Properties

Label 925.2.a.l.1.5
Level $925$
Weight $2$
Character 925.1
Self dual yes
Analytic conductor $7.386$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(1,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,-5,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.38616218697\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4x^{8} - 6x^{7} + 30x^{6} + 15x^{5} - 70x^{4} - 22x^{3} + 44x^{2} + 4x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 185)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.296889\) of defining polynomial
Character \(\chi\) \(=\) 925.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.703111 q^{2} +1.64070 q^{3} -1.50564 q^{4} -1.15359 q^{6} -0.501390 q^{7} +2.46485 q^{8} -0.308108 q^{9} -1.80401 q^{11} -2.47029 q^{12} -1.63218 q^{13} +0.352533 q^{14} +1.27821 q^{16} -1.92844 q^{17} +0.216634 q^{18} -0.869173 q^{19} -0.822630 q^{21} +1.26842 q^{22} -4.86522 q^{23} +4.04408 q^{24} +1.14761 q^{26} -5.42761 q^{27} +0.754910 q^{28} -3.15000 q^{29} +2.39134 q^{31} -5.82842 q^{32} -2.95984 q^{33} +1.35591 q^{34} +0.463898 q^{36} +1.00000 q^{37} +0.611125 q^{38} -2.67792 q^{39} +8.24040 q^{41} +0.578400 q^{42} -11.6931 q^{43} +2.71619 q^{44} +3.42079 q^{46} +1.43311 q^{47} +2.09715 q^{48} -6.74861 q^{49} -3.16400 q^{51} +2.45747 q^{52} -10.7692 q^{53} +3.81621 q^{54} -1.23585 q^{56} -1.42605 q^{57} +2.21480 q^{58} +8.71701 q^{59} -7.84555 q^{61} -1.68138 q^{62} +0.154482 q^{63} +1.54161 q^{64} +2.08110 q^{66} -11.8599 q^{67} +2.90353 q^{68} -7.98236 q^{69} -6.06069 q^{71} -0.759439 q^{72} +5.56086 q^{73} -0.703111 q^{74} +1.30866 q^{76} +0.904514 q^{77} +1.88288 q^{78} +7.44924 q^{79} -7.98075 q^{81} -5.79391 q^{82} +4.70795 q^{83} +1.23858 q^{84} +8.22154 q^{86} -5.16820 q^{87} -4.44662 q^{88} +5.16332 q^{89} +0.818361 q^{91} +7.32524 q^{92} +3.92347 q^{93} -1.00764 q^{94} -9.56268 q^{96} +6.48639 q^{97} +4.74502 q^{98} +0.555830 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 5 q^{2} - 8 q^{3} + 11 q^{4} + 2 q^{6} - 8 q^{7} - 15 q^{8} + 13 q^{9} - 16 q^{12} - 6 q^{13} - 4 q^{14} + 11 q^{16} - 18 q^{17} + 3 q^{18} - 4 q^{19} + 4 q^{21} - 6 q^{22} - 16 q^{23} + 6 q^{24}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.703111 −0.497174 −0.248587 0.968610i \(-0.579966\pi\)
−0.248587 + 0.968610i \(0.579966\pi\)
\(3\) 1.64070 0.947258 0.473629 0.880724i \(-0.342944\pi\)
0.473629 + 0.880724i \(0.342944\pi\)
\(4\) −1.50564 −0.752818
\(5\) 0 0
\(6\) −1.15359 −0.470952
\(7\) −0.501390 −0.189508 −0.0947538 0.995501i \(-0.530206\pi\)
−0.0947538 + 0.995501i \(0.530206\pi\)
\(8\) 2.46485 0.871456
\(9\) −0.308108 −0.102703
\(10\) 0 0
\(11\) −1.80401 −0.543931 −0.271965 0.962307i \(-0.587674\pi\)
−0.271965 + 0.962307i \(0.587674\pi\)
\(12\) −2.47029 −0.713112
\(13\) −1.63218 −0.452686 −0.226343 0.974048i \(-0.572677\pi\)
−0.226343 + 0.974048i \(0.572677\pi\)
\(14\) 0.352533 0.0942183
\(15\) 0 0
\(16\) 1.27821 0.319552
\(17\) −1.92844 −0.467717 −0.233858 0.972271i \(-0.575135\pi\)
−0.233858 + 0.972271i \(0.575135\pi\)
\(18\) 0.216634 0.0510611
\(19\) −0.869173 −0.199402 −0.0997010 0.995017i \(-0.531789\pi\)
−0.0997010 + 0.995017i \(0.531789\pi\)
\(20\) 0 0
\(21\) −0.822630 −0.179513
\(22\) 1.26842 0.270428
\(23\) −4.86522 −1.01447 −0.507234 0.861808i \(-0.669332\pi\)
−0.507234 + 0.861808i \(0.669332\pi\)
\(24\) 4.04408 0.825494
\(25\) 0 0
\(26\) 1.14761 0.225064
\(27\) −5.42761 −1.04454
\(28\) 0.754910 0.142665
\(29\) −3.15000 −0.584940 −0.292470 0.956275i \(-0.594477\pi\)
−0.292470 + 0.956275i \(0.594477\pi\)
\(30\) 0 0
\(31\) 2.39134 0.429498 0.214749 0.976669i \(-0.431107\pi\)
0.214749 + 0.976669i \(0.431107\pi\)
\(32\) −5.82842 −1.03033
\(33\) −2.95984 −0.515243
\(34\) 1.35591 0.232537
\(35\) 0 0
\(36\) 0.463898 0.0773163
\(37\) 1.00000 0.164399
\(38\) 0.611125 0.0991375
\(39\) −2.67792 −0.428811
\(40\) 0 0
\(41\) 8.24040 1.28693 0.643467 0.765474i \(-0.277495\pi\)
0.643467 + 0.765474i \(0.277495\pi\)
\(42\) 0.578400 0.0892490
\(43\) −11.6931 −1.78318 −0.891590 0.452844i \(-0.850410\pi\)
−0.891590 + 0.452844i \(0.850410\pi\)
\(44\) 2.71619 0.409481
\(45\) 0 0
\(46\) 3.42079 0.504368
\(47\) 1.43311 0.209041 0.104521 0.994523i \(-0.466669\pi\)
0.104521 + 0.994523i \(0.466669\pi\)
\(48\) 2.09715 0.302698
\(49\) −6.74861 −0.964087
\(50\) 0 0
\(51\) −3.16400 −0.443048
\(52\) 2.45747 0.340790
\(53\) −10.7692 −1.47927 −0.739633 0.673010i \(-0.765001\pi\)
−0.739633 + 0.673010i \(0.765001\pi\)
\(54\) 3.81621 0.519320
\(55\) 0 0
\(56\) −1.23585 −0.165148
\(57\) −1.42605 −0.188885
\(58\) 2.21480 0.290817
\(59\) 8.71701 1.13486 0.567429 0.823422i \(-0.307938\pi\)
0.567429 + 0.823422i \(0.307938\pi\)
\(60\) 0 0
\(61\) −7.84555 −1.00452 −0.502260 0.864717i \(-0.667498\pi\)
−0.502260 + 0.864717i \(0.667498\pi\)
\(62\) −1.68138 −0.213535
\(63\) 0.154482 0.0194629
\(64\) 1.54161 0.192701
