Properties

Label 925.2.a.l.1.6
Level $925$
Weight $2$
Character 925.1
Self dual yes
Analytic conductor $7.386$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(1,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,-5,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.38616218697\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4x^{8} - 6x^{7} + 30x^{6} + 15x^{5} - 70x^{4} - 22x^{3} + 44x^{2} + 4x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 185)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(0.753109\) of defining polynomial
Character \(\chi\) \(=\) 925.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.246891 q^{2} -3.34515 q^{3} -1.93904 q^{4} +0.825888 q^{6} -2.66723 q^{7} +0.972515 q^{8} +8.19006 q^{9} -1.12244 q^{11} +6.48640 q^{12} +4.38171 q^{13} +0.658515 q^{14} +3.63798 q^{16} -1.15960 q^{17} -2.02205 q^{18} +6.43164 q^{19} +8.92229 q^{21} +0.277121 q^{22} -3.45756 q^{23} -3.25321 q^{24} -1.08181 q^{26} -17.3615 q^{27} +5.17188 q^{28} -0.729661 q^{29} -7.22523 q^{31} -2.84321 q^{32} +3.75474 q^{33} +0.286295 q^{34} -15.8809 q^{36} +1.00000 q^{37} -1.58791 q^{38} -14.6575 q^{39} +4.61897 q^{41} -2.20283 q^{42} +1.32712 q^{43} +2.17646 q^{44} +0.853641 q^{46} +10.3318 q^{47} -12.1696 q^{48} +0.114110 q^{49} +3.87905 q^{51} -8.49634 q^{52} -2.77765 q^{53} +4.28641 q^{54} -2.59392 q^{56} -21.5148 q^{57} +0.180147 q^{58} -4.32778 q^{59} -4.73004 q^{61} +1.78384 q^{62} -21.8448 q^{63} -6.57401 q^{64} -0.927011 q^{66} -2.64090 q^{67} +2.24852 q^{68} +11.5661 q^{69} +3.33860 q^{71} +7.96495 q^{72} +5.87153 q^{73} -0.246891 q^{74} -12.4712 q^{76} +2.99381 q^{77} +3.61881 q^{78} -6.77753 q^{79} +33.5068 q^{81} -1.14038 q^{82} -10.3882 q^{83} -17.3007 q^{84} -0.327654 q^{86} +2.44083 q^{87} -1.09159 q^{88} -3.34606 q^{89} -11.6870 q^{91} +6.70437 q^{92} +24.1695 q^{93} -2.55084 q^{94} +9.51099 q^{96} -3.02933 q^{97} -0.0281728 q^{98} -9.19285 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 5 q^{2} - 8 q^{3} + 11 q^{4} + 2 q^{6} - 8 q^{7} - 15 q^{8} + 13 q^{9} - 16 q^{12} - 6 q^{13} - 4 q^{14} + 11 q^{16} - 18 q^{17} + 3 q^{18} - 4 q^{19} + 4 q^{21} - 6 q^{22} - 16 q^{23} + 6 q^{24}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.246891 −0.174578 −0.0872891 0.996183i \(-0.527820\pi\)
−0.0872891 + 0.996183i \(0.527820\pi\)
\(3\) −3.34515 −1.93133 −0.965663 0.259799i \(-0.916344\pi\)
−0.965663 + 0.259799i \(0.916344\pi\)
\(4\) −1.93904 −0.969522
\(5\) 0 0
\(6\) 0.825888 0.337167
\(7\) −2.66723 −1.00812 −0.504059 0.863669i \(-0.668161\pi\)
−0.504059 + 0.863669i \(0.668161\pi\)
\(8\) 0.972515 0.343836
\(9\) 8.19006 2.73002
\(10\) 0 0
\(11\) −1.12244 −0.338429 −0.169214 0.985579i \(-0.554123\pi\)
−0.169214 + 0.985579i \(0.554123\pi\)
\(12\) 6.48640 1.87246
\(13\) 4.38171 1.21527 0.607635 0.794217i \(-0.292119\pi\)
0.607635 + 0.794217i \(0.292119\pi\)
\(14\) 0.658515 0.175995
\(15\) 0 0
\(16\) 3.63798 0.909496
\(17\) −1.15960 −0.281245 −0.140622 0.990063i \(-0.544910\pi\)
−0.140622 + 0.990063i \(0.544910\pi\)
\(18\) −2.02205 −0.476602
\(19\) 6.43164 1.47552 0.737760 0.675063i \(-0.235884\pi\)
0.737760 + 0.675063i \(0.235884\pi\)
\(20\) 0 0
\(21\) 8.92229 1.94700
\(22\) 0.277121 0.0590823
\(23\) −3.45756 −0.720952 −0.360476 0.932769i \(-0.617386\pi\)
−0.360476 + 0.932769i \(0.617386\pi\)
\(24\) −3.25321 −0.664059
\(25\) 0 0
\(26\) −1.08181 −0.212160
\(27\) −17.3615 −3.34123
\(28\) 5.17188 0.977393
\(29\) −0.729661 −0.135495 −0.0677473 0.997703i \(-0.521581\pi\)
−0.0677473 + 0.997703i \(0.521581\pi\)
\(30\) 0 0
\(31\) −7.22523 −1.29769 −0.648845 0.760920i \(-0.724748\pi\)
−0.648845 + 0.760920i \(0.724748\pi\)
\(32\) −2.84321 −0.502614
\(33\) 3.75474 0.653616
\(34\) 0.286295 0.0490992
\(35\) 0 0
\(36\) −15.8809 −2.64681
\(37\) 1.00000 0.164399
\(38\) −1.58791 −0.257594
\(39\) −14.6575 −2.34708
\(40\) 0 0
\(41\) 4.61897 0.721361 0.360681 0.932689i \(-0.382544\pi\)
0.360681 + 0.932689i \(0.382544\pi\)
\(42\) −2.20283 −0.339905
\(43\) 1.32712 0.202384 0.101192 0.994867i \(-0.467734\pi\)
0.101192 + 0.994867i \(0.467734\pi\)
\(44\) 2.17646 0.328114
\(45\) 0 0
\(46\) 0.853641 0.125863
\(47\) 10.3318 1.50705 0.753527 0.657417i \(-0.228351\pi\)
0.753527 + 0.657417i \(0.228351\pi\)
\(48\) −12.1696 −1.75653
\(49\) 0.114110 0.0163014
\(50\) 0 0
\(51\) 3.87905 0.543175
\(52\) −8.49634 −1.17823
\(53\) −2.77765 −0.381539 −0.190770 0.981635i \(-0.561098\pi\)
−0.190770 + 0.981635i \(0.561098\pi\)
\(54\) 4.28641 0.583306
\(55\) 0 0
\(56\) −2.59392 −0.346627
\(57\) −21.5148 −2.84971
\(58\) 0.180147 0.0236544
\(59\) −4.32778 −0.563429 −0.281714 0.959498i \(-0.590903\pi\)
−0.281714 + 0.959498i \(0.590903\pi\)
\(60\) 0 0
\(61\) −4.73004 −0.605619 −0.302810 0.953051i \(-0.597925\pi\)
−0.302810 + 0.953051i \(0.597925\pi\)
\(62\) 1.78384 0.226549
\(63\) −21.8448 −2.75218
