Properties

Label 925.2.a.m.1.7
Level $925$
Weight $2$
Character 925.1
Self dual yes
Analytic conductor $7.386$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(1,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,5,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4x^{8} - 6x^{7} + 30x^{6} + 15x^{5} - 70x^{4} - 22x^{3} + 44x^{2} + 4x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 185)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-1.15179\) of defining polynomial
Character \(\chi\) \(=\) 925.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.15179 q^{2} +1.93821 q^{3} +2.63020 q^{4} +4.17062 q^{6} +4.19034 q^{7} +1.35605 q^{8} +0.756662 q^{9} +0.890817 q^{11} +5.09787 q^{12} -4.38953 q^{13} +9.01674 q^{14} -2.34246 q^{16} -3.99376 q^{17} +1.62818 q^{18} -2.99524 q^{19} +8.12177 q^{21} +1.91685 q^{22} +3.43248 q^{23} +2.62831 q^{24} -9.44533 q^{26} -4.34806 q^{27} +11.0214 q^{28} +0.0350663 q^{29} +5.73019 q^{31} -7.75258 q^{32} +1.72659 q^{33} -8.59373 q^{34} +1.99017 q^{36} -1.00000 q^{37} -6.44512 q^{38} -8.50783 q^{39} -0.0119268 q^{41} +17.4763 q^{42} -12.8668 q^{43} +2.34302 q^{44} +7.38598 q^{46} +7.16099 q^{47} -4.54019 q^{48} +10.5590 q^{49} -7.74075 q^{51} -11.5453 q^{52} +8.09263 q^{53} -9.35611 q^{54} +5.68230 q^{56} -5.80540 q^{57} +0.0754552 q^{58} -3.75697 q^{59} +13.4979 q^{61} +12.3302 q^{62} +3.17067 q^{63} -11.9970 q^{64} +3.71526 q^{66} +6.95341 q^{67} -10.5044 q^{68} +6.65288 q^{69} -10.7163 q^{71} +1.02607 q^{72} +11.1230 q^{73} -2.15179 q^{74} -7.87806 q^{76} +3.73283 q^{77} -18.3071 q^{78} -7.52510 q^{79} -10.6974 q^{81} -0.0256639 q^{82} +9.42416 q^{83} +21.3618 q^{84} -27.6867 q^{86} +0.0679658 q^{87} +1.20799 q^{88} -11.2080 q^{89} -18.3936 q^{91} +9.02810 q^{92} +11.1063 q^{93} +15.4089 q^{94} -15.0261 q^{96} -3.40068 q^{97} +22.7207 q^{98} +0.674048 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 5 q^{2} + 8 q^{3} + 11 q^{4} + 2 q^{6} + 8 q^{7} + 15 q^{8} + 13 q^{9} + 16 q^{12} + 6 q^{13} - 4 q^{14} + 11 q^{16} + 18 q^{17} - 3 q^{18} - 4 q^{19} + 4 q^{21} + 6 q^{22} + 16 q^{23} + 6 q^{24}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.15179 1.52154 0.760772 0.649019i \(-0.224820\pi\)
0.760772 + 0.649019i \(0.224820\pi\)
\(3\) 1.93821 1.11903 0.559513 0.828821i \(-0.310988\pi\)
0.559513 + 0.828821i \(0.310988\pi\)
\(4\) 2.63020 1.31510
\(5\) 0 0
\(6\) 4.17062 1.70265
\(7\) 4.19034 1.58380 0.791901 0.610650i \(-0.209092\pi\)
0.791901 + 0.610650i \(0.209092\pi\)
\(8\) 1.35605 0.479435
\(9\) 0.756662 0.252221
\(10\) 0 0
\(11\) 0.890817 0.268592 0.134296 0.990941i \(-0.457123\pi\)
0.134296 + 0.990941i \(0.457123\pi\)
\(12\) 5.09787 1.47163
\(13\) −4.38953 −1.21744 −0.608718 0.793387i \(-0.708316\pi\)
−0.608718 + 0.793387i \(0.708316\pi\)
\(14\) 9.01674 2.40982
\(15\) 0 0
\(16\) −2.34246 −0.585616
\(17\) −3.99376 −0.968629 −0.484314 0.874894i \(-0.660931\pi\)
−0.484314 + 0.874894i \(0.660931\pi\)
\(18\) 1.62818 0.383765
\(19\) −2.99524 −0.687155 −0.343577 0.939124i \(-0.611639\pi\)
−0.343577 + 0.939124i \(0.611639\pi\)
\(20\) 0 0
\(21\) 8.12177 1.77232
\(22\) 1.91685 0.408674
\(23\) 3.43248 0.715722 0.357861 0.933775i \(-0.383506\pi\)
0.357861 + 0.933775i \(0.383506\pi\)
\(24\) 2.62831 0.536501
\(25\) 0 0
\(26\) −9.44533 −1.85238
\(27\) −4.34806 −0.836785
\(28\) 11.0214 2.08285
\(29\) 0.0350663 0.00651164 0.00325582 0.999995i \(-0.498964\pi\)
0.00325582 + 0.999995i \(0.498964\pi\)
\(30\) 0 0
\(31\) 5.73019 1.02917 0.514587 0.857438i \(-0.327945\pi\)
0.514587 + 0.857438i \(0.327945\pi\)
\(32\) −7.75258 −1.37048
\(33\) 1.72659 0.300561
\(34\) −8.59373 −1.47381
\(35\) 0 0
\(36\) 1.99017 0.331695
\(37\) −1.00000 −0.164399
\(38\) −6.44512 −1.04554
\(39\) −8.50783 −1.36234
\(40\) 0 0
\(41\) −0.0119268 −0.00186265 −0.000931325 1.00000i \(-0.500296\pi\)
−0.000931325 1.00000i \(0.500296\pi\)
\(42\) 17.4763 2.69666
\(43\) −12.8668 −1.96217 −0.981087 0.193567i \(-0.937994\pi\)
−0.981087 + 0.193567i \(0.937994\pi\)
\(44\) 2.34302 0.353224
\(45\) 0 0
\(46\) 7.38598 1.08900
\(47\) 7.16099 1.04454 0.522269 0.852781i \(-0.325086\pi\)
0.522269 + 0.852781i \(0.325086\pi\)
\(48\) −4.54019 −0.655320
\(49\) 10.5590 1.50843
\(50\) 0 0
\(51\) −7.74075 −1.08392
\(52\) −11.5453 −1.60105
\(53\) 8.09263 1.11161 0.555804 0.831313i \(-0.312410\pi\)
0.555804 + 0.831313i \(0.312410\pi\)
\(54\) −9.35611 −1.27321
\(55\) 0 0
\(56\) 5.68230 0.759330
\(57\) −5.80540 −0.768944
\(58\) 0.0754552 0.00990775
\(59\) −3.75697 −0.489115 −0.244558 0.969635i \(-0.578643\pi\)
−0.244558 + 0.969635i \(0.578643\pi\)
\(60\) 0 0
\(61\) 13.4979 1.72823 0.864116 0.503293i \(-0.167878\pi\)
0.864116 + 0.503293i \(0.167878\pi\)
\(62\) 12.3302 1.56593
\(63\) 3.17067 0.399467
\(64\) −11.9970 −1.49962
\(65\) 0 0
\(66\) 3.71526 0.457317
\(67\) 6.95341 0.849494 0.424747 0.905312i \(-0.360363\pi\)