\(65\) 0 0
\(66\) 2.08110 0.256165
\(67\) −11.8599 −1.44891 −0.724456 0.689321i \(-0.757909\pi\)
−0.724456 + 0.689321i \(0.757909\pi\)
\(68\) 2.90353 0.352105
\(69\) −7.98236 −0.960963
\(70\) 0 0
\(71\) −6.06069 −0.719272 −0.359636 0.933093i \(-0.617099\pi\)
−0.359636 + 0.933093i \(0.617099\pi\)
\(72\) −0.759439 −0.0895007
\(73\) 5.56086 0.650849 0.325424 0.945568i \(-0.394493\pi\)
0.325424 + 0.945568i \(0.394493\pi\)
\(74\) −0.703111 −0.0817350
\(75\) 0 0
\(76\) 1.30866 0.150113
\(77\) 0.904514 0.103079
\(78\) 1.88288 0.213194
\(79\) 7.44924 0.838105 0.419052 0.907962i \(-0.362362\pi\)
0.419052 + 0.907962i \(0.362362\pi\)
\(80\) 0 0
\(81\) −7.98075 −0.886750
\(82\) −5.79391 −0.639830
\(83\) 4.70795 0.516765 0.258382 0.966043i \(-0.416811\pi\)
0.258382 + 0.966043i \(0.416811\pi\)
\(84\) 1.23858 0.135140
\(85\) 0 0
\(86\) 8.22154 0.886551
\(87\) −5.16820 −0.554089
\(88\) −4.44662 −0.474012
\(89\) 5.16332 0.547311 0.273656 0.961828i \(-0.411767\pi\)
0.273656 + 0.961828i \(0.411767\pi\)
\(90\) 0 0
\(91\) 0.818361 0.0857875
\(92\) 7.32524 0.763709
\(93\) 3.92347 0.406845
\(94\) −1.00764 −0.103930
\(95\) 0 0
\(96\) −9.56268 −0.975987
\(97\) 6.48639 0.658593 0.329297 0.944227i \(-0.393188\pi\)
0.329297 + 0.944227i \(0.393188\pi\)
\(98\) 4.74502 0.479319
\(99\) 0.555830 0.0558631
\(100\) 0 0
\(101\) 2.50611 0.249367 0.124684 0.992197i \(-0.460208\pi\)
0.124684 + 0.992197i \(0.460208\pi\)
\(102\) 2.22464 0.220272
\(103\) 6.40079 0.630688 0.315344 0.948977i \(-0.397880\pi\)
0.315344 + 0.948977i \(0.397880\pi\)
\(104\) −4.02309 −0.394496
\(105\) 0 0
\(106\) 7.57195 0.735453
\(107\) −11.6711 −1.12829 −0.564146 0.825675i \(-0.690794\pi\)
−0.564146 + 0.825675i \(0.690794\pi\)
\(108\) 8.17200 0.786351
\(109\) 7.93573 0.760105 0.380053 0.924965i \(-0.375906\pi\)
0.380053 + 0.924965i \(0.375906\pi\)
\(110\) 0 0
\(111\) 1.64070 0.155728
\(112\) −0.640881 −0.0605575
\(113\) −16.2261 −1.52643 −0.763213 0.646146i \(-0.776380\pi\)
−0.763213 + 0.646146i \(0.776380\pi\)
\(114\) 1.00267 0.0939088
\(115\) 0 0
\(116\) 4.74275 0.440353
\(117\) 0.502888 0.0464920
\(118\) −6.12902 −0.564222
\(119\) 0.966903 0.0886358
\(120\) 0 0
\(121\) −7.74553 −0.704139
\(122\) 5.51629 0.499421
\(123\) 13.5200 1.21906
\(124\) −3.60049 −0.323333
\(125\) 0 0
\(126\) −0.108618 −0.00967646
\(127\) 9.56408 0.848675 0.424337 0.905504i \(-0.360507\pi\)
0.424337 + 0.905504i \(0.360507\pi\)
\(128\) 10.5729 0.934523
\(129\) −19.1848 −1.68913
\(130\) 0 0
\(131\) −20.2974 −1.77340 −0.886698 0.462350i \(-0.847006\pi\)
−0.886698 + 0.462350i \(0.847006\pi\)
\(132\) 4.45644 0.387884
\(133\) 0.435795 0.0377882
\(134\) 8.33879 0.720362
\(135\) 0 0
\(136\) −4.75333 −0.407594
\(137\) 11.0879 0.947300 0.473650 0.880713i \(-0.342936\pi\)
0.473650 + 0.880713i \(0.342936\pi\)
\(138\) 5.61248 0.477766
\(139\) 14.1716 1.20202 0.601009 0.799242i \(-0.294765\pi\)
0.601009 + 0.799242i \(0.294765\pi\)
\(140\) 0 0
\(141\) 2.35131 0.198016
\(142\) 4.26134 0.357603
\(143\) 2.94448 0.246230
\(144\) −0.393826 −0.0328188
\(145\) 0 0
\(146\) −3.90990 −0.323585
\(147\) −11.0724 −0.913239
\(148\) −1.50564 −0.123762
\(149\) −17.5785 −1.44008 −0.720042 0.693930i \(-0.755878\pi\)
−0.720042 + 0.693930i \(0.755878\pi\)
\(150\) 0 0
\(151\) 10.4870 0.853422 0.426711 0.904388i \(-0.359672\pi\)
0.426711 + 0.904388i \(0.359672\pi\)
\(152\) −2.14238 −0.173770
\(153\) 0.594168 0.0480357
\(154\) −0.635974 −0.0512482
\(155\) 0 0
\(156\) 4.03197 0.322816
\(157\) 14.1135 1.12638 0.563189 0.826328i \(-0.309574\pi\)
0.563189 + 0.826328i \(0.309574\pi\)
\(158\) −5.23764 −0.416684
\(159\) −17.6690 −1.40125
\(160\) 0 0
\(161\) 2.43937 0.192249
\(162\) 5.61135 0.440869
\(163\) −0.261155 −0.0204553 −0.0102276 0.999948i \(-0.503256\pi\)
−0.0102276 + 0.999948i \(0.503256\pi\)
\(164\) −12.4070 −0.968826
\(165\) 0 0
\(166\) −3.31021 −0.256922
\(167\) −11.7929 −0.912560 −0.456280 0.889836i \(-0.650818\pi\)
−0.456280 + 0.889836i \(0.650818\pi\)
\(168\) −2.02766 −0.156437
\(169\) −10.3360 −0.795075
\(170\) 0 0
\(171\) 0.267799 0.0204791
\(172\) 17.6055 1.34241
\(173\) −13.5257 −1.02834 −0.514170 0.857688i \(-0.671900\pi\)
−0.514170 + 0.857688i \(0.671900\pi\)
\(174\) 3.63382 0.275479
\(175\) 0 0
\(176\) −2.30591 −0.173814
\(177\) 14.3020 1.07500
\(178\) −3.63039 −0.272109
\(179\) 0.443280 0.0331323 0.0165661 0.999863i \(-0.494727\pi\)
0.0165661 + 0.999863i \(0.494727\pi\)
\(180\) 0 0
\(181\) 11.4380 0.850182 0.425091 0.905151i \(-0.360242\pi\)
0.425091 + 0.905151i \(0.360242\pi\)
\(182\) −0.575398 −0.0426513
\(183\) −12.8722 −0.951539
\(184\) −11.9920 −0.884064
\(185\) 0 0
\(186\) −2.75863 −0.202273
\(187\) 3.47894 0.254405
\(188\) −2.15775 −0.157370
\(189\) 2.72135 0.197949
\(190\) 0 0
\(191\) 10.1652 0.735531 0.367765 0.929919i \(-0.380123\pi\)
0.367765 + 0.929919i \(0.380123\pi\)
\(192\) 2.52932 0.182538