\(64\) −6.57401 −0.821751
\(65\) 0 0
\(66\) −0.927011 −0.114107
\(67\) −2.64090 −0.322637 −0.161319 0.986902i \(-0.551575\pi\)
−0.161319 + 0.986902i \(0.551575\pi\)
\(68\) 2.24852 0.272673
\(69\) 11.5661 1.39239
\(70\) 0 0
\(71\) 3.33860 0.396219 0.198109 0.980180i \(-0.436520\pi\)
0.198109 + 0.980180i \(0.436520\pi\)
\(72\) 7.96495 0.938678
\(73\) 5.87153 0.687210 0.343605 0.939114i \(-0.388352\pi\)
0.343605 + 0.939114i \(0.388352\pi\)
\(74\) −0.246891 −0.0287005
\(75\) 0 0
\(76\) −12.4712 −1.43055
\(77\) 2.99381 0.341176
\(78\) 3.61881 0.409749
\(79\) −6.77753 −0.762532 −0.381266 0.924465i \(-0.624512\pi\)
−0.381266 + 0.924465i \(0.624512\pi\)
\(80\) 0 0
\(81\) 33.5068 3.72298
\(82\) −1.14038 −0.125934
\(83\) −10.3882 −1.14026 −0.570129 0.821555i \(-0.693107\pi\)
−0.570129 + 0.821555i \(0.693107\pi\)
\(84\) −17.3007 −1.88766
\(85\) 0 0
\(86\) −0.327654 −0.0353318
\(87\) 2.44083 0.261684
\(88\) −1.09159 −0.116364
\(89\) −3.34606 −0.354682 −0.177341 0.984149i \(-0.556750\pi\)
−0.177341 + 0.984149i \(0.556750\pi\)
\(90\) 0 0
\(91\) −11.6870 −1.22513
\(92\) 6.70437 0.698979
\(93\) 24.1695 2.50626
\(94\) −2.55084 −0.263099
\(95\) 0 0
\(96\) 9.51099 0.970711
\(97\) −3.02933 −0.307582 −0.153791 0.988103i \(-0.549148\pi\)
−0.153791 + 0.988103i \(0.549148\pi\)
\(98\) −0.0281728 −0.00284588
\(99\) −9.19285 −0.923916
\(100\) 0 0
\(101\) −10.3972 −1.03456 −0.517279 0.855817i \(-0.673055\pi\)
−0.517279 + 0.855817i \(0.673055\pi\)
\(102\) −0.957701 −0.0948266
\(103\) −3.69429 −0.364009 −0.182004 0.983298i \(-0.558259\pi\)
−0.182004 + 0.983298i \(0.558259\pi\)
\(104\) 4.26128 0.417853
\(105\) 0 0
\(106\) 0.685776 0.0666085
\(107\) 6.75105 0.652649 0.326324 0.945258i \(-0.394190\pi\)
0.326324 + 0.945258i \(0.394190\pi\)
\(108\) 33.6648 3.23940
\(109\) −6.13569 −0.587693 −0.293846 0.955853i \(-0.594935\pi\)
−0.293846 + 0.955853i \(0.594935\pi\)
\(110\) 0 0
\(111\) −3.34515 −0.317508
\(112\) −9.70334 −0.916879
\(113\) −2.09180 −0.196780 −0.0983898 0.995148i \(-0.531369\pi\)
−0.0983898 + 0.995148i \(0.531369\pi\)
\(114\) 5.31182 0.497497
\(115\) 0 0
\(116\) 1.41484 0.131365
\(117\) 35.8865 3.31771
\(118\) 1.06849 0.0983624
\(119\) 3.09292 0.283528
\(120\) 0 0
\(121\) −9.74013 −0.885466
\(122\) 1.16780 0.105728
\(123\) −15.4512 −1.39318
\(124\) 14.0101 1.25814
\(125\) 0 0
\(126\) 5.39327 0.480471
\(127\) 16.7945 1.49027 0.745135 0.666914i \(-0.232385\pi\)
0.745135 + 0.666914i \(0.232385\pi\)
\(128\) 7.30949 0.646074
\(129\) −4.43942 −0.390869
\(130\) 0 0
\(131\) −16.4522 −1.43743 −0.718716 0.695304i \(-0.755270\pi\)
−0.718716 + 0.695304i \(0.755270\pi\)
\(132\) −7.28060 −0.633695
\(133\) −17.1547 −1.48750
\(134\) 0.652015 0.0563255
\(135\) 0 0
\(136\) −1.12773 −0.0967020
\(137\) −7.51317 −0.641894 −0.320947 0.947097i \(-0.604001\pi\)
−0.320947 + 0.947097i \(0.604001\pi\)
\(138\) −2.85556 −0.243082
\(139\) 10.8184 0.917608 0.458804 0.888538i \(-0.348278\pi\)
0.458804 + 0.888538i \(0.348278\pi\)
\(140\) 0 0
\(141\) −34.5616 −2.91061
\(142\) −0.824270 −0.0691712
\(143\) −4.91822 −0.411282
\(144\) 29.7953 2.48294
\(145\) 0 0
\(146\) −1.44963 −0.119972
\(147\) −0.381716 −0.0314834
\(148\) −1.93904 −0.159389
\(149\) 14.7133 1.20536 0.602682 0.797981i \(-0.294099\pi\)
0.602682 + 0.797981i \(0.294099\pi\)
\(150\) 0 0
\(151\) 16.9858 1.38229 0.691144 0.722717i \(-0.257107\pi\)
0.691144 + 0.722717i \(0.257107\pi\)
\(152\) 6.25487 0.507337
\(153\) −9.49720 −0.767803
\(154\) −0.739144 −0.0595619
\(155\) 0 0
\(156\) 28.4216 2.27555
\(157\) −11.4204 −0.911450 −0.455725 0.890121i \(-0.650620\pi\)
−0.455725 + 0.890121i \(0.650620\pi\)
\(158\) 1.67331 0.133122
\(159\) 9.29166 0.736877
\(160\) 0 0
\(161\) 9.22211 0.726804
\(162\) −8.27254 −0.649952
\(163\) 17.1484 1.34316 0.671581 0.740931i \(-0.265615\pi\)
0.671581 + 0.740931i \(0.265615\pi\)
\(164\) −8.95638 −0.699376
\(165\) 0 0
\(166\) 2.56476 0.199064
\(167\) −8.51875 −0.659201 −0.329600 0.944121i \(-0.606914\pi\)
−0.329600 + 0.944121i \(0.606914\pi\)
\(168\) 8.67706 0.669450
\(169\) 6.19942 0.476879
\(170\) 0 0
\(171\) 52.6755 4.02820
\(172\) −2.57334 −0.196216
\(173\) 4.79414 0.364492 0.182246 0.983253i \(-0.441663\pi\)
0.182246 + 0.983253i \(0.441663\pi\)
\(174\) −0.602618 −0.0456844
\(175\) 0 0
\(176\) −4.08342 −0.307800
\(177\) 14.4771 1.08816
\(178\) 0.826113 0.0619198
\(179\) −23.8605 −1.78342 −0.891708 0.452611i \(-0.850493\pi\)
−0.891708 + 0.452611i \(0.850493\pi\)
\(180\) 0 0
\(181\) 2.23666 0.166250 0.0831248 0.996539i \(-0.473510\pi\)
0.0831248 + 0.996539i \(0.473510\pi\)
\(182\) 2.88542 0.213882
\(183\) 15.8227 1.16965
\(184\) −3.36253 −0.247889
\(185\) 0 0
\(186\) −5.96724 −0.437539
\(187\) 1.30158 0.0951813
\(188\) −20.0339 −1.46112
\(189\) 46.3072 3.36835
\(190\) 0 0
\(191\) −16.3404 −1.18235 −0.591176 0.806543i \(-0.701336\pi\)
