Properties

Label 925.2.d.f.924.11
Level $925$
Weight $2$
Character 925.924
Analytic conductor $7.386$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(924,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.924"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,2,0,18,0,0,0,6,-22,0,2,0,20,0,0,30,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 21x^{10} + 162x^{8} + 574x^{6} + 985x^{4} + 765x^{2} + 196 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 924.11
Root \(2.75497i\) of defining polynomial
Character \(\chi\) \(=\) 925.924
Dual form 925.2.d.f.924.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.75497 q^{2} -2.91885i q^{3} +5.58988 q^{4} -8.04135i q^{6} +1.45148i q^{7} +9.89002 q^{8} -5.51969 q^{9} -4.49421 q^{11} -16.3160i q^{12} +3.36753 q^{13} +3.99878i q^{14} +16.0670 q^{16} +0.0254774 q^{17} -15.2066 q^{18} -2.32897i q^{19} +4.23665 q^{21} -12.3814 q^{22} -1.90433 q^{23} -28.8675i q^{24} +9.27746 q^{26} +7.35459i q^{27} +8.11358i q^{28} +3.20167i q^{29} +2.69930i q^{31} +24.4840 q^{32} +13.1179i q^{33} +0.0701894 q^{34} -30.8544 q^{36} +(-4.72950 + 3.82516i) q^{37} -6.41626i q^{38} -9.82932i q^{39} -0.472939 q^{41} +11.6718 q^{42} -5.60561 q^{43} -25.1221 q^{44} -5.24639 q^{46} +7.56842i q^{47} -46.8971i q^{48} +4.89321 q^{49} -0.0743646i q^{51} +18.8241 q^{52} +7.83626i q^{53} +20.2617i q^{54} +14.3551i q^{56} -6.79792 q^{57} +8.82053i q^{58} +8.97610i q^{59} -8.05367i q^{61} +7.43650i q^{62} -8.01170i q^{63} +35.3190 q^{64} +36.1395i q^{66} -3.88363i q^{67} +0.142415 q^{68} +5.55846i q^{69} +3.31202 q^{71} -54.5898 q^{72} +1.34593i q^{73} +(-13.0296 + 10.5382i) q^{74} -13.0187i q^{76} -6.52324i q^{77} -27.0795i q^{78} -16.9128i q^{79} +4.90789 q^{81} -1.30294 q^{82} +14.1496i q^{83} +23.6823 q^{84} -15.4433 q^{86} +9.34521 q^{87} -44.4478 q^{88} -10.7092i q^{89} +4.88790i q^{91} -10.6450 q^{92} +7.87886 q^{93} +20.8508i q^{94} -71.4653i q^{96} +7.87010 q^{97} +13.4807 q^{98} +24.8066 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} + 18 q^{4} + 6 q^{8} - 22 q^{9} + 2 q^{11} + 20 q^{13} + 30 q^{16} + 12 q^{17} - 26 q^{18} - 6 q^{21} - 28 q^{22} - 16 q^{23} - 12 q^{26} + 14 q^{32} - 4 q^{34} - 22 q^{36} - 14 q^{37} - 10 q^{41}+ \cdots + 84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.75497 1.94806 0.974030 0.226419i \(-0.0727017\pi\)
0.974030 + 0.226419i \(0.0727017\pi\)
\(3\) 2.91885i 1.68520i −0.538541 0.842600i \(-0.681024\pi\)
0.538541 0.842600i \(-0.318976\pi\)
\(4\) 5.58988 2.79494
\(5\) 0 0
\(6\) 8.04135i 3.28287i
\(7\) 1.45148i 0.548607i 0.961643 + 0.274303i \(0.0884473\pi\)
−0.961643 + 0.274303i \(0.911553\pi\)
\(8\) 9.89002 3.49665
\(9\) −5.51969 −1.83990
\(10\) 0 0
\(11\) −4.49421 −1.35506 −0.677528 0.735497i \(-0.736949\pi\)
−0.677528 + 0.735497i \(0.736949\pi\)
\(12\) 16.3160i 4.71003i
\(13\) 3.36753 0.933985 0.466993 0.884261i \(-0.345337\pi\)
0.466993 + 0.884261i \(0.345337\pi\)
\(14\) 3.99878i 1.06872i
\(15\) 0 0
\(16\) 16.0670 4.01674
\(17\) 0.0254774 0.00617917 0.00308958 0.999995i \(-0.499017\pi\)
0.00308958 + 0.999995i \(0.499017\pi\)
\(18\) −15.2066 −3.58423
\(19\) 2.32897i 0.534303i −0.963655 0.267152i \(-0.913918\pi\)
0.963655 0.267152i \(-0.0860824\pi\)
\(20\) 0 0
\(21\) 4.23665 0.924512
\(22\) −12.3814 −2.63973
\(23\) −1.90433 −0.397081 −0.198540 0.980093i \(-0.563620\pi\)
−0.198540 + 0.980093i \(0.563620\pi\)
\(24\) 28.8675i 5.89255i
\(25\) 0 0
\(26\) 9.27746 1.81946
\(27\) 7.35459i 1.41539i
\(28\) 8.11358i 1.53332i
\(29\) 3.20167i 0.594536i 0.954794 + 0.297268i \(0.0960755\pi\)
−0.954794 + 0.297268i \(0.903925\pi\)
\(30\) 0 0
\(31\) 2.69930i 0.484809i 0.970175 + 0.242404i \(0.0779361\pi\)
−0.970175 + 0.242404i \(0.922064\pi\)
\(32\) 24.4840 4.32821
\(33\) 13.1179i 2.28354i
\(34\) 0.0701894 0.0120374
\(35\) 0 0
\(36\) −30.8544 −5.14240
\(37\) −4.72950 + 3.82516i −0.777524 + 0.628853i
\(38\) 6.41626i 1.04085i
\(39\) 9.82932i 1.57395i
\(40\) 0 0
\(41\) −0.472939 −0.0738607 −0.0369304 0.999318i \(-0.511758\pi\)
−0.0369304 + 0.999318i \(0.511758\pi\)
\(42\) 11.6718 1.80100
\(43\) −5.60561 −0.854848 −0.427424 0.904051i \(-0.640579\pi\)
−0.427424 + 0.904051i \(0.640579\pi\)
\(44\) −25.1221 −3.78730
\(45\) 0 0
\(46\) −5.24639 −0.773538
\(47\) 7.56842i 1.10397i 0.833855 + 0.551983i \(0.186129\pi\)
−0.833855 + 0.551983i \(0.813871\pi\)
\(48\) 46.8971i 6.76901i
\(49\) 4.89321 0.699030
\(50\) 0 0
\(51\) 0.0743646i 0.0104131i
\(52\) 18.8241 2.61043
\(53\) 7.83626i 1.07639i 0.842819 + 0.538197i \(0.180894\pi\)
−0.842819 + 0.538197i \(0.819106\pi\)
\(54\) 20.2617i 2.75727i
\(55\) 0 0
\(56\) 14.3551i 1.91829i
\(57\) −6.79792 −0.900407
\(58\) 8.82053i 1.15819i
\(59\) 8.97610i 1.16859i 0.811542 + 0.584294i \(0.198629\pi\)
−0.811542 + 0.584294i \(0.801371\pi\)
\(60\) 0 0
\(61\) 8.05367i 1.03117i −0.856839 0.515584i \(-0.827575\pi\)
0.856839 0.515584i \(-0.172425\pi\)
\(62\) 7.43650i 0.944437i
\(63\) 8.01170i 1.00938i
\(64\) 35.3190 4.41487
\(65\) 0 0