\(193\) 8.94479 0.643860 0.321930 0.946763i \(-0.395668\pi\)
0.321930 + 0.946763i \(0.395668\pi\)
\(194\) −4.56065 −0.327436
\(195\) 0 0
\(196\) 10.1609 0.725782
\(197\) 8.65157 0.616399 0.308199 0.951322i \(-0.400274\pi\)
0.308199 + 0.951322i \(0.400274\pi\)
\(198\) −0.390810 −0.0277737
\(199\) 10.2145 0.724084 0.362042 0.932162i \(-0.382080\pi\)
0.362042 + 0.932162i \(0.382080\pi\)
\(200\) 0 0
\(201\) −19.4584 −1.37249
\(202\) −1.76207 −0.123979
\(203\) 1.57938 0.110851
\(204\) 4.76383 0.333534
\(205\) 0 0
\(206\) −4.50046 −0.313562
\(207\) 1.49901 0.104188
\(208\) −2.08627 −0.144657
\(209\) 1.56800 0.108461
\(210\) 0 0
\(211\) 13.6414 0.939113 0.469557 0.882902i \(-0.344414\pi\)
0.469557 + 0.882902i \(0.344414\pi\)
\(212\) 16.2145 1.11362
\(213\) −9.94377 −0.681336
\(214\) 8.20611 0.560958
\(215\) 0 0
\(216\) −13.3782 −0.910274
\(217\) −1.19899 −0.0813930
\(218\) −5.57970 −0.377905
\(219\) 9.12369 0.616522
\(220\) 0 0
\(221\) 3.14758 0.211729
\(222\) −1.15359 −0.0774241
\(223\) 6.66288 0.446180 0.223090 0.974798i \(-0.428386\pi\)
0.223090 + 0.974798i \(0.428386\pi\)
\(224\) 2.92231 0.195255
\(225\) 0 0
\(226\) 11.4088 0.758900
\(227\) −5.71859 −0.379556 −0.189778 0.981827i \(-0.560777\pi\)
−0.189778 + 0.981827i \(0.560777\pi\)
\(228\) 2.14711 0.142196
\(229\) 29.9549 1.97948 0.989738 0.142895i \(-0.0456412\pi\)
0.989738 + 0.142895i \(0.0456412\pi\)
\(230\) 0 0
\(231\) 1.48404 0.0976424
\(232\) −7.76427 −0.509750
\(233\) 25.4277 1.66583 0.832913 0.553404i \(-0.186671\pi\)
0.832913 + 0.553404i \(0.186671\pi\)
\(234\) −0.353586 −0.0231147
\(235\) 0 0
\(236\) −13.1246 −0.854341
\(237\) 12.2220 0.793902
\(238\) −0.679840 −0.0440675
\(239\) −10.9704 −0.709615 −0.354808 0.934939i \(-0.615454\pi\)
−0.354808 + 0.934939i \(0.615454\pi\)
\(240\) 0 0
\(241\) 23.8516 1.53642 0.768208 0.640200i \(-0.221149\pi\)
0.768208 + 0.640200i \(0.221149\pi\)
\(242\) 5.44597 0.350080
\(243\) 3.18882 0.204563
\(244\) 11.8125 0.756220
\(245\) 0 0
\(246\) −9.50606 −0.606084
\(247\) 1.41865 0.0902666
\(248\) 5.89430 0.374288
\(249\) 7.72433 0.489509
\(250\) 0 0
\(251\) 18.9886 1.19855 0.599275 0.800543i \(-0.295455\pi\)
0.599275 + 0.800543i \(0.295455\pi\)
\(252\) −0.232594 −0.0146520
\(253\) 8.77692 0.551800
\(254\) −6.72461 −0.421939
\(255\) 0 0
\(256\) −10.5172 −0.657322
\(257\) −5.12928 −0.319956 −0.159978 0.987121i \(-0.551142\pi\)
−0.159978 + 0.987121i \(0.551142\pi\)
\(258\) 13.4891 0.839793
\(259\) −0.501390 −0.0311549
\(260\) 0 0
\(261\) 0.970538 0.0600748
\(262\) 14.2713 0.881687
\(263\) −27.1591 −1.67470 −0.837351 0.546666i \(-0.815897\pi\)
−0.837351 + 0.546666i \(0.815897\pi\)
\(264\) −7.29557 −0.449011
\(265\) 0 0
\(266\) −0.306412 −0.0187873
\(267\) 8.47146 0.518445
\(268\) 17.8566 1.09077
\(269\) 19.0743 1.16298 0.581492 0.813552i \(-0.302469\pi\)
0.581492 + 0.813552i \(0.302469\pi\)
\(270\) 0 0
\(271\) −18.0630 −1.09725 −0.548626 0.836068i \(-0.684849\pi\)
−0.548626 + 0.836068i \(0.684849\pi\)
\(272\) −2.46495 −0.149460
\(273\) 1.34268 0.0812629
\(274\) −7.79600 −0.470973
\(275\) 0 0
\(276\) 12.0185 0.723430
\(277\) −22.9367 −1.37813 −0.689067 0.724698i \(-0.741979\pi\)
−0.689067 + 0.724698i \(0.741979\pi\)
\(278\) −9.96420 −0.597613
\(279\) −0.736790 −0.0441105
\(280\) 0 0
\(281\) 14.1793 0.845869 0.422934 0.906160i \(-0.361000\pi\)
0.422934 + 0.906160i \(0.361000\pi\)
\(282\) −1.65323 −0.0984484
\(283\) 8.55472 0.508525 0.254263 0.967135i \(-0.418167\pi\)
0.254263 + 0.967135i \(0.418167\pi\)
\(284\) 9.12519 0.541480
\(285\) 0 0
\(286\) −2.07030 −0.122419
\(287\) −4.13165 −0.243884
\(288\) 1.79578 0.105817
\(289\) −13.2811 −0.781241
\(290\) 0 0
\(291\) 10.6422 0.623858
\(292\) −8.37262 −0.489971
\(293\) −26.2220 −1.53191 −0.765953 0.642896i \(-0.777733\pi\)
−0.765953 + 0.642896i \(0.777733\pi\)
\(294\) 7.78515 0.454039
\(295\) 0 0
\(296\) 2.46485 0.143266
\(297\) 9.79148 0.568159
\(298\) 12.3596 0.715973
\(299\) 7.94093 0.459236
\(300\) 0 0
\(301\) 5.86280 0.337926
\(302\) −7.37354 −0.424300
\(303\) 4.11177 0.236215
\(304\) −1.11098 −0.0637193
\(305\) 0 0
\(306\) −0.417766 −0.0238821
\(307\) −20.8170 −1.18809 −0.594046 0.804431i \(-0.702470\pi\)
−0.594046 + 0.804431i \(0.702470\pi\)
\(308\) −1.36187 −0.0775997
\(309\) 10.5018 0.597425
\(310\) 0 0
\(311\) 15.9789 0.906078 0.453039 0.891491i \(-0.350340\pi\)
0.453039 + 0.891491i \(0.350340\pi\)
\(312\) −6.60068 −0.373690
\(313\) 4.27429 0.241597 0.120799 0.992677i \(-0.461454\pi\)
0.120799 + 0.992677i \(0.461454\pi\)
\(314\) −9.92333 −0.560006
\(315\) 0 0
\(316\) −11.2158 −0.630940
\(317\) 6.19424 0.347903 0.173952 0.984754i \(-0.444346\pi\)
0.173952 + 0.984754i \(0.444346\pi\)
\(318\) 12.4233 0.696664
\(319\) 5.68264 0.318167
\(320\) 0 0
\(321\) −19.1488 −1.06878
\(322\) −1.71515 −0.0955815
\(323\) 1.67615 0.0932636
\(324\) 12.0161 0.667561
\(325\) 0 0