0.424747 + 0.905312i \(0.360363\pi\)
\(68\) −10.5044 −1.27384
\(69\) 6.65288 0.800912
\(70\) 0 0
\(71\) −10.7163 −1.27179 −0.635894 0.771776i \(-0.719369\pi\)
−0.635894 + 0.771776i \(0.719369\pi\)
\(72\) 1.02607 0.120923
\(73\) 11.1230 1.30184 0.650922 0.759145i \(-0.274383\pi\)
0.650922 + 0.759145i \(0.274383\pi\)
\(74\) −2.15179 −0.250140
\(75\) 0 0
\(76\) −7.87806 −0.903675
\(77\) 3.73283 0.425396
\(78\) −18.3071 −2.07287
\(79\) −7.52510 −0.846640 −0.423320 0.905980i \(-0.639135\pi\)
−0.423320 + 0.905980i \(0.639135\pi\)
\(80\) 0 0
\(81\) −10.6974 −1.18861
\(82\) −0.0256639 −0.00283411
\(83\) 9.42416 1.03444 0.517218 0.855854i \(-0.326968\pi\)
0.517218 + 0.855854i \(0.326968\pi\)
\(84\) 21.3618 2.33077
\(85\) 0 0
\(86\) −27.6867 −2.98553
\(87\) 0.0679658 0.00728670
\(88\) 1.20799 0.128772
\(89\) −11.2080 −1.18805 −0.594023 0.804448i \(-0.702461\pi\)
−0.594023 + 0.804448i \(0.702461\pi\)
\(90\) 0 0
\(91\) −18.3936 −1.92818
\(92\) 9.02810 0.941245
\(93\) 11.1063 1.15167
\(94\) 15.4089 1.58931
\(95\) 0 0
\(96\) −15.0261 −1.53360
\(97\) −3.40068 −0.345286 −0.172643 0.984984i \(-0.555231\pi\)
−0.172643 + 0.984984i \(0.555231\pi\)
\(98\) 22.7207 2.29514
\(99\) 0.674048 0.0677443
\(100\) 0 0
\(101\) 7.39980 0.736307 0.368154 0.929765i \(-0.379990\pi\)
0.368154 + 0.929765i \(0.379990\pi\)
\(102\) −16.6565 −1.64923
\(103\) 2.88273 0.284044 0.142022 0.989863i \(-0.454640\pi\)
0.142022 + 0.989863i \(0.454640\pi\)
\(104\) −5.95240 −0.583681
\(105\) 0 0
\(106\) 17.4136 1.69136
\(107\) 19.5051 1.88563 0.942816 0.333313i \(-0.108167\pi\)
0.942816 + 0.333313i \(0.108167\pi\)
\(108\) −11.4363 −1.10045
\(109\) 3.34203 0.320108 0.160054 0.987108i \(-0.448833\pi\)
0.160054 + 0.987108i \(0.448833\pi\)
\(110\) 0 0
\(111\) −1.93821 −0.183967
\(112\) −9.81573 −0.927499
\(113\) 3.88547 0.365514 0.182757 0.983158i \(-0.441498\pi\)
0.182757 + 0.983158i \(0.441498\pi\)
\(114\) −12.4920 −1.16998
\(115\) 0 0
\(116\) 0.0922311 0.00856344
\(117\) −3.32139 −0.307062
\(118\) −8.08420 −0.744211
\(119\) −16.7352 −1.53412
\(120\) 0 0
\(121\) −10.2064 −0.927859
\(122\) 29.0447 2.62958
\(123\) −0.0231166 −0.00208436
\(124\) 15.0715 1.35346
\(125\) 0 0
\(126\) 6.82262 0.607807
\(127\) −18.7816 −1.66660 −0.833298 0.552824i \(-0.813550\pi\)
−0.833298 + 0.552824i \(0.813550\pi\)
\(128\) −10.3098 −0.911269
\(129\) −24.9386 −2.19572
\(130\) 0 0
\(131\) 0.375087 0.0327715 0.0163858 0.999866i \(-0.494784\pi\)
0.0163858 + 0.999866i \(0.494784\pi\)
\(132\) 4.54127 0.395267
\(133\) −12.5511 −1.08832
\(134\) 14.9623 1.29254
\(135\) 0 0
\(136\) −5.41573 −0.464395
\(137\) −13.7889 −1.17806 −0.589032 0.808110i \(-0.700491\pi\)
−0.589032 + 0.808110i \(0.700491\pi\)
\(138\) 14.3156 1.21862
\(139\) −10.6223 −0.900975 −0.450487 0.892783i \(-0.648750\pi\)
−0.450487 + 0.892783i \(0.648750\pi\)
\(140\) 0 0
\(141\) 13.8795 1.16887
\(142\) −23.0592 −1.93508
\(143\) −3.91027 −0.326993
\(144\) −1.77245 −0.147704
\(145\) 0 0
\(146\) 23.9342 1.98081
\(147\) 20.4655 1.68797
\(148\) −2.63020 −0.216201
\(149\) 8.30509 0.680380 0.340190 0.940357i \(-0.389509\pi\)
0.340190 + 0.940357i \(0.389509\pi\)
\(150\) 0 0
\(151\) −20.7165 −1.68589 −0.842944 0.538001i \(-0.819180\pi\)
−0.842944 + 0.538001i \(0.819180\pi\)
\(152\) −4.06168 −0.329446
\(153\) −3.02193 −0.244308
\(154\) 8.03227 0.647258
\(155\) 0 0
\(156\) −22.3773 −1.79161
\(157\) 5.00991 0.399834 0.199917 0.979813i \(-0.435933\pi\)
0.199917 + 0.979813i \(0.435933\pi\)
\(158\) −16.1924 −1.28820
\(159\) 15.6852 1.24392
\(160\) 0 0
\(161\) 14.3833 1.13356
\(162\) −23.0187 −1.80852
\(163\) −5.93480 −0.464849 −0.232425 0.972614i \(-0.574666\pi\)
−0.232425 + 0.972614i \(0.574666\pi\)
\(164\) −0.0313698 −0.00244957
\(165\) 0 0
\(166\) 20.2788 1.57394
\(167\) −0.513319 −0.0397218 −0.0198609 0.999803i \(-0.506322\pi\)
−0.0198609 + 0.999803i \(0.506322\pi\)
\(168\) 11.0135 0.849710
\(169\) 6.26794 0.482149
\(170\) 0 0
\(171\) −2.26638 −0.173315
\(172\) −33.8423 −2.58045
\(173\) −0.177838 −0.0135208 −0.00676040 0.999977i \(-0.502152\pi\)
−0.00676040 + 0.999977i \(0.502152\pi\)
\(174\) 0.146248 0.0110870
\(175\) 0 0
\(176\) −2.08671 −0.157291
\(177\) −7.28179 −0.547333
\(178\) −24.1173 −1.80767
\(179\) 24.1056 1.80174 0.900869 0.434090i \(-0.142930\pi\)
0.900869 + 0.434090i \(0.142930\pi\)
\(180\) 0 0
\(181\) −17.7038 −1.31591 −0.657955 0.753057i \(-0.728578\pi\)
−0.657955 + 0.753057i \(0.728578\pi\)
\(182\) −39.5792 −2.93381
\(183\) 26.1618 1.93394
\(184\) 4.65461 0.343142
\(185\) 0 0
\(186\) 23.8985 1.75232
\(187\) −3.55771 −0.260166
\(188\) 18.8348 1.37367
\(189\) −18.2199 −1.32530
\(190\) 0 0
\(191\) −3.05809 −0.221276 −0.110638 0.993861i \(-0.535289\pi\)
−0.110638 + 0.993861i \(0.535289\pi\)
\(192\) −23.2527 −1.67812
\(193\) 11.2448 0.809420 0.404710 0.914445i \(-0.367372\pi\)
