Properties

Label 925.2.a.m.1.8
Level $925$
Weight $2$
Character 925.1
Self dual yes
Analytic conductor $7.386$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(1,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,5,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4x^{8} - 6x^{7} + 30x^{6} + 15x^{5} - 70x^{4} - 22x^{3} + 44x^{2} + 4x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 185)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-1.58855\) of defining polynomial
Character \(\chi\) \(=\) 925.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.58855 q^{2} -1.45668 q^{3} +4.70058 q^{4} -3.77067 q^{6} -0.648627 q^{7} +6.99059 q^{8} -0.878097 q^{9} +2.00426 q^{11} -6.84722 q^{12} +4.52102 q^{13} -1.67900 q^{14} +8.69431 q^{16} +5.56202 q^{17} -2.27300 q^{18} +1.84662 q^{19} +0.944840 q^{21} +5.18813 q^{22} +6.29488 q^{23} -10.1830 q^{24} +11.7029 q^{26} +5.64913 q^{27} -3.04893 q^{28} -7.93267 q^{29} -2.87798 q^{31} +8.52446 q^{32} -2.91956 q^{33} +14.3976 q^{34} -4.12757 q^{36} -1.00000 q^{37} +4.78007 q^{38} -6.58565 q^{39} -9.59442 q^{41} +2.44576 q^{42} -6.67357 q^{43} +9.42119 q^{44} +16.2946 q^{46} -4.62245 q^{47} -12.6648 q^{48} -6.57928 q^{49} -8.10206 q^{51} +21.2514 q^{52} -6.63289 q^{53} +14.6230 q^{54} -4.53429 q^{56} -2.68993 q^{57} -20.5341 q^{58} +3.55444 q^{59} +8.98508 q^{61} -7.44979 q^{62} +0.569558 q^{63} +4.67736 q^{64} -7.55741 q^{66} -11.7962 q^{67} +26.1447 q^{68} -9.16960 q^{69} +7.92865 q^{71} -6.13841 q^{72} +8.94146 q^{73} -2.58855 q^{74} +8.68020 q^{76} -1.30002 q^{77} -17.0473 q^{78} +5.85260 q^{79} -5.59466 q^{81} -24.8356 q^{82} +17.0540 q^{83} +4.44130 q^{84} -17.2748 q^{86} +11.5553 q^{87} +14.0110 q^{88} -15.5198 q^{89} -2.93245 q^{91} +29.5896 q^{92} +4.19228 q^{93} -11.9654 q^{94} -12.4174 q^{96} +7.82669 q^{97} -17.0308 q^{98} -1.75993 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 5 q^{2} + 8 q^{3} + 11 q^{4} + 2 q^{6} + 8 q^{7} + 15 q^{8} + 13 q^{9} + 16 q^{12} + 6 q^{13} - 4 q^{14} + 11 q^{16} + 18 q^{17} - 3 q^{18} - 4 q^{19} + 4 q^{21} + 6 q^{22} + 16 q^{23} + 6 q^{24}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.58855 1.83038 0.915190 0.403023i \(-0.132040\pi\)
0.915190 + 0.403023i \(0.132040\pi\)
\(3\) −1.45668 −0.841012 −0.420506 0.907290i \(-0.638147\pi\)
−0.420506 + 0.907290i \(0.638147\pi\)
\(4\) 4.70058 2.35029
\(5\) 0 0
\(6\) −3.77067 −1.53937
\(7\) −0.648627 −0.245158 −0.122579 0.992459i \(-0.539117\pi\)
−0.122579 + 0.992459i \(0.539117\pi\)
\(8\) 6.99059 2.47155
\(9\) −0.878097 −0.292699
\(10\) 0 0
\(11\) 2.00426 0.604307 0.302154 0.953259i \(-0.402294\pi\)
0.302154 + 0.953259i \(0.402294\pi\)
\(12\) −6.84722 −1.97662
\(13\) 4.52102 1.25390 0.626952 0.779058i \(-0.284302\pi\)
0.626952 + 0.779058i \(0.284302\pi\)
\(14\) −1.67900 −0.448733
\(15\) 0 0
\(16\) 8.69431 2.17358
\(17\) 5.56202 1.34899 0.674494 0.738280i \(-0.264362\pi\)
0.674494 + 0.738280i \(0.264362\pi\)
\(18\) −2.27300 −0.535750
\(19\) 1.84662 0.423644 0.211822 0.977308i \(-0.432060\pi\)
0.211822 + 0.977308i \(0.432060\pi\)
\(20\) 0 0
\(21\) 0.944840 0.206181
\(22\) 5.18813 1.10611
\(23\) 6.29488 1.31257 0.656287 0.754511i \(-0.272126\pi\)
0.656287 + 0.754511i \(0.272126\pi\)
\(24\) −10.1830 −2.07860
\(25\) 0 0
\(26\) 11.7029 2.29512
\(27\) 5.64913 1.08718
\(28\) −3.04893 −0.576193
\(29\) −7.93267 −1.47306 −0.736530 0.676405i \(-0.763537\pi\)
−0.736530 + 0.676405i \(0.763537\pi\)
\(30\) 0 0
\(31\) −2.87798 −0.516900 −0.258450 0.966025i \(-0.583212\pi\)
−0.258450 + 0.966025i \(0.583212\pi\)
\(32\) 8.52446 1.50693
\(33\) −2.91956 −0.508230
\(34\) 14.3976 2.46916
\(35\) 0 0
\(36\) −4.12757 −0.687928
\(37\) −1.00000 −0.164399
\(38\) 4.78007 0.775430
\(39\) −6.58565 −1.05455
\(40\) 0 0
\(41\) −9.59442 −1.49840 −0.749199 0.662345i \(-0.769561\pi\)
−0.749199 + 0.662345i \(0.769561\pi\)
\(42\) 2.44576 0.377389
\(43\) −6.67357 −1.01771 −0.508855 0.860852i \(-0.669931\pi\)
−0.508855 + 0.860852i \(0.669931\pi\)
\(44\) 9.42119 1.42030
\(45\) 0 0
\(46\) 16.2946 2.40251
\(47\) −4.62245 −0.674253 −0.337127 0.941459i \(-0.609455\pi\)
−0.337127 + 0.941459i \(0.609455\pi\)
\(48\) −12.6648 −1.82800
\(49\) −6.57928 −0.939897
\(50\) 0 0
\(51\) −8.10206 −1.13451
\(52\) 21.2514 2.94704
\(53\) −6.63289 −0.911097 −0.455549 0.890211i \(-0.650557\pi\)
−0.455549 + 0.890211i \(0.650557\pi\)
\(54\) 14.6230 1.98994
\(55\) 0 0
\(56\) −4.53429 −0.605920
\(57\) −2.68993 −0.356290
\(58\) −20.5341 −2.69626
\(59\) 3.55444 0.462749 0.231374 0.972865i \(-0.425678\pi\)
0.231374 + 0.972865i \(0.425678\pi\)
\(60\) 0 0
\(61\) 8.98508 1.15042 0.575211 0.818005i \(-0.304920\pi\)
0.575211 + 0.818005i \(0.304920\pi\)
\(62\) −7.44979 −0.946124
\(63\) 0.569558 0.0717575
\(64\) 4.67736 0.584670
\(65\) 0 0
\(66\) −7.55741 −0.930253