\(326\) 0.183621 0.0101698
\(327\) 13.0201 0.720015
\(328\) 20.3113 1.12151
\(329\) −0.718549 −0.0396149
\(330\) 0 0
\(331\) −32.0400 −1.76108 −0.880540 0.473972i \(-0.842820\pi\)
−0.880540 + 0.473972i \(0.842820\pi\)
\(332\) −7.08846 −0.389030
\(333\) −0.308108 −0.0168842
\(334\) 8.29169 0.453701
\(335\) 0 0
\(336\) −1.05149 −0.0573636
\(337\) −12.5183 −0.681917 −0.340959 0.940078i \(-0.610752\pi\)
−0.340959 + 0.940078i \(0.610752\pi\)
\(338\) 7.26733 0.395291
\(339\) −26.6222 −1.44592
\(340\) 0 0
\(341\) −4.31401 −0.233617
\(342\) −0.188292 −0.0101817
\(343\) 6.89341 0.372209
\(344\) −28.8217 −1.55396
\(345\) 0 0
\(346\) 9.51007 0.511264
\(347\) −3.30472 −0.177407 −0.0887033 0.996058i \(-0.528272\pi\)
−0.0887033 + 0.996058i \(0.528272\pi\)
\(348\) 7.78142 0.417128
\(349\) −4.45130 −0.238273 −0.119136 0.992878i \(-0.538013\pi\)
−0.119136 + 0.992878i \(0.538013\pi\)
\(350\) 0 0
\(351\) 8.85886 0.472851
\(352\) 10.5146 0.560428
\(353\) −31.9145 −1.69864 −0.849319 0.527879i \(-0.822987\pi\)
−0.849319 + 0.527879i \(0.822987\pi\)
\(354\) −10.0559 −0.534464
\(355\) 0 0
\(356\) −7.77408 −0.412026
\(357\) 1.58640 0.0839610
\(358\) −0.311675 −0.0164725
\(359\) 31.8986 1.68354 0.841771 0.539835i \(-0.181513\pi\)
0.841771 + 0.539835i \(0.181513\pi\)
\(360\) 0 0
\(361\) −18.2445 −0.960239
\(362\) −8.04220 −0.422689
\(363\) −12.7081 −0.667002
\(364\) −1.23215 −0.0645823
\(365\) 0 0
\(366\) 9.05057 0.473081
\(367\) 22.7089 1.18540 0.592698 0.805425i \(-0.298063\pi\)
0.592698 + 0.805425i \(0.298063\pi\)
\(368\) −6.21876 −0.324175
\(369\) −2.53893 −0.132171
\(370\) 0 0
\(371\) 5.39958 0.280332
\(372\) −5.90732 −0.306280
\(373\) 28.7105 1.48657 0.743287 0.668973i \(-0.233266\pi\)
0.743287 + 0.668973i \(0.233266\pi\)
\(374\) −2.44608 −0.126484
\(375\) 0 0
\(376\) 3.53241 0.182170
\(377\) 5.14138 0.264794
\(378\) −1.91341 −0.0984151
\(379\) 30.3515 1.55905 0.779526 0.626370i \(-0.215460\pi\)
0.779526 + 0.626370i \(0.215460\pi\)
\(380\) 0 0
\(381\) 15.6918 0.803914
\(382\) −7.14729 −0.365687
\(383\) −35.4366 −1.81073 −0.905363 0.424639i \(-0.860401\pi\)
−0.905363 + 0.424639i \(0.860401\pi\)
\(384\) 17.3470 0.885234
\(385\) 0 0
\(386\) −6.28918 −0.320111
\(387\) 3.60273 0.183137
\(388\) −9.76614 −0.495801
\(389\) −17.2794 −0.876102 −0.438051 0.898950i \(-0.644331\pi\)
−0.438051 + 0.898950i \(0.644331\pi\)
\(390\) 0 0
\(391\) 9.38230 0.474483
\(392\) −16.6343 −0.840159
\(393\) −33.3020 −1.67986
\(394\) −6.08301 −0.306458
\(395\) 0 0
\(396\) −0.836878 −0.0420547
\(397\) 4.68683 0.235225 0.117613 0.993060i \(-0.462476\pi\)
0.117613 + 0.993060i \(0.462476\pi\)
\(398\) −7.18190 −0.359996
\(399\) 0.715008 0.0357951
\(400\) 0 0
\(401\) −22.3427 −1.11574 −0.557871 0.829928i \(-0.688382\pi\)
−0.557871 + 0.829928i \(0.688382\pi\)
\(402\) 13.6814 0.682368
\(403\) −3.90311 −0.194428
\(404\) −3.77329 −0.187728
\(405\) 0 0
\(406\) −1.11048 −0.0551121
\(407\) −1.80401 −0.0894216
\(408\) −7.79878 −0.386097
\(409\) −5.17691 −0.255982 −0.127991 0.991775i \(-0.540853\pi\)
−0.127991 + 0.991775i \(0.540853\pi\)
\(410\) 0 0
\(411\) 18.1918 0.897338
\(412\) −9.63725 −0.474793
\(413\) −4.37062 −0.215064
\(414\) −1.05397 −0.0517998
\(415\) 0 0
\(416\) 9.51306 0.466416
\(417\) 23.2513 1.13862
\(418\) −1.10248 −0.0539239
\(419\) −15.8651 −0.775063 −0.387531 0.921857i \(-0.626672\pi\)
−0.387531 + 0.921857i \(0.626672\pi\)
\(420\) 0 0
\(421\) 6.46992 0.315325 0.157662 0.987493i \(-0.449604\pi\)
0.157662 + 0.987493i \(0.449604\pi\)
\(422\) −9.59142 −0.466903
\(423\) −0.441553 −0.0214691
\(424\) −26.5445 −1.28912
\(425\) 0 0
\(426\) 6.99157 0.338743
\(427\) 3.93368 0.190364
\(428\) 17.5725 0.849398
\(429\) 4.83101 0.233243
\(430\) 0 0
\(431\) −24.9727 −1.20289 −0.601445 0.798914i \(-0.705408\pi\)
−0.601445 + 0.798914i \(0.705408\pi\)
\(432\) −6.93761 −0.333786
\(433\) 38.7308 1.86128 0.930641 0.365934i \(-0.119250\pi\)
0.930641 + 0.365934i \(0.119250\pi\)
\(434\) 0.843026 0.0404665
\(435\) 0 0
\(436\) −11.9483 −0.572220
\(437\) 4.22872 0.202287
\(438\) −6.41496 −0.306519
\(439\) −32.8425 −1.56749 −0.783743 0.621085i \(-0.786692\pi\)
−0.783743 + 0.621085i \(0.786692\pi\)
\(440\) 0 0
\(441\) 2.07930 0.0990142
\(442\) −2.21310 −0.105266
\(443\) −24.4262 −1.16052 −0.580262 0.814430i \(-0.697050\pi\)
−0.580262 + 0.814430i \(0.697050\pi\)
\(444\) −2.47029 −0.117235
\(445\) 0 0
\(446\) −4.68475 −0.221829
\(447\) −28.8410 −1.36413
\(448\) −0.772947 −0.0365183
\(449\) −23.8188 −1.12408 −0.562040 0.827110i \(-0.689983\pi\)
−0.562040 + 0.827110i \(0.689983\pi\)
\(450\) 0 0
\(451\) −14.8658 −0.700003
\(452\) 24.4307 1.14912
\(453\) 17.2061 0.808411
\(454\) 4.02080 0.188706
\(455\) 0 0
\(456\) −3.51500 −0.164605
\(457\) −35.0439 −1.63928 −0.819642 0.572876i \(-0.805828\pi\)
−0.819642 + 0.572876i \(0.805828\pi\)
\(458\) −21.0616 −0.984145
\(459\) 10.4668 0.488550