0.404710 + 0.914445i \(0.367372\pi\)
\(194\) −7.31754 −0.525369
\(195\) 0 0
\(196\) 27.7722 1.98373
\(197\) 24.6046 1.75301 0.876503 0.481397i \(-0.159870\pi\)
0.876503 + 0.481397i \(0.159870\pi\)
\(198\) 1.45041 0.103076
\(199\) 10.9154 0.773771 0.386885 0.922128i \(-0.373551\pi\)
0.386885 + 0.922128i \(0.373551\pi\)
\(200\) 0 0
\(201\) 13.4772 0.950606
\(202\) 15.9228 1.12032
\(203\) 0.146940 0.0103131
\(204\) −20.3597 −1.42546
\(205\) 0 0
\(206\) 6.20303 0.432186
\(207\) 2.59723 0.180520
\(208\) 10.2823 0.712950
\(209\) −2.66821 −0.184564
\(210\) 0 0
\(211\) 5.92367 0.407802 0.203901 0.978992i \(-0.434638\pi\)
0.203901 + 0.978992i \(0.434638\pi\)
\(212\) 21.2852 1.46187
\(213\) −20.7704 −1.42317
\(214\) 41.9709 2.86907
\(215\) 0 0
\(216\) −5.89618 −0.401184
\(217\) 24.0115 1.63001
\(218\) 7.19134 0.487059
\(219\) 21.5586 1.45680
\(220\) 0 0
\(221\) 17.5307 1.17924
\(222\) −4.17062 −0.279914
\(223\) −12.2403 −0.819670 −0.409835 0.912160i \(-0.634414\pi\)
−0.409835 + 0.912160i \(0.634414\pi\)
\(224\) −32.4860 −2.17056
\(225\) 0 0
\(226\) 8.36071 0.556146
\(227\) −4.20072 −0.278812 −0.139406 0.990235i \(-0.544519\pi\)
−0.139406 + 0.990235i \(0.544519\pi\)
\(228\) −15.2693 −1.01124
\(229\) 2.37350 0.156846 0.0784228 0.996920i \(-0.475012\pi\)
0.0784228 + 0.996920i \(0.475012\pi\)
\(230\) 0 0
\(231\) 7.23502 0.476029
\(232\) 0.0475515 0.00312191
\(233\) 21.0060 1.37615 0.688076 0.725639i \(-0.258456\pi\)
0.688076 + 0.725639i \(0.258456\pi\)
\(234\) −7.14693 −0.467209
\(235\) 0 0
\(236\) −9.88156 −0.643234
\(237\) −14.5852 −0.947413
\(238\) −36.0107 −2.33423
\(239\) −11.1938 −0.724067 −0.362034 0.932165i \(-0.617917\pi\)
−0.362034 + 0.932165i \(0.617917\pi\)
\(240\) 0 0
\(241\) 3.09667 0.199474 0.0997372 0.995014i \(-0.468200\pi\)
0.0997372 + 0.995014i \(0.468200\pi\)
\(242\) −21.9621 −1.41178
\(243\) −7.68973 −0.493296
\(244\) 35.5022 2.27279
\(245\) 0 0
\(246\) −0.0497421 −0.00317144
\(247\) 13.1477 0.836566
\(248\) 7.77041 0.493422
\(249\) 18.2660 1.15756
\(250\) 0 0
\(251\) −2.10677 −0.132978 −0.0664891 0.997787i \(-0.521180\pi\)
−0.0664891 + 0.997787i \(0.521180\pi\)
\(252\) 8.33949 0.525339
\(253\) 3.05772 0.192237
\(254\) −40.4140 −2.53580
\(255\) 0 0
\(256\) 1.80941 0.113088
\(257\) −5.91601 −0.369030 −0.184515 0.982830i \(-0.559071\pi\)
−0.184515 + 0.982830i \(0.559071\pi\)
\(258\) −53.6627 −3.34089
\(259\) −4.19034 −0.260375
\(260\) 0 0
\(261\) 0.0265333 0.00164237
\(262\) 0.807108 0.0498633
\(263\) −5.57668 −0.343873 −0.171936 0.985108i \(-0.555002\pi\)
−0.171936 + 0.985108i \(0.555002\pi\)
\(264\) 2.34134 0.144100
\(265\) 0 0
\(266\) −27.0073 −1.65592
\(267\) −21.7235 −1.32946
\(268\) 18.2888 1.11717
\(269\) −9.27624 −0.565583 −0.282791 0.959181i \(-0.591260\pi\)
−0.282791 + 0.959181i \(0.591260\pi\)
\(270\) 0 0
\(271\) 26.4067 1.60409 0.802047 0.597261i \(-0.203744\pi\)
0.802047 + 0.597261i \(0.203744\pi\)
\(272\) 9.35524 0.567244
\(273\) −35.6507 −2.15768
\(274\) −29.6708 −1.79248
\(275\) 0 0
\(276\) 17.4984 1.05328
\(277\) −0.119318 −0.00716913 −0.00358456 0.999994i \(-0.501141\pi\)
−0.00358456 + 0.999994i \(0.501141\pi\)
\(278\) −22.8570 −1.37087
\(279\) 4.33582 0.259579
\(280\) 0 0
\(281\) −9.48414 −0.565776 −0.282888 0.959153i \(-0.591293\pi\)
−0.282888 + 0.959153i \(0.591293\pi\)
\(282\) 29.8658 1.77848
\(283\) 15.8066 0.939604 0.469802 0.882772i \(-0.344325\pi\)
0.469802 + 0.882772i \(0.344325\pi\)
\(284\) −28.1859 −1.67253
\(285\) 0 0
\(286\) −8.41407 −0.497534
\(287\) −0.0499773 −0.00295007
\(288\) −5.86608 −0.345662
\(289\) −1.04989 −0.0617580
\(290\) 0 0
\(291\) −6.59123 −0.386385
\(292\) 29.2555 1.71205
\(293\) 21.7705 1.27185 0.635924 0.771752i \(-0.280619\pi\)
0.635924 + 0.771752i \(0.280619\pi\)
\(294\) 44.0375 2.56832
\(295\) 0 0
\(296\) −1.35605 −0.0788186
\(297\) −3.87333 −0.224753
\(298\) 17.8708 1.03523
\(299\) −15.0670 −0.871346
\(300\) 0 0
\(301\) −53.9165 −3.10769
\(302\) −44.5776 −2.56515
\(303\) 14.3424 0.823947
\(304\) 7.01623 0.402409
\(305\) 0 0
\(306\) −6.50255 −0.371726
\(307\) 14.3387 0.818352 0.409176 0.912455i \(-0.365816\pi\)
0.409176 + 0.912455i \(0.365816\pi\)
\(308\) 9.81808 0.559437
\(309\) 5.58734 0.317853
\(310\) 0 0
\(311\) −14.9445 −0.847422 −0.423711 0.905797i \(-0.639273\pi\)
−0.423711 + 0.905797i \(0.639273\pi\)
\(312\) −11.5370 −0.653155
\(313\) −12.8158 −0.724393 −0.362197 0.932102i \(-0.617973\pi\)
−0.362197 + 0.932102i \(0.617973\pi\)
\(314\) 10.7803 0.608365
\(315\) 0 0
\(316\) −19.7925 −1.11341
\(317\) −14.0723 −0.790378 −0.395189 0.918600i \(-0.629321\pi\)
−0.395189 + 0.918600i \(0.629321\pi\)
\(318\) 33.7513 1.89268
\(319\) 0.0312376 0.00174897
\(320\) 0 0
\(321\) 37.8051 2.11007
\(322\) 30.9498 1.72476
\(323\) 11.9623 0.665598
\(324\) −28.1364 −1.56313
\(325\) 0 0
\(326\) −12.7704 −0.707289