\(67\) −11.7962 −1.44113 −0.720567 0.693385i \(-0.756118\pi\)
−0.720567 + 0.693385i \(0.756118\pi\)
\(68\) 26.1447 3.17051
\(69\) −9.16960 −1.10389
\(70\) 0 0
\(71\) 7.92865 0.940957 0.470479 0.882411i \(-0.344081\pi\)
0.470479 + 0.882411i \(0.344081\pi\)
\(72\) −6.13841 −0.723419
\(73\) 8.94146 1.04652 0.523259 0.852174i \(-0.324716\pi\)
0.523259 + 0.852174i \(0.324716\pi\)
\(74\) −2.58855 −0.300913
\(75\) 0 0
\(76\) 8.68020 0.995687
\(77\) −1.30002 −0.148151
\(78\) −17.0473 −1.93022
\(79\) 5.85260 0.658469 0.329235 0.944248i \(-0.393209\pi\)
0.329235 + 0.944248i \(0.393209\pi\)
\(80\) 0 0
\(81\) −5.59466 −0.621629
\(82\) −24.8356 −2.74264
\(83\) 17.0540 1.87192 0.935961 0.352103i \(-0.114533\pi\)
0.935961 + 0.352103i \(0.114533\pi\)
\(84\) 4.44130 0.484585
\(85\) 0 0
\(86\) −17.2748 −1.86279
\(87\) 11.5553 1.23886
\(88\) 14.0110 1.49357
\(89\) −15.5198 −1.64509 −0.822546 0.568699i \(-0.807447\pi\)
−0.822546 + 0.568699i \(0.807447\pi\)
\(90\) 0 0
\(91\) −2.93245 −0.307405
\(92\) 29.5896 3.08493
\(93\) 4.19228 0.434719
\(94\) −11.9654 −1.23414
\(95\) 0 0
\(96\) −12.4174 −1.26734
\(97\) 7.82669 0.794680 0.397340 0.917672i \(-0.369933\pi\)
0.397340 + 0.917672i \(0.369933\pi\)
\(98\) −17.0308 −1.72037
\(99\) −1.75993 −0.176880
\(100\) 0 0
\(101\) −8.64993 −0.860701 −0.430350 0.902662i \(-0.641610\pi\)
−0.430350 + 0.902662i \(0.641610\pi\)
\(102\) −20.9726 −2.07659
\(103\) −4.85153 −0.478036 −0.239018 0.971015i \(-0.576825\pi\)
−0.239018 + 0.971015i \(0.576825\pi\)
\(104\) 31.6046 3.09908
\(105\) 0 0
\(106\) −17.1696 −1.66765
\(107\) −10.4460 −1.00985 −0.504925 0.863163i \(-0.668480\pi\)
−0.504925 + 0.863163i \(0.668480\pi\)
\(108\) 26.5542 2.55518
\(109\) −6.96214 −0.666852 −0.333426 0.942776i \(-0.608205\pi\)
−0.333426 + 0.942776i \(0.608205\pi\)
\(110\) 0 0
\(111\) 1.45668 0.138262
\(112\) −5.63937 −0.532870
\(113\) −3.68347 −0.346512 −0.173256 0.984877i \(-0.555429\pi\)
−0.173256 + 0.984877i \(0.555429\pi\)
\(114\) −6.96301 −0.652146
\(115\) 0 0
\(116\) −37.2882 −3.46212
\(117\) −3.96989 −0.367016
\(118\) 9.20084 0.847006
\(119\) −3.60768 −0.330715
\(120\) 0 0
\(121\) −6.98294 −0.634813
\(122\) 23.2583 2.10571
\(123\) 13.9760 1.26017
\(124\) −13.5282 −1.21487
\(125\) 0 0
\(126\) 1.47433 0.131344
\(127\) −0.651297 −0.0577933 −0.0288966 0.999582i \(-0.509199\pi\)
−0.0288966 + 0.999582i \(0.509199\pi\)
\(128\) −4.94134 −0.436757
\(129\) 9.72122 0.855906
\(130\) 0 0
\(131\) −2.04184 −0.178396 −0.0891982 0.996014i \(-0.528430\pi\)
−0.0891982 + 0.996014i \(0.528430\pi\)
\(132\) −13.7236 −1.19449
\(133\) −1.19777 −0.103860
\(134\) −30.5350 −2.63782
\(135\) 0 0
\(136\) 38.8818 3.33408
\(137\) 10.4388 0.891845 0.445923 0.895071i \(-0.352876\pi\)
0.445923 + 0.895071i \(0.352876\pi\)
\(138\) −23.7360 −2.02054
\(139\) 13.4010 1.13666 0.568329 0.822802i \(-0.307590\pi\)
0.568329 + 0.822802i \(0.307590\pi\)
\(140\) 0 0
\(141\) 6.73341 0.567055
\(142\) 20.5237 1.72231
\(143\) 9.06129 0.757743
\(144\) −7.63444 −0.636204
\(145\) 0 0
\(146\) 23.1454 1.91553
\(147\) 9.58388 0.790465
\(148\) −4.70058 −0.386385
\(149\) −7.69388 −0.630307 −0.315154 0.949041i \(-0.602056\pi\)
−0.315154 + 0.949041i \(0.602056\pi\)
\(150\) 0 0
\(151\) −14.8303 −1.20687 −0.603437 0.797410i \(-0.706203\pi\)
−0.603437 + 0.797410i \(0.706203\pi\)
\(152\) 12.9090 1.04706
\(153\) −4.88399 −0.394847
\(154\) −3.36516 −0.271172
\(155\) 0 0
\(156\) −30.9564 −2.47850
\(157\) −6.58086 −0.525210 −0.262605 0.964903i \(-0.584582\pi\)
−0.262605 + 0.964903i \(0.584582\pi\)
\(158\) 15.1497 1.20525
\(159\) 9.66197 0.766244
\(160\) 0 0
\(161\) −4.08303 −0.321788
\(162\) −14.4820 −1.13782
\(163\) 9.03162 0.707411 0.353705 0.935357i \(-0.384922\pi\)
0.353705 + 0.935357i \(0.384922\pi\)
\(164\) −45.0994 −3.52167
\(165\) 0 0
\(166\) 44.1452 3.42633
\(167\) 13.6411 1.05558 0.527791 0.849374i \(-0.323020\pi\)
0.527791 + 0.849374i \(0.323020\pi\)
\(168\) 6.60498 0.509586
\(169\) 7.43958 0.572275
\(170\) 0 0
\(171\) −1.62151 −0.124000
\(172\) −31.3696 −2.39191
\(173\) −2.31736 −0.176186 −0.0880928 0.996112i \(-0.528077\pi\)
−0.0880928 + 0.996112i \(0.528077\pi\)
\(174\) 29.9115 2.26759
\(175\) 0 0
\(176\) 17.4257 1.31351
\(177\) −5.17766 −0.389177
\(178\) −40.1737 −3.01114
\(179\) 15.2482 1.13970 0.569852 0.821747i \(-0.307000\pi\)
0.569852 + 0.821747i \(0.307000\pi\)
\(180\) 0 0
\(181\) −1.21203 −0.0900896 −0.0450448 0.998985i \(-0.514343\pi\)
−0.0450448 + 0.998985i \(0.514343\pi\)
\(182\) −7.59080 −0.562668
\(183\) −13.0883 −0.967518
\(184\) 44.0049 3.24409
\(185\) 0 0
\(186\) 10.8519 0.795702
\(187\) 11.1477 0.815203
\(188\) −21.7282 −1.58469
\(189\) −3.66418 −0.266530
\(190\) 0 0
\(191\) 20.5011 1.48341 0.741705 0.670726i \(-0.234017\pi\)
0.741705 + 0.670726i \(0.234017\pi\)
\(192\) −6.81340 −0.491715