\(460\) 0 0
\(461\) 7.94572 0.370069 0.185035 0.982732i \(-0.440760\pi\)
0.185035 + 0.982732i \(0.440760\pi\)
\(462\) −1.04344 −0.0485453
\(463\) −23.9463 −1.11288 −0.556440 0.830888i \(-0.687833\pi\)
−0.556440 + 0.830888i \(0.687833\pi\)
\(464\) −4.02635 −0.186919
\(465\) 0 0
\(466\) −17.8785 −0.828206
\(467\) −42.2147 −1.95346 −0.976732 0.214464i \(-0.931200\pi\)
−0.976732 + 0.214464i \(0.931200\pi\)
\(468\) −0.757166 −0.0350000
\(469\) 5.94641 0.274580
\(470\) 0 0
\(471\) 23.1559 1.06697
\(472\) 21.4861 0.988979
\(473\) 21.0945 0.969926
\(474\) −8.59339 −0.394707
\(475\) 0 0
\(476\) −1.45580 −0.0667266
\(477\) 3.31808 0.151924
\(478\) 7.71340 0.352803
\(479\) 34.3187 1.56806 0.784031 0.620721i \(-0.213160\pi\)
0.784031 + 0.620721i \(0.213160\pi\)
\(480\) 0 0
\(481\) −1.63218 −0.0744212
\(482\) −16.7703 −0.763867
\(483\) 4.00227 0.182110
\(484\) 11.6619 0.530089
\(485\) 0 0
\(486\) −2.24210 −0.101704
\(487\) 3.03995 0.137753 0.0688766 0.997625i \(-0.478059\pi\)
0.0688766 + 0.997625i \(0.478059\pi\)
\(488\) −19.3381 −0.875394
\(489\) −0.428477 −0.0193764
\(490\) 0 0
\(491\) −11.4565 −0.517023 −0.258511 0.966008i \(-0.583232\pi\)
−0.258511 + 0.966008i \(0.583232\pi\)
\(492\) −20.3562 −0.917728
\(493\) 6.07460 0.273586
\(494\) −0.997468 −0.0448782
\(495\) 0 0
\(496\) 3.05663 0.137247
\(497\) 3.03877 0.136307
\(498\) −5.43106 −0.243371
\(499\) −39.9114 −1.78668 −0.893340 0.449381i \(-0.851645\pi\)
−0.893340 + 0.449381i \(0.851645\pi\)
\(500\) 0 0
\(501\) −19.3485 −0.864429
\(502\) −13.3511 −0.595889
\(503\) 14.8201 0.660794 0.330397 0.943842i \(-0.392817\pi\)
0.330397 + 0.943842i \(0.392817\pi\)
\(504\) 0.380775 0.0169611
\(505\) 0 0
\(506\) −6.17115 −0.274341
\(507\) −16.9582 −0.753141
\(508\) −14.4000 −0.638897
\(509\) −22.3612 −0.991145 −0.495572 0.868567i \(-0.665042\pi\)
−0.495572 + 0.868567i \(0.665042\pi\)
\(510\) 0 0
\(511\) −2.78816 −0.123341
\(512\) −13.7511 −0.607719
\(513\) 4.71753 0.208284
\(514\) 3.60645 0.159074
\(515\) 0 0
\(516\) 28.8854 1.27161
\(517\) −2.58536 −0.113704
\(518\) 0.352533 0.0154894
\(519\) −22.1916 −0.974103
\(520\) 0 0
\(521\) −2.48042 −0.108669 −0.0543346 0.998523i \(-0.517304\pi\)
−0.0543346 + 0.998523i \(0.517304\pi\)
\(522\) −0.682396 −0.0298677
\(523\) 0.452507 0.0197867 0.00989336 0.999951i \(-0.496851\pi\)
0.00989336 + 0.999951i \(0.496851\pi\)
\(524\) 30.5605 1.33504
\(525\) 0 0
\(526\) 19.0958 0.832618
\(527\) −4.61157 −0.200883
\(528\) −3.78330 −0.164647
\(529\) 0.670348 0.0291455
\(530\) 0 0
\(531\) −2.68578 −0.116553
\(532\) −0.656148 −0.0284476
\(533\) −13.4498 −0.582577
\(534\) −5.95637 −0.257758
\(535\) 0 0
\(536\) −29.2328 −1.26266
\(537\) 0.727289 0.0313848
\(538\) −13.4114 −0.578205
\(539\) 12.1746 0.524396
\(540\) 0 0
\(541\) −16.4102 −0.705531 −0.352765 0.935712i \(-0.614759\pi\)
−0.352765 + 0.935712i \(0.614759\pi\)
\(542\) 12.7003 0.545525
\(543\) 18.7664 0.805341
\(544\) 11.2398 0.481902
\(545\) 0 0
\(546\) −0.944055 −0.0404018
\(547\) −8.18537 −0.349981 −0.174991 0.984570i \(-0.555990\pi\)
−0.174991 + 0.984570i \(0.555990\pi\)
\(548\) −16.6943 −0.713144
\(549\) 2.41727 0.103167
\(550\) 0 0
\(551\) 2.73789 0.116638
\(552\) −19.6753 −0.837437
\(553\) −3.73497 −0.158827
\(554\) 16.1271 0.685173
\(555\) 0 0
\(556\) −21.3372 −0.904901
\(557\) −25.8788 −1.09652 −0.548259 0.836309i \(-0.684709\pi\)
−0.548259 + 0.836309i \(0.684709\pi\)
\(558\) 0.518045 0.0219306
\(559\) 19.0853 0.807221
\(560\) 0 0
\(561\) 5.70789 0.240987
\(562\) −9.96965 −0.420544
\(563\) −24.4404 −1.03004 −0.515021 0.857178i \(-0.672216\pi\)
−0.515021 + 0.857178i \(0.672216\pi\)
\(564\) −3.54021 −0.149070
\(565\) 0 0
\(566\) −6.01491 −0.252826
\(567\) 4.00147 0.168046
\(568\) −14.9387 −0.626814
\(569\) 5.31751 0.222922 0.111461 0.993769i \(-0.464447\pi\)
0.111461 + 0.993769i \(0.464447\pi\)
\(570\) 0 0
\(571\) −13.2022 −0.552496 −0.276248 0.961086i \(-0.589091\pi\)
−0.276248 + 0.961086i \(0.589091\pi\)
\(572\) −4.43332 −0.185366
\(573\) 16.6781 0.696737
\(574\) 2.90501 0.121253
\(575\) 0 0
\(576\) −0.474982 −0.0197909
\(577\) 41.4001 1.72351 0.861755 0.507325i \(-0.169365\pi\)
0.861755 + 0.507325i \(0.169365\pi\)
\(578\) 9.33808 0.388413
\(579\) 14.6757 0.609901
\(580\) 0 0
\(581\) −2.36052 −0.0979308
\(582\) −7.48265 −0.310166
\(583\) 19.4278 0.804618
\(584\) 13.7067 0.567186
\(585\) 0 0
\(586\) 18.4370 0.761625
\(587\) −11.4771 −0.473712 −0.236856 0.971545i \(-0.576117\pi\)
−0.236856 + 0.971545i \(0.576117\pi\)
\(588\) 16.6710 0.687502
\(589\) −2.07849 −0.0856426
\(590\) 0 0
\(591\) 14.1946 0.583889
\(592\) 1.27821 0.0525340
\(593\) 11.1191 0.456608 0.228304 0.973590i \(-0.426682\pi\)
0.228304 + 0.973590i \(0.426682\pi\)
\(594\) −6.88449 −0.282474
\(595\) 0 0
\(596\) 26.4668 1.08412
\(597\) 16.7589 0.685894
\(598\) −5.58335 −0.228320
\(599\) 7.25813 0.296559 0.148280 0.988945i \(-0.452626\pi\)