\(66\) 36.1395i 4.44847i
\(67\) 3.88363i 0.474461i −0.971453 0.237231i \(-0.923760\pi\)
0.971453 0.237231i \(-0.0762397\pi\)
\(68\) 0.142415 0.0172704
\(69\) 5.55846i 0.669160i
\(70\) 0 0
\(71\) 3.31202 0.393064 0.196532 0.980497i \(-0.437032\pi\)
0.196532 + 0.980497i \(0.437032\pi\)
\(72\) −54.5898 −6.43347
\(73\) 1.34593i 0.157529i 0.996893 + 0.0787645i \(0.0250975\pi\)
−0.996893 + 0.0787645i \(0.974902\pi\)
\(74\) −13.0296 + 10.5382i −1.51466 + 1.22504i
\(75\) 0 0
\(76\) 13.0187i 1.49334i
\(77\) 6.52324i 0.743393i
\(78\) 27.0795i 3.06615i
\(79\) 16.9128i 1.90284i −0.307892 0.951421i \(-0.599623\pi\)
0.307892 0.951421i \(-0.400377\pi\)
\(80\) 0 0
\(81\) 4.90789 0.545321
\(82\) −1.30294 −0.143885
\(83\) 14.1496i 1.55312i 0.630046 + 0.776558i \(0.283036\pi\)
−0.630046 + 0.776558i \(0.716964\pi\)
\(84\) 23.6823 2.58395
\(85\) 0 0
\(86\) −15.4433 −1.66530
\(87\) 9.34521 1.00191
\(88\) −44.4478 −4.73815
\(89\) 10.7092i 1.13517i −0.823314 0.567586i \(-0.807878\pi\)
0.823314 0.567586i \(-0.192122\pi\)
\(90\) 0 0
\(91\) 4.88790i 0.512391i
\(92\) −10.6450 −1.10982
\(93\) 7.87886 0.816999
\(94\) 20.8508i 2.15059i
\(95\) 0 0
\(96\) 71.4653i 7.29389i
\(97\) 7.87010 0.799088 0.399544 0.916714i \(-0.369168\pi\)
0.399544 + 0.916714i \(0.369168\pi\)
\(98\) 13.4807 1.36175
\(99\) 24.8066 2.49316
\(100\) 0 0
\(101\) 13.4202 1.33536 0.667680 0.744448i \(-0.267287\pi\)
0.667680 + 0.744448i \(0.267287\pi\)
\(102\) 0.204872i 0.0202854i
\(103\) −5.00106 −0.492769 −0.246384 0.969172i \(-0.579243\pi\)
−0.246384 + 0.969172i \(0.579243\pi\)
\(104\) 33.3049 3.26582
\(105\) 0 0
\(106\) 21.5887i 2.09688i
\(107\) 9.77780i 0.945255i −0.881262 0.472628i \(-0.843306\pi\)
0.881262 0.472628i \(-0.156694\pi\)
\(108\) 41.1113i 3.95593i
\(109\) 15.7550i 1.50905i −0.656271 0.754525i \(-0.727867\pi\)
0.656271 0.754525i \(-0.272133\pi\)
\(110\) 0 0
\(111\) 11.1651 + 13.8047i 1.05974 + 1.31028i
\(112\) 23.3208i 2.20361i
\(113\) 4.59824 0.432566 0.216283 0.976331i \(-0.430607\pi\)
0.216283 + 0.976331i \(0.430607\pi\)
\(114\) −18.7281 −1.75405
\(115\) 0 0
\(116\) 17.8970i 1.66169i
\(117\) −18.5877 −1.71844
\(118\) 24.7289i 2.27648i
\(119\) 0.0369798i 0.00338993i
\(120\) 0 0
\(121\) 9.19793 0.836175
\(122\) 22.1877i 2.00878i
\(123\) 1.38044i 0.124470i
\(124\) 15.0888i 1.35501i
\(125\) 0 0
\(126\) 22.0720i 1.96633i
\(127\) 11.5549i 1.02533i −0.858589 0.512665i \(-0.828658\pi\)
0.858589 0.512665i \(-0.171342\pi\)
\(128\) 48.3347 4.27222
\(129\) 16.3619i 1.44059i
\(130\) 0 0
\(131\) 7.28288i 0.636308i −0.948039 0.318154i \(-0.896937\pi\)
0.948039 0.318154i \(-0.103063\pi\)
\(132\) 73.3276i 6.38235i
\(133\) 3.38045 0.293122
\(134\) 10.6993i 0.924279i
\(135\) 0 0
\(136\) 0.251971 0.0216064
\(137\) 10.7116i 0.915156i 0.889170 + 0.457578i \(0.151283\pi\)
−0.889170 + 0.457578i \(0.848717\pi\)
\(138\) 15.3134i 1.30356i
\(139\) −13.6631 −1.15889 −0.579444 0.815012i \(-0.696730\pi\)
−0.579444 + 0.815012i \(0.696730\pi\)
\(140\) 0 0
\(141\) 22.0911 1.86040
\(142\) 9.12452 0.765713
\(143\) −15.1344 −1.26560
\(144\) −88.6847 −7.39039
\(145\) 0 0
\(146\) 3.70799i 0.306876i
\(147\) 14.2826i 1.17801i
\(148\) −26.4373 + 21.3822i −2.17313 + 1.75761i
\(149\) −10.4783 −0.858415 −0.429207 0.903206i \(-0.641207\pi\)
−0.429207 + 0.903206i \(0.641207\pi\)
\(150\) 0 0
\(151\) −5.32975 −0.433729 −0.216864 0.976202i \(-0.569583\pi\)
−0.216864 + 0.976202i \(0.569583\pi\)
\(152\) 23.0336i 1.86827i
\(153\) −0.140627 −0.0113690
\(154\) 17.9714i 1.44817i
\(155\) 0 0
\(156\) 54.9447i 4.39910i
\(157\) 8.49980i 0.678358i −0.940722 0.339179i \(-0.889851\pi\)
0.940722 0.339179i \(-0.110149\pi\)
\(158\) 46.5944i 3.70685i
\(159\) 22.8729 1.81394
\(160\) 0 0
\(161\) 2.76410i 0.217841i
\(162\) 13.5211 1.06232
\(163\) −18.4771 −1.44724 −0.723619 0.690200i \(-0.757523\pi\)
−0.723619 + 0.690200i \(0.757523\pi\)
\(164\) −2.64367 −0.206436
\(165\) 0 0
\(166\) 38.9817i 3.02556i
\(167\) −7.79299 −0.603040 −0.301520 0.953460i \(-0.597494\pi\)
−0.301520 + 0.953460i \(0.597494\pi\)
\(168\) 41.9005 3.23269
\(169\) −1.65973 −0.127672
\(170\) 0 0
\(171\) 12.8552i 0.983062i
\(172\) −31.3347 −2.38925
\(173\) 2.22137i 0.168888i 0.996428 + 0.0844438i \(0.0269113\pi\)
−0.996428 + 0.0844438i \(0.973089\pi\)
\(174\) 25.7458 1.95178
\(175\) 0 0
\(176\) −72.2084 −5.44291
\(177\) 26.1999 1.96930
\(178\) 29.5035i 2.21138i
\(179\) 25.8707i 1.93366i 0.255411 + 0.966832i \(0.417789\pi\)
−0.255411 + 0.966832i \(0.582211\pi\)
\(180\) 0 0
\(181\) 5.69629 0.423402 0.211701 0.977335i \(-0.432100\pi\)
0.211701 + 0.977335i \(0.432100\pi\)
\(182\) 13.4660i 0.998168i
\(183\) −23.5075 −1.73772
\(184\) −18.8339 −1.38845
\(185\) 0 0
\(186\) 21.7060 1.59156
\(187\) −0.114501 −0.00837311
\(188\) 42.3065i 3.08552i
\(189\) −10.6750 −0.776494
\(190\) 0 0
\(191\) 23.2172i 1.67993i −0.542637 0.839967i \(-0.682574\pi\)
0.542637 0.839967i \(-0.317426\pi\)
\(192\) 103.091i 7.43993i
\(193\) 16.5508 1.19136 0.595678 0.803223i \(-0.296883\pi\)