\(193\) −1.57831 −0.113609 −0.0568045 0.998385i \(-0.518091\pi\)
−0.0568045 + 0.998385i \(0.518091\pi\)
\(194\) 20.2598 1.45457
\(195\) 0 0
\(196\) −30.9265 −2.20903
\(197\) −15.9367 −1.13544 −0.567722 0.823221i \(-0.692175\pi\)
−0.567722 + 0.823221i \(0.692175\pi\)
\(198\) −4.55567 −0.323758
\(199\) 4.38722 0.311002 0.155501 0.987836i \(-0.450301\pi\)
0.155501 + 0.987836i \(0.450301\pi\)
\(200\) 0 0
\(201\) 17.1832 1.21201
\(202\) −22.3908 −1.57541
\(203\) 5.14535 0.361132
\(204\) −38.0844 −2.66644
\(205\) 0 0
\(206\) −12.5584 −0.874987
\(207\) −5.52752 −0.384189
\(208\) 39.3071 2.72546
\(209\) 3.70111 0.256011
\(210\) 0 0
\(211\) −16.5270 −1.13777 −0.568883 0.822418i \(-0.692624\pi\)
−0.568883 + 0.822418i \(0.692624\pi\)
\(212\) −31.1784 −2.14134
\(213\) −11.5495 −0.791356
\(214\) −27.0399 −1.84841
\(215\) 0 0
\(216\) 39.4907 2.68700
\(217\) 1.86674 0.126722
\(218\) −18.0218 −1.22059
\(219\) −13.0248 −0.880135
\(220\) 0 0
\(221\) 25.1460 1.69150
\(222\) 3.77067 0.253071
\(223\) −22.6093 −1.51403 −0.757014 0.653399i \(-0.773343\pi\)
−0.757014 + 0.653399i \(0.773343\pi\)
\(224\) −5.52920 −0.369435
\(225\) 0 0
\(226\) −9.53484 −0.634248
\(227\) 2.56112 0.169987 0.0849937 0.996381i \(-0.472913\pi\)
0.0849937 + 0.996381i \(0.472913\pi\)
\(228\) −12.6442 −0.837385
\(229\) 1.73702 0.114786 0.0573929 0.998352i \(-0.481721\pi\)
0.0573929 + 0.998352i \(0.481721\pi\)
\(230\) 0 0
\(231\) 1.89370 0.124597
\(232\) −55.4540 −3.64073
\(233\) 9.32879 0.611149 0.305575 0.952168i \(-0.401151\pi\)
0.305575 + 0.952168i \(0.401151\pi\)
\(234\) −10.2762 −0.671779
\(235\) 0 0
\(236\) 16.7079 1.08759
\(237\) −8.52534 −0.553780
\(238\) −9.33865 −0.605335
\(239\) 0.602230 0.0389550 0.0194775 0.999810i \(-0.493800\pi\)
0.0194775 + 0.999810i \(0.493800\pi\)
\(240\) 0 0
\(241\) −14.5974 −0.940304 −0.470152 0.882585i \(-0.655801\pi\)
−0.470152 + 0.882585i \(0.655801\pi\)
\(242\) −18.0757 −1.16195
\(243\) −8.79779 −0.564378
\(244\) 42.2351 2.70382
\(245\) 0 0
\(246\) 36.1775 2.30659
\(247\) 8.34861 0.531209
\(248\) −20.1188 −1.27754
\(249\) −24.8422 −1.57431
\(250\) 0 0
\(251\) −17.9341 −1.13199 −0.565996 0.824408i \(-0.691508\pi\)
−0.565996 + 0.824408i \(0.691508\pi\)
\(252\) 2.67725 0.168651
\(253\) 12.6166 0.793198
\(254\) −1.68591 −0.105784
\(255\) 0 0
\(256\) −22.1456 −1.38410
\(257\) 1.13398 0.0707356 0.0353678 0.999374i \(-0.488740\pi\)
0.0353678 + 0.999374i \(0.488740\pi\)
\(258\) 25.1638 1.56663
\(259\) 0.648627 0.0403037
\(260\) 0 0
\(261\) 6.96565 0.431163
\(262\) −5.28540 −0.326533
\(263\) −0.576045 −0.0355204 −0.0177602 0.999842i \(-0.505654\pi\)
−0.0177602 + 0.999842i \(0.505654\pi\)
\(264\) −20.4094 −1.25611
\(265\) 0 0
\(266\) −3.10048 −0.190103
\(267\) 22.6073 1.38354
\(268\) −55.4490 −3.38708
\(269\) 14.8308 0.904249 0.452124 0.891955i \(-0.350666\pi\)
0.452124 + 0.891955i \(0.350666\pi\)
\(270\) 0 0
\(271\) −23.5579 −1.43104 −0.715520 0.698592i \(-0.753810\pi\)
−0.715520 + 0.698592i \(0.753810\pi\)
\(272\) 48.3579 2.93213
\(273\) 4.27163 0.258531
\(274\) 27.0213 1.63242
\(275\) 0 0
\(276\) −43.1025 −2.59446
\(277\) 1.55020 0.0931422 0.0465711 0.998915i \(-0.485171\pi\)
0.0465711 + 0.998915i \(0.485171\pi\)
\(278\) 34.6891 2.08051
\(279\) 2.52714 0.151296
\(280\) 0 0
\(281\) 31.3095 1.86777 0.933884 0.357575i \(-0.116396\pi\)
0.933884 + 0.357575i \(0.116396\pi\)
\(282\) 17.4297 1.03793
\(283\) 27.6189 1.64177 0.820886 0.571091i \(-0.193480\pi\)
0.820886 + 0.571091i \(0.193480\pi\)
\(284\) 37.2693 2.21152
\(285\) 0 0
\(286\) 23.4556 1.38696
\(287\) 6.22321 0.367344
\(288\) −7.48530 −0.441076
\(289\) 13.9361 0.819768
\(290\) 0 0
\(291\) −11.4009 −0.668335
\(292\) 42.0301 2.45962
\(293\) 9.90491 0.578651 0.289326 0.957231i \(-0.406569\pi\)
0.289326 + 0.957231i \(0.406569\pi\)
\(294\) 24.8083 1.44685
\(295\) 0 0
\(296\) −6.99059 −0.406320
\(297\) 11.3223 0.656988
\(298\) −19.9160 −1.15370
\(299\) 28.4593 1.64584
\(300\) 0 0
\(301\) 4.32866 0.249500
\(302\) −38.3890 −2.20904
\(303\) 12.6001 0.723859
\(304\) 16.0551 0.920823
\(305\) 0 0
\(306\) −12.6424 −0.722720
\(307\) −7.83799 −0.447338 −0.223669 0.974665i \(-0.571803\pi\)
−0.223669 + 0.974665i \(0.571803\pi\)
\(308\) −6.11084 −0.348198
\(309\) 7.06711 0.402034
\(310\) 0 0
\(311\) 24.4352 1.38560 0.692798 0.721132i \(-0.256378\pi\)
0.692798 + 0.721132i \(0.256378\pi\)
\(312\) −46.0376 −2.60636
\(313\) 18.0084 1.01789 0.508947 0.860798i \(-0.330035\pi\)
0.508947 + 0.860798i \(0.330035\pi\)
\(314\) −17.0349 −0.961334
\(315\) 0 0
\(316\) 27.5106 1.54759
\(317\) −14.3769 −0.807486 −0.403743 0.914872i \(-0.632291\pi\)
−0.403743 + 0.914872i \(0.632291\pi\)
\(318\) 25.0105 1.40252
\(319\) −15.8991 −0.890180
\(320\) 0 0
\(321\) 15.2164 0.849296
\(322\) −10.5691 −0.588995
\(323\) 10.2709 0.571491