\(327\) 6.47755 0.358210
\(328\) −0.0161733 −0.000893020 0
\(329\) 30.0070 1.65434
\(330\) 0 0
\(331\) 14.7404 0.810203 0.405102 0.914272i \(-0.367236\pi\)
0.405102 + 0.914272i \(0.367236\pi\)
\(332\) 24.7874 1.36038
\(333\) −0.756662 −0.0414648
\(334\) −1.10455 −0.0604385
\(335\) 0 0
\(336\) −19.0250 −1.03790
\(337\) −26.2754 −1.43131 −0.715657 0.698452i \(-0.753873\pi\)
−0.715657 + 0.698452i \(0.753873\pi\)
\(338\) 13.4873 0.733612
\(339\) 7.53086 0.409020
\(340\) 0 0
\(341\) 5.10456 0.276427
\(342\) −4.87678 −0.263706
\(343\) 14.9134 0.805246
\(344\) −17.4480 −0.940735
\(345\) 0 0
\(346\) −0.382670 −0.0205725
\(347\) 13.1067 0.703604 0.351802 0.936074i \(-0.385569\pi\)
0.351802 + 0.936074i \(0.385569\pi\)
\(348\) 0.178763 0.00958272
\(349\) 32.6773 1.74917 0.874587 0.484868i \(-0.161133\pi\)
0.874587 + 0.484868i \(0.161133\pi\)
\(350\) 0 0
\(351\) 19.0859 1.01873
\(352\) −6.90613 −0.368098
\(353\) 10.4045 0.553776 0.276888 0.960902i \(-0.410697\pi\)
0.276888 + 0.960902i \(0.410697\pi\)
\(354\) −15.6689 −0.832792
\(355\) 0 0
\(356\) −29.4792 −1.56240
\(357\) −32.4364 −1.71672
\(358\) 51.8702 2.74143
\(359\) −1.71765 −0.0906538 −0.0453269 0.998972i \(-0.514433\pi\)
−0.0453269 + 0.998972i \(0.514433\pi\)
\(360\) 0 0
\(361\) −10.0286 −0.527819
\(362\) −38.0948 −2.00222
\(363\) −19.7822 −1.03830
\(364\) −48.3788 −2.53574
\(365\) 0 0
\(366\) 56.2947 2.94257
\(367\) 8.41206 0.439106 0.219553 0.975601i \(-0.429540\pi\)
0.219553 + 0.975601i \(0.429540\pi\)
\(368\) −8.04047 −0.419138
\(369\) −0.00902454 −0.000469799 0
\(370\) 0 0
\(371\) 33.9109 1.76057
\(372\) 29.2118 1.51456
\(373\) 13.3481 0.691138 0.345569 0.938393i \(-0.387686\pi\)
0.345569 + 0.938393i \(0.387686\pi\)
\(374\) −7.65544 −0.395853
\(375\) 0 0
\(376\) 9.71064 0.500788
\(377\) −0.153924 −0.00792750
\(378\) −39.2053 −2.01650
\(379\) −18.0051 −0.924861 −0.462430 0.886656i \(-0.653022\pi\)
−0.462430 + 0.886656i \(0.653022\pi\)
\(380\) 0 0
\(381\) −36.4027 −1.86497
\(382\) −6.58036 −0.336681
\(383\) −9.11385 −0.465696 −0.232848 0.972513i \(-0.574804\pi\)
−0.232848 + 0.972513i \(0.574804\pi\)
\(384\) −19.9826 −1.01973
\(385\) 0 0
\(386\) 24.1965 1.23157
\(387\) −9.73585 −0.494901
\(388\) −8.94444 −0.454085
\(389\) 12.6152 0.639617 0.319809 0.947482i \(-0.396381\pi\)
0.319809 + 0.947482i \(0.396381\pi\)
\(390\) 0 0
\(391\) −13.7085 −0.693269
\(392\) 14.3185 0.723192
\(393\) 0.726998 0.0366722
\(394\) 52.9439 2.66728
\(395\) 0 0
\(396\) 1.77288 0.0890904
\(397\) −24.4702 −1.22813 −0.614063 0.789257i \(-0.710466\pi\)
−0.614063 + 0.789257i \(0.710466\pi\)
\(398\) 23.4876 1.17733
\(399\) −24.3266 −1.21785
\(400\) 0 0
\(401\) −6.71024 −0.335094 −0.167547 0.985864i \(-0.553585\pi\)
−0.167547 + 0.985864i \(0.553585\pi\)
\(402\) 29.0000 1.44639
\(403\) −25.1528 −1.25295
\(404\) 19.4629 0.968316
\(405\) 0 0
\(406\) 0.316183 0.0156919
\(407\) −0.890817 −0.0441562
\(408\) −10.4968 −0.519670
\(409\) −0.917573 −0.0453710 −0.0226855 0.999743i \(-0.507222\pi\)
−0.0226855 + 0.999743i \(0.507222\pi\)
\(410\) 0 0
\(411\) −26.7258 −1.31829
\(412\) 7.58215 0.373546
\(413\) −15.7430 −0.774662
\(414\) 5.58869 0.274669
\(415\) 0 0
\(416\) 34.0302 1.66847
\(417\) −20.5883 −1.00822
\(418\) −5.74142 −0.280822
\(419\) 9.21985 0.450419 0.225210 0.974310i \(-0.427693\pi\)
0.225210 + 0.974310i \(0.427693\pi\)
\(420\) 0 0
\(421\) 3.15954 0.153987 0.0769933 0.997032i \(-0.475468\pi\)
0.0769933 + 0.997032i \(0.475468\pi\)
\(422\) 12.7465 0.620489
\(423\) 5.41845 0.263454
\(424\) 10.9740 0.532944
\(425\) 0 0
\(426\) −44.6935 −2.16541
\(427\) 56.5609 2.73718
\(428\) 51.3023 2.47979
\(429\) −7.57892 −0.365914
\(430\) 0 0
\(431\) −10.0895 −0.485996 −0.242998 0.970027i \(-0.578131\pi\)
−0.242998 + 0.970027i \(0.578131\pi\)
\(432\) 10.1852 0.490035
\(433\) 18.1592 0.872673 0.436337 0.899784i \(-0.356276\pi\)
0.436337 + 0.899784i \(0.356276\pi\)
\(434\) 51.6676 2.48013
\(435\) 0 0
\(436\) 8.79018 0.420973
\(437\) −10.2811 −0.491812
\(438\) 46.3896 2.21658
\(439\) −25.8313 −1.23286 −0.616430 0.787410i \(-0.711422\pi\)
−0.616430 + 0.787410i \(0.711422\pi\)
\(440\) 0 0
\(441\) 7.98958 0.380456
\(442\) 37.7224 1.79427
\(443\) 39.8319 1.89247 0.946235 0.323480i \(-0.104853\pi\)
0.946235 + 0.323480i \(0.104853\pi\)
\(444\) −5.09787 −0.241934
\(445\) 0 0
\(446\) −26.3385 −1.24716
\(447\) 16.0970 0.761363
\(448\) −50.2715 −2.37511
\(449\) −34.7543 −1.64016 −0.820078 0.572252i \(-0.806070\pi\)
−0.820078 + 0.572252i \(0.806070\pi\)
\(450\) 0 0
\(451\) −0.0106246 −0.000500292 0
\(452\) 10.2195 0.480687
\(453\) −40.1530 −1.88655
\(454\) −9.03907 −0.424225
\(455\) 0 0
\(456\) −7.87240 −0.368659
\(457\) 17.2797 0.808310 0.404155 0.914691i \(-0.367566\pi\)
0.404155 + 0.914691i \(0.367566\pi\)
\(458\) 5.10728 0.238648
\(459\) 17.3651 0.810534
\(460\) 0 0