0.595678 + 0.803223i \(0.296883\pi\)
\(194\) 21.6819 1.55667
\(195\) 0 0
\(196\) 27.3525 1.95375
\(197\) 12.4656i 0.888135i 0.895993 + 0.444068i \(0.146465\pi\)
−0.895993 + 0.444068i \(0.853535\pi\)
\(198\) 68.3416 4.85683
\(199\) 15.6109i 1.10663i 0.832973 + 0.553314i \(0.186637\pi\)
−0.832973 + 0.553314i \(0.813363\pi\)
\(200\) 0 0
\(201\) −11.3357 −0.799561
\(202\) 36.9723 2.60136
\(203\) −4.64716 −0.326167
\(204\) 0.415689i 0.0291041i
\(205\) 0 0
\(206\) −13.7778 −0.959944
\(207\) 10.5113 0.730588
\(208\) 54.1060 3.75158
\(209\) 10.4669i 0.724010i
\(210\) 0 0
\(211\) −23.3395 −1.60676 −0.803379 0.595469i \(-0.796966\pi\)
−0.803379 + 0.595469i \(0.796966\pi\)
\(212\) 43.8038i 3.00845i
\(213\) 9.66729i 0.662392i
\(214\) 26.9376i 1.84141i
\(215\) 0 0
\(216\) 72.7370i 4.94913i
\(217\) −3.91797 −0.265969
\(218\) 43.4045i 2.93972i
\(219\) 3.92856 0.265468
\(220\) 0 0
\(221\) 0.0857958 0.00577125
\(222\) 30.7595 + 38.0316i 2.06444 + 2.55251i
\(223\) 10.1496i 0.679665i −0.940486 0.339832i \(-0.889630\pi\)
0.940486 0.339832i \(-0.110370\pi\)
\(224\) 35.5380i 2.37449i
\(225\) 0 0
\(226\) 12.6680 0.842665
\(227\) 1.96484 0.130411 0.0652055 0.997872i \(-0.479230\pi\)
0.0652055 + 0.997872i \(0.479230\pi\)
\(228\) −37.9996 −2.51658
\(229\) −24.4562 −1.61611 −0.808055 0.589107i \(-0.799480\pi\)
−0.808055 + 0.589107i \(0.799480\pi\)
\(230\) 0 0
\(231\) −19.0404 −1.25276
\(232\) 31.6646i 2.07888i
\(233\) 8.99797i 0.589477i 0.955578 + 0.294738i \(0.0952325\pi\)
−0.955578 + 0.294738i \(0.904767\pi\)
\(234\) −51.2087 −3.34762
\(235\) 0 0
\(236\) 50.1753i 3.26613i
\(237\) −49.3660 −3.20667
\(238\) 0.101878i 0.00660380i
\(239\) 15.7417i 1.01825i −0.860693 0.509124i \(-0.829969\pi\)
0.860693 0.509124i \(-0.170031\pi\)
\(240\) 0 0
\(241\) 6.84560i 0.440964i −0.975391 0.220482i \(-0.929237\pi\)
0.975391 0.220482i \(-0.0707631\pi\)
\(242\) 25.3400 1.62892
\(243\) 7.73838i 0.496417i
\(244\) 45.0191i 2.88205i
\(245\) 0 0
\(246\) 3.80307i 0.242475i
\(247\) 7.84289i 0.499031i
\(248\) 26.6961i 1.69521i
\(249\) 41.3004 2.61731
\(250\) 0 0
\(251\) 8.89502i 0.561449i 0.959788 + 0.280724i \(0.0905747\pi\)
−0.959788 + 0.280724i \(0.909425\pi\)
\(252\) 44.7844i 2.82115i
\(253\) 8.55847 0.538067
\(254\) 31.8334i 1.99740i
\(255\) 0 0
\(256\) 62.5228 3.90768
\(257\) 24.1717 1.50779 0.753896 0.656994i \(-0.228172\pi\)
0.753896 + 0.656994i \(0.228172\pi\)
\(258\) 45.0767i 2.80635i
\(259\) −5.55214 6.86476i −0.344993 0.426555i
\(260\) 0 0
\(261\) 17.6722i 1.09388i
\(262\) 20.0641i 1.23957i
\(263\) 8.85085i 0.545767i −0.962047 0.272883i \(-0.912023\pi\)
0.962047 0.272883i \(-0.0879773\pi\)
\(264\) 129.737i 7.98473i
\(265\) 0 0
\(266\) 9.31305 0.571020
\(267\) −31.2585 −1.91299
\(268\) 21.7090i 1.32609i
\(269\) −9.11977 −0.556042 −0.278021 0.960575i \(-0.589678\pi\)
−0.278021 + 0.960575i \(0.589678\pi\)
\(270\) 0 0
\(271\) 23.6107 1.43425 0.717124 0.696946i \(-0.245458\pi\)
0.717124 + 0.696946i \(0.245458\pi\)
\(272\) 0.409344 0.0248201
\(273\) 14.2670 0.863480
\(274\) 29.5102i 1.78278i
\(275\) 0 0
\(276\) 31.0711i 1.87026i
\(277\) 6.08750 0.365763 0.182881 0.983135i \(-0.441458\pi\)
0.182881 + 0.983135i \(0.441458\pi\)
\(278\) −37.6415 −2.25758
\(279\) 14.8993i 0.891998i
\(280\) 0 0
\(281\) 3.06829i 0.183039i 0.995803 + 0.0915195i \(0.0291724\pi\)
−0.995803 + 0.0915195i \(0.970828\pi\)
\(282\) 60.8603 3.62418
\(283\) 14.1136 0.838966 0.419483 0.907763i \(-0.362211\pi\)
0.419483 + 0.907763i \(0.362211\pi\)
\(284\) 18.5138 1.09859
\(285\) 0 0
\(286\) −41.6948 −2.46547
\(287\) 0.686461i 0.0405205i
\(288\) −135.144 −7.96345
\(289\) −16.9994 −0.999962
\(290\) 0 0
\(291\) 22.9717i 1.34662i
\(292\) 7.52357i 0.440284i
\(293\) 11.0541i 0.645789i 0.946435 + 0.322894i \(0.104656\pi\)
−0.946435 + 0.322894i \(0.895344\pi\)
\(294\) 39.3481i 2.29483i
\(295\) 0 0
\(296\) −46.7748 + 37.8309i −2.71873 + 2.19888i
\(297\) 33.0531i 1.91793i
\(298\) −28.8674 −1.67224
\(299\) −6.41290 −0.370868
\(300\) 0 0
\(301\) 8.13642i 0.468976i
\(302\) −14.6833 −0.844929
\(303\) 39.1716i 2.25035i
\(304\) 37.4195i 2.14616i
\(305\) 0 0
\(306\) −0.387424 −0.0221475
\(307\) 7.86166i 0.448689i −0.974510 0.224344i \(-0.927976\pi\)
0.974510 0.224344i \(-0.0720240\pi\)
\(308\) 36.4641i 2.07774i
\(309\) 14.5973i 0.830414i
\(310\) 0 0
\(311\) 25.8719i 1.46706i −0.679656 0.733531i \(-0.737871\pi\)
0.679656 0.733531i \(-0.262129\pi\)
\(312\) 97.2121i 5.50355i
\(313\) −6.62741 −0.374603 −0.187302 0.982302i \(-0.559974\pi\)
−0.187302 + 0.982302i \(0.559974\pi\)
\(314\) 23.4167i 1.32148i
\(315\) 0 0
\(316\) 94.5407i 5.31833i
\(317\) 15.4948i 0.870273i −0.900365 0.435136i \(-0.856700\pi\)
0.900365 0.435136i \(-0.143300\pi\)
\(318\) 63.0142 3.53366
\(319\) 14.3890i 0.805629i
\(320\) 0 0
\(321\) −28.5399 −1.59294
\(322\) 7.61501i 0.424368i
\(323\) 0.0593361i 0.00330155i
\(324\) 27.4345 1.52414
\(325\) 0 0
\(326\) −50.9039 −2.81931
\(327\) −45.9864 −2.54305
\(328\) −4.67738 −0.258265
\(329\) −10.9854 −0.605644