\(324\) −26.2981 −1.46101
\(325\) 0 0
\(326\) 23.3788 1.29483
\(327\) 10.1416 0.560831
\(328\) −67.0707 −3.70336
\(329\) 2.99825 0.165299
\(330\) 0 0
\(331\) 24.5918 1.35169 0.675845 0.737044i \(-0.263779\pi\)
0.675845 + 0.737044i \(0.263779\pi\)
\(332\) 80.1639 4.39956
\(333\) 0.878097 0.0481194
\(334\) 35.3107 1.93212
\(335\) 0 0
\(336\) 8.21473 0.448150
\(337\) −23.0495 −1.25559 −0.627793 0.778381i \(-0.716041\pi\)
−0.627793 + 0.778381i \(0.716041\pi\)
\(338\) 19.2577 1.04748
\(339\) 5.36562 0.291420
\(340\) 0 0
\(341\) −5.76822 −0.312367
\(342\) −4.19736 −0.226967
\(343\) 8.80790 0.475582
\(344\) −46.6521 −2.51532
\(345\) 0 0
\(346\) −5.99860 −0.322487
\(347\) −2.01655 −0.108254 −0.0541271 0.998534i \(-0.517238\pi\)
−0.0541271 + 0.998534i \(0.517238\pi\)
\(348\) 54.3167 2.91168
\(349\) 5.86531 0.313963 0.156981 0.987602i \(-0.449824\pi\)
0.156981 + 0.987602i \(0.449824\pi\)
\(350\) 0 0
\(351\) 25.5398 1.36321
\(352\) 17.0852 0.910646
\(353\) −20.8137 −1.10780 −0.553900 0.832583i \(-0.686861\pi\)
−0.553900 + 0.832583i \(0.686861\pi\)
\(354\) −13.4026 −0.712342
\(355\) 0 0
\(356\) −72.9519 −3.86644
\(357\) 5.25522 0.278136
\(358\) 39.4707 2.08609
\(359\) −32.6574 −1.72359 −0.861796 0.507256i \(-0.830660\pi\)
−0.861796 + 0.507256i \(0.830660\pi\)
\(360\) 0 0
\(361\) −15.5900 −0.820526
\(362\) −3.13740 −0.164898
\(363\) 10.1719 0.533885
\(364\) −13.7842 −0.722491
\(365\) 0 0
\(366\) −33.8798 −1.77093
\(367\) 19.8239 1.03480 0.517400 0.855743i \(-0.326900\pi\)
0.517400 + 0.855743i \(0.326900\pi\)
\(368\) 54.7297 2.85298
\(369\) 8.42483 0.438579
\(370\) 0 0
\(371\) 4.30227 0.223363
\(372\) 19.7062 1.02172
\(373\) 7.05575 0.365333 0.182666 0.983175i \(-0.441527\pi\)
0.182666 + 0.983175i \(0.441527\pi\)
\(374\) 28.8565 1.49213
\(375\) 0 0
\(376\) −32.3136 −1.66645
\(377\) −35.8637 −1.84707
\(378\) −9.48491 −0.487851
\(379\) 14.3983 0.739593 0.369797 0.929113i \(-0.379427\pi\)
0.369797 + 0.929113i \(0.379427\pi\)
\(380\) 0 0
\(381\) 0.948729 0.0486048
\(382\) 53.0682 2.71521
\(383\) 4.98755 0.254852 0.127426 0.991848i \(-0.459329\pi\)
0.127426 + 0.991848i \(0.459329\pi\)
\(384\) 7.19793 0.367318
\(385\) 0 0
\(386\) −4.08552 −0.207948
\(387\) 5.86004 0.297882
\(388\) 36.7900 1.86773
\(389\) 22.0079 1.11585 0.557923 0.829893i \(-0.311598\pi\)
0.557923 + 0.829893i \(0.311598\pi\)
\(390\) 0 0
\(391\) 35.0123 1.77065
\(392\) −45.9930 −2.32300
\(393\) 2.97430 0.150034
\(394\) −41.2529 −2.07829
\(395\) 0 0
\(396\) −8.27272 −0.415720
\(397\) 8.24549 0.413829 0.206915 0.978359i \(-0.433658\pi\)
0.206915 + 0.978359i \(0.433658\pi\)
\(398\) 11.3565 0.569251
\(399\) 1.74476 0.0873473
\(400\) 0 0
\(401\) −14.1806 −0.708144 −0.354072 0.935218i \(-0.615203\pi\)
−0.354072 + 0.935218i \(0.615203\pi\)
\(402\) 44.4796 2.21844
\(403\) −13.0114 −0.648143
\(404\) −40.6597 −2.02290
\(405\) 0 0
\(406\) 13.3190 0.661010
\(407\) −2.00426 −0.0993475
\(408\) −56.6381 −2.80401
\(409\) −5.60504 −0.277152 −0.138576 0.990352i \(-0.544252\pi\)
−0.138576 + 0.990352i \(0.544252\pi\)
\(410\) 0 0
\(411\) −15.2059 −0.750053
\(412\) −22.8050 −1.12352
\(413\) −2.30551 −0.113447
\(414\) −14.3082 −0.703212
\(415\) 0 0
\(416\) 38.5392 1.88954
\(417\) −19.5209 −0.955942
\(418\) 9.58051 0.468598
\(419\) −15.2102 −0.743067 −0.371533 0.928420i \(-0.621168\pi\)
−0.371533 + 0.928420i \(0.621168\pi\)
\(420\) 0 0
\(421\) −25.3853 −1.23720 −0.618602 0.785705i \(-0.712301\pi\)
−0.618602 + 0.785705i \(0.712301\pi\)
\(422\) −42.7810 −2.08255
\(423\) 4.05896 0.197353
\(424\) −46.3678 −2.25182
\(425\) 0 0
\(426\) −29.8963 −1.44848
\(427\) −5.82797 −0.282035
\(428\) −49.1021 −2.37344
\(429\) −13.1994 −0.637271
\(430\) 0 0
\(431\) 7.47455 0.360036 0.180018 0.983663i \(-0.442384\pi\)
0.180018 + 0.983663i \(0.442384\pi\)
\(432\) 49.1153 2.36306
\(433\) −27.2983 −1.31187 −0.655937 0.754816i \(-0.727726\pi\)
−0.655937 + 0.754816i \(0.727726\pi\)
\(434\) 4.83214 0.231950
\(435\) 0 0
\(436\) −32.7261 −1.56730
\(437\) 11.6243 0.556064
\(438\) −33.7153 −1.61098
\(439\) 6.63267 0.316560 0.158280 0.987394i \(-0.449405\pi\)
0.158280 + 0.987394i \(0.449405\pi\)
\(440\) 0 0
\(441\) 5.77725 0.275107
\(442\) 65.0916 3.09609
\(443\) −14.3893 −0.683655 −0.341828 0.939763i \(-0.611046\pi\)
−0.341828 + 0.939763i \(0.611046\pi\)
\(444\) 6.84722 0.324955
\(445\) 0 0
\(446\) −58.5252 −2.77125
\(447\) 11.2075 0.530096
\(448\) −3.03387 −0.143337
\(449\) −15.9023 −0.750475 −0.375238 0.926929i \(-0.622439\pi\)
−0.375238 + 0.926929i \(0.622439\pi\)
\(450\) 0 0
\(451\) −19.2297 −0.905492
\(452\) −17.3144 −0.814403
\(453\) 21.6030 1.01500
\(454\) 6.62957 0.311141
\(455\) 0 0
\(456\) −18.8042 −0.880587
\(457\) −2.27388 −0.106368 −0.0531839 0.998585i \(-0.516937\pi\)
−0.0531839 + 0.998585i \(0.516937\pi\)
\(458\) 4.49637 0.210102