0.148280 + 0.988945i \(0.452626\pi\)
\(600\) 0 0
\(601\) −14.6121 −0.596040 −0.298020 0.954560i \(-0.596326\pi\)
−0.298020 + 0.954560i \(0.596326\pi\)
\(602\) −4.12220 −0.168008
\(603\) 3.65411 0.148807
\(604\) −15.7896 −0.642471
\(605\) 0 0
\(606\) −2.89103 −0.117440
\(607\) −26.3898 −1.07113 −0.535564 0.844495i \(-0.679901\pi\)
−0.535564 + 0.844495i \(0.679901\pi\)
\(608\) 5.06591 0.205450
\(609\) 2.59128 0.105004
\(610\) 0 0
\(611\) −2.33911 −0.0946301
\(612\) −0.894601 −0.0361621
\(613\) 40.8554 1.65013 0.825067 0.565035i \(-0.191137\pi\)
0.825067 + 0.565035i \(0.191137\pi\)
\(614\) 14.6367 0.590689
\(615\) 0 0
\(616\) 2.22949 0.0898288
\(617\) −28.2802 −1.13852 −0.569260 0.822158i \(-0.692770\pi\)
−0.569260 + 0.822158i \(0.692770\pi\)
\(618\) −7.38390 −0.297024
\(619\) −7.17028 −0.288198 −0.144099 0.989563i \(-0.546028\pi\)
−0.144099 + 0.989563i \(0.546028\pi\)
\(620\) 0 0
\(621\) 26.4065 1.05966
\(622\) −11.2349 −0.450479
\(623\) −2.58884 −0.103720
\(624\) −3.42294 −0.137027
\(625\) 0 0
\(626\) −3.00530 −0.120116
\(627\) 2.57262 0.102740
\(628\) −21.2497 −0.847957
\(629\) −1.92844 −0.0768921
\(630\) 0 0
\(631\) −7.70444 −0.306709 −0.153354 0.988171i \(-0.549008\pi\)
−0.153354 + 0.988171i \(0.549008\pi\)
\(632\) 18.3613 0.730372
\(633\) 22.3814 0.889582
\(634\) −4.35524 −0.172969
\(635\) 0 0
\(636\) 26.6031 1.05488
\(637\) 11.0150 0.436429
\(638\) −3.99553 −0.158184
\(639\) 1.86735 0.0738710
\(640\) 0 0
\(641\) 24.3375 0.961274 0.480637 0.876920i \(-0.340405\pi\)
0.480637 + 0.876920i \(0.340405\pi\)
\(642\) 13.4637 0.531372
\(643\) −27.8512 −1.09834 −0.549171 0.835710i \(-0.685057\pi\)
−0.549171 + 0.835710i \(0.685057\pi\)
\(644\) −3.67280 −0.144729
\(645\) 0 0
\(646\) −1.17852 −0.0463683
\(647\) −24.6280 −0.968228 −0.484114 0.875005i \(-0.660858\pi\)
−0.484114 + 0.875005i \(0.660858\pi\)
\(648\) −19.6713 −0.772763
\(649\) −15.7256 −0.617284
\(650\) 0 0
\(651\) −1.96719 −0.0771002
\(652\) 0.393205 0.0153991
\(653\) 27.8960 1.09165 0.545827 0.837898i \(-0.316216\pi\)
0.545827 + 0.837898i \(0.316216\pi\)
\(654\) −9.15460 −0.357973
\(655\) 0 0
\(656\) 10.5329 0.411242
\(657\) −1.71334 −0.0668438
\(658\) 0.505219 0.0196955
\(659\) −18.3903 −0.716384 −0.358192 0.933648i \(-0.616607\pi\)
−0.358192 + 0.933648i \(0.616607\pi\)
\(660\) 0 0
\(661\) 2.05323 0.0798614 0.0399307 0.999202i \(-0.487286\pi\)
0.0399307 + 0.999202i \(0.487286\pi\)
\(662\) 22.5277 0.875564
\(663\) 5.16423 0.200562
\(664\) 11.6044 0.450338
\(665\) 0 0
\(666\) 0.216634 0.00839439
\(667\) 15.3254 0.593403
\(668\) 17.7558 0.686991
\(669\) 10.9318 0.422647
\(670\) 0 0
\(671\) 14.1535 0.546389
\(672\) 4.79463 0.184957
\(673\) −16.8287 −0.648698 −0.324349 0.945938i \(-0.605145\pi\)
−0.324349 + 0.945938i \(0.605145\pi\)
\(674\) 8.80178 0.339032
\(675\) 0 0
\(676\) 15.5622 0.598546
\(677\) 20.8182 0.800108 0.400054 0.916491i \(-0.368991\pi\)
0.400054 + 0.916491i \(0.368991\pi\)
\(678\) 18.7184 0.718874
\(679\) −3.25221 −0.124808
\(680\) 0 0
\(681\) −9.38248 −0.359538
\(682\) 3.03323 0.116148
\(683\) −6.40527 −0.245091 −0.122545 0.992463i \(-0.539106\pi\)
−0.122545 + 0.992463i \(0.539106\pi\)
\(684\) −0.403207 −0.0154170
\(685\) 0 0
\(686\) −4.84683 −0.185053
\(687\) 49.1470 1.87507
\(688\) −14.9462 −0.569819
\(689\) 17.5774 0.669644
\(690\) 0 0
\(691\) −0.406659 −0.0154700 −0.00773502 0.999970i \(-0.502462\pi\)
−0.00773502 + 0.999970i \(0.502462\pi\)
\(692\) 20.3648 0.774153
\(693\) −0.278688 −0.0105865
\(694\) 2.32358 0.0882020
\(695\) 0 0
\(696\) −12.7388 −0.482864
\(697\) −15.8911 −0.601920
\(698\) 3.12976 0.118463
\(699\) 41.7193 1.57797
\(700\) 0 0
\(701\) 2.39744 0.0905501 0.0452750 0.998975i \(-0.485584\pi\)
0.0452750 + 0.998975i \(0.485584\pi\)
\(702\) −6.22876 −0.235089
\(703\) −0.869173 −0.0327815
\(704\) −2.78108 −0.104816
\(705\) 0 0
\(706\) 22.4394 0.844520
\(707\) −1.25654 −0.0472570
\(708\) −21.5336 −0.809281
\(709\) 22.0154 0.826804 0.413402 0.910549i \(-0.364340\pi\)
0.413402 + 0.910549i \(0.364340\pi\)
\(710\) 0 0
\(711\) −2.29517 −0.0860755
\(712\) 12.7268 0.476958
\(713\) −11.6344 −0.435712
\(714\) −1.11541 −0.0417432
\(715\) 0 0
\(716\) −0.667418 −0.0249426
\(717\) −17.9991 −0.672189
\(718\) −22.4282 −0.837014
\(719\) −9.29180 −0.346526 −0.173263 0.984876i \(-0.555431\pi\)
−0.173263 + 0.984876i \(0.555431\pi\)
\(720\) 0 0
\(721\) −3.20929 −0.119520
\(722\) 12.8279 0.477406
\(723\) 39.1333 1.45538
\(724\) −17.2215 −0.640032
\(725\) 0 0
\(726\) 8.93519 0.331616
\(727\) 29.4352 1.09169 0.545846 0.837886i \(-0.316208\pi\)
0.545846 + 0.837886i \(0.316208\pi\)
\(728\) 2.01714 0.0747600
\(729\) 29.1741 1.08052
\(730\) 0 0
\(731\) 22.5495 0.834023
\(732\) 19.3808 0.716335
\(733\) 3.71935 0.137377 0.0686887 0.997638i \(-0.478118\pi\)
0.0686887 + 0.997638i \(0.478118\pi\)
\(734\) −15.9669 −0.589349
\(735\) 0 0