\(330\) 0 0
\(331\) 18.5660i 1.02048i −0.860032 0.510240i \(-0.829557\pi\)
0.860032 0.510240i \(-0.170443\pi\)
\(332\) 79.0943i 4.34086i
\(333\) 26.1053 21.1137i 1.43056 1.15702i
\(334\) −21.4695 −1.17476
\(335\) 0 0
\(336\) 68.0701 3.71353
\(337\) 29.0093i 1.58024i 0.612954 + 0.790119i \(0.289981\pi\)
−0.612954 + 0.790119i \(0.710019\pi\)
\(338\) −4.57252 −0.248713
\(339\) 13.4216i 0.728960i
\(340\) 0 0
\(341\) 12.1312i 0.656943i
\(342\) 35.4157i 1.91506i
\(343\) 17.2627i 0.932100i
\(344\) −55.4396 −2.98910
\(345\) 0 0
\(346\) 6.11981i 0.329003i
\(347\) −31.1104 −1.67009 −0.835046 0.550180i \(-0.814559\pi\)
−0.835046 + 0.550180i \(0.814559\pi\)
\(348\) 52.2386 2.80028
\(349\) −11.8632 −0.635021 −0.317511 0.948255i \(-0.602847\pi\)
−0.317511 + 0.948255i \(0.602847\pi\)
\(350\) 0 0
\(351\) 24.7668i 1.32195i
\(352\) −110.036 −5.86496
\(353\) 33.7605 1.79689 0.898446 0.439083i \(-0.144697\pi\)
0.898446 + 0.439083i \(0.144697\pi\)
\(354\) 72.1800 3.83632
\(355\) 0 0
\(356\) 59.8630i 3.17273i
\(357\) 0.107939 0.00571271
\(358\) 71.2730i 3.76690i
\(359\) −9.24876 −0.488131 −0.244065 0.969759i \(-0.578481\pi\)
−0.244065 + 0.969759i \(0.578481\pi\)
\(360\) 0 0
\(361\) 13.5759 0.714520
\(362\) 15.6931 0.824812
\(363\) 26.8474i 1.40912i
\(364\) 27.3227i 1.43210i
\(365\) 0 0
\(366\) −64.7625 −3.38519
\(367\) 7.38718i 0.385608i −0.981237 0.192804i \(-0.938242\pi\)
0.981237 0.192804i \(-0.0617581\pi\)
\(368\) −30.5969 −1.59497
\(369\) 2.61048 0.135896
\(370\) 0 0
\(371\) −11.3742 −0.590517
\(372\) 44.0418 2.28346
\(373\) 15.3033i 0.792374i −0.918170 0.396187i \(-0.870333\pi\)
0.918170 0.396187i \(-0.129667\pi\)
\(374\) −0.315446 −0.0163113
\(375\) 0 0
\(376\) 74.8517i 3.86018i
\(377\) 10.7817i 0.555288i
\(378\) −29.4094 −1.51266
\(379\) 14.8574 0.763173 0.381587 0.924333i \(-0.375378\pi\)
0.381587 + 0.924333i \(0.375378\pi\)
\(380\) 0 0
\(381\) −33.7270 −1.72788
\(382\) 63.9626i 3.27261i
\(383\) −11.0996 −0.567164 −0.283582 0.958948i \(-0.591523\pi\)
−0.283582 + 0.958948i \(0.591523\pi\)
\(384\) 141.082i 7.19954i
\(385\) 0 0
\(386\) 45.5971 2.32083
\(387\) 30.9412 1.57283
\(388\) 43.9929 2.23340
\(389\) 7.50355i 0.380445i −0.981741 0.190223i \(-0.939079\pi\)
0.981741 0.190223i \(-0.0609210\pi\)
\(390\) 0 0
\(391\) −0.0485174 −0.00245363
\(392\) 48.3940 2.44426
\(393\) −21.2576 −1.07231
\(394\) 34.3423i 1.73014i
\(395\) 0 0
\(396\) 138.666 6.96823
\(397\) 12.5602i 0.630378i 0.949029 + 0.315189i \(0.102068\pi\)
−0.949029 + 0.315189i \(0.897932\pi\)
\(398\) 43.0077i 2.15578i
\(399\) 9.86703i 0.493970i
\(400\) 0 0
\(401\) 11.4360i 0.571086i −0.958366 0.285543i \(-0.907826\pi\)
0.958366 0.285543i \(-0.0921739\pi\)
\(402\) −31.2297 −1.55759
\(403\) 9.08998i 0.452804i
\(404\) 75.0173 3.73225
\(405\) 0 0
\(406\) −12.8028 −0.635392
\(407\) 21.2553 17.1911i 1.05359 0.852130i
\(408\) 0.735467i 0.0364110i
\(409\) 32.2880i 1.59654i −0.602302 0.798268i \(-0.705750\pi\)
0.602302 0.798268i \(-0.294250\pi\)
\(410\) 0 0
\(411\) 31.2656 1.54222
\(412\) −27.9553 −1.37726
\(413\) −13.0286 −0.641096
\(414\) 28.9584 1.42323
\(415\) 0 0
\(416\) 82.4508 4.04248
\(417\) 39.8805i 1.95296i
\(418\) 28.8360i 1.41042i
\(419\) 24.2662 1.18548 0.592741 0.805393i \(-0.298046\pi\)
0.592741 + 0.805393i \(0.298046\pi\)
\(420\) 0 0
\(421\) 35.5190i 1.73109i 0.500832 + 0.865545i \(0.333027\pi\)
−0.500832 + 0.865545i \(0.666973\pi\)
\(422\) −64.2997 −3.13006
\(423\) 41.7753i 2.03118i
\(424\) 77.5008i 3.76377i
\(425\) 0 0
\(426\) 26.6331i 1.29038i
\(427\) 11.6897 0.565706
\(428\) 54.6567i 2.64193i
\(429\) 44.1750i 2.13279i
\(430\) 0 0
\(431\) 14.5051i 0.698686i 0.936995 + 0.349343i \(0.113595\pi\)
−0.936995 + 0.349343i \(0.886405\pi\)
\(432\) 118.166i 5.68527i
\(433\) 24.7197i 1.18795i 0.804482 + 0.593977i \(0.202443\pi\)
−0.804482 + 0.593977i \(0.797557\pi\)
\(434\) −10.7939 −0.518124
\(435\) 0 0
\(436\) 88.0683i 4.21770i
\(437\) 4.43514i 0.212162i
\(438\) 10.8231 0.517147
\(439\) 8.13962i 0.388483i 0.980954 + 0.194241i \(0.0622245\pi\)
−0.980954 + 0.194241i \(0.937775\pi\)
\(440\) 0 0
\(441\) −27.0090 −1.28614
\(442\) 0.236365 0.0112427
\(443\) 5.50085i 0.261353i −0.991425 0.130677i \(-0.958285\pi\)
0.991425 0.130677i \(-0.0417150\pi\)
\(444\) 62.4114 + 77.1665i 2.96191 + 3.66216i
\(445\) 0 0
\(446\) 27.9618i 1.32403i
\(447\) 30.5845i 1.44660i
\(448\) 51.2647i 2.42203i
\(449\) 7.73218i 0.364904i −0.983215 0.182452i \(-0.941597\pi\)
0.983215 0.182452i \(-0.0584034\pi\)
\(450\) 0 0
\(451\) 2.12549 0.100085
\(452\) 25.7036 1.20900
\(453\) 15.5567i 0.730919i
\(454\) 5.41308 0.254048
\(455\) 0 0
\(456\) −67.2316 −3.14841
\(457\) −0.793718 −0.0371286 −0.0185643 0.999828i \(-0.505910\pi\)
−0.0185643 + 0.999828i \(0.505910\pi\)
\(458\) −67.3761 −3.14828
\(459\) 0.187376i 0.00874594i
\(460\) 0 0
\(461\) 1.34291i 0.0625456i 0.999511 + 0.0312728i \(0.00995606\pi\)
−0.999511 + 0.0312728i \(0.990044\pi\)
\(462\) −52.4557 −2.44046
\(463\) 34.5602 1.60615 0.803075 0.595878i \(-0.203196\pi\)