\(459\) 31.4206 1.46659
\(460\) 0 0
\(461\) 26.8481 1.25044 0.625220 0.780448i \(-0.285009\pi\)
0.625220 + 0.780448i \(0.285009\pi\)
\(462\) 4.90195 0.228059
\(463\) 5.51116 0.256125 0.128063 0.991766i \(-0.459124\pi\)
0.128063 + 0.991766i \(0.459124\pi\)
\(464\) −68.9690 −3.20181
\(465\) 0 0
\(466\) 24.1480 1.11864
\(467\) 18.8103 0.870436 0.435218 0.900325i \(-0.356671\pi\)
0.435218 + 0.900325i \(0.356671\pi\)
\(468\) −18.6608 −0.862595
\(469\) 7.65133 0.353306
\(470\) 0 0
\(471\) 9.58618 0.441708
\(472\) 24.8476 1.14370
\(473\) −13.3756 −0.615009
\(474\) −22.0683 −1.01363
\(475\) 0 0
\(476\) −16.9582 −0.777277
\(477\) 5.82432 0.266677
\(478\) 1.55890 0.0713025
\(479\) 8.00482 0.365750 0.182875 0.983136i \(-0.441460\pi\)
0.182875 + 0.983136i \(0.441460\pi\)
\(480\) 0 0
\(481\) −4.52102 −0.206141
\(482\) −37.7862 −1.72111
\(483\) 5.94766 0.270628
\(484\) −32.8239 −1.49199
\(485\) 0 0
\(486\) −22.7735 −1.03303
\(487\) −7.39645 −0.335165 −0.167582 0.985858i \(-0.553596\pi\)
−0.167582 + 0.985858i \(0.553596\pi\)
\(488\) 62.8110 2.84332
\(489\) −13.1561 −0.594941
\(490\) 0 0
\(491\) 40.8861 1.84517 0.922583 0.385799i \(-0.126074\pi\)
0.922583 + 0.385799i \(0.126074\pi\)
\(492\) 65.6952 2.96177
\(493\) −44.1216 −1.98714
\(494\) 21.6108 0.972315
\(495\) 0 0
\(496\) −25.0220 −1.12352
\(497\) −5.14274 −0.230683
\(498\) −64.3052 −2.88158
\(499\) 4.30244 0.192604 0.0963019 0.995352i \(-0.469299\pi\)
0.0963019 + 0.995352i \(0.469299\pi\)
\(500\) 0 0
\(501\) −19.8707 −0.887757
\(502\) −46.4234 −2.07198
\(503\) −21.1220 −0.941786 −0.470893 0.882190i \(-0.656068\pi\)
−0.470893 + 0.882190i \(0.656068\pi\)
\(504\) 3.98154 0.177352
\(505\) 0 0
\(506\) 32.6586 1.45185
\(507\) −10.8371 −0.481290
\(508\) −3.06148 −0.135831
\(509\) 12.1512 0.538594 0.269297 0.963057i \(-0.413209\pi\)
0.269297 + 0.963057i \(0.413209\pi\)
\(510\) 0 0
\(511\) −5.79968 −0.256563
\(512\) −47.4423 −2.09668
\(513\) 10.4318 0.460575
\(514\) 2.93536 0.129473
\(515\) 0 0
\(516\) 45.6954 2.01163
\(517\) −9.26459 −0.407456
\(518\) 1.67900 0.0737712
\(519\) 3.37564 0.148174
\(520\) 0 0
\(521\) −38.8351 −1.70140 −0.850699 0.525653i \(-0.823821\pi\)
−0.850699 + 0.525653i \(0.823821\pi\)
\(522\) 18.0309 0.789192
\(523\) 8.84445 0.386741 0.193371 0.981126i \(-0.438058\pi\)
0.193371 + 0.981126i \(0.438058\pi\)
\(524\) −9.59784 −0.419283
\(525\) 0 0
\(526\) −1.49112 −0.0650159
\(527\) −16.0074 −0.697292
\(528\) −25.3835 −1.10468
\(529\) 16.6256 0.722850
\(530\) 0 0
\(531\) −3.12114 −0.135446
\(532\) −5.63022 −0.244101
\(533\) −43.3765 −1.87885
\(534\) 58.5200 2.53241
\(535\) 0 0
\(536\) −82.4623 −3.56183
\(537\) −22.2117 −0.958505
\(538\) 38.3902 1.65512
\(539\) −13.1866 −0.567987
\(540\) 0 0
\(541\) −16.2938 −0.700527 −0.350263 0.936651i \(-0.613908\pi\)
−0.350263 + 0.936651i \(0.613908\pi\)
\(542\) −60.9808 −2.61935
\(543\) 1.76554 0.0757664
\(544\) 47.4132 2.03282
\(545\) 0 0
\(546\) 11.0573 0.473210
\(547\) 12.1716 0.520419 0.260210 0.965552i \(-0.416208\pi\)
0.260210 + 0.965552i \(0.416208\pi\)
\(548\) 49.0684 2.09610
\(549\) −7.88977 −0.336727
\(550\) 0 0
\(551\) −14.6486 −0.624053
\(552\) −64.1009 −2.72832
\(553\) −3.79616 −0.161429
\(554\) 4.01276 0.170486
\(555\) 0 0
\(556\) 62.9925 2.67148
\(557\) 17.7309 0.751282 0.375641 0.926765i \(-0.377423\pi\)
0.375641 + 0.926765i \(0.377423\pi\)
\(558\) 6.54163 0.276929
\(559\) −30.1713 −1.27611
\(560\) 0 0
\(561\) −16.2386 −0.685596
\(562\) 81.0462 3.41873
\(563\) −31.2138 −1.31550 −0.657752 0.753234i \(-0.728493\pi\)
−0.657752 + 0.753234i \(0.728493\pi\)
\(564\) 31.6509 1.33274
\(565\) 0 0
\(566\) 71.4928 3.00507
\(567\) 3.62885 0.152397
\(568\) 55.4259 2.32562
\(569\) 30.2875 1.26972 0.634860 0.772628i \(-0.281058\pi\)
0.634860 + 0.772628i \(0.281058\pi\)
\(570\) 0 0
\(571\) 0.958299 0.0401035 0.0200518 0.999799i \(-0.493617\pi\)
0.0200518 + 0.999799i \(0.493617\pi\)
\(572\) 42.5933 1.78092
\(573\) −29.8635 −1.24757
\(574\) 16.1091 0.672380
\(575\) 0 0
\(576\) −4.10718 −0.171132
\(577\) 24.2765 1.01064 0.505321 0.862931i \(-0.331374\pi\)
0.505321 + 0.862931i \(0.331374\pi\)
\(578\) 36.0742 1.50049
\(579\) 2.29908 0.0955465
\(580\) 0 0
\(581\) −11.0617 −0.458917
\(582\) −29.5119 −1.22331
\(583\) −13.2940 −0.550583
\(584\) 62.5060 2.58652
\(585\) 0 0
\(586\) 25.6393 1.05915
\(587\) 17.3137 0.714611 0.357305 0.933988i \(-0.383696\pi\)
0.357305 + 0.933988i \(0.383696\pi\)
\(588\) 45.0498 1.85782
\(589\) −5.31454 −0.218982
\(590\) 0 0
\(591\) 23.2146 0.954922
\(592\) −8.69431 −0.357334
\(593\) −6.71905 −0.275918 −0.137959 0.990438i \(-0.544054\pi\)
−0.137959 + 0.990438i \(0.544054\pi\)
\(594\) 29.3084 1.20254
\(595\) 0 0
\(596\) −36.1657 −1.48141
\(597\) −6.39075 −0.261556
\(598\) 73.6682 3.01252
\(599\) 29.5517 1.20745 0.603725 0.797193i \(-0.293683\pi\)