\(461\) −6.98823 −0.325474 −0.162737 0.986669i \(-0.552032\pi\)
−0.162737 + 0.986669i \(0.552032\pi\)
\(462\) 15.5682 0.724299
\(463\) −30.0184 −1.39507 −0.697537 0.716549i \(-0.745721\pi\)
−0.697537 + 0.716549i \(0.745721\pi\)
\(464\) −0.0821414 −0.00381332
\(465\) 0 0
\(466\) 45.2006 2.09388
\(467\) 18.5779 0.859685 0.429842 0.902904i \(-0.358569\pi\)
0.429842 + 0.902904i \(0.358569\pi\)
\(468\) −8.73590 −0.403817
\(469\) 29.1372 1.34543
\(470\) 0 0
\(471\) 9.71025 0.447425
\(472\) −5.09462 −0.234499
\(473\) −11.4620 −0.527023
\(474\) −31.3843 −1.44153
\(475\) 0 0
\(476\) −44.0169 −2.01751
\(477\) 6.12339 0.280371
\(478\) −24.0867 −1.10170
\(479\) −4.63021 −0.211560 −0.105780 0.994390i \(-0.533734\pi\)
−0.105780 + 0.994390i \(0.533734\pi\)
\(480\) 0 0
\(481\) 4.38953 0.200145
\(482\) 6.66339 0.303509
\(483\) 27.8778 1.26849
\(484\) −26.8449 −1.22022
\(485\) 0 0
\(486\) −16.5467 −0.750572
\(487\) −20.5716 −0.932187 −0.466093 0.884735i \(-0.654339\pi\)
−0.466093 + 0.884735i \(0.654339\pi\)
\(488\) 18.3038 0.828575
\(489\) −11.5029 −0.520179
\(490\) 0 0
\(491\) −5.71743 −0.258024 −0.129012 0.991643i \(-0.541181\pi\)
−0.129012 + 0.991643i \(0.541181\pi\)
\(492\) −0.0608012 −0.00274113
\(493\) −0.140046 −0.00630736
\(494\) 28.2910 1.27287
\(495\) 0 0
\(496\) −13.4228 −0.602700
\(497\) −44.9049 −2.01426
\(498\) 39.3046 1.76128
\(499\) −16.5695 −0.741751 −0.370876 0.928683i \(-0.620942\pi\)
−0.370876 + 0.928683i \(0.620942\pi\)
\(500\) 0 0
\(501\) −0.994920 −0.0444498
\(502\) −4.53332 −0.202332
\(503\) 37.3268 1.66432 0.832159 0.554536i \(-0.187104\pi\)
0.832159 + 0.554536i \(0.187104\pi\)
\(504\) 4.29958 0.191519
\(505\) 0 0
\(506\) 6.57956 0.292497
\(507\) 12.1486 0.539538
\(508\) −49.3992 −2.19174
\(509\) 6.65148 0.294822 0.147411 0.989075i \(-0.452906\pi\)
0.147411 + 0.989075i \(0.452906\pi\)
\(510\) 0 0
\(511\) 46.6090 2.06186
\(512\) 24.5131 1.08334
\(513\) 13.0235 0.575001
\(514\) −12.7300 −0.561496
\(515\) 0 0
\(516\) −65.5935 −2.88759
\(517\) 6.37914 0.280554
\(518\) −9.01674 −0.396173
\(519\) −0.344688 −0.0151301
\(520\) 0 0
\(521\) 7.20458 0.315638 0.157819 0.987468i \(-0.449554\pi\)
0.157819 + 0.987468i \(0.449554\pi\)
\(522\) 0.0570941 0.00249894
\(523\) 22.9924 1.00539 0.502695 0.864464i \(-0.332342\pi\)
0.502695 + 0.864464i \(0.332342\pi\)
\(524\) 0.986553 0.0430978
\(525\) 0 0
\(526\) −11.9998 −0.523218
\(527\) −22.8850 −0.996887
\(528\) −4.04448 −0.176013
\(529\) −11.2181 −0.487742
\(530\) 0 0
\(531\) −2.84275 −0.123365
\(532\) −33.0118 −1.43124
\(533\) 0.0523529 0.00226766
\(534\) −46.7443 −2.02283
\(535\) 0 0
\(536\) 9.42915 0.407277
\(537\) 46.7218 2.01619
\(538\) −19.9605 −0.860559
\(539\) 9.40613 0.405151
\(540\) 0 0
\(541\) −22.8649 −0.983037 −0.491519 0.870867i \(-0.663558\pi\)
−0.491519 + 0.870867i \(0.663558\pi\)
\(542\) 56.8217 2.44070
\(543\) −34.3136 −1.47254
\(544\) 30.9619 1.32748
\(545\) 0 0
\(546\) −76.7128 −3.28301
\(547\) −1.23359 −0.0527444 −0.0263722 0.999652i \(-0.508396\pi\)
−0.0263722 + 0.999652i \(0.508396\pi\)
\(548\) −36.2675 −1.54927
\(549\) 10.2134 0.435896
\(550\) 0 0
\(551\) −0.105032 −0.00447450
\(552\) 9.02162 0.383985
\(553\) −31.5328 −1.34091
\(554\) −0.256747 −0.0109081
\(555\) 0 0
\(556\) −27.9388 −1.18487
\(557\) 32.4356 1.37434 0.687170 0.726497i \(-0.258853\pi\)
0.687170 + 0.726497i \(0.258853\pi\)
\(558\) 9.32977 0.394961
\(559\) 56.4793 2.38882
\(560\) 0 0
\(561\) −6.89559 −0.291132
\(562\) −20.4079 −0.860854
\(563\) −15.9666 −0.672914 −0.336457 0.941699i \(-0.609229\pi\)
−0.336457 + 0.941699i \(0.609229\pi\)
\(564\) 36.5058 1.53717
\(565\) 0 0
\(566\) 34.0124 1.42965
\(567\) −44.8260 −1.88251
\(568\) −14.5318 −0.609740
\(569\) 44.6043 1.86991 0.934954 0.354769i \(-0.115440\pi\)
0.934954 + 0.354769i \(0.115440\pi\)
\(570\) 0 0
\(571\) 7.68699 0.321690 0.160845 0.986980i \(-0.448578\pi\)
0.160845 + 0.986980i \(0.448578\pi\)
\(572\) −10.2848 −0.430028
\(573\) −5.92722 −0.247613
\(574\) −0.107541 −0.00448866
\(575\) 0 0
\(576\) −9.07767 −0.378236
\(577\) 35.3204 1.47041 0.735204 0.677846i \(-0.237086\pi\)
0.735204 + 0.677846i \(0.237086\pi\)
\(578\) −2.25913 −0.0939676
\(579\) 21.7948 0.905763
\(580\) 0 0
\(581\) 39.4905 1.63834
\(582\) −14.1829 −0.587901
\(583\) 7.20906 0.298569
\(584\) 15.0832 0.624149
\(585\) 0 0
\(586\) 46.8456 1.93517
\(587\) 20.2513 0.835860 0.417930 0.908479i \(-0.362756\pi\)
0.417930 + 0.908479i \(0.362756\pi\)
\(588\) 53.8284 2.21984
\(589\) −17.1633 −0.707201
\(590\) 0 0
\(591\) 47.6889 1.96166
\(592\) 2.34246 0.0962747
\(593\) −5.54331 −0.227636 −0.113818 0.993502i \(-0.536308\pi\)
−0.113818 + 0.993502i \(0.536308\pi\)
\(594\) −8.33459 −0.341972
\(595\) 0 0
\(596\) 21.8440 0.894766
\(597\) 21.1563 0.865870
\(598\) −32.4210 −1.32579
\(599\) −10.5067 −0.429292 −0.214646 0.976692i \(-0.568860\pi\)
