-0.0270475\pi\)
\(854\) −3.91528 + 6.78146i −0.133978 + 0.232057i
\(855\) 0 0
\(856\) −16.5501 61.7659i −0.565672 2.11112i
\(857\) 24.7364i 0.844979i 0.906368 + 0.422490i \(0.138844\pi\)
−0.906368 + 0.422490i \(0.861156\pi\)
\(858\) −0.512915 + 0.137435i −0.0175106 + 0.00469196i
\(859\) −27.6851 27.6851i −0.944602 0.944602i 0.0539417 0.998544i \(-0.482821\pi\)
−0.998544 + 0.0539417i \(0.982821\pi\)
\(860\) 0 0
\(861\) −8.46041 −0.288330
\(862\) 13.8848 + 13.8848i 0.472918 + 0.472918i
\(863\) 9.42129 35.1607i 0.320705 1.19689i −0.597855 0.801604i \(-0.703980\pi\)
0.918560 0.395282i \(-0.129353\pi\)
\(864\) 5.52814 1.48126i 0.188071 0.0503935i
\(865\) 0 0
\(866\) −1.60671 + 5.99633i −0.0545983 + 0.203763i
\(867\) −2.70544 0.724921i −0.0918817 0.0246196i
\(868\) −3.89355 6.74383i −0.132156 0.228900i
\(869\) −0.182022 0.679316i −0.00617468 0.0230442i
\(870\) 0 0
\(871\) 3.80325 14.1939i 0.128868 0.480942i
\(872\) −1.29063 + 4.81670i −0.0437063 + 0.163114i
\(873\) 0.653682 + 1.13221i 0.0221238 + 0.0383195i
\(874\) −10.6429 10.6429i −0.360003 0.360003i
\(875\) 0 0
\(876\) −7.98355 + 4.60931i −0.269739 + 0.155734i
\(877\) 17.8730 17.8730i 0.603529 0.603529i −0.337718 0.941247i \(-0.609655\pi\)
0.941247 + 0.337718i \(0.109655\pi\)
\(878\) −49.7022 + 49.7022i −1.67737 + 1.67737i
\(879\) −1.63591 2.83348i −0.0551780 0.0955710i
\(880\) 0 0
\(881\) −1.86441 1.07642i −0.0628135 0.0362654i 0.468264 0.883588i \(-0.344879\pi\)
−0.531078 + 0.847323i \(0.678213\pi\)
\(882\) −115.527 −3.88999
\(883\) −29.2961 16.9141i −0.985893 0.569206i −0.0818490 0.996645i \(-0.526083\pi\)
−0.904044 + 0.427439i \(0.859416\pi\)
\(884\) 47.8748 + 27.6405i 1.61020 + 0.929652i
\(885\) 0 0
\(886\) 64.4619 + 17.2725i 2.16564 + 0.580281i
\(887\) 11.9250 + 11.9250i 0.400402 + 0.400402i 0.878375 0.477972i \(-0.158628\pi\)
−0.477972 + 0.878375i \(0.658628\pi\)
\(888\) 0.747315 4.25124i 0.0250783 0.142662i
\(889\) 70.6003i 2.36786i
\(890\) 0 0
\(891\) −2.72805 1.57504i −0.0913930 0.0527658i
\(892\) −29.1388 + 7.80772i −0.975639 + 0.261422i
\(893\) 4.96665 8.60249i 0.166203 0.287871i
\(894\) 0.151807 + 0.151807i 0.00507720 + 0.00507720i
\(895\) 0 0
\(896\) −68.5041 + 68.5041i −2.28856 + 2.28856i
\(897\) 2.74799 + 0.736320i 0.0917526 + 0.0245850i
\(898\) 7.33482 + 7.33482i 0.244766 + 0.244766i
\(899\) 2.68673 0.0896076
\(900\) 0 0
\(901\) 7.30650 + 27.2682i 0.243415 + 0.908436i
\(902\) 6.98457 0.232561
\(903\) −5.41798 + 3.12807i −0.180299 + 0.104096i
\(904\) −8.09610 + 4.67428i −0.269272 + 0.155464i
\(905\) 0 0
\(906\) 1.50591 0.403507i 0.0500304 0.0134056i