−0.591176 + 0.806543i \(0.701336\pi\)
\(192\) 21.9911 1.58707
\(193\) 18.1778 1.30847 0.654234 0.756292i \(-0.272991\pi\)
0.654234 + 0.756292i \(0.272991\pi\)
\(194\) 0.747914 0.0536971
\(195\) 0 0
\(196\) −0.221265 −0.0158046
\(197\) −1.71045 −0.121864 −0.0609322 0.998142i \(-0.519407\pi\)
−0.0609322 + 0.998142i \(0.519407\pi\)
\(198\) 2.26963 0.161296
\(199\) −5.86596 −0.415827 −0.207913 0.978147i \(-0.566667\pi\)
−0.207913 + 0.978147i \(0.566667\pi\)
\(200\) 0 0
\(201\) 8.83422 0.623118
\(202\) 2.56697 0.180611
\(203\) 1.94617 0.136595
\(204\) −7.52164 −0.526620
\(205\) 0 0
\(206\) 0.912086 0.0635481
\(207\) −28.3176 −1.96821
\(208\) 15.9406 1.10528
\(209\) −7.21914 −0.499358
\(210\) 0 0
\(211\) −17.0431 −1.17330 −0.586648 0.809842i \(-0.699553\pi\)
−0.586648 + 0.809842i \(0.699553\pi\)
\(212\) 5.38598 0.369911
\(213\) −11.1681 −0.765228
\(214\) −1.66677 −0.113938
\(215\) 0 0
\(216\) −16.8843 −1.14883
\(217\) 19.2714 1.30822
\(218\) 1.51485 0.102598
\(219\) −19.6412 −1.32723
\(220\) 0 0
\(221\) −5.08104 −0.341788
\(222\) 0.825888 0.0554300
\(223\) −3.73873 −0.250364 −0.125182 0.992134i \(-0.539951\pi\)
−0.125182 + 0.992134i \(0.539951\pi\)
\(224\) 7.58350 0.506694
\(225\) 0 0
\(226\) 0.516446 0.0343535
\(227\) −18.3517 −1.21805 −0.609023 0.793153i \(-0.708438\pi\)
−0.609023 + 0.793153i \(0.708438\pi\)
\(228\) 41.7182 2.76286
\(229\) −15.8336 −1.04631 −0.523156 0.852237i \(-0.675245\pi\)
−0.523156 + 0.852237i \(0.675245\pi\)
\(230\) 0 0
\(231\) −10.0147 −0.658922
\(232\) −0.709606 −0.0465879
\(233\) −23.3893 −1.53229 −0.766143 0.642670i \(-0.777826\pi\)
−0.766143 + 0.642670i \(0.777826\pi\)
\(234\) −8.86005 −0.579200
\(235\) 0 0
\(236\) 8.39175 0.546257
\(237\) 22.6719 1.47270
\(238\) −0.763615 −0.0494978
\(239\) −8.61855 −0.557488 −0.278744 0.960365i \(-0.589918\pi\)
−0.278744 + 0.960365i \(0.589918\pi\)
\(240\) 0 0
\(241\) −0.491805 −0.0316799 −0.0158400 0.999875i \(-0.505042\pi\)
−0.0158400 + 0.999875i \(0.505042\pi\)
\(242\) 2.40475 0.154583
\(243\) −60.0009 −3.84906
\(244\) 9.17175 0.587161
\(245\) 0 0
\(246\) 3.81475 0.243220
\(247\) 28.1816 1.79315
\(248\) −7.02665 −0.446192
\(249\) 34.7503 2.20221
\(250\) 0 0
\(251\) −14.9337 −0.942609 −0.471305 0.881971i \(-0.656217\pi\)
−0.471305 + 0.881971i \(0.656217\pi\)
\(252\) 42.3580 2.66830
\(253\) 3.88091 0.243991
\(254\) −4.14641 −0.260169
\(255\) 0 0
\(256\) 11.3434 0.708960
\(257\) −21.3577 −1.33225 −0.666127 0.745838i \(-0.732049\pi\)
−0.666127 + 0.745838i \(0.732049\pi\)
\(258\) 1.09605 0.0682372
\(259\) −2.66723 −0.165734
\(260\) 0 0
\(261\) −5.97596 −0.369903
\(262\) 4.06189 0.250944
\(263\) 9.37607 0.578153 0.289077 0.957306i \(-0.406652\pi\)
0.289077 + 0.957306i \(0.406652\pi\)
\(264\) 3.65154 0.224737
\(265\) 0 0
\(266\) 4.23533 0.259685
\(267\) 11.1931 0.685006
\(268\) 5.12083 0.312804
\(269\) 2.91988 0.178028 0.0890141 0.996030i \(-0.471628\pi\)
0.0890141 + 0.996030i \(0.471628\pi\)
\(270\) 0 0
\(271\) 2.62192 0.159270 0.0796350 0.996824i \(-0.474625\pi\)
0.0796350 + 0.996824i \(0.474625\pi\)
\(272\) −4.21861 −0.255791
\(273\) 39.0949 2.36613
\(274\) 1.85493 0.112061
\(275\) 0 0
\(276\) −22.4272 −1.34996
\(277\) −8.75381 −0.525965 −0.262983 0.964801i \(-0.584706\pi\)
−0.262983 + 0.964801i \(0.584706\pi\)
\(278\) −2.67097 −0.160194
\(279\) −59.1751 −3.54272
\(280\) 0 0
\(281\) 22.9508 1.36913 0.684565 0.728952i \(-0.259992\pi\)
0.684565 + 0.728952i \(0.259992\pi\)
\(282\) 8.53295 0.508129
\(283\) −8.60777 −0.511679 −0.255839 0.966719i \(-0.582352\pi\)
−0.255839 + 0.966719i \(0.582352\pi\)
\(284\) −6.47369 −0.384143
\(285\) 0 0
\(286\) 1.21426 0.0718009
\(287\) −12.3198 −0.727217
\(288\) −23.2861 −1.37215
\(289\) −15.6553 −0.920901
\(290\) 0 0
\(291\) 10.1336 0.594041
\(292\) −11.3852 −0.666266
\(293\) −31.2104 −1.82333 −0.911667 0.410931i \(-0.865204\pi\)
−0.911667 + 0.410931i \(0.865204\pi\)
\(294\) 0.0942422 0.00549632
\(295\) 0 0
\(296\) 0.972515 0.0565263
\(297\) 19.4873 1.13077
\(298\) −3.63259 −0.210430
\(299\) −15.1501 −0.876150
\(300\) 0 0
\(301\) −3.53973 −0.204027
\(302\) −4.19365 −0.241318
\(303\) 34.7802 1.99807
\(304\) 23.3982 1.34198
\(305\) 0 0
\(306\) 2.34477 0.134042
\(307\) −22.1209 −1.26251 −0.631253 0.775577i \(-0.717459\pi\)
−0.631253 + 0.775577i \(0.717459\pi\)
\(308\) −5.80513 −0.330778
\(309\) 12.3580 0.703020
\(310\) 0 0
\(311\) −13.5854 −0.770359 −0.385179 0.922842i \(-0.625860\pi\)
−0.385179 + 0.922842i \(0.625860\pi\)
\(312\) −14.2546 −0.807010
\(313\) −23.9064 −1.35127 −0.675635 0.737236i \(-0.736130\pi\)
−0.675635 + 0.737236i \(0.736130\pi\)
\(314\) 2.81960 0.159119
\(315\) 0 0
\(316\) 13.1419 0.739292
\(317\) −32.4299 −1.82145 −0.910724 0.413016i \(-0.864475\pi\)
−0.910724 + 0.413016i \(0.864475\pi\)
\(318\) −2.29403 −0.128643
\(319\) 0.819001 0.0458553
\(320\) 0 0
\(321\) −22.5833 −1.26048