−0.214646 + 0.976692i \(0.568860\pi\)
\(600\) 0 0
\(601\) −20.4154 −0.832763 −0.416381 0.909190i \(-0.636702\pi\)
−0.416381 + 0.909190i \(0.636702\pi\)
\(602\) −116.017 −4.72849
\(603\) 5.26138 0.214260
\(604\) −54.4885 −2.21711
\(605\) 0 0
\(606\) 30.8617 1.25367
\(607\) 7.54513 0.306248 0.153124 0.988207i \(-0.451067\pi\)
0.153124 + 0.988207i \(0.451067\pi\)
\(608\) 23.2208 0.941729
\(609\) 0.284800 0.0115407
\(610\) 0 0
\(611\) −31.4334 −1.27166
\(612\) −7.94826 −0.321289
\(613\) 17.8383 0.720481 0.360241 0.932859i \(-0.382695\pi\)
0.360241 + 0.932859i \(0.382695\pi\)
\(614\) 30.8538 1.24516
\(615\) 0 0
\(616\) 5.06190 0.203950
\(617\) −19.4501 −0.783030 −0.391515 0.920172i \(-0.628049\pi\)
−0.391515 + 0.920172i \(0.628049\pi\)
\(618\) 12.0228 0.483627
\(619\) −30.5238 −1.22686 −0.613428 0.789750i \(-0.710210\pi\)
−0.613428 + 0.789750i \(0.710210\pi\)
\(620\) 0 0
\(621\) −14.9247 −0.598906
\(622\) −32.1573 −1.28939
\(623\) −46.9654 −1.88163
\(624\) 19.9293 0.797810
\(625\) 0 0
\(626\) −27.5769 −1.10220
\(627\) −5.17155 −0.206532
\(628\) 13.1770 0.525821
\(629\) 3.99376 0.159242
\(630\) 0 0
\(631\) −21.4049 −0.852116 −0.426058 0.904696i \(-0.640098\pi\)
−0.426058 + 0.904696i \(0.640098\pi\)
\(632\) −10.2044 −0.405909
\(633\) 11.4813 0.456341
\(634\) −30.2806 −1.20259
\(635\) 0 0
\(636\) 41.2552 1.63588
\(637\) −46.3489 −1.83641
\(638\) 0.0672168 0.00266114
\(639\) −8.10860 −0.320771
\(640\) 0 0
\(641\) 48.4290 1.91283 0.956415 0.292011i \(-0.0943242\pi\)
0.956415 + 0.292011i \(0.0943242\pi\)
\(642\) 81.3485 3.21057
\(643\) 35.8989 1.41571 0.707856 0.706356i \(-0.249662\pi\)
0.707856 + 0.706356i \(0.249662\pi\)
\(644\) 37.8309 1.49074
\(645\) 0 0
\(646\) 25.7403 1.01274
\(647\) 15.5320 0.610628 0.305314 0.952252i \(-0.401239\pi\)
0.305314 + 0.952252i \(0.401239\pi\)
\(648\) −14.5062 −0.569859
\(649\) −3.34677 −0.131372
\(650\) 0 0
\(651\) 46.5393 1.82402
\(652\) −15.6097 −0.611322
\(653\) −32.5029 −1.27194 −0.635968 0.771716i \(-0.719399\pi\)
−0.635968 + 0.771716i \(0.719399\pi\)
\(654\) 13.9383 0.545032
\(655\) 0 0
\(656\) 0.0279381 0.00109080
\(657\) 8.41632 0.328352
\(658\) 64.5688 2.51715
\(659\) −22.8242 −0.889104 −0.444552 0.895753i \(-0.646637\pi\)
−0.444552 + 0.895753i \(0.646637\pi\)
\(660\) 0 0
\(661\) −29.2556 −1.13791 −0.568955 0.822369i \(-0.692652\pi\)
−0.568955 + 0.822369i \(0.692652\pi\)
\(662\) 31.7181 1.23276
\(663\) 33.9782 1.31960
\(664\) 12.7796 0.495945
\(665\) 0 0
\(666\) −1.62818 −0.0630906
\(667\) 0.120364 0.00466053
\(668\) −1.35013 −0.0522381
\(669\) −23.7243 −0.917233
\(670\) 0 0
\(671\) 12.0242 0.464189
\(672\) −62.9647 −2.42892
\(673\) −27.0638 −1.04323 −0.521616 0.853180i \(-0.674671\pi\)
−0.521616 + 0.853180i \(0.674671\pi\)
\(674\) −56.5392 −2.17781
\(675\) 0 0
\(676\) 16.4859 0.634074
\(677\) 40.4369 1.55412 0.777059 0.629428i \(-0.216711\pi\)
0.777059 + 0.629428i \(0.216711\pi\)
\(678\) 16.2048 0.622342
\(679\) −14.2500 −0.546865
\(680\) 0 0
\(681\) −8.14189 −0.311998
\(682\) 10.9839 0.420596
\(683\) −44.8108 −1.71464 −0.857319 0.514786i \(-0.827871\pi\)
−0.857319 + 0.514786i \(0.827871\pi\)
\(684\) −5.96103 −0.227926
\(685\) 0 0
\(686\) 32.0904 1.22522
\(687\) 4.60035 0.175514
\(688\) 30.1401 1.14908
\(689\) −35.5228 −1.35331
\(690\) 0 0
\(691\) −24.2835 −0.923786 −0.461893 0.886936i \(-0.652830\pi\)
−0.461893 + 0.886936i \(0.652830\pi\)
\(692\) −0.467749 −0.0177812
\(693\) 2.82449 0.107294
\(694\) 28.2028 1.07056
\(695\) 0 0
\(696\) 0.0921649 0.00349350
\(697\) 0.0476327 0.00180422
\(698\) 70.3146 2.66145
\(699\) 40.7141 1.53995
\(700\) 0 0
\(701\) 11.6405 0.439657 0.219828 0.975539i \(-0.429450\pi\)
0.219828 + 0.975539i \(0.429450\pi\)
\(702\) 41.0689 1.55005
\(703\) 2.99524 0.112968
\(704\) −10.6871 −0.402786
\(705\) 0 0
\(706\) 22.3883 0.842594
\(707\) 31.0077 1.16616
\(708\) −19.1525 −0.719797
\(709\) −16.3873 −0.615438 −0.307719 0.951477i \(-0.599566\pi\)
−0.307719 + 0.951477i \(0.599566\pi\)
\(710\) 0 0
\(711\) −5.69396 −0.213540
\(712\) −15.1986 −0.569591
\(713\) 19.6688 0.736602
\(714\) −69.7963 −2.61206
\(715\) 0 0
\(716\) 63.4025 2.36946
\(717\) −21.6960 −0.810251
\(718\) −3.69601 −0.137934
\(719\) −6.95213 −0.259271 −0.129635 0.991562i \(-0.541381\pi\)
−0.129635 + 0.991562i \(0.541381\pi\)
\(720\) 0 0
\(721\) 12.0796 0.449869
\(722\) −21.5793 −0.803099
\(723\) 6.00201 0.223217
\(724\) −46.5643 −1.73055
\(725\) 0 0
\(726\) −42.5672 −1.57982
\(727\) −38.0524 −1.41128 −0.705642 0.708569i \(-0.749341\pi\)
−0.705642 + 0.708569i \(0.749341\pi\)
\(728\) −24.9426 −0.924435
\(729\) 17.1880 0.636594
\(730\) 0 0
\(731\) 51.3870 1.90062
\(732\) 68.8107 2.54332
\(733\) 19.2460 0.710868 0.355434 0.934701i \(-0.384333\pi\)
0.355434 + 0.934701i \(0.384333\pi\)
\(734\) 18.1010 0.668119
\(735\) 0 0
\(736\) −26.6106 −0.980880
\(737\) 6.19422 0.228167