0.803075 + 0.595878i \(0.203196\pi\)
\(464\) 51.4412i 2.38810i
\(465\) 0 0
\(466\) 24.7892i 1.14834i
\(467\) −15.0666 −0.697200 −0.348600 0.937272i \(-0.613343\pi\)
−0.348600 + 0.937272i \(0.613343\pi\)
\(468\) −103.903 −4.80292
\(469\) 5.63700 0.260293
\(470\) 0 0
\(471\) −24.8097 −1.14317
\(472\) 88.7738i 4.08614i
\(473\) 25.1928 1.15837
\(474\) −136.002 −6.24678
\(475\) 0 0
\(476\) 0.206713i 0.00947466i
\(477\) 43.2537i 1.98045i
\(478\) 43.3681i 1.98361i
\(479\) 20.1293i 0.919731i −0.887989 0.459865i \(-0.847898\pi\)
0.887989 0.459865i \(-0.152102\pi\)
\(480\) 0 0
\(481\) −15.9267 + 12.8814i −0.726196 + 0.587339i
\(482\) 18.8595i 0.859025i
\(483\) −8.06798 −0.367106
\(484\) 51.4153 2.33706
\(485\) 0 0
\(486\) 21.3190i 0.967051i
\(487\) −3.16807 −0.143559 −0.0717795 0.997421i \(-0.522868\pi\)
−0.0717795 + 0.997421i \(0.522868\pi\)
\(488\) 79.6510i 3.60563i
\(489\) 53.9319i 2.43888i
\(490\) 0 0
\(491\) 8.17507 0.368936 0.184468 0.982839i \(-0.440944\pi\)
0.184468 + 0.982839i \(0.440944\pi\)
\(492\) 7.71649i 0.347886i
\(493\) 0.0815702i 0.00367374i
\(494\) 21.6070i 0.972143i
\(495\) 0 0
\(496\) 43.3696i 1.94735i
\(497\) 4.80732i 0.215638i
\(498\) 113.782 5.09868
\(499\) 19.6941i 0.881630i 0.897598 + 0.440815i \(0.145310\pi\)
−0.897598 + 0.440815i \(0.854690\pi\)
\(500\) 0 0
\(501\) 22.7466i 1.01624i
\(502\) 24.5055i 1.09374i
\(503\) −3.14419 −0.140193 −0.0700964 0.997540i \(-0.522331\pi\)
−0.0700964 + 0.997540i \(0.522331\pi\)
\(504\) 79.2359i 3.52945i
\(505\) 0 0
\(506\) 23.5784 1.04819
\(507\) 4.84452i 0.215153i
\(508\) 64.5903i 2.86573i
\(509\) 35.1772 1.55920 0.779601 0.626277i \(-0.215422\pi\)
0.779601 + 0.626277i \(0.215422\pi\)
\(510\) 0 0
\(511\) −1.95358 −0.0864215
\(512\) 75.5793 3.34017
\(513\) 17.1286 0.756248
\(514\) 66.5925 2.93727
\(515\) 0 0
\(516\) 91.4613i 4.02636i
\(517\) 34.0141i 1.49594i
\(518\) −15.2960 18.9122i −0.672067 0.830955i
\(519\) 6.48384 0.284609
\(520\) 0 0
\(521\) 6.18006 0.270753 0.135377 0.990794i \(-0.456776\pi\)
0.135377 + 0.990794i \(0.456776\pi\)
\(522\) 48.6866i 2.13095i
\(523\) −22.8302 −0.998295 −0.499148 0.866517i \(-0.666353\pi\)
−0.499148 + 0.866517i \(0.666353\pi\)
\(524\) 40.7104i 1.77844i
\(525\) 0 0
\(526\) 24.3839i 1.06319i
\(527\) 0.0687711i 0.00299571i
\(528\) 210.765i 9.17239i
\(529\) −19.3735 −0.842327
\(530\) 0 0
\(531\) 49.5453i 2.15008i
\(532\) 18.8963 0.819259
\(533\) −1.59264 −0.0689848
\(534\) −86.1163 −3.72662
\(535\) 0 0
\(536\) 38.4092i 1.65902i
\(537\) 75.5126 3.25861
\(538\) −25.1247 −1.08320
\(539\) −21.9911 −0.947225
\(540\) 0 0
\(541\) 11.5724i 0.497534i 0.968563 + 0.248767i \(0.0800254\pi\)
−0.968563 + 0.248767i \(0.919975\pi\)
\(542\) 65.0469 2.79400
\(543\) 16.6266i 0.713516i
\(544\) 0.623789 0.0267447
\(545\) 0 0
\(546\) 39.3053 1.68211
\(547\) 24.6075 1.05214 0.526071 0.850440i \(-0.323664\pi\)
0.526071 + 0.850440i \(0.323664\pi\)
\(548\) 59.8766i 2.55780i
\(549\) 44.4538i 1.89724i
\(550\) 0 0
\(551\) 7.45661 0.317662
\(552\) 54.9733i 2.33982i
\(553\) 24.5486 1.04391
\(554\) 16.7709 0.712528
\(555\) 0 0
\(556\) −76.3750 −3.23902
\(557\) 12.6204 0.534744 0.267372 0.963593i \(-0.413845\pi\)
0.267372 + 0.963593i \(0.413845\pi\)
\(558\) 41.0472i 1.73767i
\(559\) −18.8771 −0.798415
\(560\) 0 0
\(561\) 0.334210i 0.0141104i
\(562\) 8.45307i 0.356571i
\(563\) 45.9241 1.93547 0.967734 0.251973i \(-0.0810795\pi\)
0.967734 + 0.251973i \(0.0810795\pi\)
\(564\) 123.486 5.19971
\(565\) 0 0
\(566\) 38.8826 1.63436
\(567\) 7.12369i 0.299167i
\(568\) 32.7559 1.37441
\(569\) 0.838147i 0.0351370i −0.999846 0.0175685i \(-0.994407\pi\)
0.999846 0.0175685i \(-0.00559251\pi\)
\(570\) 0 0
\(571\) −7.23047 −0.302586 −0.151293 0.988489i \(-0.548344\pi\)
−0.151293 + 0.988489i \(0.548344\pi\)
\(572\) −84.5994 −3.53728
\(573\) −67.7674 −2.83102
\(574\) 1.89118i 0.0789364i
\(575\) 0 0
\(576\) −194.950 −8.12290
\(577\) 20.4356 0.850746 0.425373 0.905018i \(-0.360143\pi\)
0.425373 + 0.905018i \(0.360143\pi\)
\(578\) −46.8328 −1.94799
\(579\) 48.3094i 2.00767i
\(580\) 0 0
\(581\) −20.5378 −0.852050
\(582\) 63.2863i 2.62330i
\(583\) 35.2178i 1.45857i
\(584\) 13.3112i 0.550823i
\(585\) 0 0
\(586\) 30.4538i 1.25804i
\(587\) −13.3566 −0.551286 −0.275643 0.961260i \(-0.588891\pi\)
−0.275643 + 0.961260i \(0.588891\pi\)
\(588\) 79.8377i 3.29245i
\(589\) 6.28660 0.259035
\(590\) 0 0
\(591\) 36.3852 1.49669
\(592\) −75.9887 + 61.4588i −3.12312 + 2.52594i
\(593\) 36.0953i 1.48226i 0.671363 + 0.741129i \(0.265709\pi\)
−0.671363 + 0.741129i \(0.734291\pi\)
\(594\) 91.0604i 3.73625i
\(595\) 0 0
\(596\) −58.5723 −2.39922
\(597\) 45.5659 1.86489
\(598\) −17.6674 −0.722473
\(599\) −6.63975 −0.271293 −0.135646 0.990757i \(-0.543311\pi\)
−0.135646 + 0.990757i \(0.543311\pi\)
\(600\) 0 0
\(601\) 40.7974 1.66416 0.832080 0.554656i \(-0.187150\pi\)
0.832080 + 0.554656i \(0.187150\pi\)
\(602\) 22.4156i 0.913593i
\(603\) 21.4364i 0.872959i
\(604\) −29.7926 −1.21224
\(605\) 0 0