\(322\) −2.27686 −0.126884
\(323\) −7.45814 −0.414982
\(324\) −64.9713 −3.60951
\(325\) 0 0
\(326\) −4.23377 −0.234487
\(327\) 20.5248 1.13503
\(328\) 4.49201 0.248030
\(329\) −27.5574 −1.51929
\(330\) 0 0
\(331\) 12.3756 0.680224 0.340112 0.940385i \(-0.389535\pi\)
0.340112 + 0.940385i \(0.389535\pi\)
\(332\) 20.1433 1.10551
\(333\) 8.19006 0.448812
\(334\) 2.10320 0.115082
\(335\) 0 0
\(336\) 32.4592 1.77079
\(337\) 23.4947 1.27984 0.639918 0.768444i \(-0.278968\pi\)
0.639918 + 0.768444i \(0.278968\pi\)
\(338\) −1.53058 −0.0832527
\(339\) 6.99738 0.380046
\(340\) 0 0
\(341\) 8.10990 0.439176
\(342\) −13.0051 −0.703236
\(343\) 18.3662 0.991684
\(344\) 1.29064 0.0695868
\(345\) 0 0
\(346\) −1.18363 −0.0636324
\(347\) 2.80759 0.150720 0.0753598 0.997156i \(-0.475989\pi\)
0.0753598 + 0.997156i \(0.475989\pi\)
\(348\) −4.73287 −0.253709
\(349\) −2.42088 −0.129587 −0.0647933 0.997899i \(-0.520639\pi\)
−0.0647933 + 0.997899i \(0.520639\pi\)
\(350\) 0 0
\(351\) −76.0733 −4.06049
\(352\) 3.19134 0.170099
\(353\) −1.35444 −0.0720894 −0.0360447 0.999350i \(-0.511476\pi\)
−0.0360447 + 0.999350i \(0.511476\pi\)
\(354\) −3.57426 −0.189970
\(355\) 0 0
\(356\) 6.48817 0.343872
\(357\) −10.3463 −0.547584
\(358\) 5.89094 0.311346
\(359\) 13.9347 0.735448 0.367724 0.929935i \(-0.380137\pi\)
0.367724 + 0.929935i \(0.380137\pi\)
\(360\) 0 0
\(361\) 22.3660 1.17716
\(362\) −0.552211 −0.0290236
\(363\) 32.5822 1.71012
\(364\) 22.6617 1.18780
\(365\) 0 0
\(366\) −3.90648 −0.204195
\(367\) 7.76283 0.405216 0.202608 0.979260i \(-0.435058\pi\)
0.202608 + 0.979260i \(0.435058\pi\)
\(368\) −12.5786 −0.655703
\(369\) 37.8296 1.96933
\(370\) 0 0
\(371\) 7.40862 0.384637
\(372\) −46.8658 −2.42988
\(373\) −24.3774 −1.26222 −0.631108 0.775695i \(-0.717400\pi\)
−0.631108 + 0.775695i \(0.717400\pi\)
\(374\) −0.321349 −0.0166166
\(375\) 0 0
\(376\) 10.0479 0.518179
\(377\) −3.19717 −0.164662
\(378\) −11.4328 −0.588041
\(379\) −13.7125 −0.704363 −0.352181 0.935932i \(-0.614560\pi\)
−0.352181 + 0.935932i \(0.614560\pi\)
\(380\) 0 0
\(381\) −56.1801 −2.87819
\(382\) 4.03430 0.206413
\(383\) 30.6230 1.56476 0.782381 0.622800i \(-0.214005\pi\)
0.782381 + 0.622800i \(0.214005\pi\)
\(384\) −24.4514 −1.24778
\(385\) 0 0
\(386\) −4.48794 −0.228430
\(387\) 10.8692 0.552511
\(388\) 5.87401 0.298207
\(389\) 16.6593 0.844659 0.422330 0.906442i \(-0.361213\pi\)
0.422330 + 0.906442i \(0.361213\pi\)
\(390\) 0 0
\(391\) 4.00940 0.202764
\(392\) 0.110974 0.00560502
\(393\) 55.0350 2.77615
\(394\) 0.422294 0.0212749
\(395\) 0 0
\(396\) 17.8254 0.895758
\(397\) 26.1701 1.31344 0.656720 0.754135i \(-0.271944\pi\)
0.656720 + 0.754135i \(0.271944\pi\)
\(398\) 1.44825 0.0725943
\(399\) 57.3850 2.87284
\(400\) 0 0
\(401\) −15.7569 −0.786860 −0.393430 0.919354i \(-0.628712\pi\)
−0.393430 + 0.919354i \(0.628712\pi\)
\(402\) −2.18109 −0.108783
\(403\) −31.6589 −1.57704
\(404\) 20.1606 1.00303
\(405\) 0 0
\(406\) −0.480492 −0.0238464
\(407\) −1.12244 −0.0556373
\(408\) 3.77243 0.186763
\(409\) −27.8854 −1.37884 −0.689421 0.724361i \(-0.742135\pi\)
−0.689421 + 0.724361i \(0.742135\pi\)
\(410\) 0 0
\(411\) 25.1327 1.23971
\(412\) 7.16339 0.352915
\(413\) 11.5432 0.568002
\(414\) 6.99137 0.343607
\(415\) 0 0
\(416\) −12.4582 −0.610811
\(417\) −36.1893 −1.77220
\(418\) 1.78234 0.0871771
\(419\) 17.4407 0.852035 0.426017 0.904715i \(-0.359916\pi\)
0.426017 + 0.904715i \(0.359916\pi\)
\(420\) 0 0
\(421\) 17.2720 0.841788 0.420894 0.907110i \(-0.361716\pi\)
0.420894 + 0.907110i \(0.361716\pi\)
\(422\) 4.20779 0.204832
\(423\) 84.6183 4.11428
\(424\) −2.70130 −0.131187
\(425\) 0 0
\(426\) 2.75731 0.133592
\(427\) 12.6161 0.610536
\(428\) −13.0906 −0.632758
\(429\) 16.4522 0.794319
\(430\) 0 0
\(431\) 15.2304 0.733624 0.366812 0.930295i \(-0.380449\pi\)
0.366812 + 0.930295i \(0.380449\pi\)
\(432\) −63.1610 −3.03883
\(433\) −4.59721 −0.220928 −0.110464 0.993880i \(-0.535234\pi\)
−0.110464 + 0.993880i \(0.535234\pi\)
\(434\) −4.75792 −0.228388
\(435\) 0 0
\(436\) 11.8974 0.569781
\(437\) −22.2378 −1.06378
\(438\) 4.84923 0.231705
\(439\) 13.6389 0.650950 0.325475 0.945551i \(-0.394476\pi\)
0.325475 + 0.945551i \(0.394476\pi\)
\(440\) 0 0
\(441\) 0.934568 0.0445032
\(442\) 1.25446 0.0596688
\(443\) −18.9480 −0.900249 −0.450124 0.892966i \(-0.648620\pi\)
−0.450124 + 0.892966i \(0.648620\pi\)
\(444\) 6.48640 0.307831
\(445\) 0 0
\(446\) 0.923059 0.0437081
\(447\) −49.2184 −2.32795
\(448\) 17.5344 0.828421
\(449\) 0.199955 0.00943648 0.00471824 0.999989i \(-0.498498\pi\)
0.00471824 + 0.999989i \(0.498498\pi\)
\(450\) 0 0
\(451\) −5.18452 −0.244129
\(452\) 4.05609 0.190782
\(453\) −56.8203 −2.66965
\(454\) 4.53087 0.212644
\(455\) 0 0
\(456\) −20.9235 −0.979832
\(457\) 29.0697 1.35982 0.679910 0.733295i \(-0.262019\pi\)
0.679910 + 0.733295i \(0.262019\pi\)