\(738\) −0.0194189 −0.000714820 0
\(739\) 21.4641 0.789571 0.394785 0.918773i \(-0.370819\pi\)
0.394785 + 0.918773i \(0.370819\pi\)
\(740\) 0 0
\(741\) 25.4830 0.936140
\(742\) 72.9691 2.67878
\(743\) −22.4355 −0.823077 −0.411539 0.911392i \(-0.635008\pi\)
−0.411539 + 0.911392i \(0.635008\pi\)
\(744\) 15.0607 0.552152
\(745\) 0 0
\(746\) 28.7223 1.05160
\(747\) 7.13091 0.260906
\(748\) −9.35747 −0.342143
\(749\) 81.7332 2.98647
\(750\) 0 0
\(751\) −2.27609 −0.0830557 −0.0415278 0.999137i \(-0.513223\pi\)
−0.0415278 + 0.999137i \(0.513223\pi\)
\(752\) −16.7744 −0.611698
\(753\) −4.08337 −0.148806
\(754\) −0.331213 −0.0120621
\(755\) 0 0
\(756\) −47.9218 −1.74290
\(757\) −32.2028 −1.17043 −0.585216 0.810877i \(-0.698990\pi\)
−0.585216 + 0.810877i \(0.698990\pi\)
\(758\) −38.7432 −1.40722
\(759\) 5.92650 0.215118
\(760\) 0 0
\(761\) −6.49880 −0.235581 −0.117791 0.993038i \(-0.537581\pi\)
−0.117791 + 0.993038i \(0.537581\pi\)
\(762\) −78.3309 −2.83763
\(763\) 14.0042 0.506988
\(764\) −8.04337 −0.290999
\(765\) 0 0
\(766\) −19.6111 −0.708577
\(767\) 16.4913 0.595466
\(768\) 3.50701 0.126548
\(769\) 1.94137 0.0700077 0.0350039 0.999387i \(-0.488856\pi\)
0.0350039 + 0.999387i \(0.488856\pi\)
\(770\) 0 0
\(771\) −11.4665 −0.412955
\(772\) 29.5761 1.06447
\(773\) −6.96315 −0.250447 −0.125224 0.992129i \(-0.539965\pi\)
−0.125224 + 0.992129i \(0.539965\pi\)
\(774\) −20.9495 −0.753014
\(775\) 0 0
\(776\) −4.61148 −0.165542
\(777\) −8.12177 −0.291367
\(778\) 27.1453 0.973206
\(779\) 0.0357235 0.00127993
\(780\) 0 0
\(781\) −9.54625 −0.341592
\(782\) −29.4978 −1.05484
\(783\) −0.152470 −0.00544884
\(784\) −24.7340 −0.883358
\(785\) 0 0
\(786\) 1.56435 0.0557984
\(787\) −41.6122 −1.48332 −0.741658 0.670779i \(-0.765960\pi\)
−0.741658 + 0.670779i \(0.765960\pi\)
\(788\) 64.7149 2.30537
\(789\) −10.8088 −0.384803
\(790\) 0 0
\(791\) 16.2815 0.578902
\(792\) 0.914041 0.0324790
\(793\) −59.2495 −2.10401
\(794\) −52.6547 −1.86865
\(795\) 0 0
\(796\) 28.7096 1.01758
\(797\) −48.6470 −1.72316 −0.861582 0.507618i \(-0.830526\pi\)
−0.861582 + 0.507618i \(0.830526\pi\)
\(798\) −52.3458 −1.85302
\(799\) −28.5993 −1.01177
\(800\) 0 0
\(801\) −8.48067 −0.299650
\(802\) −14.4390 −0.509860
\(803\) 9.90852 0.349664
\(804\) 35.4476 1.25014
\(805\) 0 0
\(806\) −54.1236 −1.90642
\(807\) −17.9793 −0.632902
\(808\) 10.0345 0.353011
\(809\) 31.1289 1.09443 0.547216 0.836991i \(-0.315687\pi\)
0.547216 + 0.836991i \(0.315687\pi\)
\(810\) 0 0
\(811\) 12.1233 0.425708 0.212854 0.977084i \(-0.431724\pi\)
0.212854 + 0.977084i \(0.431724\pi\)
\(812\) 0.386480 0.0135628
\(813\) 51.1818 1.79502
\(814\) −1.91685 −0.0671856
\(815\) 0 0
\(816\) 18.1324 0.634762
\(817\) 38.5392 1.34832
\(818\) −1.97442 −0.0690341
\(819\) −13.9178 −0.486326
\(820\) 0 0
\(821\) −42.3718 −1.47879 −0.739393 0.673274i \(-0.764887\pi\)
−0.739393 + 0.673274i \(0.764887\pi\)
\(822\) −57.5082 −2.00583
\(823\) −8.91190 −0.310649 −0.155325 0.987863i \(-0.549642\pi\)
−0.155325 + 0.987863i \(0.549642\pi\)
\(824\) 3.90912 0.136181
\(825\) 0 0
\(826\) −33.8756 −1.17868
\(827\) 20.0414 0.696909 0.348454 0.937326i \(-0.386707\pi\)
0.348454 + 0.937326i \(0.386707\pi\)
\(828\) 6.83122 0.237401
\(829\) −4.61854 −0.160408 −0.0802042 0.996778i \(-0.525557\pi\)
−0.0802042 + 0.996778i \(0.525557\pi\)
\(830\) 0 0
\(831\) −0.231264 −0.00802245
\(832\) 52.6611 1.82570
\(833\) −42.1700 −1.46111
\(834\) −44.3017 −1.53404
\(835\) 0 0
\(836\) −7.01791 −0.242720
\(837\) −24.9152 −0.861197
\(838\) 19.8392 0.685333
\(839\) 10.6805 0.368732 0.184366 0.982858i \(-0.440977\pi\)
0.184366 + 0.982858i \(0.440977\pi\)
\(840\) 0 0
\(841\) −28.9988 −0.999958
\(842\) 6.79866 0.234297
\(843\) −18.3823 −0.633119
\(844\) 15.5804 0.536299
\(845\) 0 0
\(846\) 11.6594 0.400857
\(847\) −42.7685 −1.46954
\(848\) −18.9567 −0.650975
\(849\) 30.6365 1.05144
\(850\) 0 0
\(851\) −3.43248 −0.117664
\(852\) −54.6302 −1.87160
\(853\) −10.2330 −0.350371 −0.175186 0.984535i \(-0.556053\pi\)
−0.175186 + 0.984535i \(0.556053\pi\)
\(854\) 121.707 4.16474
\(855\) 0 0
\(856\) 26.4499 0.904038
\(857\) 36.7790 1.25635 0.628174 0.778073i \(-0.283803\pi\)
0.628174 + 0.778073i \(0.283803\pi\)
\(858\) −16.3082 −0.556754
\(859\) 45.2427 1.54366 0.771831 0.635828i \(-0.219341\pi\)
0.771831 + 0.635828i \(0.219341\pi\)
\(860\) 0 0
\(861\) −0.0968666 −0.00330120
\(862\) −21.7105 −0.739464
\(863\) 8.43897 0.287266 0.143633 0.989631i \(-0.454122\pi\)
0.143633 + 0.989631i \(0.454122\pi\)
\(864\) 33.7087 1.14679
\(865\) 0 0
\(866\) 39.0747 1.32781
\(867\) −2.03490 −0.0691089
\(868\) 63.1549 2.14362
\(869\) −6.70349 −0.227400
\(870\) 0 0
\(871\) −30.5222 −1.03420
\(872\) 4.53195 0.153471
\(873\) −2.57316 −0.0870884
\(874\) −22.1228 −0.748314
\(875\) 0 0
\(876\) 56.7034 1.91583
\(877\) −4.35345 −0.147006 −0.0735029 0.997295i \(-0.523418\pi\)