\(606\) 107.917i 4.38381i
\(607\) 11.0949 0.450327 0.225164 0.974321i \(-0.427708\pi\)
0.225164 + 0.974321i \(0.427708\pi\)
\(608\) 57.0227i 2.31258i
\(609\) 13.5644i 0.549656i
\(610\) 0 0
\(611\) 25.4869i 1.03109i
\(612\) −0.786088 −0.0317757
\(613\) 22.9251i 0.925935i −0.886375 0.462968i \(-0.846785\pi\)
0.886375 0.462968i \(-0.153215\pi\)
\(614\) 21.6587i 0.874072i
\(615\) 0 0
\(616\) 64.5150i 2.59938i
\(617\) 13.1796i 0.530589i 0.964167 + 0.265294i \(0.0854692\pi\)
−0.964167 + 0.265294i \(0.914531\pi\)
\(618\) 40.2153i 1.61770i
\(619\) −18.1736 −0.730460 −0.365230 0.930917i \(-0.619010\pi\)
−0.365230 + 0.930917i \(0.619010\pi\)
\(620\) 0 0
\(621\) 14.0056i 0.562025i
\(622\) 71.2764i 2.85792i
\(623\) 15.5441 0.622763
\(624\) 157.927i 6.32216i
\(625\) 0 0
\(626\) −18.2583 −0.729750
\(627\) 30.5513 1.22010
\(628\) 47.5129i 1.89597i
\(629\) −0.120495 + 0.0974550i −0.00480445 + 0.00388579i
\(630\) 0 0
\(631\) 6.22219i 0.247701i 0.992301 + 0.123851i \(0.0395244\pi\)
−0.992301 + 0.123851i \(0.960476\pi\)
\(632\) 167.268i 6.65357i
\(633\) 68.1245i 2.70771i
\(634\) 42.6877i 1.69534i
\(635\) 0 0
\(636\) 127.857 5.06984
\(637\) 16.4780 0.652884
\(638\) 39.6413i 1.56941i
\(639\) −18.2813 −0.723197
\(640\) 0 0
\(641\) −9.36090 −0.369733 −0.184867 0.982764i \(-0.559185\pi\)
−0.184867 + 0.982764i \(0.559185\pi\)
\(642\) −78.6267 −3.10315
\(643\) −18.6445 −0.735267 −0.367634 0.929971i \(-0.619832\pi\)
−0.367634 + 0.929971i \(0.619832\pi\)
\(644\) 15.4510i 0.608853i
\(645\) 0 0
\(646\) 0.163469i 0.00643161i
\(647\) −26.2257 −1.03104 −0.515518 0.856878i \(-0.672401\pi\)
−0.515518 + 0.856878i \(0.672401\pi\)
\(648\) 48.5391 1.90680
\(649\) 40.3405i 1.58350i
\(650\) 0 0
\(651\) 11.4360i 0.448211i
\(652\) −103.285 −4.04494
\(653\) 12.3086 0.481672 0.240836 0.970566i \(-0.422578\pi\)
0.240836 + 0.970566i \(0.422578\pi\)
\(654\) −126.691 −4.95402
\(655\) 0 0
\(656\) −7.59870 −0.296680
\(657\) 7.42910i 0.289837i
\(658\) −30.2644 −1.17983
\(659\) 38.3036 1.49209 0.746047 0.665893i \(-0.231949\pi\)
0.746047 + 0.665893i \(0.231949\pi\)
\(660\) 0 0
\(661\) 6.34290i 0.246710i −0.992363 0.123355i \(-0.960635\pi\)
0.992363 0.123355i \(-0.0393654\pi\)
\(662\) 51.1488i 1.98796i
\(663\) 0.250425i 0.00972571i
\(664\) 139.939i 5.43070i
\(665\) 0 0
\(666\) 71.9195 58.1677i 2.78682 2.25395i
\(667\) 6.09706i 0.236079i
\(668\) −43.5619 −1.68546
\(669\) −29.6250 −1.14537
\(670\) 0 0
\(671\) 36.1949i 1.39729i
\(672\) 103.730 4.00148
\(673\) 13.2262i 0.509834i −0.966963 0.254917i \(-0.917952\pi\)
0.966963 0.254917i \(-0.0820481\pi\)
\(674\) 79.9199i 3.07840i
\(675\) 0 0
\(676\) −9.27771 −0.356835
\(677\) 38.0754i 1.46336i −0.681650 0.731679i \(-0.738737\pi\)
0.681650 0.731679i \(-0.261263\pi\)
\(678\) 36.9761i 1.42006i
\(679\) 11.4233i 0.438385i
\(680\) 0 0
\(681\) 5.73507i 0.219768i
\(682\) 33.4212i 1.27976i
\(683\) −30.6935 −1.17445 −0.587226 0.809423i \(-0.699780\pi\)
−0.587226 + 0.809423i \(0.699780\pi\)
\(684\) 71.8590i 2.74760i
\(685\) 0 0
\(686\) 47.5584i 1.81579i
\(687\) 71.3839i 2.72347i
\(688\) −90.0652 −3.43371
\(689\) 26.3889i 1.00534i
\(690\) 0 0
\(691\) 7.67193 0.291854 0.145927 0.989295i \(-0.453384\pi\)
0.145927 + 0.989295i \(0.453384\pi\)
\(692\) 12.4172i 0.472030i
\(693\) 36.0063i 1.36777i
\(694\) −85.7082 −3.25344
\(695\) 0 0
\(696\) 92.4243 3.50333
\(697\) −0.0120492 −0.000456398
\(698\) −32.6827 −1.23706
\(699\) 26.2637 0.993386
\(700\) 0 0
\(701\) 8.14310i 0.307561i −0.988105 0.153780i \(-0.950855\pi\)
0.988105 0.153780i \(-0.0491448\pi\)
\(702\) 68.2319i 2.57525i
\(703\) 8.90870 + 11.0149i 0.335998 + 0.415434i
\(704\) −158.731 −5.98239
\(705\) 0 0
\(706\) 93.0094 3.50046
\(707\) 19.4791i 0.732588i
\(708\) 146.454 5.50409
\(709\) 27.4696i 1.03164i 0.856696 + 0.515821i \(0.172513\pi\)
−0.856696 + 0.515821i \(0.827487\pi\)
\(710\) 0 0
\(711\) 93.3536i 3.50103i
\(712\) 105.914i 3.96929i
\(713\) 5.14037i 0.192508i
\(714\) 0.297368 0.0111287
\(715\) 0 0
\(716\) 144.614i 5.40447i
\(717\) −45.9478 −1.71595
\(718\) −25.4801 −0.950908
\(719\) 20.5876 0.767787 0.383893 0.923377i \(-0.374583\pi\)
0.383893 + 0.923377i \(0.374583\pi\)
\(720\) 0 0
\(721\) 7.25892i 0.270336i
\(722\) 37.4012 1.39193
\(723\) −19.9813 −0.743112
\(724\) 31.8415 1.18338
\(725\) 0 0
\(726\) 73.9638i 2.74505i
\(727\) 50.8446 1.88572 0.942862 0.333185i \(-0.108123\pi\)
0.942862 + 0.333185i \(0.108123\pi\)
\(728\) 48.3414i 1.79165i
\(729\) 37.3108 1.38188
\(730\) 0 0
\(731\) −0.142816 −0.00528225
\(732\) −131.404 −4.85683
\(733\) 38.4050i 1.41852i 0.704946 + 0.709261i \(0.250971\pi\)
−0.704946 + 0.709261i \(0.749029\pi\)
\(734\) 20.3515i 0.751187i
\(735\) 0 0
\(736\) −46.6258 −1.71865
\(737\) 17.4539i 0.642921i
\(738\) 7.19180 0.264734
\(739\) 18.6887 0.687475 0.343737 0.939066i \(-0.388307\pi\)
0.343737 + 0.939066i \(0.388307\pi\)
\(740\) 0 0
\(741\) −22.8922 −0.840967
\(742\) −31.3355 −1.15036
\(743\) 16.0098i 0.587343i −0.955906 0.293672i \(-0.905123\pi\)