\(458\) 3.90916 0.182663
\(459\) 20.1325 0.939703
\(460\) 0 0
\(461\) 22.2419 1.03591 0.517954 0.855408i \(-0.326694\pi\)
0.517954 + 0.855408i \(0.326694\pi\)
\(462\) 2.47255 0.115033
\(463\) 11.0948 0.515617 0.257809 0.966196i \(-0.417000\pi\)
0.257809 + 0.966196i \(0.417000\pi\)
\(464\) −2.65449 −0.123232
\(465\) 0 0
\(466\) 5.77461 0.267504
\(467\) −32.4417 −1.50122 −0.750612 0.660744i \(-0.770241\pi\)
−0.750612 + 0.660744i \(0.770241\pi\)
\(468\) −69.5855 −3.21659
\(469\) 7.04389 0.325257
\(470\) 0 0
\(471\) 38.2031 1.76031
\(472\) −4.20883 −0.193727
\(473\) −1.48961 −0.0684925
\(474\) −5.59748 −0.257101
\(475\) 0 0
\(476\) −5.99732 −0.274887
\(477\) −22.7491 −1.04161
\(478\) 2.12784 0.0973252
\(479\) 38.0979 1.74074 0.870370 0.492399i \(-0.163880\pi\)
0.870370 + 0.492399i \(0.163880\pi\)
\(480\) 0 0
\(481\) 4.38171 0.199789
\(482\) 0.121422 0.00553062
\(483\) −30.8494 −1.40370
\(484\) 18.8865 0.858479
\(485\) 0 0
\(486\) 14.8137 0.671963
\(487\) −14.8929 −0.674861 −0.337430 0.941350i \(-0.609558\pi\)
−0.337430 + 0.941350i \(0.609558\pi\)
\(488\) −4.60003 −0.208234
\(489\) −57.3639 −2.59408
\(490\) 0 0
\(491\) 34.0392 1.53617 0.768085 0.640348i \(-0.221210\pi\)
0.768085 + 0.640348i \(0.221210\pi\)
\(492\) 29.9605 1.35072
\(493\) 0.846116 0.0381071
\(494\) −6.95779 −0.313046
\(495\) 0 0
\(496\) −26.2853 −1.18024
\(497\) −8.90481 −0.399435
\(498\) −8.57953 −0.384458
\(499\) 12.6605 0.566762 0.283381 0.959007i \(-0.408544\pi\)
0.283381 + 0.959007i \(0.408544\pi\)
\(500\) 0 0
\(501\) 28.4965 1.27313
\(502\) 3.68700 0.164559
\(503\) −26.1961 −1.16803 −0.584014 0.811744i \(-0.698519\pi\)
−0.584014 + 0.811744i \(0.698519\pi\)
\(504\) −21.2443 −0.946298
\(505\) 0 0
\(506\) −0.958162 −0.0425955
\(507\) −20.7380 −0.921008
\(508\) −32.5653 −1.44485
\(509\) −7.79659 −0.345578 −0.172789 0.984959i \(-0.555278\pi\)
−0.172789 + 0.984959i \(0.555278\pi\)
\(510\) 0 0
\(511\) −15.6607 −0.692789
\(512\) −17.4196 −0.769843
\(513\) −111.663 −4.93005
\(514\) 5.27301 0.232583
\(515\) 0 0
\(516\) 8.60823 0.378956
\(517\) −11.5969 −0.510030
\(518\) 0.658515 0.0289335
\(519\) −16.0371 −0.703953
\(520\) 0 0
\(521\) −31.3029 −1.37141 −0.685703 0.727881i \(-0.740505\pi\)
−0.685703 + 0.727881i \(0.740505\pi\)
\(522\) 1.47541 0.0645770
\(523\) 10.1864 0.445419 0.222709 0.974885i \(-0.428510\pi\)
0.222709 + 0.974885i \(0.428510\pi\)
\(524\) 31.9015 1.39362
\(525\) 0 0
\(526\) −2.31487 −0.100933
\(527\) 8.37839 0.364969
\(528\) 13.6597 0.594461
\(529\) −11.0453 −0.480228
\(530\) 0 0
\(531\) −35.4447 −1.53817
\(532\) 33.2637 1.44216
\(533\) 20.2390 0.876648
\(534\) −2.76347 −0.119587
\(535\) 0 0
\(536\) −2.56831 −0.110934
\(537\) 79.8170 3.44436
\(538\) −0.720891 −0.0310798
\(539\) −0.128082 −0.00551688
\(540\) 0 0
\(541\) −27.5572 −1.18478 −0.592389 0.805652i \(-0.701815\pi\)
−0.592389 + 0.805652i \(0.701815\pi\)
\(542\) −0.647327 −0.0278051
\(543\) −7.48197 −0.321082
\(544\) 3.29700 0.141358
\(545\) 0 0
\(546\) −9.65219 −0.413075
\(547\) −37.9483 −1.62255 −0.811277 0.584662i \(-0.801227\pi\)
−0.811277 + 0.584662i \(0.801227\pi\)
\(548\) 14.5684 0.622330
\(549\) −38.7393 −1.65335
\(550\) 0 0
\(551\) −4.69292 −0.199925
\(552\) 11.2482 0.478754
\(553\) 18.0772 0.768722
\(554\) 2.16124 0.0918221
\(555\) 0 0
\(556\) −20.9774 −0.889641
\(557\) 40.1642 1.70181 0.850906 0.525319i \(-0.176054\pi\)
0.850906 + 0.525319i \(0.176054\pi\)
\(558\) 14.6098 0.618482
\(559\) 5.81506 0.245951
\(560\) 0 0
\(561\) −4.35400 −0.183826
\(562\) −5.66635 −0.239020
\(563\) −24.9958 −1.05345 −0.526723 0.850037i \(-0.676579\pi\)
−0.526723 + 0.850037i \(0.676579\pi\)
\(564\) 67.0165 2.82190
\(565\) 0 0
\(566\) 2.12518 0.0893280
\(567\) −89.3704 −3.75320
\(568\) 3.24684 0.136234
\(569\) 28.7495 1.20524 0.602620 0.798028i \(-0.294123\pi\)
0.602620 + 0.798028i \(0.294123\pi\)
\(570\) 0 0
\(571\) −11.4297 −0.478318 −0.239159 0.970980i \(-0.576872\pi\)
−0.239159 + 0.970980i \(0.576872\pi\)
\(572\) 9.53664 0.398747
\(573\) 54.6612 2.28351
\(574\) 3.04166 0.126956
\(575\) 0 0
\(576\) −53.8415 −2.24339
\(577\) 16.0777 0.669322 0.334661 0.942339i \(-0.391378\pi\)
0.334661 + 0.942339i \(0.391378\pi\)
\(578\) 3.86516 0.160769
\(579\) −60.8076 −2.52708
\(580\) 0 0
\(581\) 27.7078 1.14951
\(582\) −2.50189 −0.103707
\(583\) 3.11775 0.129124
\(584\) 5.71015 0.236287
\(585\) 0 0
\(586\) 7.70557 0.318314
\(587\) −30.9265 −1.27647 −0.638237 0.769840i \(-0.720336\pi\)
−0.638237 + 0.769840i \(0.720336\pi\)
\(588\) 0.740164 0.0305239
\(589\) −46.4701 −1.91477
\(590\) 0 0
\(591\) 5.72171 0.235360
\(592\) 3.63798 0.149520
\(593\) −26.0479 −1.06966 −0.534829 0.844960i \(-0.679624\pi\)
−0.534829 + 0.844960i \(0.679624\pi\)
\(594\) −4.81124 −0.197407
\(595\) 0 0
\(596\) −28.5298 −1.16863
\(597\) 19.6225 0.803097
\(598\) 3.74041 0.152957