\(736\) 28.3565 1.04524
\(737\) 21.3953 0.788107
\(738\) 1.78515 0.0657122
\(739\) 20.2734 0.745768 0.372884 0.927878i \(-0.378369\pi\)
0.372884 + 0.927878i \(0.378369\pi\)
\(740\) 0 0
\(741\) 2.32758 0.0855057
\(742\) −3.79650 −0.139374
\(743\) −1.11337 −0.0408457 −0.0204229 0.999791i \(-0.506501\pi\)
−0.0204229 + 0.999791i \(0.506501\pi\)
\(744\) 9.67077 0.354547
\(745\) 0 0
\(746\) −20.1867 −0.739086
\(747\) −1.45056 −0.0530730
\(748\) −5.23802 −0.191521
\(749\) 5.85179 0.213820
\(750\) 0 0
\(751\) −37.9213 −1.38377 −0.691885 0.722008i \(-0.743219\pi\)
−0.691885 + 0.722008i \(0.743219\pi\)
\(752\) 1.83182 0.0667995
\(753\) 31.1546 1.13534
\(754\) −3.61496 −0.131649
\(755\) 0 0
\(756\) −4.09736 −0.149019
\(757\) 41.8794 1.52213 0.761066 0.648674i \(-0.224676\pi\)
0.761066 + 0.648674i \(0.224676\pi\)
\(758\) −21.3405 −0.775121
\(759\) 14.4003 0.522697
\(760\) 0 0
\(761\) −12.6827 −0.459749 −0.229875 0.973220i \(-0.573832\pi\)
−0.229875 + 0.973220i \(0.573832\pi\)
\(762\) −11.0331 −0.399685
\(763\) −3.97889 −0.144046
\(764\) −15.3051 −0.553721
\(765\) 0 0
\(766\) 24.9159 0.900247
\(767\) −14.2278 −0.513735
\(768\) −17.2555 −0.622653
\(769\) 34.0483 1.22781 0.613907 0.789378i \(-0.289597\pi\)
0.613907 + 0.789378i \(0.289597\pi\)
\(770\) 0 0
\(771\) −8.41560 −0.303081
\(772\) −13.4676 −0.484709
\(773\) 20.6092 0.741261 0.370630 0.928780i \(-0.379142\pi\)
0.370630 + 0.928780i \(0.379142\pi\)
\(774\) −2.53312 −0.0910511
\(775\) 0 0
\(776\) 15.9880 0.573935
\(777\) −0.822630 −0.0295117
\(778\) 12.1494 0.435576
\(779\) −7.16233 −0.256617
\(780\) 0 0
\(781\) 10.9336 0.391234
\(782\) −6.59680 −0.235901
\(783\) 17.0970 0.610995
\(784\) −8.62613 −0.308076
\(785\) 0 0
\(786\) 23.4150 0.835185
\(787\) 49.1315 1.75135 0.875674 0.482903i \(-0.160417\pi\)
0.875674 + 0.482903i \(0.160417\pi\)
\(788\) −13.0261 −0.464036
\(789\) −44.5599 −1.58637
\(790\) 0 0
\(791\) 8.13562 0.289269
\(792\) 1.37004 0.0486822
\(793\) 12.8054 0.454732
\(794\) −3.29536 −0.116948
\(795\) 0 0
\(796\) −15.3793 −0.545103
\(797\) −1.87847 −0.0665389 −0.0332694 0.999446i \(-0.510592\pi\)
−0.0332694 + 0.999446i \(0.510592\pi\)
\(798\) −0.502729 −0.0177964
\(799\) −2.76368 −0.0977720
\(800\) 0 0
\(801\) −1.59086 −0.0562103
\(802\) 15.7094 0.554718
\(803\) −10.0319 −0.354017
\(804\) 29.2973 1.03324
\(805\) 0 0
\(806\) 2.74432 0.0966645
\(807\) 31.2952 1.10164
\(808\) 6.17719 0.217313
\(809\) −15.4989 −0.544912 −0.272456 0.962168i \(-0.587836\pi\)
−0.272456 + 0.962168i \(0.587836\pi\)
\(810\) 0 0
\(811\) 6.06459 0.212956 0.106478 0.994315i \(-0.466043\pi\)
0.106478 + 0.994315i \(0.466043\pi\)
\(812\) −2.37797 −0.0834503
\(813\) −29.6360 −1.03938
\(814\) 1.26842 0.0444582
\(815\) 0 0
\(816\) −4.04425 −0.141577
\(817\) 10.1633 0.355570
\(818\) 3.63994 0.127267
\(819\) −0.252143 −0.00881059
\(820\) 0 0
\(821\) −3.79024 −0.132280 −0.0661402 0.997810i \(-0.521068\pi\)
−0.0661402 + 0.997810i \(0.521068\pi\)
\(822\) −12.7909 −0.446133
\(823\) −2.64216 −0.0920999 −0.0460499 0.998939i \(-0.514663\pi\)
−0.0460499 + 0.998939i \(0.514663\pi\)
\(824\) 15.7770 0.549617
\(825\) 0 0
\(826\) 3.07303 0.106924
\(827\) −21.8953 −0.761376 −0.380688 0.924704i \(-0.624313\pi\)
−0.380688 + 0.924704i \(0.624313\pi\)
\(828\) −2.25696 −0.0784349
\(829\) 7.03307 0.244269 0.122134 0.992514i \(-0.461026\pi\)
0.122134 + 0.992514i \(0.461026\pi\)
\(830\) 0 0
\(831\) −37.6323 −1.30545
\(832\) −2.51619 −0.0872332
\(833\) 13.0143 0.450919
\(834\) −16.3482 −0.566093
\(835\) 0 0
\(836\) −2.36084 −0.0816512
\(837\) −12.9793 −0.448629
\(838\) 11.1549 0.385341
\(839\) −49.4466 −1.70709 −0.853544 0.521021i \(-0.825551\pi\)
−0.853544 + 0.521021i \(0.825551\pi\)
\(840\) 0 0
\(841\) −19.0775 −0.657845
\(842\) −4.54907 −0.156771
\(843\) 23.2640 0.801256
\(844\) −20.5390 −0.706981
\(845\) 0 0
\(846\) 0.310461 0.0106739
\(847\) 3.88353 0.133440
\(848\) −13.7653 −0.472703
\(849\) 14.0357 0.481704
\(850\) 0 0
\(851\) −4.86522 −0.166778
\(852\) 14.9717 0.512922
\(853\) −2.94665 −0.100891 −0.0504457 0.998727i \(-0.516064\pi\)
−0.0504457 + 0.998727i \(0.516064\pi\)
\(854\) −2.76581 −0.0946441
\(855\) 0 0
\(856\) −28.7676 −0.983257
\(857\) 27.7795 0.948929 0.474465 0.880275i \(-0.342642\pi\)
0.474465 + 0.880275i \(0.342642\pi\)
\(858\) −3.39673 −0.115963
\(859\) −50.2134 −1.71326 −0.856629 0.515933i \(-0.827445\pi\)
−0.856629 + 0.515933i \(0.827445\pi\)
\(860\) 0 0
\(861\) −6.77879 −0.231021
\(862\) 17.5585 0.598046
\(863\) 1.11827 0.0380663 0.0190331 0.999819i \(-0.493941\pi\)
0.0190331 + 0.999819i \(0.493941\pi\)
\(864\) 31.6344 1.07622
\(865\) 0 0
\(866\) −27.2320 −0.925382
\(867\) −21.7903 −0.740037
\(868\) 1.80525 0.0612741
\(869\) −13.4385 −0.455871
\(870\) 0 0
\(871\) 19.3575 0.655903
\(872\) 19.5604 0.662398
\(873\) −1.99851 −0.0676392
\(874\) −2.97326 −0.100572
\(875\) 0 0
\(876\) −13.7369 −0.464128