0.603725 + 0.797193i \(0.293683\pi\)
\(600\) 0 0
\(601\) −23.9680 −0.977674 −0.488837 0.872375i \(-0.662579\pi\)
−0.488837 + 0.872375i \(0.662579\pi\)
\(602\) 11.2049 0.456679
\(603\) 10.3582 0.421818
\(604\) −69.7112 −2.83651
\(605\) 0 0
\(606\) 32.6161 1.32494
\(607\) −12.1272 −0.492228 −0.246114 0.969241i \(-0.579154\pi\)
−0.246114 + 0.969241i \(0.579154\pi\)
\(608\) 15.7415 0.638400
\(609\) −7.49510 −0.303717
\(610\) 0 0
\(611\) −20.8982 −0.845449
\(612\) −22.9576 −0.928006
\(613\) 19.9682 0.806508 0.403254 0.915088i \(-0.367879\pi\)
0.403254 + 0.915088i \(0.367879\pi\)
\(614\) −20.2890 −0.818798
\(615\) 0 0
\(616\) −9.08789 −0.366162
\(617\) 42.9149 1.72769 0.863844 0.503759i \(-0.168050\pi\)
0.863844 + 0.503759i \(0.168050\pi\)
\(618\) 18.2936 0.735875
\(619\) 33.0261 1.32743 0.663715 0.747986i \(-0.268979\pi\)
0.663715 + 0.747986i \(0.268979\pi\)
\(620\) 0 0
\(621\) 35.5606 1.42700
\(622\) 63.2518 2.53617
\(623\) 10.0665 0.403308
\(624\) −57.2577 −2.29214
\(625\) 0 0
\(626\) 46.6156 1.86313
\(627\) −5.39132 −0.215309
\(628\) −30.9339 −1.23440
\(629\) −5.56202 −0.221772
\(630\) 0 0
\(631\) 19.4741 0.775254 0.387627 0.921816i \(-0.373295\pi\)
0.387627 + 0.921816i \(0.373295\pi\)
\(632\) 40.9131 1.62744
\(633\) 24.0745 0.956875
\(634\) −37.2153 −1.47801
\(635\) 0 0
\(636\) 45.4169 1.80090
\(637\) −29.7450 −1.17854
\(638\) −41.1557 −1.62937
\(639\) −6.96212 −0.275417
\(640\) 0 0
\(641\) −9.19723 −0.363269 −0.181634 0.983366i \(-0.558139\pi\)
−0.181634 + 0.983366i \(0.558139\pi\)
\(642\) 39.3883 1.55453
\(643\) 11.4689 0.452287 0.226144 0.974094i \(-0.427388\pi\)
0.226144 + 0.974094i \(0.427388\pi\)
\(644\) −19.1926 −0.756296
\(645\) 0 0
\(646\) 26.5868 1.04605
\(647\) 28.9348 1.13754 0.568771 0.822496i \(-0.307419\pi\)
0.568771 + 0.822496i \(0.307419\pi\)
\(648\) −39.1099 −1.53638
\(649\) 7.12402 0.279642
\(650\) 0 0
\(651\) −2.71923 −0.106575
\(652\) 42.4539 1.66262
\(653\) 6.72542 0.263186 0.131593 0.991304i \(-0.457991\pi\)
0.131593 + 0.991304i \(0.457991\pi\)
\(654\) 26.2520 1.02653
\(655\) 0 0
\(656\) −83.4169 −3.25688
\(657\) −7.85146 −0.306315
\(658\) 7.76111 0.302559
\(659\) 8.46642 0.329805 0.164902 0.986310i \(-0.447269\pi\)
0.164902 + 0.986310i \(0.447269\pi\)
\(660\) 0 0
\(661\) −8.25862 −0.321223 −0.160611 0.987018i \(-0.551347\pi\)
−0.160611 + 0.987018i \(0.551347\pi\)
\(662\) 63.6572 2.47411
\(663\) −36.6295 −1.42257
\(664\) 119.218 4.62654
\(665\) 0 0
\(666\) 2.27300 0.0880768
\(667\) −49.9352 −1.93350
\(668\) 64.1212 2.48092
\(669\) 32.9343 1.27332
\(670\) 0 0
\(671\) 18.0084 0.695208
\(672\) 8.05425 0.310699
\(673\) −35.7431 −1.37779 −0.688897 0.724859i \(-0.741905\pi\)
−0.688897 + 0.724859i \(0.741905\pi\)
\(674\) −59.6647 −2.29820
\(675\) 0 0
\(676\) 34.9703 1.34501
\(677\) −2.70690 −0.104035 −0.0520174 0.998646i \(-0.516565\pi\)
−0.0520174 + 0.998646i \(0.516565\pi\)
\(678\) 13.8892 0.533410
\(679\) −5.07660 −0.194822
\(680\) 0 0
\(681\) −3.73072 −0.142961
\(682\) −14.9313 −0.571750
\(683\) −0.816828 −0.0312551 −0.0156275 0.999878i \(-0.504975\pi\)
−0.0156275 + 0.999878i \(0.504975\pi\)
\(684\) −7.62205 −0.291436
\(685\) 0 0
\(686\) 22.7997 0.870495
\(687\) −2.53028 −0.0965363
\(688\) −58.0220 −2.21207
\(689\) −29.9874 −1.14243
\(690\) 0 0
\(691\) 13.6228 0.518237 0.259118 0.965846i \(-0.416568\pi\)
0.259118 + 0.965846i \(0.416568\pi\)
\(692\) −10.8929 −0.414087
\(693\) 1.14154 0.0433636
\(694\) −5.21994 −0.198146
\(695\) 0 0
\(696\) 80.7785 3.06190
\(697\) −53.3644 −2.02132
\(698\) 15.1826 0.574671
\(699\) −13.5890 −0.513984
\(700\) 0 0
\(701\) −12.6077 −0.476185 −0.238092 0.971243i \(-0.576522\pi\)
−0.238092 + 0.971243i \(0.576522\pi\)
\(702\) 66.1110 2.49520
\(703\) −1.84662 −0.0696467
\(704\) 9.37466 0.353321
\(705\) 0 0
\(706\) −53.8772 −2.02770
\(707\) 5.61058 0.211008
\(708\) −24.3380 −0.914679
\(709\) −23.1737 −0.870305 −0.435153 0.900357i \(-0.643306\pi\)
−0.435153 + 0.900357i \(0.643306\pi\)
\(710\) 0 0
\(711\) −5.13915 −0.192733
\(712\) −108.492 −4.06592
\(713\) −18.1165 −0.678470
\(714\) 13.6034 0.509094
\(715\) 0 0
\(716\) 71.6755 2.67864
\(717\) −0.877254 −0.0327616
\(718\) −84.5352 −3.15483
\(719\) −14.1759 −0.528671 −0.264335 0.964431i \(-0.585153\pi\)
−0.264335 + 0.964431i \(0.585153\pi\)
\(720\) 0 0
\(721\) 3.14684 0.117194
\(722\) −40.3554 −1.50187
\(723\) 21.2637 0.790807
\(724\) −5.69725 −0.211737
\(725\) 0 0
\(726\) 26.3304 0.977213
\(727\) 26.9601 0.999893 0.499947 0.866056i \(-0.333353\pi\)
0.499947 + 0.866056i \(0.333353\pi\)
\(728\) −20.4996 −0.759765
\(729\) 29.5995 1.09628
\(730\) 0 0
\(731\) −37.1185 −1.37288
\(732\) −61.5228 −2.27395
\(733\) −19.5075 −0.720528 −0.360264 0.932850i \(-0.617313\pi\)
−0.360264 + 0.932850i \(0.617313\pi\)
\(734\) 51.3152 1.89408
\(735\) 0 0