\(599\) −13.0774 −0.534328 −0.267164 0.963651i \(-0.586087\pi\)
−0.267164 + 0.963651i \(0.586087\pi\)
\(600\) 0 0
\(601\) 33.9125 1.38332 0.691659 0.722224i \(-0.256880\pi\)
0.691659 + 0.722224i \(0.256880\pi\)
\(602\) 0.873927 0.0356186
\(603\) −21.6291 −0.880806
\(604\) −32.9363 −1.34016
\(605\) 0 0
\(606\) −8.58691 −0.348819
\(607\) 9.17202 0.372281 0.186140 0.982523i \(-0.440402\pi\)
0.186140 + 0.982523i \(0.440402\pi\)
\(608\) −18.2865 −0.741617
\(609\) −6.51025 −0.263808
\(610\) 0 0
\(611\) 45.2712 1.83148
\(612\) 18.4155 0.744402
\(613\) 6.08037 0.245584 0.122792 0.992432i \(-0.460815\pi\)
0.122792 + 0.992432i \(0.460815\pi\)
\(614\) 5.46145 0.220406
\(615\) 0 0
\(616\) 2.91152 0.117309
\(617\) −45.4032 −1.82786 −0.913931 0.405869i \(-0.866969\pi\)
−0.913931 + 0.405869i \(0.866969\pi\)
\(618\) −3.05107 −0.122732
\(619\) 16.8229 0.676170 0.338085 0.941116i \(-0.390221\pi\)
0.338085 + 0.941116i \(0.390221\pi\)
\(620\) 0 0
\(621\) 60.0286 2.40887
\(622\) 3.35412 0.134488
\(623\) 8.92472 0.357561
\(624\) −53.3238 −2.13466
\(625\) 0 0
\(626\) 5.90228 0.235902
\(627\) 24.1491 0.964423
\(628\) 22.1447 0.883671
\(629\) −1.15960 −0.0462363
\(630\) 0 0
\(631\) 43.4329 1.72904 0.864518 0.502602i \(-0.167624\pi\)
0.864518 + 0.502602i \(0.167624\pi\)
\(632\) −6.59125 −0.262186
\(633\) 57.0119 2.26602
\(634\) 8.00666 0.317985
\(635\) 0 0
\(636\) −18.0169 −0.714418
\(637\) 0.499998 0.0198106
\(638\) −0.202204 −0.00800533
\(639\) 27.3433 1.08168
\(640\) 0 0
\(641\) 38.3171 1.51344 0.756718 0.653742i \(-0.226802\pi\)
0.756718 + 0.653742i \(0.226802\pi\)
\(642\) 5.57561 0.220052
\(643\) 18.2679 0.720415 0.360208 0.932872i \(-0.382706\pi\)
0.360208 + 0.932872i \(0.382706\pi\)
\(644\) −17.8821 −0.704653
\(645\) 0 0
\(646\) 1.84135 0.0724469
\(647\) 50.7089 1.99357 0.996786 0.0801053i \(-0.0255257\pi\)
0.996786 + 0.0801053i \(0.0255257\pi\)
\(648\) 32.5859 1.28009
\(649\) 4.85767 0.190680
\(650\) 0 0
\(651\) −64.4656 −2.52661
\(652\) −33.2514 −1.30223
\(653\) 4.99994 0.195663 0.0978315 0.995203i \(-0.468809\pi\)
0.0978315 + 0.995203i \(0.468809\pi\)
\(654\) −5.06740 −0.198151
\(655\) 0 0
\(656\) 16.8037 0.656075
\(657\) 48.0881 1.87610
\(658\) 6.80367 0.265235
\(659\) 5.50306 0.214369 0.107184 0.994239i \(-0.465817\pi\)
0.107184 + 0.994239i \(0.465817\pi\)
\(660\) 0 0
\(661\) −34.7100 −1.35006 −0.675032 0.737789i \(-0.735870\pi\)
−0.675032 + 0.737789i \(0.735870\pi\)
\(662\) −3.05542 −0.118752
\(663\) 16.9969 0.660104
\(664\) −10.1027 −0.392062
\(665\) 0 0
\(666\) −2.02205 −0.0783529
\(667\) 2.52285 0.0976851
\(668\) 16.5182 0.639110
\(669\) 12.5066 0.483534
\(670\) 0 0
\(671\) 5.30919 0.204959
\(672\) −25.3680 −0.978591
\(673\) 17.1380 0.660622 0.330311 0.943872i \(-0.392846\pi\)
0.330311 + 0.943872i \(0.392846\pi\)
\(674\) −5.80062 −0.223431
\(675\) 0 0
\(676\) −12.0210 −0.462345
\(677\) −38.1417 −1.46590 −0.732951 0.680281i \(-0.761858\pi\)
−0.732951 + 0.680281i \(0.761858\pi\)
\(678\) −1.72759 −0.0663477
\(679\) 8.07992 0.310079
\(680\) 0 0
\(681\) 61.3893 2.35244
\(682\) −2.00226 −0.0766705
\(683\) −39.1257 −1.49710 −0.748552 0.663076i \(-0.769250\pi\)
−0.748552 + 0.663076i \(0.769250\pi\)
\(684\) −102.140 −3.90543
\(685\) 0 0
\(686\) −4.53446 −0.173126
\(687\) 52.9657 2.02077
\(688\) 4.82804 0.184067
\(689\) −12.1709 −0.463673
\(690\) 0 0
\(691\) −18.3155 −0.696753 −0.348376 0.937355i \(-0.613267\pi\)
−0.348376 + 0.937355i \(0.613267\pi\)
\(692\) −9.29606 −0.353383
\(693\) 24.5194 0.931417
\(694\) −0.693169 −0.0263124
\(695\) 0 0
\(696\) 2.37374 0.0899764
\(697\) −5.35616 −0.202879
\(698\) 0.597693 0.0226230
\(699\) 78.2409 2.95934
\(700\) 0 0
\(701\) −16.7803 −0.633782 −0.316891 0.948462i \(-0.602639\pi\)
−0.316891 + 0.948462i \(0.602639\pi\)
\(702\) 18.7818 0.708874
\(703\) 6.43164 0.242574
\(704\) 7.37893 0.278104
\(705\) 0 0
\(706\) 0.334398 0.0125852
\(707\) 27.7317 1.04296
\(708\) −28.0717 −1.05500
\(709\) 2.26861 0.0851995 0.0425997 0.999092i \(-0.486436\pi\)
0.0425997 + 0.999092i \(0.486436\pi\)
\(710\) 0 0
\(711\) −55.5084 −2.08173
\(712\) −3.25409 −0.121952
\(713\) 24.9817 0.935572
\(714\) 2.55441 0.0955963
\(715\) 0 0
\(716\) 46.2666 1.72906
\(717\) 28.8304 1.07669
\(718\) −3.44036 −0.128393
\(719\) −53.0051 −1.97676 −0.988379 0.152010i \(-0.951425\pi\)
−0.988379 + 0.152010i \(0.951425\pi\)
\(720\) 0 0
\(721\) 9.85351 0.366964
\(722\) −5.52197 −0.205506
\(723\) 1.64516 0.0611842
\(724\) −4.33698 −0.161183
\(725\) 0 0
\(726\) −8.04426 −0.298550
\(727\) 14.0953 0.522766 0.261383 0.965235i \(-0.415821\pi\)
0.261383 + 0.965235i \(0.415821\pi\)
\(728\) −11.3658 −0.421245
\(729\) 100.192 3.71081
\(730\) 0 0
\(731\) −1.53893 −0.0569194
\(732\) −30.6809 −1.13400
\(733\) 14.1555 0.522846 0.261423 0.965224i \(-0.415808\pi\)
0.261423 + 0.965224i \(0.415808\pi\)
\(734\) −1.91657 −0.0707420