\(877\) −23.0843 −0.779502 −0.389751 0.920920i \(-0.627439\pi\)
−0.389751 + 0.920920i \(0.627439\pi\)
\(878\) 23.0919 0.779314
\(879\) −43.0224 −1.45111
\(880\) 0 0
\(881\) −10.1304 −0.341301 −0.170650 0.985332i \(-0.554587\pi\)
−0.170650 + 0.985332i \(0.554587\pi\)
\(882\) −1.46198 −0.0492273
\(883\) −0.620421 −0.0208788 −0.0104394 0.999946i \(-0.503323\pi\)
−0.0104394 + 0.999946i \(0.503323\pi\)
\(884\) −4.73910 −0.159393
\(885\) 0 0
\(886\) 17.1743 0.576983
\(887\) −0.762728 −0.0256099 −0.0128049 0.999918i \(-0.504076\pi\)
−0.0128049 + 0.999918i \(0.504076\pi\)
\(888\) 4.04408 0.135710
\(889\) −4.79533 −0.160830
\(890\) 0 0
\(891\) 14.3974 0.482330
\(892\) −10.0319 −0.335892
\(893\) −1.24562 −0.0416832
\(894\) 20.2784 0.678211
\(895\) 0 0
\(896\) −5.30116 −0.177099
\(897\) 13.0287 0.435015
\(898\) 16.7473 0.558864
\(899\) −7.53272 −0.251230
\(900\) 0 0
\(901\) 20.7678 0.691877
\(902\) 10.4523 0.348023
\(903\) 9.61909 0.320103
\(904\) −39.9950 −1.33021
\(905\) 0 0
\(906\) −12.0978 −0.401921
\(907\) −44.6062 −1.48112 −0.740562 0.671988i \(-0.765441\pi\)
−0.740562 + 0.671988i \(0.765441\pi\)
\(908\) 8.61011 0.285737
\(909\) −0.772152 −0.0256107
\(910\) 0 0
\(911\) 21.5382 0.713591 0.356796 0.934182i \(-0.383869\pi\)
0.356796 + 0.934182i \(0.383869\pi\)
\(912\) −1.82279 −0.0603586
\(913\) −8.49321 −0.281084
\(914\) 24.6397 0.815010
\(915\) 0 0
\(916\) −45.1012 −1.49018
\(917\) 10.1769 0.336072
\(918\) −7.35935 −0.242895
\(919\) −32.1570 −1.06076 −0.530380 0.847760i \(-0.677951\pi\)
−0.530380 + 0.847760i \(0.677951\pi\)
\(920\) 0 0
\(921\) −34.1545 −1.12543
\(922\) −5.58672 −0.183989
\(923\) 9.89217 0.325605
\(924\) −2.23442 −0.0735069
\(925\) 0 0
\(926\) 16.8369 0.553295
\(927\) −1.97213 −0.0647733
\(928\) 18.3595 0.602681
\(929\) 53.7540 1.76361 0.881805 0.471614i \(-0.156328\pi\)
0.881805 + 0.471614i \(0.156328\pi\)
\(930\) 0 0
\(931\) 5.86571 0.192241
\(932\) −38.2849 −1.25406
\(933\) 26.2165 0.858290
\(934\) 29.6816 0.971212
\(935\) 0 0
\(936\) 1.23954 0.0405158
\(937\) 32.7426 1.06965 0.534827 0.844961i \(-0.320377\pi\)
0.534827 + 0.844961i \(0.320377\pi\)
\(938\) −4.18098 −0.136514
\(939\) 7.01283 0.228855
\(940\) 0 0
\(941\) −7.12766 −0.232355 −0.116178 0.993228i \(-0.537064\pi\)
−0.116178 + 0.993228i \(0.537064\pi\)
\(942\) −16.2812 −0.530470
\(943\) −40.0913 −1.30555
\(944\) 11.1422 0.362646
\(945\) 0 0
\(946\) −14.8318 −0.482222
\(947\) 14.6389 0.475702 0.237851 0.971302i \(-0.423557\pi\)
0.237851 + 0.971302i \(0.423557\pi\)
\(948\) −18.4018 −0.597663
\(949\) −9.07634 −0.294630
\(950\) 0 0
\(951\) 10.1629 0.329554
\(952\) 2.38327 0.0772422
\(953\) 51.2467 1.66004 0.830021 0.557731i \(-0.188328\pi\)
0.830021 + 0.557731i \(0.188328\pi\)
\(954\) −2.33298 −0.0755329
\(955\) 0 0
\(956\) 16.5174 0.534211
\(957\) 9.32350 0.301386
\(958\) −24.1299 −0.779601
\(959\) −5.55934 −0.179521
\(960\) 0 0
\(961\) −25.2815 −0.815532
\(962\) 1.14761 0.0370003
\(963\) 3.59597 0.115878
\(964\) −35.9118 −1.15664
\(965\) 0 0
\(966\) −2.81404 −0.0905403
\(967\) 12.5599 0.403899 0.201949 0.979396i \(-0.435272\pi\)
0.201949 + 0.979396i \(0.435272\pi\)
\(968\) −19.0916 −0.613627
\(969\) 2.75006 0.0883447
\(970\) 0 0
\(971\) −5.56513 −0.178594 −0.0892968 0.996005i \(-0.528462\pi\)
−0.0892968 + 0.996005i \(0.528462\pi\)
\(972\) −4.80120 −0.153999
\(973\) −7.10549 −0.227792
\(974\) −2.13742 −0.0684874
\(975\) 0 0
\(976\) −10.0282 −0.320996
\(977\) 25.6883 0.821843 0.410922 0.911671i \(-0.365207\pi\)
0.410922 + 0.911671i \(0.365207\pi\)
\(978\) 0.301267 0.00963346
\(979\) −9.31471 −0.297699
\(980\) 0 0
\(981\) −2.44506 −0.0780647
\(982\) 8.05516 0.257050
\(983\) 21.5725 0.688057 0.344028 0.938959i \(-0.388208\pi\)
0.344028 + 0.938959i \(0.388208\pi\)
\(984\) 33.3248 1.06236
\(985\) 0 0
\(986\) −4.27112 −0.136020
\(987\) −1.17892 −0.0375255
\(988\) −2.13597 −0.0679543
\(989\) 56.8894 1.80898
\(990\) 0 0
\(991\) 9.15527 0.290827 0.145413 0.989371i \(-0.453549\pi\)
0.145413 + 0.989371i \(0.453549\pi\)
\(992\) −13.9377 −0.442524
\(993\) −52.5681 −1.66820
\(994\) −2.13659 −0.0677686
\(995\) 0 0
\(996\) −11.6300 −0.368511
\(997\) −21.1522 −0.669896 −0.334948 0.942237i \(-0.608719\pi\)
−0.334948 + 0.942237i \(0.608719\pi\)
\(998\) 28.0621 0.888292
\(999\) −5.42761 −0.171722
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.a.l.1.5 9
3.2 odd 2 8325.2.a.cr.1.5 9
5.2 odd 4 185.2.b.a.149.8 18
5.3 odd 4 185.2.b.a.149.11 yes 18
5.4 even 2 925.2.a.m.1.5 9
15.2 even 4 1665.2.c.e.334.11 18
15.8 even 4 1665.2.c.e.334.8 18
15.14 odd 2 8325.2.a.cq.1.5 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.b.a.149.8 18 5.2 odd 4
185.2.b.a.149.11 yes 18 5.3 odd 4
925.2.a.l.1.5 9 1.1 even 1 trivial
925.2.a.m.1.5 9 5.4 even 2
1665.2.c.e.334.8 18 15.8 even 4
1665.2.c.e.334.11 18 15.2 even 4
8325.2.a.cq.1.5 9 15.14 odd 2
8325.2.a.cr.1.5 9 3.2 odd 2