\(907\) 21.4863 + 12.4051i 0.713439 + 0.411904i 0.812333 0.583194i \(-0.198197\pi\)
−0.0988939 + 0.995098i \(0.531530\pi\)
\(908\) −20.3051 + 11.7232i −0.673849 + 0.389047i
\(909\) 27.0659 + 46.8795i 0.897719 + 1.55489i
\(910\) 0 0
\(911\) −4.82619 + 4.82619i −0.159899 + 0.159899i −0.782522 0.622623i \(-0.786067\pi\)
0.622623 + 0.782522i \(0.286067\pi\)
\(912\) −0.138638 + 0.240128i −0.00459075 + 0.00795142i
\(913\) −0.528099 0.141504i −0.0174775 0.00468308i
\(914\) 58.4757i 1.93420i
\(915\) 0 0
\(916\) 4.83512 2.79156i 0.159757 0.0922356i
\(917\) 19.8217 0.654570
\(918\) −4.19015 15.6379i −0.138296 0.516126i
\(919\) −31.3230 + 31.3230i −1.03325 + 1.03325i −0.0338213 + 0.999428i \(0.510768\pi\)
−0.999428 + 0.0338213i \(0.989232\pi\)
\(920\) 0 0
\(921\) −1.95423 + 3.38482i −0.0643939 + 0.111534i
\(922\) −14.6522 54.6826i −0.482543 1.80088i
\(923\) −15.1624 26.2621i −0.499078 0.864428i
\(924\) −1.30212 −0.0428367
\(925\) 0 0
\(926\) 80.9967 2.66172
\(927\) 21.4682 + 37.1841i 0.705109 + 1.22128i
\(928\) −6.77136 25.2711i −0.222281 0.829564i
\(929\) 25.2053 43.6568i 0.826958 1.43233i −0.0734562 0.997298i \(-0.523403\pi\)
0.900414 0.435034i \(-0.143264\pi\)
\(930\) 0 0
\(931\) −16.7306 + 16.7306i −0.548322 + 0.548322i
\(932\) 14.5691 + 54.3728i 0.477228 + 1.78104i
\(933\) −0.106747 −0.00349473
\(934\) −73.1814 + 42.2513i −2.39457 + 1.38250i
\(935\) 0 0
\(936\) 28.9418i 0.945994i
\(937\) −12.2443 3.28085i −0.400004 0.107181i 0.0532079 0.998583i \(-0.483055\pi\)
−0.453212 + 0.891403i \(0.649722\pi\)
\(938\) 28.5090 49.3790i 0.930850 1.61228i
\(939\) −2.47869 + 2.47869i −0.0808891 + 0.0808891i
\(940\) 0 0
\(941\) 7.75997 + 13.4407i 0.252968 + 0.438153i 0.964342 0.264661i \(-0.0852600\pi\)
−0.711374 + 0.702814i \(0.751927\pi\)
\(942\) −1.16175 + 0.670736i −0.0378518 + 0.0218538i
\(943\) −32.4071 18.7102i −1.05532 0.609289i
\(944\) −8.01384 + 2.14730i −0.260828 + 0.0698888i
\(945\) 0 0
\(946\) 4.47286 2.58241i 0.145425 0.0839614i
\(947\) −30.0082 + 17.3253i −0.975137 + 0.562996i −0.900798 0.434237i \(-0.857018\pi\)
−0.0743385 + 0.997233i \(0.523685\pi\)
\(948\) 1.39887 0.0454330
\(949\) 9.58887 + 35.7862i 0.311268 + 1.16167i
\(950\) 0 0
\(951\) 4.06942 0.131960
\(952\) 63.3470 + 63.3470i 2.05309 + 2.05309i
\(953\) −46.9523 12.5808i −1.52093 0.407533i −0.600884 0.799336i \(-0.705185\pi\)
−0.920049 + 0.391803i \(0.871852\pi\)
\(954\) −25.0228 + 25.0228i −0.810144 + 0.810144i
\(955\) 0 0
\(956\) −13.4076 13.4076i −0.433633 0.433633i
\(957\) 0.224631 0.389073i 0.00726130 0.0125769i
\(958\) −48.4653 + 12.9862i −1.56584 + 0.419566i
\(959\) −34.8226 20.1048i −1.12448 0.649219i
\(960\) 0 0