\(735\) 0 0
\(736\) 9.83059 0.362361
\(737\) 2.96426 0.109190
\(738\) −9.33978 −0.343802
\(739\) −14.4933 −0.533146 −0.266573 0.963815i \(-0.585891\pi\)
−0.266573 + 0.963815i \(0.585891\pi\)
\(740\) 0 0
\(741\) −94.2719 −3.46316
\(742\) −1.82912 −0.0671492
\(743\) −44.5090 −1.63288 −0.816439 0.577431i \(-0.804055\pi\)
−0.816439 + 0.577431i \(0.804055\pi\)
\(744\) 23.5052 0.861743
\(745\) 0 0
\(746\) 6.01857 0.220356
\(747\) −85.0803 −3.11293
\(748\) −2.52383 −0.0922804
\(749\) −18.0066 −0.657947
\(750\) 0 0
\(751\) 32.6002 1.18960 0.594800 0.803874i \(-0.297231\pi\)
0.594800 + 0.803874i \(0.297231\pi\)
\(752\) 37.5871 1.37066
\(753\) 49.9557 1.82049
\(754\) 0.789351 0.0287465
\(755\) 0 0
\(756\) −89.7917 −3.26569
\(757\) −29.1322 −1.05883 −0.529413 0.848364i \(-0.677588\pi\)
−0.529413 + 0.848364i \(0.677588\pi\)
\(758\) 3.38549 0.122966
\(759\) −12.9822 −0.471226
\(760\) 0 0
\(761\) −20.1054 −0.728820 −0.364410 0.931239i \(-0.618729\pi\)
−0.364410 + 0.931239i \(0.618729\pi\)
\(762\) 13.8704 0.502470
\(763\) 16.3653 0.592464
\(764\) 31.6848 1.14632
\(765\) 0 0
\(766\) −7.56054 −0.273173
\(767\) −18.9631 −0.684717
\(768\) −37.9453 −1.36923
\(769\) −1.06557 −0.0384254 −0.0192127 0.999815i \(-0.506116\pi\)
−0.0192127 + 0.999815i \(0.506116\pi\)
\(770\) 0 0
\(771\) 71.4447 2.57302
\(772\) −35.2476 −1.26859
\(773\) −15.1360 −0.544404 −0.272202 0.962240i \(-0.587752\pi\)
−0.272202 + 0.962240i \(0.587752\pi\)
\(774\) −2.68350 −0.0964565
\(775\) 0 0
\(776\) −2.94607 −0.105758
\(777\) 8.92229 0.320085
\(778\) −4.11303 −0.147459
\(779\) 29.7075 1.06438
\(780\) 0 0
\(781\) −3.74738 −0.134092
\(782\) −0.989884 −0.0353982
\(783\) 12.6680 0.452718
\(784\) 0.415131 0.0148261
\(785\) 0 0
\(786\) −13.5877 −0.484655
\(787\) −18.4833 −0.658858 −0.329429 0.944180i \(-0.606856\pi\)
−0.329429 + 0.944180i \(0.606856\pi\)
\(788\) 3.31663 0.118150
\(789\) −31.3644 −1.11660
\(790\) 0 0
\(791\) 5.57930 0.198377
\(792\) −8.94018 −0.317676
\(793\) −20.7257 −0.735990
\(794\) −6.46116 −0.229298
\(795\) 0 0
\(796\) 11.3744 0.403153
\(797\) 42.9927 1.52288 0.761441 0.648235i \(-0.224492\pi\)
0.761441 + 0.648235i \(0.224492\pi\)
\(798\) −14.1678 −0.501536
\(799\) −11.9808 −0.423851
\(800\) 0 0
\(801\) −27.4044 −0.968288
\(802\) 3.89023 0.137369
\(803\) −6.59044 −0.232572
\(804\) −17.1300 −0.604127
\(805\) 0 0
\(806\) 7.81630 0.275317
\(807\) −9.76744 −0.343830
\(808\) −10.1114 −0.355718
\(809\) 7.24815 0.254831 0.127416 0.991849i \(-0.459332\pi\)
0.127416 + 0.991849i \(0.459332\pi\)
\(810\) 0 0
\(811\) 19.2340 0.675399 0.337699 0.941254i \(-0.390351\pi\)
0.337699 + 0.941254i \(0.390351\pi\)
\(812\) −3.77372 −0.132431
\(813\) −8.77071 −0.307602
\(814\) 0.277121 0.00971307
\(815\) 0 0
\(816\) 14.1119 0.494016
\(817\) 8.53555 0.298621
\(818\) 6.88464 0.240716
\(819\) −95.7175 −3.34464
\(820\) 0 0
\(821\) −14.1258 −0.492994 −0.246497 0.969144i \(-0.579280\pi\)
−0.246497 + 0.969144i \(0.579280\pi\)
\(822\) −6.20504 −0.216426
\(823\) 47.4962 1.65561 0.827807 0.561014i \(-0.189588\pi\)
0.827807 + 0.561014i \(0.189588\pi\)
\(824\) −3.59275 −0.125159
\(825\) 0 0
\(826\) −2.84990 −0.0991609
\(827\) 30.5117 1.06100 0.530498 0.847686i \(-0.322005\pi\)
0.530498 + 0.847686i \(0.322005\pi\)
\(828\) 54.9092 1.90823
\(829\) 1.66809 0.0579353 0.0289676 0.999580i \(-0.490778\pi\)
0.0289676 + 0.999580i \(0.490778\pi\)
\(830\) 0 0
\(831\) 29.2828 1.01581
\(832\) −28.8054 −0.998648
\(833\) −0.132322 −0.00458469
\(834\) 8.93482 0.309388
\(835\) 0 0
\(836\) 13.9982 0.484139
\(837\) 125.441 4.33588
\(838\) −4.30596 −0.148747
\(839\) −24.7993 −0.856166 −0.428083 0.903739i \(-0.640811\pi\)
−0.428083 + 0.903739i \(0.640811\pi\)
\(840\) 0 0
\(841\) −28.4676 −0.981641
\(842\) −4.26431 −0.146958
\(843\) −76.7740 −2.64424
\(844\) 33.0474 1.13754
\(845\) 0 0
\(846\) −20.8915 −0.718265
\(847\) 25.9791 0.892654
\(848\) −10.1050 −0.347009
\(849\) 28.7943 0.988219
\(850\) 0 0
\(851\) −3.45756 −0.118524
\(852\) 21.6555 0.741905
\(853\) −18.7133 −0.640732 −0.320366 0.947294i \(-0.603806\pi\)
−0.320366 + 0.947294i \(0.603806\pi\)
\(854\) −3.11480 −0.106586
\(855\) 0 0
\(856\) 6.56549 0.224404
\(857\) 3.17695 0.108522 0.0542612 0.998527i \(-0.482720\pi\)
0.0542612 + 0.998527i \(0.482720\pi\)
\(858\) −4.06190 −0.138671
\(859\) −12.7152 −0.433838 −0.216919 0.976190i \(-0.569601\pi\)
−0.216919 + 0.976190i \(0.569601\pi\)
\(860\) 0 0
\(861\) 41.2118 1.40449
\(862\) −3.76026 −0.128075
\(863\) −6.35507 −0.216329 −0.108165 0.994133i \(-0.534497\pi\)
−0.108165 + 0.994133i \(0.534497\pi\)
\(864\) 49.3626 1.67935
\(865\) 0 0
\(866\) 1.13501 0.0385692
\(867\) 52.3695 1.77856
\(868\) −37.3680 −1.26835
\(869\) 7.60738 0.258063
\(870\) 0 0
\(871\) −11.5717 −0.392091
\(872\) −5.96705 −0.202070
\(873\) −24.8104 −0.839704
\(874\) 5.49031 0.185713
\(875\) 0 0