\(736\) 53.6605 1.97795
\(737\) −23.6426 −0.870888
\(738\) 21.8081 0.802767
\(739\) −54.0231 −1.98727 −0.993636 0.112640i \(-0.964069\pi\)
−0.993636 + 0.112640i \(0.964069\pi\)
\(740\) 0 0
\(741\) −12.1612 −0.446753
\(742\) 11.1366 0.408839
\(743\) 50.0450 1.83597 0.917986 0.396612i \(-0.129814\pi\)
0.917986 + 0.396612i \(0.129814\pi\)
\(744\) 29.3065 1.07443
\(745\) 0 0
\(746\) 18.2641 0.668698
\(747\) −14.9751 −0.547910
\(748\) 52.4008 1.91596
\(749\) 6.77554 0.247573
\(750\) 0 0
\(751\) −31.6999 −1.15675 −0.578373 0.815773i \(-0.696312\pi\)
−0.578373 + 0.815773i \(0.696312\pi\)
\(752\) −40.1890 −1.46554
\(753\) 26.1242 0.952019
\(754\) −92.8349 −3.38085
\(755\) 0 0
\(756\) −17.2238 −0.626423
\(757\) −46.2679 −1.68164 −0.840818 0.541318i \(-0.817925\pi\)
−0.840818 + 0.541318i \(0.817925\pi\)
\(758\) 37.2708 1.35374
\(759\) −18.3783 −0.667089
\(760\) 0 0
\(761\) −24.1741 −0.876312 −0.438156 0.898899i \(-0.644368\pi\)
−0.438156 + 0.898899i \(0.644368\pi\)
\(762\) 2.45583 0.0889653
\(763\) 4.51584 0.163484
\(764\) 96.3673 3.48645
\(765\) 0 0
\(766\) 12.9105 0.466475
\(767\) 16.0697 0.580242
\(768\) 32.2590 1.16405
\(769\) 28.2406 1.01838 0.509191 0.860654i \(-0.329945\pi\)
0.509191 + 0.860654i \(0.329945\pi\)
\(770\) 0 0
\(771\) −1.65184 −0.0594895
\(772\) −7.41896 −0.267014
\(773\) 34.8025 1.25176 0.625880 0.779919i \(-0.284740\pi\)
0.625880 + 0.779919i \(0.284740\pi\)
\(774\) 15.1690 0.545238
\(775\) 0 0
\(776\) 54.7131 1.96409
\(777\) −0.944840 −0.0338959
\(778\) 56.9686 2.04242
\(779\) −17.7173 −0.634787
\(780\) 0 0
\(781\) 15.8911 0.568627
\(782\) 90.6309 3.24096
\(783\) −44.8127 −1.60147
\(784\) −57.2023 −2.04294
\(785\) 0 0
\(786\) 7.69912 0.274618
\(787\) 30.9025 1.10155 0.550777 0.834653i \(-0.314332\pi\)
0.550777 + 0.834653i \(0.314332\pi\)
\(788\) −74.9118 −2.66862
\(789\) 0.839110 0.0298731
\(790\) 0 0
\(791\) 2.38920 0.0849501
\(792\) −12.3030 −0.437167
\(793\) 40.6217 1.44252
\(794\) 21.3439 0.757465
\(795\) 0 0
\(796\) 20.6225 0.730944
\(797\) −5.94861 −0.210711 −0.105355 0.994435i \(-0.533598\pi\)
−0.105355 + 0.994435i \(0.533598\pi\)
\(798\) 4.51640 0.159879
\(799\) −25.7101 −0.909559
\(800\) 0 0
\(801\) 13.6279 0.481516
\(802\) −36.7071 −1.29617
\(803\) 17.9210 0.632419
\(804\) 80.7711 2.84858
\(805\) 0 0
\(806\) −33.6806 −1.18635
\(807\) −21.6036 −0.760484
\(808\) −60.4681 −2.12726
\(809\) 1.88364 0.0662253 0.0331126 0.999452i \(-0.489458\pi\)
0.0331126 + 0.999452i \(0.489458\pi\)
\(810\) 0 0
\(811\) 8.16615 0.286752 0.143376 0.989668i \(-0.454204\pi\)
0.143376 + 0.989668i \(0.454204\pi\)
\(812\) 24.1861 0.848766
\(813\) 34.3162 1.20352
\(814\) −5.18813 −0.181844
\(815\) 0 0
\(816\) −70.4418 −2.46596
\(817\) −12.3236 −0.431147
\(818\) −14.5089 −0.507293
\(819\) 2.57498 0.0899770
\(820\) 0 0
\(821\) 56.6381 1.97668 0.988341 0.152255i \(-0.0486535\pi\)
0.988341 + 0.152255i \(0.0486535\pi\)
\(822\) −39.3613 −1.37288
\(823\) −44.6548 −1.55657 −0.778284 0.627913i \(-0.783909\pi\)
−0.778284 + 0.627913i \(0.783909\pi\)
\(824\) −33.9151 −1.18149
\(825\) 0 0
\(826\) −5.96792 −0.207650
\(827\) 33.2193 1.15515 0.577574 0.816339i \(-0.304000\pi\)
0.577574 + 0.816339i \(0.304000\pi\)
\(828\) −25.9825 −0.902956
\(829\) 11.4093 0.396260 0.198130 0.980176i \(-0.436513\pi\)
0.198130 + 0.980176i \(0.436513\pi\)
\(830\) 0 0
\(831\) −2.25813 −0.0783337
\(832\) 21.1464 0.733121
\(833\) −36.5941 −1.26791
\(834\) −50.5308 −1.74974
\(835\) 0 0
\(836\) 17.3974 0.601701
\(837\) −16.2581 −0.561961
\(838\) −39.3723 −1.36009
\(839\) 4.83863 0.167048 0.0835240 0.996506i \(-0.473382\pi\)
0.0835240 + 0.996506i \(0.473382\pi\)
\(840\) 0 0
\(841\) 33.9272 1.16990
\(842\) −65.7110 −2.26455
\(843\) −45.6078 −1.57082
\(844\) −77.6866 −2.67408
\(845\) 0 0
\(846\) 10.5068 0.361231
\(847\) 4.52933 0.155630
\(848\) −57.6684 −1.98034
\(849\) −40.2318 −1.38075
\(850\) 0 0
\(851\) −6.29488 −0.215786
\(852\) −54.2892 −1.85992
\(853\) 36.7663 1.25885 0.629427 0.777060i \(-0.283290\pi\)
0.629427 + 0.777060i \(0.283290\pi\)
\(854\) −15.0860 −0.516231
\(855\) 0 0
\(856\) −73.0234 −2.49589
\(857\) 46.3913 1.58470 0.792349 0.610068i \(-0.208858\pi\)
0.792349 + 0.610068i \(0.208858\pi\)
\(858\) −34.1672 −1.16645
\(859\) −48.0751 −1.64030 −0.820151 0.572147i \(-0.806111\pi\)
−0.820151 + 0.572147i \(0.806111\pi\)
\(860\) 0 0
\(861\) −9.06519 −0.308941
\(862\) 19.3482 0.659004
\(863\) −6.00436 −0.204391 −0.102195 0.994764i \(-0.532587\pi\)
−0.102195 + 0.994764i \(0.532587\pi\)
\(864\) 48.1558 1.63829
\(865\) 0 0
\(866\) −70.6631 −2.40123
\(867\) −20.3003 −0.689435
\(868\) 8.77475 0.297834
\(869\) 11.7301 0.397918
\(870\) 0 0
\(871\) −53.3307 −1.80704
\(872\) −48.6695 −1.64816
\(873\) −6.87259 −0.232602
\(874\) 30.0900 1.01781
\(875\) 0 0
\(876\) −61.2242 −2.06857