\(961\) 30.7837i 0.993023i
\(962\) −37.6531 17.5339i −1.21398 0.565317i
\(963\) 39.9587 + 39.9587i 1.28765 + 1.28765i
\(964\) −64.9049 17.3912i −2.09045 0.560134i
\(965\) 0 0
\(966\) 9.55992 + 5.51942i 0.307585 + 0.177584i
\(967\) −1.82918 1.05608i −0.0588225 0.0339612i 0.470300 0.882506i \(-0.344146\pi\)
−0.529123 + 0.848545i \(0.677479\pi\)
\(968\) −36.3320 −1.16775
\(969\) −1.42489 0.822658i −0.0457739 0.0264276i
\(970\) 0 0
\(971\) 5.04155 + 8.73223i 0.161791 + 0.280231i 0.935511 0.353297i \(-0.114940\pi\)
−0.773720 + 0.633528i \(0.781606\pi\)
\(972\) 13.6376 13.6376i 0.437427 0.437427i
\(973\) −30.8345 + 30.8345i −0.988508 + 0.988508i
\(974\) −42.4317 + 24.4979i −1.35960 + 0.784965i
\(975\) 0 0
\(976\) 0.451160 + 0.451160i 0.0144413 + 0.0144413i
\(977\) −16.7968 29.0930i −0.537379 0.930767i −0.999044 0.0437132i \(-0.986081\pi\)
0.461665 0.887054i \(-0.347252\pi\)
\(978\) −2.18496 + 8.15436i −0.0698672 + 0.260748i
\(979\) 0.706467 2.63657i 0.0225788 0.0842652i
\(980\) 0 0
\(981\) −1.14057 4.25668i −0.0364157 0.135905i
\(982\) 22.5351 + 39.0320i 0.719124 + 1.24556i
\(983\) 5.70185 + 1.52781i 0.181861 + 0.0487295i 0.348600 0.937272i \(-0.386657\pi\)
−0.166739 + 0.986001i \(0.553324\pi\)
\(984\) −1.50174 + 5.60457i −0.0478738 + 0.178667i
\(985\) 0 0
\(986\) −71.4862 + 19.1547i −2.27658 + 0.610009i
\(987\) −1.88555 + 7.03695i −0.0600176 + 0.223989i
\(988\) 10.0356 + 10.0356i 0.319275 + 0.319275i
\(989\) −27.6710 −0.879885
\(990\) 0 0
\(991\) −38.4778 38.4778i −1.22229 1.22229i −0.966816 0.255472i \(-0.917769\pi\)
−0.255472 0.966816i \(-0.582231\pi\)
\(992\) 2.03430 0.545089i 0.0645891 0.0173066i
\(993\) 2.07434i 0.0658272i
\(994\) −30.4543 113.657i −0.965951 3.60498i
\(995\) 0 0
\(996\) 0.543737 0.941780i 0.0172290 0.0298414i
\(997\) 42.2761 24.4081i 1.33890 0.773013i 0.352253 0.935905i \(-0.385416\pi\)
0.986644 + 0.162892i \(0.0520822\pi\)
\(998\) −1.36038 + 1.36038i −0.0430619 + 0.0430619i
\(999\) 2.63299 + 7.22231i 0.0833040 + 0.228504i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.t.b.843.15 68
5.2 odd 4 925.2.y.b.732.3 68
5.3 odd 4 185.2.u.a.177.15 yes 68
5.4 even 2 185.2.p.a.103.3 yes 68
37.23 odd 12 925.2.y.b.393.3 68
185.23 even 12 185.2.p.a.97.3 68
185.97 even 12 inner 925.2.t.b.282.15 68
185.134 odd 12 185.2.u.a.23.15 yes 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.p.a.97.3 68 185.23 even 12
185.2.p.a.103.3 yes 68 5.4 even 2
185.2.u.a.23.15 yes 68 185.134 odd 12
185.2.u.a.177.15 yes 68 5.3 odd 4
925.2.t.b.282.15 68 185.97 even 12 inner
925.2.t.b.843.15 68 1.1 even 1 trivial
925.2.y.b.393.3 68 37.23 odd 12
925.2.y.b.732.3 68 5.2 odd 4