0.955906 0.293672i \(-0.0948772\pi\)
\(744\) 77.9220 2.85676
\(745\) 0 0
\(746\) 42.1601i 1.54359i
\(747\) 78.1012i 2.85757i
\(748\) −0.640044 −0.0234023
\(749\) 14.1922 0.518573
\(750\) 0 0
\(751\) −0.921894 −0.0336404 −0.0168202 0.999859i \(-0.505354\pi\)
−0.0168202 + 0.999859i \(0.505354\pi\)
\(752\) 121.602i 4.43435i
\(753\) 25.9632 0.946153
\(754\) 29.7034i 1.08173i
\(755\) 0 0
\(756\) −59.6721 −2.17025
\(757\) −32.1248 −1.16760 −0.583798 0.811899i \(-0.698434\pi\)
−0.583798 + 0.811899i \(0.698434\pi\)
\(758\) 40.9317 1.48671
\(759\) 24.9809i 0.906749i
\(760\) 0 0
\(761\) 10.7066 0.388113 0.194056 0.980990i \(-0.437836\pi\)
0.194056 + 0.980990i \(0.437836\pi\)
\(762\) −92.9169 −3.36602
\(763\) 22.8680 0.827876
\(764\) 129.781i 4.69531i
\(765\) 0 0
\(766\) −30.5791 −1.10487
\(767\) 30.2273i 1.09144i
\(768\) 182.495i 6.58521i
\(769\) 50.6597i 1.82683i −0.407025 0.913417i \(-0.633434\pi\)
0.407025 0.913417i \(-0.366566\pi\)
\(770\) 0 0
\(771\) 70.5537i 2.54093i
\(772\) 92.5172 3.32977
\(773\) 39.2085i 1.41023i 0.709092 + 0.705116i \(0.249105\pi\)
−0.709092 + 0.705116i \(0.750895\pi\)
\(774\) 85.2423 3.06397
\(775\) 0 0
\(776\) 77.8355 2.79413
\(777\) −20.0372 + 16.2059i −0.718830 + 0.581382i
\(778\) 20.6721i 0.741130i
\(779\) 1.10146i 0.0394640i
\(780\) 0 0
\(781\) −14.8849 −0.532624
\(782\) −0.133664 −0.00477982
\(783\) −23.5470 −0.841502
\(784\) 78.6191 2.80783
\(785\) 0 0
\(786\) −58.5642 −2.08892
\(787\) 20.7482i 0.739592i −0.929113 0.369796i \(-0.879428\pi\)
0.929113 0.369796i \(-0.120572\pi\)
\(788\) 69.6810i 2.48228i
\(789\) −25.8343 −0.919726
\(790\) 0 0
\(791\) 6.67424i 0.237309i
\(792\) 245.338 8.71771
\(793\) 27.1210i 0.963095i
\(794\) 34.6030i 1.22801i
\(795\) 0 0
\(796\) 87.2631i 3.09296i
\(797\) −33.9237 −1.20164 −0.600819 0.799385i \(-0.705159\pi\)
−0.600819 + 0.799385i \(0.705159\pi\)
\(798\) 27.1834i 0.962282i
\(799\) 0.192823i 0.00682160i
\(800\) 0 0
\(801\) 59.1114i 2.08860i
\(802\) 31.5058i 1.11251i
\(803\) 6.04888i 0.213460i
\(804\) −63.3654 −2.23473
\(805\) 0 0
\(806\) 25.0427i 0.882090i
\(807\) 26.6192i 0.937041i
\(808\) 132.726 4.66929
\(809\) 11.3402i 0.398701i −0.979928 0.199350i \(-0.936117\pi\)
0.979928 0.199350i \(-0.0638832\pi\)
\(810\) 0 0
\(811\) 5.91038 0.207541 0.103771 0.994601i \(-0.466909\pi\)
0.103771 + 0.994601i \(0.466909\pi\)
\(812\) −25.9770 −0.911616
\(813\) 68.9161i 2.41699i
\(814\) 58.5579 47.3610i 2.05245 1.66000i
\(815\) 0 0
\(816\) 1.19481i 0.0418269i
\(817\) 13.0553i 0.456748i
\(818\) 88.9524i 3.11015i
\(819\) 26.9797i 0.942745i
\(820\) 0 0
\(821\) −52.3144 −1.82579 −0.912893 0.408200i \(-0.866157\pi\)
−0.912893 + 0.408200i \(0.866157\pi\)
\(822\) 86.1359 3.00434
\(823\) 0.226046i 0.00787948i −0.999992 0.00393974i \(-0.998746\pi\)
0.999992 0.00393974i \(-0.00125406\pi\)
\(824\) −49.4606 −1.72304
\(825\) 0 0
\(826\) −35.8935 −1.24889
\(827\) 18.6949 0.650084 0.325042 0.945700i \(-0.394621\pi\)
0.325042 + 0.945700i \(0.394621\pi\)
\(828\) 58.7570 2.04195
\(829\) 8.63683i 0.299969i 0.988688 + 0.149985i \(0.0479224\pi\)
−0.988688 + 0.149985i \(0.952078\pi\)
\(830\) 0 0
\(831\) 17.7685i 0.616383i
\(832\) 118.938 4.12342
\(833\) 0.124666 0.00431943
\(834\) 109.870i 3.80448i
\(835\) 0 0
\(836\) 58.5087i 2.02356i
\(837\) −19.8523 −0.686194
\(838\) 66.8528 2.30939
\(839\) 26.0271 0.898554 0.449277 0.893393i \(-0.351682\pi\)
0.449277 + 0.893393i \(0.351682\pi\)
\(840\) 0 0
\(841\) 18.7493 0.646527
\(842\) 97.8538i 3.37227i
\(843\) 8.95589 0.308457
\(844\) −130.465 −4.49079
\(845\) 0 0
\(846\) 115.090i 3.95687i
\(847\) 13.3506i 0.458732i
\(848\) 125.905i 4.32360i
\(849\) 41.1955i 1.41382i
\(850\) 0 0
\(851\) 9.00654 7.28438i 0.308740 0.249705i
\(852\) 54.0389i 1.85134i
\(853\) −0.625659 −0.0214222 −0.0107111 0.999943i \(-0.503410\pi\)
−0.0107111 + 0.999943i \(0.503410\pi\)
\(854\) 32.2049 1.10203
\(855\) 0 0
\(856\) 96.7025i 3.30523i
\(857\) −33.7157 −1.15171 −0.575853 0.817553i \(-0.695330\pi\)
−0.575853 + 0.817553i \(0.695330\pi\)
\(858\) 121.701i 4.15480i
\(859\) 40.4148i 1.37894i −0.724316 0.689468i \(-0.757845\pi\)
0.724316 0.689468i \(-0.242155\pi\)
\(860\) 0 0
\(861\) −2.00368 −0.0682851
\(862\) 39.9611i 1.36108i
\(863\) 48.2173i 1.64134i 0.571406 + 0.820668i \(0.306398\pi\)
−0.571406 + 0.820668i \(0.693602\pi\)
\(864\) 180.070i 6.12611i
\(865\) 0 0
\(866\) 68.1022i 2.31421i
\(867\) 49.6186i 1.68513i
\(868\) −21.9010 −0.743368
\(869\) 76.0099i 2.57846i
\(870\) 0 0
\(871\) 13.0783i 0.443140i
\(872\) 155.817i 5.27662i
\(873\) −43.4405 −1.47024
\(874\) 12.2187i 0.413303i
\(875\) 0 0
\(876\) 21.9602 0.741966
\(877\) 41.7183i 1.40873i −0.709839 0.704364i \(-0.751232\pi\)
0.709839 0.704364i \(-0.248768\pi\)
\(878\) 22.4244i 0.756788i
\(879\) 32.2653 1.08828
\(880\) 0 0
\(881\) −26.5652 −0.895004 −0.447502 0.894283i \(-0.647686\pi\)
−0.447502 + 0.894283i \(0.647686\pi\)
\(882\) −74.4091 −2.50548
\(883\) −25.2500 −0.849729 −0.424864 0.905257i \(-0.639678\pi\)
−0.424864 + 0.905257i \(0.639678\pi\)