−0.0735029 + 0.997295i \(0.523418\pi\)
\(878\) −55.5835 −1.87585
\(879\) 42.1959 1.42323
\(880\) 0 0
\(881\) −18.2086 −0.613464 −0.306732 0.951796i \(-0.599236\pi\)
−0.306732 + 0.951796i \(0.599236\pi\)
\(882\) 17.1919 0.578881
\(883\) −0.677160 −0.0227883 −0.0113941 0.999935i \(-0.503627\pi\)
−0.0113941 + 0.999935i \(0.503627\pi\)
\(884\) 46.1092 1.55082
\(885\) 0 0
\(886\) 85.7098 2.87948
\(887\) 9.33431 0.313415 0.156708 0.987645i \(-0.449912\pi\)
0.156708 + 0.987645i \(0.449912\pi\)
\(888\) −2.62831 −0.0882002
\(889\) −78.7013 −2.63956
\(890\) 0 0
\(891\) −9.52947 −0.319249
\(892\) −32.1943 −1.07795
\(893\) −21.4489 −0.717759
\(894\) 34.6374 1.15845
\(895\) 0 0
\(896\) −43.2017 −1.44327
\(897\) −29.2030 −0.975059
\(898\) −74.7839 −2.49557
\(899\) 0.200937 0.00670161
\(900\) 0 0
\(901\) −32.3200 −1.07674
\(902\) −0.0228619 −0.000761217 0
\(903\) −104.501 −3.47759
\(904\) 5.26888 0.175240
\(905\) 0 0
\(906\) −86.4008 −2.87048
\(907\) −57.2782 −1.90189 −0.950946 0.309356i \(-0.899887\pi\)
−0.950946 + 0.309356i \(0.899887\pi\)
\(908\) −11.0487 −0.366665
\(909\) 5.59914 0.185712
\(910\) 0 0
\(911\) 19.0860 0.632348 0.316174 0.948701i \(-0.397602\pi\)
0.316174 + 0.948701i \(0.397602\pi\)
\(912\) 13.5989 0.450306
\(913\) 8.39521 0.277841
\(914\) 37.1822 1.22988
\(915\) 0 0
\(916\) 6.24278 0.206267
\(917\) 1.57174 0.0519036
\(918\) 37.3661 1.23326
\(919\) −4.13733 −0.136478 −0.0682389 0.997669i \(-0.521738\pi\)
−0.0682389 + 0.997669i \(0.521738\pi\)
\(920\) 0 0
\(921\) 27.7914 0.915758
\(922\) −15.0372 −0.495224
\(923\) 47.0394 1.54832
\(924\) 19.0295 0.626025
\(925\) 0 0
\(926\) −64.5933 −2.12267
\(927\) 2.18125 0.0716418
\(928\) −0.271854 −0.00892405
\(929\) −40.3149 −1.32269 −0.661344 0.750082i \(-0.730014\pi\)
−0.661344 + 0.750082i \(0.730014\pi\)
\(930\) 0 0
\(931\) −31.6267 −1.03652
\(932\) 55.2500 1.80977
\(933\) −28.9655 −0.948288
\(934\) 39.9758 1.30805
\(935\) 0 0
\(936\) −4.50396 −0.147216
\(937\) −4.45592 −0.145569 −0.0727843 0.997348i \(-0.523188\pi\)
−0.0727843 + 0.997348i \(0.523188\pi\)
\(938\) 62.6970 2.04713
\(939\) −24.8398 −0.810615
\(940\) 0 0
\(941\) −20.6455 −0.673023 −0.336511 0.941679i \(-0.609247\pi\)
−0.336511 + 0.941679i \(0.609247\pi\)
\(942\) 20.8944 0.680777
\(943\) −0.0409385 −0.00133314
\(944\) 8.80056 0.286434
\(945\) 0 0
\(946\) −24.6638 −0.801889
\(947\) 37.8088 1.22862 0.614311 0.789064i \(-0.289434\pi\)
0.614311 + 0.789064i \(0.289434\pi\)
\(948\) −38.3620 −1.24594
\(949\) −48.8245 −1.58491
\(950\) 0 0
\(951\) −27.2750 −0.884454
\(952\) −22.6938 −0.735509
\(953\) −57.7180 −1.86967 −0.934835 0.355082i \(-0.884453\pi\)
−0.934835 + 0.355082i \(0.884453\pi\)
\(954\) 13.1762 0.426596
\(955\) 0 0
\(956\) −29.4419 −0.952219
\(957\) 0.0605451 0.00195715
\(958\) −9.96323 −0.321897
\(959\) −57.7802 −1.86582
\(960\) 0 0
\(961\) 1.83513 0.0591977
\(962\) 9.44533 0.304530
\(963\) 14.7588 0.475595
\(964\) 8.14486 0.262328
\(965\) 0 0
\(966\) 59.9872 1.93006
\(967\) −31.1156 −1.00061 −0.500305 0.865850i \(-0.666779\pi\)
−0.500305 + 0.865850i \(0.666779\pi\)
\(968\) −13.8404 −0.444848
\(969\) 23.1854 0.744822
\(970\) 0 0
\(971\) −3.19664 −0.102585 −0.0512925 0.998684i \(-0.516334\pi\)
−0.0512925 + 0.998684i \(0.516334\pi\)
\(972\) −20.2255 −0.648733
\(973\) −44.5113 −1.42697
\(974\) −44.2657 −1.41836
\(975\) 0 0
\(976\) −31.6184 −1.01208
\(977\) −52.6545 −1.68457 −0.842283 0.539036i \(-0.818789\pi\)
−0.842283 + 0.539036i \(0.818789\pi\)
\(978\) −24.7518 −0.791475
\(979\) −9.98429 −0.319099
\(980\) 0 0
\(981\) 2.52878 0.0807379
\(982\) −12.3027 −0.392595
\(983\) 19.0510 0.607632 0.303816 0.952731i \(-0.401739\pi\)
0.303816 + 0.952731i \(0.401739\pi\)
\(984\) −0.0313472 −0.000999313 0
\(985\) 0 0
\(986\) −0.301350 −0.00959694
\(987\) 58.1599 1.85125
\(988\) 34.5809 1.10017
\(989\) −44.1652 −1.40437
\(990\) 0 0
\(991\) 46.0922 1.46417 0.732083 0.681215i \(-0.238548\pi\)
0.732083 + 0.681215i \(0.238548\pi\)
\(992\) −44.4238 −1.41046
\(993\) 28.5699 0.906639
\(994\) −96.6259 −3.06479
\(995\) 0 0
\(996\) 48.0432 1.52231
\(997\) 25.1633 0.796930 0.398465 0.917184i \(-0.369543\pi\)
0.398465 + 0.917184i \(0.369543\pi\)
\(998\) −35.6540 −1.12861
\(999\) 4.34806 0.137567
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.a.m.1.7 9
3.2 odd 2 8325.2.a.cq.1.3 9
5.2 odd 4 185.2.b.a.149.16 yes 18
5.3 odd 4 185.2.b.a.149.3 18
5.4 even 2 925.2.a.l.1.3 9
15.2 even 4 1665.2.c.e.334.3 18
15.8 even 4 1665.2.c.e.334.16 18
15.14 odd 2 8325.2.a.cr.1.7 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.b.a.149.3 18 5.3 odd 4
185.2.b.a.149.16 yes 18 5.2 odd 4
925.2.a.l.1.3 9 5.4 even 2
925.2.a.m.1.7 9 1.1 even 1 trivial
1665.2.c.e.334.3 18 15.2 even 4
1665.2.c.e.334.16 18 15.8 even 4
8325.2.a.cq.1.3 9 3.2 odd 2
8325.2.a.cr.1.7 9 15.14 odd 2