\(876\) 38.0851 1.28678
\(877\) 27.3415 0.923255 0.461628 0.887074i \(-0.347266\pi\)
0.461628 + 0.887074i \(0.347266\pi\)
\(878\) −3.36732 −0.113642
\(879\) 104.404 3.52145
\(880\) 0 0
\(881\) 35.3107 1.18965 0.594823 0.803856i \(-0.297222\pi\)
0.594823 + 0.803856i \(0.297222\pi\)
\(882\) −0.230736 −0.00776930
\(883\) 44.8243 1.50846 0.754229 0.656612i \(-0.228011\pi\)
0.754229 + 0.656612i \(0.228011\pi\)
\(884\) 9.85237 0.331371
\(885\) 0 0
\(886\) 4.67810 0.157164
\(887\) −24.8600 −0.834716 −0.417358 0.908742i \(-0.637044\pi\)
−0.417358 + 0.908742i \(0.637044\pi\)
\(888\) −3.25321 −0.109171
\(889\) −44.7947 −1.50237
\(890\) 0 0
\(891\) −37.6094 −1.25996
\(892\) 7.24957 0.242733
\(893\) 66.4507 2.22369
\(894\) 12.1516 0.406410
\(895\) 0 0
\(896\) −19.4961 −0.651319
\(897\) 50.6793 1.69213
\(898\) −0.0493672 −0.00164740
\(899\) 5.27197 0.175830
\(900\) 0 0
\(901\) 3.22096 0.107306
\(902\) 1.28001 0.0426197
\(903\) 11.8409 0.394042
\(904\) −2.03430 −0.0676599
\(905\) 0 0
\(906\) 14.0284 0.466063
\(907\) −9.40054 −0.312140 −0.156070 0.987746i \(-0.549883\pi\)
−0.156070 + 0.987746i \(0.549883\pi\)
\(908\) 35.5848 1.18092
\(909\) −85.1535 −2.82436
\(910\) 0 0
\(911\) −49.3826 −1.63612 −0.818059 0.575134i \(-0.804950\pi\)
−0.818059 + 0.575134i \(0.804950\pi\)
\(912\) −78.2706 −2.59180
\(913\) 11.6602 0.385896
\(914\) −7.17703 −0.237395
\(915\) 0 0
\(916\) 30.7020 1.01442
\(917\) 43.8817 1.44910
\(918\) −4.97052 −0.164052
\(919\) 51.3494 1.69386 0.846931 0.531703i \(-0.178448\pi\)
0.846931 + 0.531703i \(0.178448\pi\)
\(920\) 0 0
\(921\) 73.9978 2.43831
\(922\) −5.49132 −0.180847
\(923\) 14.6288 0.481513
\(924\) 19.4190 0.638839
\(925\) 0 0
\(926\) −2.73919 −0.0900155
\(927\) −30.2564 −0.993751
\(928\) 2.07458 0.0681015
\(929\) 19.8561 0.651458 0.325729 0.945463i \(-0.394390\pi\)
0.325729 + 0.945463i \(0.394390\pi\)
\(930\) 0 0
\(931\) 0.733915 0.0240531
\(932\) 45.3529 1.48559
\(933\) 45.4453 1.48781
\(934\) 8.00956 0.262081
\(935\) 0 0
\(936\) 34.9001 1.14075
\(937\) 34.6189 1.13095 0.565475 0.824765i \(-0.308693\pi\)
0.565475 + 0.824765i \(0.308693\pi\)
\(938\) −1.73907 −0.0567827
\(939\) 79.9706 2.60974
\(940\) 0 0
\(941\) −13.2367 −0.431506 −0.215753 0.976448i \(-0.569221\pi\)
−0.215753 + 0.976448i \(0.569221\pi\)
\(942\) −9.43201 −0.307311
\(943\) −15.9704 −0.520067
\(944\) −15.7444 −0.512436
\(945\) 0 0
\(946\) 0.367772 0.0119573
\(947\) −23.4210 −0.761080 −0.380540 0.924765i \(-0.624262\pi\)
−0.380540 + 0.924765i \(0.624262\pi\)
\(948\) −43.9618 −1.42781
\(949\) 25.7274 0.835145
\(950\) 0 0
\(951\) 108.483 3.51781
\(952\) 3.00791 0.0974870
\(953\) 35.3381 1.14471 0.572357 0.820005i \(-0.306029\pi\)
0.572357 + 0.820005i \(0.306029\pi\)
\(954\) 5.61654 0.181842
\(955\) 0 0
\(956\) 16.7118 0.540497
\(957\) −2.73968 −0.0885614
\(958\) −9.40604 −0.303895
\(959\) 20.0394 0.647105
\(960\) 0 0
\(961\) 21.2040 0.684000
\(962\) −1.08181 −0.0348788
\(963\) 55.2915 1.78174
\(964\) 0.953631 0.0307144
\(965\) 0 0
\(966\) 7.61644 0.245055
\(967\) −41.7549 −1.34275 −0.671374 0.741119i \(-0.734295\pi\)
−0.671374 + 0.741119i \(0.734295\pi\)
\(968\) −9.47241 −0.304455
\(969\) 24.9486 0.801466
\(970\) 0 0
\(971\) −40.4393 −1.29776 −0.648879 0.760892i \(-0.724762\pi\)
−0.648879 + 0.760892i \(0.724762\pi\)
\(972\) 116.345 3.73175
\(973\) −28.8552 −0.925057
\(974\) 3.67692 0.117816
\(975\) 0 0
\(976\) −17.2078 −0.550808
\(977\) 14.1984 0.454249 0.227124 0.973866i \(-0.427068\pi\)
0.227124 + 0.973866i \(0.427068\pi\)
\(978\) 14.1626 0.452871
\(979\) 3.75576 0.120035
\(980\) 0 0
\(981\) −50.2517 −1.60441
\(982\) −8.40398 −0.268182
\(983\) −23.4641 −0.748390 −0.374195 0.927350i \(-0.622081\pi\)
−0.374195 + 0.927350i \(0.622081\pi\)
\(984\) −15.0265 −0.479026
\(985\) 0 0
\(986\) −0.208898 −0.00665268
\(987\) 92.1837 2.93424
\(988\) −54.6454 −1.73850
\(989\) −4.58860 −0.145909
\(990\) 0 0
\(991\) 31.8649 1.01222 0.506111 0.862469i \(-0.331083\pi\)
0.506111 + 0.862469i \(0.331083\pi\)
\(992\) 20.5429 0.652237
\(993\) −41.3983 −1.31373
\(994\) 2.19852 0.0697327
\(995\) 0 0
\(996\) −67.3823 −2.13509
\(997\) −30.6540 −0.970821 −0.485411 0.874286i \(-0.661330\pi\)
−0.485411 + 0.874286i \(0.661330\pi\)
\(998\) −3.12576 −0.0989442
\(999\) −17.3615 −0.549295
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.a.l.1.6 9
3.2 odd 2 8325.2.a.cr.1.4 9
5.2 odd 4 185.2.b.a.149.9 18
5.3 odd 4 185.2.b.a.149.10 yes 18
5.4 even 2 925.2.a.m.1.4 9
15.2 even 4 1665.2.c.e.334.10 18
15.8 even 4 1665.2.c.e.334.9 18
15.14 odd 2 8325.2.a.cq.1.6 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.b.a.149.9 18 5.2 odd 4
185.2.b.a.149.10 yes 18 5.3 odd 4
925.2.a.l.1.6 9 1.1 even 1 trivial
925.2.a.m.1.4 9 5.4 even 2
1665.2.c.e.334.9 18 15.8 even 4
1665.2.c.e.334.10 18 15.2 even 4
8325.2.a.cq.1.6 9 15.14 odd 2
8325.2.a.cr.1.4 9 3.2 odd 2