\(884\) 0.479588 0.0161303
\(885\) 0 0
\(886\) 15.1547i 0.509132i
\(887\) 44.1343i 1.48188i 0.671569 + 0.740942i \(0.265621\pi\)
−0.671569 + 0.740942i \(0.734379\pi\)
\(888\) 110.423 + 136.529i 3.70555 + 4.58160i
\(889\) 16.7716 0.562503
\(890\) 0 0
\(891\) −22.0571 −0.738940
\(892\) 56.7348i 1.89962i
\(893\) 17.6266 0.589853
\(894\) 84.2596i 2.81806i
\(895\) 0 0
\(896\) 70.1567i 2.34377i
\(897\) 18.7183i 0.624986i
\(898\) 21.3019i 0.710855i
\(899\) −8.64228 −0.288236
\(900\) 0 0
\(901\) 0.199647i 0.00665122i
\(902\) 5.85566 0.194972
\(903\) −23.7490 −0.790317
\(904\) 45.4767 1.51253
\(905\) 0 0
\(906\) 42.8584i 1.42387i
\(907\) 13.5822 0.450989 0.225494 0.974244i \(-0.427600\pi\)
0.225494 + 0.974244i \(0.427600\pi\)
\(908\) 10.9832 0.364491
\(909\) −74.0753 −2.45692
\(910\) 0 0
\(911\) 10.9249i 0.361958i −0.983487 0.180979i \(-0.942073\pi\)
0.983487 0.180979i \(-0.0579265\pi\)
\(912\) −109.222 −3.61670
\(913\) 63.5911i 2.10456i
\(914\) −2.18667 −0.0723287
\(915\) 0 0
\(916\) −136.707 −4.51693
\(917\) 10.5709 0.349083
\(918\) 0.516215i 0.0170376i
\(919\) 19.8094i 0.653452i −0.945119 0.326726i \(-0.894055\pi\)
0.945119 0.326726i \(-0.105945\pi\)
\(920\) 0 0
\(921\) −22.9470 −0.756130
\(922\) 3.69968i 0.121843i
\(923\) 11.1533 0.367116
\(924\) −106.433 −3.50140
\(925\) 0 0
\(926\) 95.2125 3.12888
\(927\) 27.6043 0.906644
\(928\) 78.3900i 2.57328i
\(929\) −45.0292 −1.47736 −0.738680 0.674056i \(-0.764551\pi\)
−0.738680 + 0.674056i \(0.764551\pi\)
\(930\) 0 0
\(931\) 11.3962i 0.373494i
\(932\) 50.2976i 1.64755i
\(933\) −75.5162 −2.47229
\(934\) −41.5081 −1.35819
\(935\) 0 0
\(936\) −183.833 −6.00876
\(937\) 7.84999i 0.256448i 0.991745 + 0.128224i \(0.0409276\pi\)
−0.991745 + 0.128224i \(0.959072\pi\)
\(938\) 15.5298 0.507066
\(939\) 19.3444i 0.631281i
\(940\) 0 0
\(941\) 25.0461 0.816479 0.408239 0.912875i \(-0.366143\pi\)
0.408239 + 0.912875i \(0.366143\pi\)
\(942\) −68.3499 −2.22696
\(943\) 0.900634 0.0293287
\(944\) 144.219i 4.69392i
\(945\) 0 0
\(946\) 69.4055 2.25657
\(947\) −0.776901 −0.0252459 −0.0126229 0.999920i \(-0.504018\pi\)
−0.0126229 + 0.999920i \(0.504018\pi\)
\(948\) −275.950 −8.96244
\(949\) 4.53245i 0.147130i
\(950\) 0 0
\(951\) −45.2269 −1.46658
\(952\) 0.365731i 0.0118534i
\(953\) 6.91778i 0.224089i 0.993703 + 0.112045i \(0.0357399\pi\)
−0.993703 + 0.112045i \(0.964260\pi\)
\(954\) 119.163i 3.85804i
\(955\) 0 0
\(956\) 87.9944i 2.84594i
\(957\) −41.9993 −1.35765
\(958\) 55.4557i 1.79169i
\(959\) −15.5477 −0.502061
\(960\) 0 0
\(961\) 23.7138 0.764960
\(962\) −43.8777 + 35.4878i −1.41467 + 1.14417i
\(963\) 53.9704i 1.73917i
\(964\) 38.2661i 1.23247i
\(965\) 0 0
\(966\) −22.2271 −0.715145
\(967\) 50.9043 1.63697 0.818486 0.574526i \(-0.194814\pi\)
0.818486 + 0.574526i \(0.194814\pi\)
\(968\) 90.9677 2.92381
\(969\) −0.173193 −0.00556377
\(970\) 0 0
\(971\) −27.7895 −0.891806 −0.445903 0.895081i \(-0.647117\pi\)
−0.445903 + 0.895081i \(0.647117\pi\)
\(972\) 43.2566i 1.38746i
\(973\) 19.8317i 0.635774i
\(974\) −8.72795 −0.279662
\(975\) 0 0
\(976\) 129.398i 4.14193i
\(977\) −25.9080 −0.828871 −0.414436 0.910079i \(-0.636021\pi\)
−0.414436 + 0.910079i \(0.636021\pi\)
\(978\) 148.581i 4.75109i
\(979\) 48.1293i 1.53822i
\(980\) 0 0
\(981\) 86.9624i 2.77650i
\(982\) 22.5221 0.718709
\(983\) 38.9012i 1.24076i 0.784303 + 0.620379i \(0.213021\pi\)
−0.784303 + 0.620379i \(0.786979\pi\)
\(984\) 13.6526i 0.435228i
\(985\) 0 0
\(986\) 0.224724i 0.00715666i
\(987\) 32.0647i 1.02063i
\(988\) 43.8408i 1.39476i
\(989\) 10.6750 0.339444
\(990\) 0 0
\(991\) 35.5867i 1.13045i −0.824937 0.565225i \(-0.808789\pi\)
0.824937 0.565225i \(-0.191211\pi\)
\(992\) 66.0898i 2.09835i
\(993\) −54.1914 −1.71971
\(994\) 13.2440i 0.420075i
\(995\) 0 0
\(996\) 230.864 7.31522
\(997\) 27.5414 0.872244 0.436122 0.899887i \(-0.356352\pi\)
0.436122 + 0.899887i \(0.356352\pi\)
\(998\) 54.2568i 1.71747i
\(999\) −28.1325 34.7835i −0.890073 1.10050i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.d.f.924.11 12
5.2 odd 4 925.2.c.c.776.12 12
5.3 odd 4 185.2.c.b.36.1 12
5.4 even 2 925.2.d.e.924.2 12
15.8 even 4 1665.2.e.e.406.12 12
20.3 even 4 2960.2.p.h.961.1 12
37.36 even 2 925.2.d.e.924.1 12
185.43 even 4 6845.2.a.h.1.1 6
185.68 even 4 6845.2.a.i.1.6 6
185.73 odd 4 185.2.c.b.36.12 yes 12
185.147 odd 4 925.2.c.c.776.1 12
185.184 even 2 inner 925.2.d.f.924.12 12
555.443 even 4 1665.2.e.e.406.1 12
740.443 even 4 2960.2.p.h.961.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.c.b.36.1 12 5.3 odd 4
185.2.c.b.36.12 yes 12 185.73 odd 4
925.2.c.c.776.1 12 185.147 odd 4
925.2.c.c.776.12 12 5.2 odd 4
925.2.d.e.924.1 12 37.36 even 2
925.2.d.e.924.2 12 5.4 even 2
925.2.d.f.924.11 12 1.1 even 1 trivial
925.2.d.f.924.12 12 185.184 even 2 inner
1665.2.e.e.406.1 12 555.443 even 4
1665.2.e.e.406.12 12 15.8 even 4
2960.2.p.h.961.1 12 20.3 even 4
2960.2.p.h.961.2 12 740.443 even 4
6845.2.a.h.1.1 6 185.43 even 4
6845.2.a.i.1.6 6 185.68 even 4