\(877\) −22.5527 −0.761550 −0.380775 0.924668i \(-0.624343\pi\)
−0.380775 + 0.924668i \(0.624343\pi\)
\(878\) 17.1690 0.579425
\(879\) −14.4282 −0.486653
\(880\) 0 0
\(881\) 44.0374 1.48366 0.741829 0.670589i \(-0.233959\pi\)
0.741829 + 0.670589i \(0.233959\pi\)
\(882\) 14.9547 0.503550
\(883\) 20.8462 0.701529 0.350764 0.936464i \(-0.385922\pi\)
0.350764 + 0.936464i \(0.385922\pi\)
\(884\) 118.201 3.97552
\(885\) 0 0
\(886\) −37.2473 −1.25135
\(887\) 26.8194 0.900509 0.450254 0.892900i \(-0.351333\pi\)
0.450254 + 0.892900i \(0.351333\pi\)
\(888\) 10.1830 0.341720
\(889\) 0.422449 0.0141685
\(890\) 0 0
\(891\) −11.2131 −0.375655
\(892\) −106.277 −3.55841
\(893\) −8.53591 −0.285643
\(894\) 29.0111 0.970277
\(895\) 0 0
\(896\) 3.20509 0.107075
\(897\) −41.4559 −1.38417
\(898\) −41.1638 −1.37366
\(899\) 22.8301 0.761425
\(900\) 0 0
\(901\) −36.8922 −1.22906
\(902\) −49.7771 −1.65740
\(903\) −6.30545 −0.209832
\(904\) −25.7496 −0.856419
\(905\) 0 0
\(906\) 55.9203 1.85783
\(907\) 37.2904 1.23821 0.619103 0.785310i \(-0.287496\pi\)
0.619103 + 0.785310i \(0.287496\pi\)
\(908\) 12.0387 0.399520
\(909\) 7.59548 0.251926
\(910\) 0 0
\(911\) −1.67857 −0.0556136 −0.0278068 0.999613i \(-0.508852\pi\)
−0.0278068 + 0.999613i \(0.508852\pi\)
\(912\) −23.3871 −0.774423
\(913\) 34.1807 1.13122
\(914\) −5.88606 −0.194694
\(915\) 0 0
\(916\) 8.16503 0.269780
\(917\) 1.32439 0.0437353
\(918\) 81.3336 2.68441
\(919\) −28.9936 −0.956411 −0.478206 0.878248i \(-0.658713\pi\)
−0.478206 + 0.878248i \(0.658713\pi\)
\(920\) 0 0
\(921\) 11.4174 0.376216
\(922\) 69.4976 2.28878
\(923\) 35.8455 1.17987
\(924\) 8.90152 0.292838
\(925\) 0 0
\(926\) 14.2659 0.468807
\(927\) 4.26012 0.139921
\(928\) −67.6217 −2.21979
\(929\) 21.1104 0.692611 0.346305 0.938122i \(-0.387436\pi\)
0.346305 + 0.938122i \(0.387436\pi\)
\(930\) 0 0
\(931\) −12.1494 −0.398182
\(932\) 43.8507 1.43638
\(933\) −35.5942 −1.16530
\(934\) 48.6913 1.59323
\(935\) 0 0
\(936\) −27.7518 −0.907098
\(937\) −36.3577 −1.18775 −0.593877 0.804556i \(-0.702403\pi\)
−0.593877 + 0.804556i \(0.702403\pi\)
\(938\) 19.8058 0.646684
\(939\) −26.2324 −0.856061
\(940\) 0 0
\(941\) 9.15990 0.298604 0.149302 0.988792i \(-0.452297\pi\)
0.149302 + 0.988792i \(0.452297\pi\)
\(942\) 24.8143 0.808493
\(943\) −60.3958 −1.96676
\(944\) 30.9034 1.00582
\(945\) 0 0
\(946\) −34.6233 −1.12570
\(947\) 25.6230 0.832637 0.416319 0.909219i \(-0.363320\pi\)
0.416319 + 0.909219i \(0.363320\pi\)
\(948\) −40.0741 −1.30155
\(949\) 40.4245 1.31223
\(950\) 0 0
\(951\) 20.9425 0.679105
\(952\) −25.2198 −0.817378
\(953\) 34.2849 1.11060 0.555299 0.831651i \(-0.312604\pi\)
0.555299 + 0.831651i \(0.312604\pi\)
\(954\) 15.0765 0.488120
\(955\) 0 0
\(956\) 2.83083 0.0915557
\(957\) 23.1599 0.748652
\(958\) 20.7209 0.669461
\(959\) −6.77088 −0.218643
\(960\) 0 0
\(961\) −22.7172 −0.732814
\(962\) −11.7029 −0.377316
\(963\) 9.17257 0.295582
\(964\) −68.6165 −2.20999
\(965\) 0 0
\(966\) 15.3958 0.495352
\(967\) 10.6663 0.343004 0.171502 0.985184i \(-0.445138\pi\)
0.171502 + 0.985184i \(0.445138\pi\)
\(968\) −48.8148 −1.56897
\(969\) −14.9614 −0.480631
\(970\) 0 0
\(971\) −50.6665 −1.62596 −0.812982 0.582289i \(-0.802157\pi\)
−0.812982 + 0.582289i \(0.802157\pi\)
\(972\) −41.3547 −1.32645
\(973\) −8.69225 −0.278661
\(974\) −19.1461 −0.613479
\(975\) 0 0
\(976\) 78.1190 2.50053
\(977\) 5.91123 0.189117 0.0945584 0.995519i \(-0.469856\pi\)
0.0945584 + 0.995519i \(0.469856\pi\)
\(978\) −34.0553 −1.08897
\(979\) −31.1056 −0.994141
\(980\) 0 0
\(981\) 6.11343 0.195187
\(982\) 105.836 3.37735
\(983\) −51.4039 −1.63953 −0.819765 0.572701i \(-0.805896\pi\)
−0.819765 + 0.572701i \(0.805896\pi\)
\(984\) 97.7002 3.11457
\(985\) 0 0
\(986\) −114.211 −3.63722
\(987\) −4.36747 −0.139018
\(988\) 39.2433 1.24850
\(989\) −42.0093 −1.33582
\(990\) 0 0
\(991\) 5.90736 0.187653 0.0938267 0.995589i \(-0.470090\pi\)
0.0938267 + 0.995589i \(0.470090\pi\)
\(992\) −24.5332 −0.778931
\(993\) −35.8223 −1.13679
\(994\) −13.3122 −0.422238
\(995\) 0 0
\(996\) −116.773 −3.70009
\(997\) 12.5708 0.398122 0.199061 0.979987i \(-0.436211\pi\)
0.199061 + 0.979987i \(0.436211\pi\)
\(998\) 11.1371 0.352538
\(999\) −5.64913 −0.178731
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.a.m.1.8 9
3.2 odd 2 8325.2.a.cq.1.2 9
5.2 odd 4 185.2.b.a.149.17 yes 18
5.3 odd 4 185.2.b.a.149.2 18
5.4 even 2 925.2.a.l.1.2 9
15.2 even 4 1665.2.c.e.334.2 18
15.8 even 4 1665.2.c.e.334.17 18
15.14 odd 2 8325.2.a.cr.1.8 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.b.a.149.2 18 5.3 odd 4
185.2.b.a.149.17 yes 18 5.2 odd 4
925.2.a.l.1.2 9 5.4 even 2
925.2.a.m.1.8 9 1.1 even 1 trivial
1665.2.c.e.334.2 18 15.2 even 4
1665.2.c.e.334.17 18 15.8 even 4
8325.2.a.cq.1.2 9 3.2 odd 2
8325.2.a.cr.1.8 9 15.14 odd 2